层次分析法
层次分析法
(一)层次分析法1、层次分析法的概念“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。
”12、层次分析法的主要步骤(1)构建层次分析的结构模型首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次.其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。
准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。
层次分析法的结构模型在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指1张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年标,C层次为方案层元素,也可称为二级指标。
(2)专家评分建立层次分析法判断矩阵为了建立指标权重评判标准和构造判断矩阵,Saaty提出相对重要性比例标度,即1~9 层次比例标度,相对重要性比例标度的含义如表2—3所示。
假设有n个元素C1、C2,。
,C n给定一个准则,利用上表所给的相对重要性比例标度方,对元素C i和C j做两两比较判断,获得相对重要度的值a ij,构成矩阵。
专家根据评判准则对各个因素的权重两两比较并进行了打分之后,经过整理,可以得到因素权重的判断矩阵A:矩阵 A 中的各元素a ij 表示行指标A i 对列指标A j 相对重要性的比例标度,则判断矩阵A 中指标两两比较的特点有a ij >0,a ij =1,a ij =1/a ji (i ,j=1,2,。
..。
..n )。
如果a ij <1,表示A j 比A i 重要; 如果a ij >1,表示A i 比A j 重要; 如果a ij =1,表示A j 与A i 同样重要.根据判断矩阵A 在选择上的一致性要求,理想情况下,a ik*a jk =a ij (代表相对重要性所具有的传递性原理,满足该性质的矩阵A 称为一致矩阵),虽然在构造判断矩阵A 时并不要求判断具有一致性,但判断偏离一致性过大也是不允许的。
什么是层次分析法
什么是层次分析法?层次分析法(AHP)是将决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
该方法是美国运筹学家匹茨堡大学教授萨蒂于本世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
这种方法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
尤其适合于对决策结果难于直接准确计量的场合。
层次分析法的步骤如下:(1)通过对系统的深刻认识,确定该系统的总目标,弄清规划决策所涉及的范围、所要采取的措施方案和政策、实现目标的准则、策略和各种约束条件等,广泛地收集信息。
(2)建立一个多层次的递阶结构,按目标的不同、实现功能的差异,将系统分为几个等级层次。
例如:图16-7就是以递阶层次表示的国家富强的一般结构。
(3)确定以上递阶结构中相邻层次元素间相关程度。
通过构造两比较判断矩阵及矩阵运算的数学方法,确定对于上一层次的某个元素而言,本层次中与其相关元素的重要性排序--相对权值。
(4)计算各层元素对系统目标的合成权重,进行总排序,以确定递阶结构图中最底层各个元素的总目标中的重要程度。
(5)根据分析计算结果,考虑相应的决策。
层次分析法的整个过程体现了人的决策思维的基本特征,即分解、判断与综合,易学易用,而且定性与定量相结合,便于决策者之间彼此沟通,是一种十分有效的系统分析方法,广泛地应用在经济管理规划、能源开发利用与资源分析、城市产业规划、人才预测、交通运输、水资源分析利用等方面首先悼念下我的腾讯笔试,挂了。
研发的基础知识真是变态啊,得静心看书啊!!今天是我阿里数据分析师的面试,通知的时间时下午4点50到5点40。
层次分析法
C1 1 3 5 C2 1 / 3 1 2 C3 1 / 5 1 / 2 1
C .I
特征向量
0.648 P2(2) 0.230 0.122
max m
m 1
3.005 3 0.0025 3 1
CI与RI的比率称为检验系数CR。当CR<0.1 时,认为矩阵具有令人满意的一致性。否则对于矩阵的 各项取值要重新判断,直到矩阵的检验系数CR< 0.1,其他判断矩阵都以此类推。
①第一层:对于总目标A,准则层各准则构造判断矩阵A(1),求解最大特征值及其 对应的特征向量,并进行一致性检验。
A B1
该方法自1982年被介绍到我国以来,以其定性 与定量相结合地处理各种决策因素的特点,以 及其系统灵活简洁的优点,迅速地在我国社会 经济各个领域内,如工程计划、资源分配、方 案排序、政策制定、冲突问题、性能评价、能 源系统分析、城市规划、经济管理、科研评价 等,得到了广泛的重视和应用。
层次分析法原理及应用实例
所以,判断矩阵A(1)满足一致性检验。
14
②第二层:对于各准则B1、B2、B3 、B4、B5 ,构造判断矩阵A1(2)、A2(2)、A3(2) 、 A4(2)、A5(2) ,分别求解最大特征值及其对应的特征向量,并进行一致性检验。 ●对于准则B1(通车能力):
(2) 1max 3
B1 C1 A1(2)
G
g 1(1)
(1) g2
总目标 ……
(1) gn 1
第1层子目标
g1( n )
(n) g2
……
( n) gn n
第n层子目标
C1
C2
……
Cs
方案层
层次分析法(AHP法)
A~成对比较阵 A是正互反阵 稍加分析就发 现上述成对比 较矩阵有问题
成对比较的不一致情况
1 A 2
一致比较
1/ 2 1
4 7
不一致
a21 2 (C2 : C1 )
a13 4 (C1 : C3 )
a23 8 (C2 : C3 )
允许不一致,但要确定不一致的允许范围
1 1 B1 2 1 5
2 1 1 2
5 2 1
1 3 4 1 B4 1 1 3 1 1 1 4
1 B2 3 8 1 1 3 8 1 1 3 3 1
1 2 1 1 7 1 5 1 5
1 B3 1 1 3
4 7 1 2 3
1 1 1 3
3 5 1 2 1 1
3 3 1
3 5 1 3 1 1
层次分析法(AHP法) (Analytic Hierarchy Process)
层次分析法(AHP)是美国运筹学家匹茨堡大学教 授萨蒂(T.L.Saaty)于上世纪70年代初,为美国国防 部研究“根据各个工业部门对国家福利的贡献大小而 进行电力分配”课题时,应用网络系统理论和多目标 综合评价方法,提出的一种层次权重决策分析方法。 这种方法的特点是在对复杂的决策问题的本质、影 响因素及其内在关系等进行深入分析的基础上,利用 较少的定量信息使决策的思维过程数学化,从而为多 目标、多准则或无结构特性的复杂决策问题提供简便 的决策方法。 是对难于完全定量的复杂系统作出决策的模型和方 法。
三、层次分析法的步骤和方法
运用层次分析法构造系统模型时,大体可以分 为以下四个步骤: 1. 建立层次结构模型 2. 构造判断(成对比较)矩阵 3. 层次单排序及其一致性检验 4. 层次总排序及其一致性检验
层次分析法
bn1
bn2 ……
bnn
bij是对于Ak而言,Bi对Bj的相对重要性的数值表示。
Bij通常取1、3、5、7、9及其他们的倒数,其含义为:
尺度
1 3 5 7 9
含义
第i个因素与第j个因素的影响相同 第i个因素比第j个因素的影响稍强 第i个因素比第j个因素的影响强 第i个因素比第j个因素的影响明强 第i个因素比第j个因素的影响绝对地强
层次分析法
一 问题的提出
例1 购物 买钢笔,一般要依据质量、颜色、实用性、价格、
外形等方面的因素选择某一支钢笔。 下馆子,则要依据馆子的饭菜质量、区位条件、档
次、饭菜价格、服务质量等方面因素来选择。
例2 旅游 假期旅游,是去风光秀丽的苏州,还是去迷人的
北戴河,或者是去山水甲天下的桂林,一般会依据景 色、费用、食宿条件、旅途等因素选择去哪个地方。
课题D2
课题可行性B3
难
研财
易
究政
程
周支
度
期持
c3
c4
c5
课题D3
层次分解时注意事项:
如果所选的要素不合理,其含义混淆不清,或 要素间的关系不正确,都会降低AHP法的结果质量, 甚至导致AHP法决策失败。 为保证递阶层次结构的合理性,需注意以下问题: 1、要对问题的影响因素有充分的理解,必要的时 候可以咨询相关的专家; 2、分解简化问题时把握主要因素,不漏不多 3、注意相比较元素之间的强度关系,相差太悬殊 的要素不能在同一层次比较。 4、以上均为完全层次
层次总排序的一致性检验
(1)
(2)
(3)
在(1)式中,CI为层次总排序的一致性指标,CIj为与aj对应 的B层次中判断矩阵的一致性指标;在(2)式中,RI为层次总排 序的随机一致性指标,RIj为与aj对应的B层次中判断矩阵的随 机一致性指标;在(3)式中,CR为层次总排序的随机一致性比例。
层次分析法概述
层次分析法一、层次分析法概述层次分析法(Analytic Hierarchy Process )是美国运筹学家T. L. Saaty教授于20世纪70年代初期提出的一种简便、灵活而又实用的多方案或多目标的决策方法,它是一种定性和定量相结合的、系统化的、层次化的分析方法,是一种具有定性分析与定量分析相结合的决策方法,可将决策者对复杂对象的决策思维过程系统化、模型化、数量化。
其基本思想是通过分析复杂问题包含的各种因素及其相互关系,将问题所研究的全部元素按不同的层次进行分类,标出上一层与下层元素之间的联系,形成一个多层次结构。
在每一层次,均按某一准则对该层元素进行相对重要性判断,构造判断矩阵,并通过解矩阵特征值问题,确定元素的排序权重,最后再进一步计算出各层次元素对总目标的组合权重,为决策问题提供数量化的决策依据。
层次分析法特别适用于无结构问题的建模。
自1982年被介绍到我国以来,由于它在处理复杂的决策问题上的实用性和有效性,以及其系统灵活简洁的优点,迅速地在我国社会经济各个领域内,如能源系统分析、城市规划、经济管理、科研评价行为科学、军事指挥、运输、农业、教育、人才、医疗、环境保护、冲突求解及决策预报等领域得到了广泛的重视和应用。
二、层次分析法的基本思想基本思想层次分析法的采用先分解后综合的系统思想,整理、综合人们的主观判断,将所要分析的问题层次化,根据问题的性质和要达到的总目标,将问题分解成不同的组成因素,按照因素间的相互关系及隶属关系,将因素按不同层次聚集组合,形成一个多层分析结构模型,最终归结为最低层(方案、措施、指标等)、中间层(准则层)、最高层(总目标)。
把实际问题转化为分析同层因素间相对重要程度的权重值或相对优劣次序的问题,使定性分析与定量分析有机结合,实现定量化决策。
三、确定权重值的基本原理人们在进行社会、经济以及科学管理领域问题的系统分析中,面临的常常是一个相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法
1. 层次分析法(The analytic hierarchy process, 简称AHP)用于解决评价类问题,例如:选择那种方案最好、哪位运动员或者员工表现的更优秀。
评价类问题可以用打分解决。
层次分析法 (The Analytic Hierarchy Process即 AHP)是由美国运筹学家、匹兹堡大学教授T. L. Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法, 是在充分研究了人类思维过程的基础上提出来的, 它较合理地解决了定性问题定量化的处理过程。
AHP的主要特点是通过建立递阶层次结构, 把人类的判断转化到若干因素两两之间重要度的比较上, 从而把难于量化的定性判断转化为可操作的重要度的比较上面。
在许多情况下, 决策者可以直接使用AHP进行决策, 极大地提高了决策的有效性、可靠性和可行性, 但其本质是一种思维方式, 它把复杂问题分解成多个组成因素, 又将这些因素按支配关系分别形成递阶层次结构, 通过两两比较的方法确定决策方案相对重要度的总排序。
整个过程体现了人类决策思维的基本特征,即分解、判断、综合,克服了其他方法回避决策者主观判断的缺点。
1.1模型介绍1.1.1引例高考结束了,小明该选择华科还是五武大?小明最关心四个方面:学习氛围0.4、就业前景0.3、男女比例0.2、校园景色0.19(权重和为1)(1)学习氛围:经查阅资料查到“学在华工,玩在武大,爱在华师”一句话,因此在学习氛围方面给华科0.7,给武汉大学0.3.(2)就业前景:搜索两所学校就业率差不多,因此在就业前景方面对两所学校均赋予0.5的权重。
(3)男女比例:经查询,华科男女比例2:1,武大1.35:1,因此武大0.7分,华科0.3分(4)校园景色:华科0.25分,武大0.75分整理权重表格:指标权重华科武大学习氛围0.40.70.3就业前景0.30.50.5男女比例0.20.30.7校园景色0.10.250.75华科最终的得分:0.7*0.4+0.5*0.3+0.3*0.2+0.25+*0.1=0.515分武大最终得分:0.3*0.4+0.5*0.3+0.7*0.2+0.75*0.1=0.485分1.1.2 模型1、关键词:打分法、确定评价指标、形成评价体系2、解决评价类问题,首先确定以下三个问题:(1)评价的目标是什么(2)为了达到这个目标有哪几种可选的方案(3)评价的准则或者说指标是什么(我们根据什么东西来评价好坏)。
层次分析法
层次分析法1. 简介层次分析法(Analytic Hierarchy Process,AHP)是一种常用的定性与定量相结合的多标准决策分析方法。
它由美国学者托马斯·L·萨亨于1970年提出,被广泛应用于各种决策问题中。
2. 原理层次分析法的基本思想是将复杂的决策问题分解为一系列具有层次结构的子问题,然后通过对这些子问题的比较与权重评估,最终得出整体问题的决策结果。
2.1 层次结构在层次分析法中,决策问题被组织成一个层次结构。
层次结构通常包括三个层次:目标层、准则层和方案层。
•目标层:表示决策问题的最终目标,通常只有一个。
•准则层:用于评价方案的一组准则,通常包括两个或更多的准则。
•方案层:表示可选择的方案,每个方案都和准则层有关联。
每个层次下面还可以有更多的子层次,形成一个完整的层次结构。
2.2 权重评估层次分析法通过对准则层的权重评估,来确定各个准则的重要性。
权重评估通常采用两两比较的方式,即对准则层中的两个准则进行比较,判断它们的相对重要性。
对两个准则的比较通常使用1至9的九分比较法,其中1表示相同重要性,3表示轻微重要性差异,5表示中等重要性差异,7表示强烈重要性差异,9表示极端重要性差异。
通过两两比较得到的比较矩阵可以利用特征向量法计算权重向量,从而确定准则层的权重。
2.3 方案评估在确定了准则层的权重后,可以利用这些权重对方案进行评估和排序。
通常使用两两比较法将方案与准则进行比较,得到方案层的比较矩阵。
然后,利用准则层的权重和方案层的比较矩阵计算加权矩阵,最终得到方案层的权重。
3. 应用场景层次分析法在各个领域中都有广泛的应用,尤其适用于以下情况:•多准则决策问题:当决策问题涉及到多个准则时,层次分析法可以帮助决策者合理权衡各个准则的重要性,从而做出最佳决策。
•项目评估与选择:当需要评估和选择多个候选项目时,层次分析法可以通过对项目的多个准则进行比较和权重评估,为项目选择提供科学依据。
层次分析法
e1
1 4.511
0.778
0.172
,
3 0.665
0.4 6 7 e2 Ae1 0.565, e2 3.014,
1.9 9 1
01.55 0.471 e2 0.184, e3 0.559, e3 3.018,
0.661 1.988
0.156 0.473 e3 0.185, e4 0.561,
(4)定义未知参数 在这种问题中,运用层次分析法建立表达式 来表达未曾定义过的量。典型的例子是价值 工程,产品的价值V被定义为
VF C
其中F,C分别为产品的功能系数与成本系数, 它们可以用层次分析来定义。下面是一个 经济学例子。
例5 弹性系数的确定 经济学中有名的Cobb-Douglas生产函 数是
e (1,2,,n )T ,则权系数可取: wi i ,i 1,2,, n
在具体计算中,当
ek 与ek 1
接近到一定程度时,就取 e ek
例1 评价影视作品的水平, 用以下三个变量作评价指标 :
x1 教育性,x2 艺术性,x3 娱乐性
设有一名专家赋值:
x2 1, x3 5, x3 3
w1, w2 ,, wn
这 n 个常数便是权系数, 层次分析法给出了确定它们 的量化方法,其过程如下:
1.成对比较
从x1, x2,, xn中任取xi , xj ,比较它们
对y贡献的大小,给xi xj 赋值如下:
xi
xj
1,当认为“xi与x
贡献程度相同”时
j
xi
xj
3,当认为“xi比x
的贡献略大”时
x1
的概率估值为0.134+0.219+0.026=0.379,
层次分析法
层次分析法层次分析法是一种应用广泛的决策分析方法,它通过构建层次结构和比较矩阵,来对不同因素进行排序和权重分配,帮助决策者做出合理的决策。
本文将介绍层次分析法的基本原理、应用领域以及一些实际案例。
一、层次分析法的基本原理层次分析法由美国运筹学家托马斯·L·塞蒂提出,它是一种定性和定量相结合的分析方法,能够综合考虑多个因素的重要性和相互关系。
它的基本原理如下:1. 层次结构:将决策问题分解成多个层次,从上至下逐级细化。
顶层是目标层,中间层是准则层,最底层是方案层。
2. 比较矩阵:在每个层次内,通过构建比较矩阵来判断各因素之间的重要性。
比较矩阵是一个n×n的正互反矩阵,其中n是该层次因素的个数。
通过对各因素进行两两比较,得出相对重要性的判断。
3. 加权优先向量:通过对比较矩阵进行特征向量的计算,可以得到各个因素的权重。
特征向量是对比较矩阵的主特征值对应的特征向量,也称为特征向量法。
4. 一致性检验:通过一致性指标和一致性比率的计算,判断构建的比较矩阵是否合理。
一致性指标表示了矩阵的内部一致性程度,一致性比率则是对一致性指标进行归一化,判断是否满足一致性。
5. 综合评价:通过计算得出的权重,进行乘积运算和累加运算,得到方案的综合评价值。
综合评价值越高,方案越优。
二、层次分析法的应用领域层次分析法在许多领域都有广泛的应用,包括经济学、管理学、环境科学、社会科学等。
下面是一些常见的应用领域:1. 投资决策:在投资决策中,可以将不同的投资方案作为方案层,通过比较各个方案的风险性、收益性等因素,来确定投资方向。
2. 供应链管理:在供应链管理中,可以将供应商的价格、质量、交货周期等因素作为准则层,通过比较不同供应商的重要性,来选择合适的供应商。
3. 项目评估:在项目评估中,可以将项目的成本、时限、风险等因素作为准则层,通过比较各个因素的重要性,来评估项目的可行性和优先级。
4. 人才选拔:在人才选拔中,可以将候选人的学历、工作经验、专业技能等因素作为准则层,通过比较各个因素的重要性,来确定最佳人选。
层次分析法(AHP)
aij
n
aij
i 1
i,j 1,2,, n
2 ) 再按行相加得和
n
wi aij j 1
3)再规范化,得权重系数:
wi
wi
n
wi
i 1
方根法
这种方法的步骤是:
1) 按行元素求积,再求1/n次幂,得
n
wi
aij i,j 1,2,, n
j 1
2)规范化,即得权重系数
wi
wi
n
wi
用ANP进行决策的基本步骤
▪ (1) 构造ANP的典型结构: A:首先是构造控制层次.将决策目标界定,将决策准则界 定,这是问题的基本,各个准则决策目标的权重用AHP方法 得到. B:再则是构造网络层次.要归类确定每一个元素,分析其 网络结构和相互影响关系,分析元素之间的关系可用多种 方法进行. 一种是内部独立的递阶层次结构,即层次之间相 互独立;一种是内部独立,元素之间存在者循环的ANP 网络层次结构;另一种是内部依存,即元素内部存在循环 的ANP网络层次结果,这几种情况都是ANP的特例情况。 在实际决策问题中面临的基本都是元素间不存在内部独立, 既有内部依存,又有循环的ANP网络层次结构。
P4:建 图书馆
P5:引进 新设备
C1对p1 p2 p3 p4 p5的权重计算
c1 P1
p2
p3
p4
p5 w
p1 1
3
5
4
7 0.491
p2 1/3 1
3
2
5 o.232
p3 1/5 1/3 1
½
3 0.092
p4 ¼ ½
2
1
3 0.138
p5 1/7 1/5 1/3 1/3 1 0.046
层次分析法
层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
1简介2定义3优缺点▪优点▪缺点4基本步骤5注意事项6应用实例简介编辑层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
尤其适合于对决策结果难于直接准确计量的场合。
在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升购物层次分析模型学志愿的问题等等。
在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。
比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游的景色、景点的居住条件和饮食状况以及交通状况等等。
这些因素是相互制约、相互影响的。
我们将这样的复杂系统称为一个决策系统。
这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。
层次分析法是解决这类问题的行之有效的方法。
层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析以及最终的决策提供定量的依据。
定义编辑所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
层次分析法
层次分析法简介层次分析法(Analytic Hierarchy Process,AHP)这是一种定性和定量相结合的、系统的、层次化的分析方法。
这种方法的特点就是在对复杂决策问题的本质、影响因素及其内在关系等进行深入研究的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
是对难以完全定量的复杂系统做出决策的模型和方法。
层次分析法的原理:层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。
层次分析法的步骤,运用层次分析法构造系统模型时,大体可以分为以下四个步骤:(1)建立层次结构模型:将决策的目标、考虑的因素(决策准则)和决策对象按他们之间的相互关系分成最高层、中间层和最低层,绘制层次结构图。
最高层(目标层):决策的目的、要解决的问题;中间层(准则层或指标层):考虑的因素、决策的准则;最低层(方案层):决策时的备选方案;(2)构造判断(成对比较)矩阵;表指标之间比较量化值规定因素i比因素j量化值同等重要 1.00稍微重要 3.00较强重要 5.00强烈重要7.00极端重要9.00稍微不重要0.33较强不重要0.20强烈不重要0.14极端不重要0.11两相邻判断的中间值2、4、6、8(3)层次单排序及其一致性检验;(4)层次总排序及其一致性检验;举例:某市中心有一座商场,由于街道狭窄,人员车流量过大,经常造成交通堵塞。
市政府决定解决这个问题,经过有关专家会商研究,制订三个可行方案:a1:在商场附近修建一座环形天桥;a2:在商场附近修建地下人行通道;a3:搬迁商场决策的总目标是改善市中心交通环境,根据当地具体条件和情况,专家组织拟定五个目标作为对可行方案的评价准则:C1:通车能力;C2:方便群众;C3:基建费用不宜过高;C4:交通安全;C5:市容美观。
层次分析法分析方法
层次分析法分析方法简介层次分析法(Analytic Hierarchy Process,简称AHP)是一种常用的多标准决策分析方法,由美国运筹学家托马斯·L·赛蒂尔于20世纪70年代提出。
它通过将复杂的决策问题分解为层次结构,对各层次标准进行定量评估和权重分配,最终得到综合的决策结果。
层次分析法是一种基于专家经验和主观判断的定性与定量相结合的决策方法,适用于复杂的多因素多目标决策问题。
它以一种系统化和结构化的方式帮助决策者进行决策分析,提高决策的科学性和准确性。
方法步骤层次分析法主要包括以下几个步骤:1.建立层次结构:首先,需要将决策问题进行逐层分解,形成一个层次结构模型。
层次结构由目标层、准则层和方案层构成,决策问题从目标层开始,经过准则层逐步分解,最终得到方案层。
目标层表示整个决策问题的目标或要达到的结果,准则层表示实现目标所涉及的关键因素,方案层表示可行的解决方案。
2.构造判断矩阵:在层次结构的每一层中,需要对各个元素之间进行两两比较,得到一个判断矩阵。
判断矩阵的每个元素表示两个层次因素之间的相对重要性。
比较的方式可以是定性的,也可以是定量的。
常用的比较方法有9点量表法和1-9标度法。
3.确定权重向量:通过计算判断矩阵的特征向量,可以得到每个层次因素的权重。
特征向量即为判断矩阵的最大特征值对应的特征向量。
通常需要进行一致性检验,判断矩阵的一致性可以通过一致性指标和一致性比率来衡量。
4.计算综合评估值:根据各个层次因素的权重和方案的评价指标,可以计算得到每个方案的综合评估值。
综合评估值可以表示方案的优劣程度。
5.灵敏度分析:层次分析法可以进行灵敏度分析,通过改变判断矩阵中的比较数据,可以检测到不同因素权重发生变化时对决策结果的影响。
优点和应用范围层次分析法具有以下优点:•结构化:通过将决策问题分解成层次结构,使得问题更加清晰和易于理解。
•定量化:通过构造判断矩阵和计算权重向量,将主观因素定量化,提高了决策的科学性。
层次分析法(AHP)
(3)构造判断矩阵
判断矩阵元素的值反映了评估人员对各因素相 对重要性(或优劣)的经验认识,一般采用经典1-9 及其倒数的标度法。如下表所示。
图2 AHP层次结构示意图
表1 1-9 标度及其含义
(4)层次单排序及其一致性检验。
A.层次单排序就是求某一层次上各指标对其上层指标 相对重要性的权重。一般计算方法采用方根法, 设判断 矩体阵计为算B步=骤[b如ij],下阶:数为n,bij为矩阵中第i行第j列元素, 具
选择1-9比率标度法是基于下述的一些事实和科学依据
类似的,当RI<0.10时,认为层次总排序结果具有满
意的一致性,否则需要重新调整判断矩阵的元素取值。
案例:用方根法判断矩阵的最大特征根及其对应 的特征向量
1 5 3
1
5 1 1
3
1
3 3
1
(1)计算判断矩阵每一行元素的乘积
M1
1
1 5
1 3
1 15
0.067
n
Wj 0.405 2.466 1 3.871
j 1
W1
W1
n
Wj
0.405 0.105 3.871
j 1
W2
W2
n
Wj
2.466 0.637 3.871
j 1
W3
W3
n
Wj
1 0.258 3.871
j 1
正规化
层次分析法
用成对比较法和1~9尺度,构造各层对上一层每一因素的 成对比较阵。
3)计算权向量并作一致性检验
对每一成对比较阵计算最大特征根和特征向量,作一致性 检验,若通过,则特征向量为权向量。
4)计算组合权向量(作组合一致性检验*)
组合权向量可作为决策的定量依据。
一.层次分析法的基本步骤(1)
• 通过相互比较确定各准则对目标的权重,及各方 案对每一准则的权重。
• 将上述两组权重进行综合,确定各方案对目标的 权重。
层次分析法将定性分析与定量分析结合起来 完成以上步骤,给出决策问题的定量结果。
层次分析法的基本步骤
1)建立层次分析结构模型
深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),上层受下层影响,而层内 各因素基本上相对独立。
层次分析法的基本步骤(2)
成对比较阵 和权向量
设要比较各准则C1,C2,… , C5对目标
O的重要性
C :C a
i
j
ij
A (aij )nn , aij
0,
a ji
1 a
ij
选 择
1 1/ 2 4 3 3
2
1
7
5
5
A~成对比较阵
旅 A 1/ 4 1/ 7
游 地
1/ 3
1/ 5
1/ 3 1/ 5
1 2
1/ 2 1
1/ 3
1
A是正互反阵
3 1 1
要由A确定C1,… , Cn对O的权向量
O(选择旅游地)
1 1/2
2
1
A 1/4 1/7
1/3
1/5
1/ 3 1/ 5
4 3 3
层次分析法
一、层次分析法内涵层次分析法(Analytic Hierarchy Process简称AHP)是20世纪70年代初美国运筹学家萨蒂教授提出的一种层次权重决策分析方法,在分析问题的过程中将定性分析与定量分析相结合,找出影响决策的关键性因素,并将因素尽可能的量化形成指标,以达到复杂问题简单化的目的,最终根据数据配合指标做出选择。
层次分析法基本思想是将复杂的决策系统分为N层及M个指标,对每一层及其指标分析判断,这些指标之间存在着相互制约、相互影响的关系,而这每一个指标并不是处于同等重要的地位,则要对其进行重要性排位,列出权重,通过逐层计算比较各种关联指标的权重为决策提供定量的依据。
层次分析法是一种将定性分析与定量分析相结合的方法,先进行定性描述,相关专家凭借其经验及专业知识对其打分得到定量化得指标权重,结合案例可以得出有价值的定性结论。
其局限性在于权重是凭借专家人为的进行设置,未必完全的符合最优化的要求。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。
其次,你会就每一个准则将3个地点进行对比,譬如A景色最好,B次之;B费用最低,C次之;C 居住等条件较好等等。
最后,你要将这两个层次的比较判断进行综合,在A、B、C中确定哪个作为最佳地点。
二、层次分析法的基本步骤1、建立层次结构模型。
层次分析法
第八章 层次分析法层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。
它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。
§1 层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。
运用层次分析法建模,大体上可按下面四个步骤进行:(i )建立递阶层次结构模型;(ii )构造出各层次中的所有判断矩阵;(iii )层次单排序及一致性检验;(iv )层次总排序及一致性检验。
下面分别说明这四个步骤的实现过程。
1.1 递阶层次结构的建立与特点应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。
在这个模型下,复杂问题被分解为元素的组成部分。
这些元素又按其属性及关系形成若干层次。
上一层次的元素作为准则对下一层次有关元素起支配作用。
这些层次可以分为三类:(i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
(ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
(iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。
每一层次中各元素所支配的元素一般不要超过9个。
这是因为支配的元素过多会给两两比较判断带来困难。
下面结合一个实例来说明递阶层次结构的建立。
例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。
层次分析法
层次分析法(AHP )评价模型1.层次分析法简介层次分析法简称AHP (The analytic hierarchy process),由美国的运筹学家T.L.Saaty 提出。
层次分析法要求明确项目的总目标,将其分解为各层子目标、准则层、指标层甚 至指标,构建一种递阶层次结构;构造两两判断矩阵,求解判断矩阵的特征向量,得到 每层的元素相对于上一层次的权重;采用加权的方法确定方案层各指标对总F1标的权 重,反映不同指标的相对重要性。
层次分析法通过制定标准,对难以量化的定性指标标 准化数学运算处理,转化为可以量化的数据,是一个定性和定量结合的方法。
2.层次分析法的一般步骤(1)确定评价目标和范围,构造递阶层次结构。
(2) 构造两两比较矩阵(判断矩阵)对于同一层次的各因素关于上一层中对应准则(目标)的重要性进行两两比较,构造出两两比较的判断矩阵。
用标度法表示比较结果。
如表所示:判断矩阵标注及其含义注:ij C ={2,4,6,8,1/2,1/4,1/6,1/8}表示重要性等级介于 ij C ={l,3,5,7,9,l/3,l/5,l/7,l/9}。
根据此表可以得到对于同一层次指标的判断矩阵mm A ,mm ij m a a a a A )(},...,,{21==A 的性质如下: ①0>ij a ②ijij a a 1=③1==ij a j i 时, (3)由比较矩阵计算被比较因素对上一层对应准则的相对权重(归一化特征向量),并进行判断矩阵的一致性检验。
(4)计算指标层对总目标的组合权重和组合一致性检验,得出各指标对总目标的影响权重。
3.一致性检验由于指标采用的两两比较,有可能出现甲的重要性大于乙、乙的重要性大于两、丙 的重要性却大于甲的情况,因此,确定计算相对权重后要进行組阵一致性判断,矩阵一 致性指标记为CI1max --=n nCI λRICI CR =RI 是平均随机一致性指标,判断矩阵的阶数不同,RI 的取值也不同,RI 的取值见表平均随机一致性指标的取值当时,判断矩阵通过一致性检验,得到的权重具有可信性。
层次分析法
1.层次分析法层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
层次分析法是在20世纪70年代初,由美国著名的运筹学专家萨蒂教授提出的,萨蒂教授在进行"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题研究时,提出了一种层次权重分析的方法。
层次分析法简单来说,就是将需要解决的问题,归为一个系统。
并且将整个要解决的问题进行目标分解,从而形成多个层次指标通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
在进行层次分析法使用的过程中,需要根据问题按照总目标—子目标—评价准备的层次进行分解,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,最终权重最大的就是此问题的最优解决方案。
同时分析法的基本原理就是将问题进行系统化处理,汇总成一个总的目标,并且根据问题的不同以及因素的不同,再将问题进行分解,按照问题之间的关系形成一个彼此相连接的层次,在进行问题解决时逐层分析最终将问题分解到最低层,从而找出最优解。
层次分析法的应用比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
因此层次分析法多被应用于社会、经济及管理领域的各种问题,因为这些领域的问题多是由许多相互关联,相互制约的因素所构成的在进行分析解决事很难有明确的判断,而通过层次分析法研究者可以将复杂的系统进行层次分解,使得问题更加的简洁从而帮助研究者找出解决问题的方法。
在安全科学和环境科学领域,层次分析法也被经常使用。
在安全生产科学方面,层次分析法常被应用于煤矿的安全研究、危化品评价、油库安全评价、城市灾害应急能力研究以及交通安全评价等。
在环境保护研究中的应用主要包括:水安全评价、水质指标和环境保护措施研究、生态环境质量评价指标体系研究以及水生野生动物保护区污染源确定等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义
所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
其用法是构造判断矩阵,求出其最大特征值。
及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。
优缺点
优点
1. 系统性的分析方法
层次分析法把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。
系统的思想在于不割断各个因素对结果的影响,而层次分析法中每一层的权重设置最后都会直接或间接影响到结果,而且在每个层次中的每个因素对结果的影响程度都是量化的,非常清晰、明确。
这种方法尤其可用于对无结构特性的系统评价以及多目标、多准则、多时期等的系统评价。
2. 简洁实用的决策方法
这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关系后,最后进行简单的数学运算。
即使是具有中等文化程度的人也可了解层次分析的基本原理和掌握它的基本步骤,计算也经常简便,并且所得结果简单明确,容易为决策者了解和掌握。
3. 所需定量数据信息较少
层次分析法主要是从评价者对评价问题的本质、要素的理解出发,比一般的定量方法更讲求定性的分析和判断。
由于层次分析法是一种模拟人们决策过程的思维方式的一种方法,层次分析法把判断各要素的相对重要性的步骤留给了大脑,只保留人脑对要素的印象,化为简单的权重进行计算。
这种思想能处理许多用传统的最优化技术无法着手的实际问题。
[1]
缺点
1. 不能为决策提供新方案
层次分析法的作用是从备选方案中选择较优者。
这个作用正好说明了层次分析法只能从原有方案中进行选取,而不能为决策者提供解决问题的新方案。
这样,我们在应用层次分析法的时候,可能就会有这样一个情况,就是我们自身的创造能力不够,造成了我们尽管在我们想出来的众多方案里选了一个最好的出来,但其效果仍然不够人家企业所做出来的效果好。
而对于大部分决策者来说,如果一种分析工具能替我分析出在我已知的方案里的最优者,然后指出已知方案的不足,又或者甚至再提出改进方案的话,这种分析工具才是比较完美的。
但显然,层次分析法还没能做到这点。
2. 定量数据较少,定性成分多,不易令人信服
在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。
但现实世界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。
层次分析法是一种带有模拟人脑的决策方式的方法,因此必然带有较多的定性色彩。
这样,当一个人应用层次分析法来做决策时,其他人就会说:为什么会是这样?能不能用数学方法来解释?如果不可以的话,你凭什么认为你的这个结果是对的?你说你在这个问题上认识比较深,但我也认为我的认识也比较深,可我和你的意见是不一致的,以我的观点做出来的结果也和你的不一致,这个时候该如何解决?
比如说,对于一件衣服,我认为评价的指标是舒适度、耐用度,这样的指标对于女士们来说,估计是比较难接受的,因为女士们对衣服的评价一般是美观度是最主要的,对耐用度的要求比较低,甚至可以忽略不计,因为一件便宜又好看的衣服,我就穿一次也值了,根本不考虑它是否耐穿我就买了。
这样,对于一个我原本分析的…购买衣服时的选择方法‟的题目,充其量也就只是…男士购买衣服的选择方法‟了。
也就是说,定性成分较多的时候,可能这个研究最后能解决的问题就比较少了。
对于上述这样一个问题,其实也是有办法解决的。
如果说我的评价指标太少了,把美观度加进去,就能解决比较多问题了。
指标还不够?我再加嘛!还不够?再加!还不够?!不会吧?你分析一个问题的时候考虑那么多指标,不觉得辛苦吗?大家都知道,对于一个问题,指标太多了,大家反而会更难确定方案了。
这就引出了层次分析法的第三个不足之处。
3. 指标过多时数据统计量大,且权重难以确定
当我们希望能解决较普遍的问题时,指标的选取数量很可能也就随之增加。
这就像系统结构理论里,我们要分析一般系统的结构,要搞清楚关系环,就要分析到基层次,而要分析到基层次上的相互关系时,我们要确定的关系就非常多了。
指标的增加就意味着我们要构造层次更深、数量更多、规模更庞大的判断矩阵。
那么我们就需要对许多的指标进行两两比较的工作。
由于一般情况下我们对层次分析法的两两比较是用1至9来说明其相对重要性,如果有越来越多的指标,我们对每两个指标之间的重要程度的判断可能就出现困难了,甚至会对层次单排序和总排序的一致性产生影响,使一致性检验不能通过,也就是说,由于客观事物的复杂性或对事物认识的片面性,通过所构造的判断矩阵求出的特征向量(权值)不一定是合理的。
不能通过,就需要调整,在指标数量多的时候这是个很痛苦的过程,因为根据
人的思维定势,你觉得这个指标应该是比那个重要,那么就比较难调整过来,同时,也不容易发现指标的相对重要性的取值里到底是哪个有问题,哪个没问题。
这就可能花了很多时间,仍然是不能通过一致性检验,而更糟糕的是根本不知道哪里出现了问题。
也就是说,层次分析法里面没有办法指出我们的判断矩阵里哪个元素出了问题。
4. 特征值和特征向量的精确求法比较复杂
在求判断矩阵的特征值和特征向量时,所用的方法和我们多元统计所用的方法是一样的。
在二阶、三阶的时候,我们还比较容易处理,但随着指标的增加,阶数也随之增加,在计算上也变得越来越困难。
不过幸运的是这个缺点比较好解决,我们有三种比较常用的近似计算方法。
第一种就是和法,第二种是幂法,还有一种常用方法是根法。
基本步骤
建立层次结构模型
在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次,同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用。
最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有一个或几个层次,通常为准则或指标层。
当准则过多时(譬如多于9个)
应进一步分解出子准则层。
构造成对比较阵
从层次结构模型的第2层开始,对于从属于(或影响)上一层每个因素的同一层诸因素,用成对比较法和1—9比较尺度构造成对比较阵,直到最下层。
计算权向量并做一致性检验
对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。
若检验通过,特征向量(归一化后)即为权向量:若不通过,需重新构造成对比较阵。
计算组合权向量并做组合一致性检验
计算最下层对目标的组合权向量,并根据公式做组合一致性检验,若检验通过,则可按照组合权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较阵。
美国运筹学家T.L.saaty于20世纪70年代提出的层次分析法(Analytic Hierarchy Process,简称AHP方法),是对方案的多指标系统进行分析的一种层次化、结构化决策方法,它将决策者对复杂系统的决策思维过程模型化、数量化。
应用这种方法,决策者通过将复杂问题分解为若干层次和若干因素,在各因素之间进行简单的比较和计算,就可以得出不同方案的权重,为最佳方案的选择提供依据。
运用AHP方法,大体可分为以下三个步骤: 步骤1:分析系统中各因素间的关系,对同一层次各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;
步骤2:由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验;
步骤3:计算各层次对于系统的总排序权重,并进行排序。