材料力学性能学习要点-(2)

合集下载

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在外力作用下所表现出的力学特性,包括材料的强度、韧性、硬度、塑性等。

这些性能直接影响着材料在工程领域的应用,因此对材料力学性能的研究和评价显得尤为重要。

首先,强度是材料力学性能中的重要指标之一。

材料的强度是指材料抵抗外力破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等来表示。

不同材料的强度差异很大,例如金属材料的强度通常较高,而塑料和橡胶等材料的强度相对较低。

材料的强度直接影响着材料在工程中的承载能力和使用寿命。

其次,韧性是衡量材料抵抗断裂的能力。

韧性高的材料在受到外力作用时能够延展变形而不易断裂,这对于一些需要承受冲击或振动载荷的工程结构来说尤为重要。

例如,航空航天领域对材料的韧性要求较高,以确保飞行器在受到外部冲击时能够保持结构完整。

此外,硬度是材料力学性能中的重要参数之一。

材料的硬度是指材料抵抗划痕和压痕的能力,通常用洛氏硬度、巴氏硬度等来表示。

硬度高的材料通常具有较好的耐磨性和耐腐蚀性,适用于一些对材料表面要求较高的工程领域,例如汽车制造、船舶建造等。

最后,塑性是材料力学性能中的重要特性之一。

材料的塑性是指材料在受到外力作用时能够发生塑性变形而不断裂,这对于一些需要进行成形加工的工程材料来说尤为重要。

例如,金属材料的塑性使其能够通过锻造、轧制等工艺进行成形,从而制备出各种复杂的零部件。

综上所述,材料力学性能是材料工程领域中的重要研究内容,不同的材料力学性能对材料的应用具有重要的影响。

因此,对材料力学性能的研究和评价具有重要的意义,可以为工程领域的材料选择和设计提供重要的参考依据。

材料力学性能-第五章-金属的疲劳(2)

材料力学性能-第五章-金属的疲劳(2)

2021年10月21日 星期四
材料 qf
第五章 金属的疲劳
表5-3 部分材料的qf值
结构钢
粗晶钢 球墨铸铁
0.6~0.8
0.1~0.2 0.11~0.25
灰铸铁 qf<0.05
钢经热处理后强度增加, qf增加。 高周疲劳时,大多数金属对缺口都十分敏
感,在低周疲劳时,对缺口的敏感性较小,主要 是因为低周疲劳时缺口根部已处于塑性区内,产 生了应力松弛,降低了应力集中。
2021年10月21日 星期四
第五章 金属的疲劳
过载持久值
金属材料在高于疲劳极限的
应力下运行时,发生疲劳断裂的
循环周次称为材料的过载持久值,R
也称有限疲劳寿命,它表征了材 料对过载的抗力。
N
图5-12 过载持久值
曲线越陡,过载持久值越高,说明材料在相同 的过载荷下能承受的应力循环周次越多,材料的抗 过载能力越强。
AB曲线上任一点: tan max 2 m 1 r
因此只要知道了r,求得,从O作相应连线 OH,H点的纵坐标即为所求的疲劳极限。
H
A
B
O
m
45
C
min max(min)—m图
AB曲线是不同r下的max,AC曲线是不同r下 的min。此图是脆性材料的疲劳图,对于塑性材料, 应该用屈服强度0.2进行修正。
此题中,m=13,n=4,
故R=1/13× (2×546+5×519+5×492+1×464)=508MPa
2021年10月21日 星期四
第五章 金属的疲劳
测定时注意两个问题:
第一级应力水平要略高于预计的疲劳极限。对于钢
材,R≈0.45b~ 0.5b,建议取1=0.5b。应力增量 一般为预计疲劳极限的3%~5%,钢材取

工程材料力学性能各章节复习知识点

工程材料力学性能各章节复习知识点

工程材料力学性能各个章节主要复习知识点第一章弹性比功:又称弹性比能,应变比能,表示金属材料吸收弹性变形功的能力。

滞弹性:对材料在弹性范围内快速加载或卸载后随时间延长附加弹性应变的现象。

包申格效应:金属材料经预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服极限)增加,反向加载,规定残余伸长应力降低的现象。

塑性:指金属材料断裂前发生塑性变形的能力。

脆性:材料在外力作用下(如拉伸,冲击等)仅产生很小的变形及断裂破坏的性质。

韧性:是金属材料断裂前洗手塑性变形功和断裂功的能力,也指材料抵抗裂纹扩展的能力。

应力、应变;真应力,真应变概念。

穿晶断裂和沿晶断裂:多晶体材料断裂时,裂纹扩展的路径可能不同,穿晶断裂穿过晶内;沿晶断裂沿晶界扩展。

拉伸断口形貌特征?①韧性断裂:断裂面一般平行于最大切应力并与主应力成45度角。

用肉眼或放大镜观察时,断口呈纤维状,灰暗色。

纤维状是塑性变形过程中微裂纹不断扩展和相互连接造成的,而灰暗色则是纤维断口便面对光反射能力很弱所致。

其断口宏观呈杯锥形,由纤维区、放射区、和剪切唇区三个区域组成。

②脆性断裂:断裂面一般与正应力垂直,断口平齐而光亮,常呈放射状或结晶状。

板状矩形拉伸试样断口呈人字形花样。

人字形花样的放射方向也与裂纹扩展方向平行,但其尖端指向裂纹源。

韧、脆性断裂区别?韧性断裂产生前会有明显的塑性变形,过程比较缓慢;脆性断裂则不会有明显的塑性变形产生,突然发生,难以发现征兆拉伸断口三要素?纤维区,放射区和剪切唇。

缺口试样静拉伸试验种类?轴向拉伸、偏斜拉伸材料失效有哪几种形式?磨损、腐蚀和断裂是材料的三种主要失效方式。

材料的形变强化规律是什么?层错能越低,n越大,形变强化增强效果越大退火态金属增强效果比冷加工态是好,且随金属强度等级降低而增加。

在某些合金中,增强效果随合金元素含量的增加而下降。

材料的晶粒变粗,增强效果提高。

第二章应力状态软性系数:材料某一应力状态,τmax和σmax的比值表示他们的相对大小,成为应力状态软性系数,比为α,α=τmaxσmax缺口敏感度:缺口试样的抗拉强度σbn 与等截面尺寸光滑试样的抗拉强度σb的比值表示缺口敏感度,即为NSR=σbnσb第三章低温脆性:在实验温度低于某一温度t2时,会由韧性状态变为脆性状态,冲击吸收功明显降低,断裂机理由微孔聚集性变为穿晶解理型,断口特征由纤维状变为结晶状,这就是低温脆性。

材料力学性能复习总结

材料力学性能复习总结

材料力学性能复习总结材料力学性能是指材料在外力作用下所表现出的力学特性和性能。

在材料力学性能的学习中,不仅需要了解材料的基本力学性质,还需要掌握材料的破坏机制、变形行为以及材料的力学性能测试方法等方面的知识。

以下是对材料力学性能复习的总结。

1.材料的破坏机制和破坏形态材料的破坏机制是指材料在受力作用下发生破坏的方式和过程。

常见的破坏机制有拉伸破坏、压缩破坏、剪切破坏等。

拉伸破坏时,材料会发生断裂;压缩破坏时,材料会出现压缩变形和压碎现象;剪切破坏时,材料会出现剪切变形和断裂等。

材料的破坏形态是指材料在受力作用下发生的形态变化。

常见的破坏形态有脆性断裂、塑性变形和疲劳破坏等。

脆性断裂是指材料在受静态或低应力下发生迅速断裂的性质;塑性变形是指材料在受力作用下发生塑性流动,而不发生断裂;疲劳破坏是指材料在反复受力下产生裂纹并最终导致断裂。

2.材料的变形行为和变形机制材料的变形行为是指材料在受力作用下发生的形变现象。

常见的变形行为有弹性变形、塑性变形和粘弹性变形等。

弹性变形是指材料在受力作用下发生的可逆性变形。

材料在弹性变形时能够恢复到原始形状和尺寸。

弹性变形的机制是原子之间的键能发生弹性形变,即在受力作用下原子间的距离发生变化,但不改变原子间的相对位置。

塑性变形是指材料在受力作用下发生的不可逆性变形。

材料在塑性变形时会发生晶格的滑移和位错的运动。

塑性变形的机制是原子间的键能发生塑性形变,即原子间的相对位置发生改变。

粘弹性变形是指材料在受力作用下表现出介于弹性变形和塑性变形之间的性质。

材料在粘弹性变形时有一部分能量会被消耗掉,导致材料的不完全恢复。

粘弹性变形的机制是在外力作用下,分子间的键发生的弹性形变和分子间的长距离位移。

3.材料力学性能的测试方法拉伸试验是指将材料置于拉力下进行测试。

通过拉伸试验可以了解材料的弹性性能、破坏强度、延展性以及断裂形态等。

压缩试验是指将材料置于压力下进行测试。

通过压缩试验可以了解材料的强度和刚度等。

材料力学性能学习要点

材料力学性能学习要点

材料力学性能知识框架不同材料(金属、高分子、陶瓷基复合材料)具有怎样的力学性能特点;结合成型与加工、选材和材料改质、改性等项要求,理解各材料力学性能指标(复习不再列出)的含义、物理及技术意义;材料变形与断裂的基本特征(金属为主,了解高分子、陶瓷及复合材料);结合工件服役(受载、环境因素)条件和材料断口形貌特征,判断材料失效及断裂类型;了解主要力学性能指标的测试方法;分析、把握影响材料主要力学性能指标的主要因素。

1.拉伸力学性能强度、塑性、韧性;(1)强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。

强度是衡量零件本身承载能力(即抵抗失效能力)的重要指标。

(2)塑性:材料受力,应力超过屈服点后,仍能继续变形而不发生断裂的性质(能力)。

“δ”-伸长率,“ψ”-断面收缩率。

意义:a. 确保安全,防止产生突然破坏;b. 缓和应力集中;c. 是轧制、挤压等冷热加工变形的必要条件;影响因素:a. 细化晶粒,塑性↑;b. 软的第二相,塑性↑;c. 温度提高,塑性↑;d. 固溶、硬的第二相等,塑性↓(3)韧性:材料断裂前吸收塑性变形功和断裂功的能力。

(或者材料抵抗裂纹扩展的能力,J/m3),是材料的力学性能。

退火低碳钢静拉伸曲线特征;断口形貌特点;退火低碳钢在拉伸力作用下的变形过程可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形、不均匀集中塑性变形和断裂几个阶段。

弹性变形、塑性变形;(1)弹性变形:定义:当外力去除后,能恢复到原来形状或尺寸的变形,叫弹性变形。

特点:单调、可逆、变形量很小(<0.5~1.0%)(2)塑性变形:定义:外载荷卸去后,不能恢复的变形。

特点:各晶粒变形的不同时性和不均匀性、变形的相互协调性屈服(不均匀塑性变形)、均匀塑性变形、集中塑性变形(缩颈);(1)屈服(不均匀塑性变形):在金属塑性变形开始阶段,外力不增加、甚至下降时,变形继续进行的现象,称为屈服。

特点:上屈服点、下屈服点(吕德丝带)(2)均匀塑性变形:屈服之后,缩颈之前的阶段(在这一阶段,塑性变形并是能像屈服平台那样连续流变先去,而需要不断增加外力才能进行,)(3)集中塑性变形(缩颈):a. 意义变形集中于局部区域b. 缩颈的判据(塑性变形时,体积不变的条件)e B = n结论:当金属材料真实均匀塑性应变量等于应变硬化指数时,便产生缩颈。

材料力学性能知识要点

材料力学性能知识要点

1、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。

2、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率断面收缩率 、 冲击功 。

3、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。

4、常用测定硬度的方法有 布氏硬度 、 洛氏硬度 和 维氏硬度 测试法。

1、聚合物的弹性模量对 结构 非常敏感,它的粘弹性表现为滞后环、应力松弛和 蠕变 ,这种现象与温度、时间密切有关。

2、影响屈服强度的内在因素有: 结构健 、 组织 、 结构 、 原子本性 ;外在因素有: 温度 、 应变速率 、 应力状态 。

3、缺口对材料的力学性能的影响归结为四个方面: (1)产生应力集中 、(2)引起三相应力状态,使材料脆化 、 (3)由应力集中带来应变集中 、(4)使缺口附近的应变速率增高 。

4、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。

5、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率 断面收缩率 、 冲击功 。

6、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。

请说明下面公式各符号的名称以及其物理意义7、c IC c a Y K /=σσc :断裂应力,表示金属受拉伸离开平衡位置后,位移越大需克服的引力越大,σc 表示引力的最大值;K 1C :平面应变的断裂韧性,它反映了材料组织裂纹扩展的能力;Y :几何形状因子a c : 裂纹长度 8、对公式m K c dNda )(∆=进行解释,并说明各符号的名称及其物理意义(5分) 答:表示疲劳裂纹扩展速率与裂纹尖端的应力强度因子幅度之间的关系。

dNda :裂纹扩展速率(随周次); c 与m :与材料有关的常数;K ∆:裂纹尖端的应力强度因子幅度9、εss-蠕变速率,反映材料在一定的应力作用下,发生蠕变的快慢;n为应力指数,n并非完全是材料常数,随着温度的升高,n略有降低;A为常数;σ为蠕变应力。

材料力学性能知识要点

材料力学性能知识要点

1、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。

2、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率断面收缩率 、 冲击功 。

3、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。

4、常用测定硬度的方法有 布氏硬度 、 洛氏硬度 和 维氏硬度 测试法。

1、聚合物的弹性模量对 结构 非常敏感,它的粘弹性表现为滞后环、应力松弛和 蠕变 ,这种现象与温度、时间密切有关。

2、影响屈服强度的内在因素有: 结构健 、 组织 、 结构 、 原子本性 ;外在因素有: 温度 、 应变速率 、 应力状态 。

3、缺口对材料的力学性能的影响归结为四个方面: (1)产生应力集中 、(2)引起三相应力状态,使材料脆化 、 (3)由应力集中带来应变集中 、(4)使缺口附近的应变速率增高 。

4、低碳钢拉伸试验的过程可以分为 弹性变形 、 塑性变形 和 断裂 三个阶段。

5、材料常规力学性能的五大指标为: 屈服强度 、 抗拉强度 、 延伸率 断面收缩率 、 冲击功 。

6、陶瓷材料增韧的主要途径有 相变增韧 、 微裂纹增韧 、 表面残余应力增韧 、 晶须或纤维增韧 显微结构增韧以及复合增韧六种。

请说明下面公式各符号的名称以及其物理意义7、c IC c a Y K /=σσc :断裂应力,表示金属受拉伸离开平衡位置后,位移越大需克服的引力越大,σc 表示引力的最大值;K 1C :平面应变的断裂韧性,它反映了材料组织裂纹扩展的能力;Y :几何形状因子a c : 裂纹长度 8、对公式m K c dNda )(∆=进行解释,并说明各符号的名称及其物理意义(5分) 答:表示疲劳裂纹扩展速率与裂纹尖端的应力强度因子幅度之间的关系。

dNda :裂纹扩展速率(随周次); c 与m :与材料有关的常数;K ∆:裂纹尖端的应力强度因子幅度9、εss-蠕变速率,反映材料在一定的应力作用下,发生蠕变的快慢;n为应力指数,n并非完全是材料常数,随着温度的升高,n略有降低;A为常数;σ为蠕变应力。

材料力学性能总结(2篇)

材料力学性能总结(2篇)

材料力学性能总结第一章二节.弹变1。

弹性变形。

材料在外力作用下产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状的性质称为弹性。

这种可恢复的变形称为弹性变形。

2.弹性模量:表征材料对弹性变形的抗力3.弹性性能与特征是原子间结合力的宏观体现,本质上决定于晶体的电子结构,而不依赖于显微____,因此,弹性模量是对____不敏感的性能指标。

4.比例极限σp。

应力与应变成直线关系的最大应力。

5.弹性极限σe。

由弹性变形过渡到弹性塑性变形的应力。

6.弹性比功。

表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能。

7.力学性能指标。

反映材料某些力学行为发生能力或抗力的大小。

8.弹性变形特点:应力与应变成比例,产生变形,当外力取消后,材料变形即可消失并能完全恢复原来形状9.滞弹性。

在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象,称为滞弹性。

10.循环韧性。

指在塑性区加载时材料吸收不可逆变形功的能力。

11.循环韧性应用。

减振、消振元件。

____包申格效应。

金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象,称为包申格效应。

____包申格应变。

指在给定应力下,正向加载与反向加载两应力-应变曲线之间的应变差。

14.消除包申格效应:预先进行较大的塑性变形。

在第二次反向受力前先使金属材料于回复或再结晶温度下退火。

三节:塑性晶粒小可以产生细晶强化。

都会使强度增加。

3.溶质原子:溶质元素溶入金属晶格形成固溶体,产生固溶强化应变速率越高强度越高。

3.细晶强化。

晶界是位错运动的阻碍,晶粒小相界多。

减少晶粒尺寸会减少晶粒内部位错塞积的数量,减少位错塞积群的长度,降低塞积点处的应力,相邻晶粒中位错源开动所需的外加切应力提高,屈服强度增加。

4.固溶强化。

在纯金属中加入溶质原子形成固溶合金,将显著提高屈服强度,此即为固溶强化。

溶质原子与基体原子尺寸差别越大,引起的弹性畸变越大,溶质原子浓度越高,引起的弹性畸变越大,对位错的阻碍作用越强,固溶强化作用越大。

材料力学性能实验(2个)要点

材料力学性能实验(2个)要点

《材料力学性能》实验教学指导书实验项目:1. 实验总学时:4 准静态拉伸2. 不同材料的冲击韧性材料科学与工程学院实验中心工程材料及机制基础实验室实验一准静态拉伸一、实验目的1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。

2.测定低碳钢的屈服极限σs,强度极限σb,断后延伸率δ和断面收缩率ψ。

3.测定铸铁的强度极限σb。

4.比较低碳钢和铸铁的力学性能的特点及断口形貌。

二、概述静载拉伸试验是最基本的、应用最广的材料力学性能试验。

一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。

另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。

静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。

在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度σs和抗拉强度σb)和塑性指标(伸长率δ和断面收缩率ψ)。

通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P—Δl曲线,习惯上称此曲线为试样的拉伸图。

图1即为低碳钢的拉伸图。

试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。

当载荷增加到一定值时,拉伸图上出现平台或锯齿状。

这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷Ps,Ps除以试样原始横截面面积Ao即得到屈服极限σs:σs=Ps A0试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。

这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。

由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。

当载荷达到最大值Pb后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到Pb 试样拉断。

工程材料力学性能每章重要知识点

工程材料力学性能每章重要知识点

第一章1.应力-应变曲线(拉伸力-伸长曲线)。

拉伸力在Fe以下阶段,为弹性变形阶段,到达Fa后,试样开始发生塑性变形,最初试样局部区域产生不均匀屈服塑形变形,曲线上出现平台或锯齿,直至C点结束。

继而进入均匀塑形变形阶段。

达到最大拉伸Fb时,试样在此产生不均匀塑形变形,在局部区域产生缩颈。

最终,在拉伸力Fk处,试样断裂。

2.弹性变形现象及指标弹性变形:是可逆性变形,是金属晶格中原子自平衡位置产生可逆位移的反映。

弹性变形指标:①弹性模量,是产生100%弹性变形所需应力。

②弹性比功(弹性比能、应变比能),表示金属吸收弹性变形功的能力。

③滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

④循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。

3.塑性变形现象及指标金属材料常见塑性变形方式主要为滑移和孪生。

滑移:金属材料在切应力作用下位错沿滑移面和滑移方向运动而进行切变得过程。

孪生:金属材料在切应力作用下沿特定晶面和特性晶向进行的塑性变形。

塑性变形特点:①各晶粒变形的不同时性和均匀性;②各晶粒变形的相互协调性。

塑性变形指标:⑴屈服强度,屈服强度及金属材料拉伸时,试样在外力不增加(保持恒定)仍能继续伸长时的应力。

屈服现象:金属材料开始产生宏观塑形变形的标志。

屈服现象相关因素:①材料变形前可动位错密度很小;②随塑性变形的发生,位错能快速增殖;③位错的运动速率与外加应力有强烈的依存关系。

屈服现象指标:规定非比例伸长应力;规定残余伸长应力;规定总伸长应力。

影响屈服强度因素:①内在因素:金属本性和晶格类型;晶粒的大小和亚结构;溶质元素;第二相。

②外在因素:温度、应变速率、应力状态。

⑵应变硬化:金属材料阻止继续塑形变形的能力,塑性变形是硬化的原因,硬化是结果。

⑶缩颈:韧性金属材料在拉伸试验时变形集中于局部区域的特殊现象,是应变硬化与截面减小共同作用的结果。

抗拉强度:韧性金属试样拉断过程中最大力所对应的应力。

材料力学性能 (2)

材料力学性能 (2)

材料力学性能
材料力学性能是指材料在受力作用下的力学性能,包括以下几个方面:
1. 强度:材料的强度是指其抵抗外部力量破坏的能力。

常用的强度指标有抗拉强度、抗压强度、抗剪切强度等。

2. 韧性:材料的韧性是指其能够吸收外部作用力而发生塑性变形的能力。

韧性高的材料具有较大的塑性变形能力,可以在受到强力作用时不容易断裂。

3. 脆性:脆性是指材料在受力作用下发生断裂的倾向。

脆性材料在受到一定力量作用时容易发生断裂。

4. 硬度:材料的硬度是指其抵抗局部变形的能力。

硬度高的材料表面不容易发生划痕或凹陷。

5. 可塑性:可塑性是指材料在受力作用下发生塑性变形的能力。

材料的可塑性越高,其变形能力越大。

6. 弹性:弹性是指材料在受力作用下发生弹性变形的能力。

弹性材料在受力后能够恢复原状。

以上是材料力学性能的一些常见指标,不同材料具有不同
的力学性能特点。

材料的力学性能是衡量其适用性和使用
寿命的关键因素。

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在受力作用下所表现出来的性能,包括强度、刚度、韧性等指标。

材料力学性能的好坏直接影响到材料在工程应用中的可靠性和安全性。

本文将介绍材料力学性能的相关概念和测试方法,并分析其对材料应用的影响。

一、强度强度是指材料抵抗外力破坏的能力。

常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。

抗拉强度是指材料在拉伸力作用下,抗拉破坏的能力。

抗压强度是指材料在受压力作用下,抗压破坏的能力。

抗弯强度是指材料在受弯力作用下,抗弯曲破坏的能力。

强度的测试方法主要包括拉伸试验、压缩试验、弯曲试验等。

材料的强度往往与其成分、结构和加工工艺有关。

例如,金属材料中添加合适的合金元素,可以提高其强度;陶瓷材料中控制晶粒尺寸和界面结合情况,可以提高其抗压强度;纤维增强复合材料中,纤维的分布和取向对抗弯强度有重要影响。

在工程设计中,需要根据具体应用情况选择合适的材料强度指标,并保证其符合设计要求,以确保结构的稳定性和安全性。

二、刚度刚度是指材料抵抗形变的能力,也可以理解为材料对外力作用下的变形程度。

常见的刚度指标包括弹性模量、切变模量等。

弹性模量是指材料在弹性变形范围内,单位应力下的应变,反映了材料的抗弹性变形能力。

刚度的测试方法主要包括拉伸试验、扭转试验等。

材料的刚度与其物理性质和结构密切相关。

高弹性模量的材料具有较高的刚度,其在受力下变形较小;而低弹性模量的材料具有较低的刚度,其在受力下变形较大。

在工程设计中,需要根据结构的刚度要求选择合适的材料,以确保结构的稳定性和正常运行。

三、韧性韧性是指材料抵抗断裂的能力,反映了材料在受力下的变形能力和吸能能力。

常见的韧性指标包括断裂韧性、冲击韧性等。

断裂韧性是指材料在断裂前所能吸收的能量。

冲击韧性是指材料在受冲击载荷下,能够抵抗破坏的能力。

韧性的测试方法主要包括冲击试验、拉伸试验等。

材料的韧性与其断裂机制和微观结构有关。

例如,金属材料中的晶界和位错可以有效地阻止裂纹扩展,提高韧性;聚合物材料中的交联结构和链段运动可以吸收能量,提高韧性。

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:材料的强度是指材料抵抗外力破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

屈服强度是指材料在受力后开始出现塑性变形的应力值;抗拉强度是指材料在拉伸状态下的最大应力值;抗压强度是指材料在受到压缩力时的最大应力值。

强度高的材料具有较高的抵抗破坏能力,适用于需要承受大力的场合。

2.韧性:韧性是材料在受力过程中能够吸收能量并发生大变形的能力。

具有良好韧性的材料能够抵抗冲击或拉伸等动力载荷的作用,不易发生断裂或失效。

韧性材料通常具有较高的延展性和断裂韧性。

3.硬度:硬度是材料抵抗刮擦或压痕的能力。

硬度高的材料具有较强的抗刮擦能力和耐磨损性能。

常用的硬度测试方法有洛氏硬度和布氏硬度等。

4.延展性:延展性是指材料在受力时的塑性变形程度。

延展性高的材料能够在受力后产生大的形变而不发生断裂。

材料的延展性通常与其抗拉强度、韧性和冷加工性能有关。

5.抗疲劳性:抗疲劳性是指材料在重复应力作用下不发生疲劳断裂的能力。

材料的抗疲劳性能决定了其在长期运行过程中的耐久性,具有抗疲劳性的材料能够在长期受力下保持稳定性能。

6.温度效应:材料在高温或低温环境下的性能表现。

高温下,材料可能会发生软化或氧化等变化,降低其强度和韧性;而低温下,材料可能变脆,容易发生断裂。

温度效应的了解对于材料的设计和应用非常重要。

除了上述重点性能指标外,材料力学性能还与其他因素有关,如材料的组织结构、制备工艺、应力条件等。

因此,在材料性能的研究和应用过程中,需要综合考虑多因素的影响。

综上所述,材料力学性能的研究对于材料的设计、选择和应用具有重要意义。

材料力学性能-2-材料变形

材料力学性能-2-材料变形

在对称性最高的各向同性体中,广义的Hooke定律为:
例:单轴拉伸(如X方向)时, 广义的Hooke定律简化为:
由此可见,在单轴加载条件下, 材料不仅有受力方向上的变形, 而且还有垂直于受力方向上的横 向变形(应变)。
工程常用弹性常数
• 弹性模量(E) σ E = (单向受力状态下) ε 它反映材料抵抗正应变的能力。 • 切变模量(G) τ G = (纯剪受力状态下) ν 它反映材料抵抗切应变的能力。 • 泊松比(ν ) ε ν =− (单向-X方向受力状态下) ε 它反映材料横向正应变与受力方向正应变的相对 比值。
2.4 材料的塑性变形
单晶体和多晶体材料塑性变形的特点
3)形变织构和各向异性 随着塑性变形程度的增加,各个晶粒的滑移方向逐 渐向主形变方向转动,使多晶体中原来取向互不相同的 各个晶粒在空间取向逐渐趋向一致,这一现象称为择优 取向;材料变形过程中的这种组织状态称为形变织构。
滞弹性与内耗
• 材料的内摩擦-内耗,导致振动机械能转 变为热能而消耗 • 研究目的:1、通过内耗特性,研究材料内 部的微观结构信息,如溶质原子浓度、位 错与溶质原子的交互作用等。2、获得高阻 尼合金,使结构振动衰减,减振降噪,提 高设备的运行精度。
求导得: 即:
dφ (u ) / du = u (d 2φ / du 2 )0
F = u (d 2φ / du 2 )0
实际上,对大块金属材料而言, 通常能达到的弹性变形量很小,主 要是因为实际材料中不可避免地存 在缺陷,在外力作用下,弹性变形 还未达到其最大可能值之前就已经 发生了塑性变形或断裂。因此,实 际金属材料中,可以认为Hooke定 律是正确的。
可逆性 单值性
正弹性应变-由正应力引起;

材料力学性能-第一章-塑性变形(2)

材料力学性能-第一章-塑性变形(2)

2022年2月20日 第一章 单向静载下材料的力学性能 星期日
按以上准则,采用屈服强度高的材料,可减 小机件的体积或尺寸。但屈服强度过高会增大屈 强比,不利于应力重新分布,易引起脆性断裂。 在脉冲束辐照产生的热激波、高速碰撞及爆炸等 产生的冲击波这类强动载荷作用下,材料显现出 的屈服强度与静态载荷作用时的屈服强度不同, 因此,在工程实际中,对于强动载荷常常采用动 态屈服强度,它约为静态屈服强度的2~4倍。
2022年2月20日 第一章 单向静载下材料的力学性能 星期日
图1-31为低碳钢和黄铜 拉伸时的应力应变曲线。
A-上屈服点 C-下屈服点
0.2
屈服 伸长
A
C
低碳钢 黄铜
AC-屈服平台
对于没有明显屈服点的材料, 用人为规定的办法确定屈服
O
0.2%
图1-31 屈服现象示意图
点:0.01%; 0.05%; 0.2%;
变正形火84态0%
图1-29 工业纯铁在塑性变 形前后的组织变化
2022年2月20日 第一章 单向静载下材料的力学性能 星期日
在塑性变形过程中,当变形 达到一定程度(70%以上)时,绝大 部分晶粒的位向与外力方向趋于 一致,这种现象称为形变织构或 择优取向,如图1-30所示。形变织 构使金属呈现各向异性,在深冲 零件时易产生“制耳”现象,使 零件边缘不齐,厚薄不均。 对性能的影响:随变形量增加, 金属的强度、硬度提高,塑性、 韧性下降,称为加工硬化。
材料力学性能
Mechanical properties of materials
第一章:塑性变形(2)
2022年2月20日 第一章 单向静载下材料的力学性能 星期日
孪生是塑性变形的另一种重要形式,

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:材料的强度是指材料在外力作用下抵抗破坏的能力。

常用于评估材料抗拉强度、抗压强度、抗弯强度等。

强度与材料内部结构关系紧密,常用措施是通过原子间结合力和晶粒结构的稳定性提高强度。

2.韧性:材料的韧性是指承受冲击负载时材料能够发生塑性变形而不发生断裂的能力。

韧性与材料断裂韧度有关,断裂韧度越高,材料的韧性越好。

韧性的提高可以通过增加材料的塑性变形能力来实现,例如降低材料的晶界和相界的应力集中。

3.硬度:材料的硬度是指材料抵抗外部划痕或压痕的能力。

硬度可以用于评价材料的耐磨性和抗划伤性能。

通常,硬度较高的材料具有较好的耐磨性和较高的抗划伤能力。

硬度可以通过提高材料的晶粒尺寸和强化材料的位错密度来改善。

4.塑性:材料的塑性是指材料在受力后能够发生可逆性的非弹性形变的能力。

塑性变形是材料在受力过程中重要的变形方式,可以提高材料的韧性和变形能力。

材料的塑性与材料的熔点、晶粒尺寸和晶粒形态等因素有关。

5.疲劳寿命:材料的疲劳寿命是指材料在循环加载下能够承受的应力循环次数。

疲劳寿命是材料设计和选择的重要指标,特别是在机械和航空领域中。

疲劳寿命与材料中的微观缺陷、动态应力等因素密切相关。

6.脆性:材料的脆性是指材料在受力时容易发生断裂的性质。

脆性材料在受力作用下会发生紧急的破坏,通常不会发生明显的可逆塑性变形。

与韧性材料相比,脆性材料更容易发生断裂。

材料的脆性取决于材料中的缺陷结构和应力分布。

总的来说,材料力学性能是评价材料质量的重要指标。

强度、韧性、硬度、塑性、疲劳寿命和脆性是材料力学性能的关键指标。

合理设计和选择材料可以改善材料力学性能,提高材料的耐久性和可靠性。

材料力学性能讲义要点

材料力学性能讲义要点

材料力学性能讲义0-绪论一、金属材料:良导电、热性,光泽,良好的延展性。

自由电子、金属键(无方向性)二、性能:力学性能,物理、化学性能,加工工艺性能力学性能:金属材料在一定环境中在外力作用下所表现出来的抵抗行为。

分弹性性能与塑性性能。

力学性能指标:金属材料在外力作用下表现出来的抵抗变形及断裂的能力。

分应力、应变;强度指标、塑性指标及综合力学性能指标。

金属材料的失效形式:变形、断裂(含疲劳断裂)、磨损、腐蚀,以及加工失误1-金属在单向静拉伸载荷下的力学性能单向应力、静拉伸§1-1 应力应变曲线拉伸曲线:P-ΔL曲线σ-ε曲线σ= P/F0ε=ΔL/L0 = (L-L0)/L0横坐标:ΔL、ε;纵坐标:P、σ应力应变曲线的几个阶段:弹性变形、均匀塑变(弹塑性变形)、集中塑变(缩颈)、断裂§1-2 弹性变形弹性变形的力学性能指标一、弹性变形的定义及特点:1、特点:①变形可逆②应力-应变保持直线关系③变形总量较小2、产生机理:原子间作用力原子间具有一定间距→原子间距,也即是原子半径的两倍(指同类原子),原子间作用力:吸引力、相斥力。

其性质估且不论吸引力:原子核中质子(正离子)与其它原子的电子云之间的作用力相斥力:离子之间及电子之间的作用力二者均与原子间距(2r)有关:P A A r o²r² r4前者为引力项,后者为斥力顶。

r=r O时 P=O;r>r O时为引力;r<r O时为斥力r>r O时P> 0,为引力,两原子间有拉进的趋势;r<r O时P< 0,为斥力,两原子间有推远的趋势;r=r O时 P = 0,为平衡状态,两原子间保持距离。

当材料承受拉应力时: r M≥ r ≥ r O当P = Pmax 为最大值时,r = r M,Pmax一般可视作理论弹性极限即在P≥ Pmax 则将产生原子移位,并形成不可逆变形即塑性变形3、Note: 1) Pmax 一般远大于Pp、Pe(三个数量级),即在实际金属在外力P远小于Pmax 时就产生了塑性变形甚至断裂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学性能知识框架不同材料〔金属、高分子、陶瓷基复合材料〕具有怎样的力学性能特点;结合成型与加工、选材和材料改质、改性等项要求,理解各材料力学性能指标〔复习不再列出〕的含义、物理及技术意义;材料变形与断裂的基本特征〔金属为主,了解高分子、陶瓷及复合材料〕;结合工件服役〔受载、环境因素〕条件和材料断口形貌特征,判断材料失效及断裂类型;了解主要力学性能指标的测试方法;分析、把握影响材料主要力学性能指标的主要因素。

1.拉伸力学性能强度、塑性、韧性;〔1〕强度:金属材料在外力作用下抵抗永久变形和断裂的能力称为强度。

强度是衡量零件本身承载能力〔即抵抗失效能力〕的重要指标。

〔2〕塑性:材料受力,应力超过屈服点后,仍能继续变形而不发生断裂的性质〔能力〕。

“δ”-伸长率,“ψ”-断面收缩率。

意义:a. 确保安全,防止产生突然破坏;b. 缓和应力集中;c. 是轧制、挤压等冷热加工变形的必要条件;影响因素:a. 细化晶粒,塑性↑;b. 软的第二相,塑性↑;c. 温度提高,塑性↑;d. 固溶、硬的第二相等,塑性↓〔3〕韧性:材料断裂前吸收塑性变形功和断裂功的能力。

〔或者材料抵抗裂纹扩展的能力,J/m3〕,是材料的力学性能。

退火低碳钢静拉伸曲线特征;断口形貌特点;退火低碳钢在拉伸力作用下的变形过程可分为弹性变形、不均匀屈服塑性变形、均匀塑性变形、不均匀集中塑性变形和断裂几个阶段。

弹性变形、塑性变形;〔1〕弹性变形:定义:当外力去除后,能恢复到原来形状或尺寸的变形,叫弹性变形。

特点:单调、可逆、变形量很小〔<0.5~1.0%〕〔2〕塑性变形:定义:外载荷卸去后,不能恢复的变形。

特点:各晶粒变形的不同时性和不均匀性、变形的相互协调性屈服〔不均匀塑性变形〕、均匀塑性变形、集中塑性变形(缩颈);〔1〕屈服〔不均匀塑性变形〕:在金属塑性变形开始阶段,外力不增加、甚至下降时,变形继续进行的现象,称为屈服。

特点:上屈服点、下屈服点〔吕德丝带〕〔2〕均匀塑性变形:屈服之后,缩颈之前的阶段〔在这一阶段,塑性变形并是能像屈服平台那样连续流变先去,而需要不断增加外力才能进行,〕〔3〕集中塑性变形(缩颈):a. 意义变形集中于局部区域b. 缩颈的判据〔塑性变形时,体积不变的条件〕e B = n结论:当金属材料真实均匀塑性应变量等于应变硬化指数时,便产生缩颈。

所以,n值大时,材料的均匀塑性变形能力强!c. 颈部的三向拉应力状态承受三向拉应力〔相当于厚板单向拉伸,平面应变状态〕产生屈服的原因,影响因素分析;机理:外应力作用下,晶体中位错萌生、增殖和运动的过程。

影响屈服强度因素:1〕内因a. 金属本性及晶格类型位错运动的阻力:晶格阻力〔P-N力〕;位错交互作用产生的阻力。

b. 溶质原子和点缺陷形成晶格畸变〔间隙固溶,空位〕c. 晶粒大小和亚结构晶界是位错运动的障碍。

要使相邻晶粒的位错源开动,须加大外应力。

d. 第二相不可变形第二相,位错只能绕过它运动。

可变形第二相,位错可切过。

第二相的作用,还与其尺寸、形状、数量及分布有关;同时,第二相与基体的晶体学匹配程度也有关。

2〕外因温度提高,位错易运动,σs↓。

例:高温锻造,“乘热打铁”应变速率提高,σs↑。

应力状态切应力τ↑,σs↓。

应变硬化,静力韧度;〔1〕应变硬化或称形变强化,加工硬化1〕意义a. 应变硬化和塑性变形适当配合,可使金属进行均匀塑性形变。

b.使构件具有一定的抗偶然过载能力。

c. 强化金属,提高力学性能。

d.提高低碳钢的切削加工性能。

2〕应变硬化机理a. 三种单晶体金属的应力b. 应变硬化机理易滑移阶段:单系滑移hcp金属〔Mg、Zn〕不能产生多系滑称,∴易滑移段长。

线性硬化阶段:多系滑移位错交互作用,形成割阶、面角位错、胞状结构等;位错运动的阻力增大。

抛物线硬化阶段:交滑移,或双交滑移,刃型位错不能产生交滑移。

多晶体,一开动便是多系滑移,∴无易滑移阶段〔2〕静力韧度:静拉伸时,单位体积材料断裂所吸收的功〔是强度和塑性的综合指标〕。

J/m3 工程意义:对按照屈服强度设计、有偶而过载的机件必须考虑。

断裂类型〔韧性、脆性,沿晶、穿晶,微孔聚合、解理〕;断裂分类及特征〔表1-7〕韧性断裂与脆性断裂的区别与联系; 区别:〔1〕 韧性断裂断裂特点:断裂前,宏观变形明显;过程缓慢;断裂面一般平行于最大切应力,并与主应力成45o 角。

〔2〕脆性断裂 断裂特点断裂前基本不发生塑性变形,无明显前兆; 断口与正应力垂直。

联系:通常,脆断前也产生微量的塑性变形,一般规定: Ψ < 5%为脆性断裂;> 5%时为韧性断裂。

可见,金属材料的韧性与脆性是根据一定条件下的塑性变形量来规定的。

条件改变,材料的韧性与脆性行为会随之而改变。

格里菲斯断裂理论之裂纹扩展力学表达式〔表1-8〕的数学、物理含义。

2.应力状态软性系数;应力状态软性系数α 的定义:最大切应力与最大正应力之比)+(--==32131max max 22σσνσσσστα 式中 最大切应力τmax 按第三强度理论计算,即 τmax= (σ1-σ3) /2 σ1,σ3分别为最大和最小主应力。

最大正应力 σmax 按第二强度理论计算,即,)(321max σσνσσ--= ν——泊松比。

单向拉伸 α = 1/2扭 转 α = 1 /〔1+ν〕≈单向压缩α= 1 /〔2ν〕≈2应力状态系数α的技术意义——表示在不同试验方法下〔即不同应力状态下〕材料塑性变形的难易程度α越大,表示该应力状态下切应力分量越大,材料就越易塑变。

∴把α值较大的称做软的应力状态,α值较小的称做硬的应力状态。

缺口试样静弯曲曲线,缺口效应;缺口式样静弯曲曲线:曲线下所包围的面积,表示试样从变形到断裂的总功。

总功由三部分组成:(1)只发生弹性变形的弹性功I;(2)发生塑性变形的变形功以面积Ⅱ表示;(3)在到达最大载荷Pmax时试样即出现裂纹。

如果裂纹到截荷P1点时开始迅速扩展,直至试样完全破断。

这一部分功以面积Ⅲ表示,叫作撕裂功。

可用断裂功,或Pmax/P1,来表示材料的缺口敏感度。

P1 —试样发生断裂所对应的作用力。

Pmax/P1 =1时,裂纹扩展极快,缺口敏感度最大。

缺口效应:理论应力集中系数Kt = σmax/σKt值与材料性质无关,只取决于缺口的几何形状。

拉伸时,缺口试样上的应力分布弹性状态下:(a)薄板缺口下的弹性应力(平面应力)缺口根部为单向拉应力状态σy,内部为两向拉应力状态,σz等于0 。

(b)厚板缺口下的弹性应力(平面应变)缺口根部为两向拉应力状态,内部为三向拉应力状态。

(c) 平面应变时的应力分布在材料内部,沿厚度方向,σz不等于0。

(d)平面应变时,局部屈服后的应力分布塑性状态下:塑性较好的材料,假设根部产生塑性变形,应力将重新分布,并随载荷的增大,塑性区逐渐扩大,直至整个截面。

应力最大处则转移到离缺口根部ry距离处,该处σy,σx,σz均为最大值。

随塑性变形逐步向试样内部转移,各应力峰值越来越大。

试样中心区的σy最大。

∴出现“缺口强化”〔三向拉应力约束了塑性变形〕塑性降低,影响材料的安全使用。

常规硬度指标标准〔HRA、HRB、HRC〕及适用场合。

标尺硬度符号压头类型初始实验力F0/N主试验力F1/N总试验力F/N测量硬度范围应用举例A HRA 金刚石圆锥20~88硬质合金、硬化薄钢板、外表薄层硬化钢B HRB Φ20~100 低碳钢、铜合金、铁素体可锻铸铁C HRC 金刚石圆锥1373 1471 20~70淬火钢、高硬度铸件、珠光体可锻铸铁3.冲击弯曲试验冲击韧度、试样标准及断口形貌特征、低温脆性、韧脆转变温度t K及影响因素。

断裂分析图〔FAD〕,技术意义和用途,NDT、FTE和FTP的含义和定量关系:技术意义:对低强度钢板进行落锤试验求得NDT温度,可建立断裂分析图。

该图是表示许用应力、缺陷〔裂纹〕和温度之间关系的综合图。

它明确提供了低强度钢构件在温度、应力和缺陷〔裂纹〕联合作用下脆性断裂开始和终止的条件。

对低强度钢构件防止脆断设计和选材提供了一个有效方法;可分析断裂事故,帮助积累防止脆性断裂的经验。

NDT:零塑性、或无塑性断裂温度;FTE:弹性断裂转变〔/折〕温度〔数值上= NDT+33℃〕FTP:100%纤维断口的断裂温度〔数值上= NDT+67℃〕,即塑性断裂转变温度。

4.断裂韧度裂纹尖端应力强度因子K I、塑性区修正的意义;断裂韧度的影响因素;断裂韧度的实质:〔K IC〕是材料强度、塑性和结构参量〔基体相的强化程度、第二相的大小、数量与分布,晶粒尺寸,裂纹等〕的综合性能。

K IC应用、计算〔本章例一、例二,本章思考习题17,〕,有关塑性区修正的问题、外表半椭圆形裂纹形状系数;K IC、K C,有何异同?断裂韧度J IC和G IC、裂纹尖端张开位移δC的技术含义〔Esp:量纲和断裂条件上理解〕5.疲劳疲劳概念及其特点,概念:材料在交变应力的作用下,经过一段时间,而发生断裂的现象,叫疲劳。

疲劳破坏时无明显的塑性变形,呈现脆性的突然断裂。

疲劳断裂是一种非常危险的断裂。

疲劳的分类及其特点:〔1〕分类1〕按应力状态弯曲疲劳、扭转疲劳、拉压疲劳、复合疲劳等。

2〕按环境腐蚀疲劳、热疲劳、接触疲劳等。

3〕按循环周期高周疲劳、低周疲劳。

4〕按破坏原因机械疲劳、腐蚀疲劳、热疲劳〔2〕疲劳的特点1〕断裂应力<σb,甚至<σs;2〕出现脆性断裂;3〕对材料的缺陷十分敏感;4〕疲劳破坏能清楚显示裂纹的萌生和扩展,断裂。

疲劳曲线,疲劳断口宏观形貌特征,疲劳裂纹形成、扩展和断裂,微观特征;〔1〕疲劳端口宏观形貌特征:断口拥有三个形貌不同的区域:疲劳源、疲劳区、瞬断区。

随材质、应力状态的不同,三个区的大小和位置不同。

疲劳裂纹扩展速率曲线;疲劳门槛值〔概念〕、疲劳寿命估算Paris公式、疲劳过程及裂纹形成与扩展的机理;疲劳门槛值△K th:是阻止疲劳裂纹开始扩展的性能,也是材料力学性能指标常选用Paris公式:da/dN = C(△K)n疲劳过程:裂纹萌生→亚稳扩展→失稳扩展→断裂裂纹萌生的原因:应力集中、不均匀塑性形变。

方式:外表滑移带开裂;晶界或其他界面开裂。

裂纹扩展的两个阶段:第一阶段μm 数量级。

第二阶段疲劳裂纹亚稳扩展;扩展速率达μm级。

疲劳强度影响因素;〔1〕材料内因:①化学成分②显微组织③非金属夹杂及冶金缺陷〔2〕材料外表状态和工件结构:①外表状态应力集中;外表粗糙度②残余应力及外表强化〔喷丸与滚压〕③外表及化学热处理低周疲劳和热疲劳的概念低周疲劳:疲劳寿命为102~105次的疲劳断裂,称为低周疲劳〔在应力较高、循环次数较少的疲劳断裂〕特点:(1)局部产生宏观变形,应力与应变之间呈非线性。

(2)裂纹成核期短,有多个裂纹源;断口呈韧窝状、轮胎把戏状。

相关文档
最新文档