思科CISCO动态路由与RIP协议详解

合集下载

Cisco路由器配置RIP动态路由

Cisco路由器配置RIP动态路由

Cisco路由器配置RIP动态路由本⼈是⽹络⼯程专业毕业的,可是当年⽹络学的⼀般般。

⽬前也致⼒于Linux和开发⽅⾯的⽅向。

可是每⼀次去⾯试,别⼈看了我的简历就要问我⼏个⽹络⼯程的问题。

在⼀些中⼩公司也待了近10年,每每⽤的最多的就是静态路由了,静态路由虽然⽐较死板,但是效率还是挺⾼的。

⽽且⼤部分设备都⽀持。

哪怕是在Windows系统⾥做个route add -p 192.168.10.0 mask 255.255.255.0 192.168.20.254 .就这⼀条windows⾥的命令,也⾮常实⽤啊。

如果要查看路由表,就是route print.但是很多⼤公司⾥⽤的都是rip ospf bgp .所以我也想把这些协议都写下来,防⽌下次⾯试的时候⼜忘记了。

下⾯是我的拓扑图。

⾸先说说⼀下什么是rip协议。

RIP(Routing Information Protocol,路由信息协议)是⼀种(IGP),是⼀种协议,⽤于⾃治系统(AS)内的路由信息的传递。

RIP协议基于距离⽮量算法(DistanceVectorAlgorithms),使⽤“跳数”(即metric)来衡量到达⽬标地址的路由距离。

这种协议的只关⼼⾃⼰周围的,只与⾃⼰相邻的路由器交换信息,范围限制在15跳(15度)之内,再远,它就不关⼼了。

RIP应⽤于OSI⽹络七层模型的应⽤层。

各⼚家定义的管理距离(AD,即优先级)如下:华为定义的优先级是100,思科定义的优先级是120。

我理解的没那么深,我们就只关注他是⼀种动态协议吧,最⼤15跳。

⾸先按照上⾯的拓扑图。

把PC -- 交换机 -- 路由器之间这个最基本的⽹络调通。

各类命令⼀次性操作,设置VLAN 啊,设置trunk 啊,设置IP 啊,等等吧。

⾄于设备的开机密码,明⽂密⽂的,还有什么Telnet的,我就不说了。

这个是最基本的,通了之后就直接开始做rip协议了,rip协议是最简单的了。

只是⼤家还是要多关注⼀下他的原理。

思科ciscoip_route

思科ciscoip_route

思科ciscoip_route路由协议(routing protocol):用于routers动态寻找网络最佳路径,保证所有routers拥有相同的路由表.一般,路由协议决定数据包在网络上的行走的路径.这类协议的例子有OSPF,RIP,IGRP,EIGRP等可路由协议(routed protocol):当所有的routers知道了整个网络的拓扑结构以后,可路由协议就可以用来发送数据.一般的,可路由协议分配给接口,用来决定数据包的投递方式.这类例子有IP和IPX 路由:把1个数据包从1个设备发送到不同网络里的另1个设备上去.这些工作依靠routers来完成.routers并不关心主机,它们只关心网络的状态和决定网络中的最佳路径router可以路由数据包,必须至少知道以下状况:1.目标地址(destination address)2.可以学习到远端网络状态的邻居router3.到达远端网络的所有路线4.到达远端网络的最佳路径5.如何保持和验证路由信息The IP Routing Process路由原理:当IP子网中的一台主机发送IP包给同一IP子网的另一台主机时,它将直接把IP包送到网络上,对方就能收到.而要送给不同IP 于网上的主机时,它要选择一个能到达目的子网上的router,把IP包送给该router,由它负责把IP包送到目的地.如果没有找到这样的router,主机就把IP包送给一个称为缺省网关(default gateway)的router上.缺省网关是每台主机上的一个配置参数,它是接在同一个网络上的某个router接口的IP地址,router转发IP包时,只根据IP包目的IP地址的网络号部分,选择合适的接口,把IP包送出去.同主机一样,router也要判定接口所接的是否是目的子网,如果是,就直接把包通过接口送到网络上,否则,也要选择下一个router来传送包.router也有它的缺省网关,用来传送不知道往哪儿送的IP包.这样,通过router把知道如何传送的IP 包正确转发出去,不知道的IP包送给缺省网关,这样一级级地传送,IP包最终将送到目的地,送不到目的地的IP包则被网络丢弃了当主机A发送个IP包到主机B,目标MAC地址使用的是默认网关的以太网接口地址.这是因为帧不能放置在远端网络.show ip route:查看路由表信息,比如:Router#sh ip route(略)Gateway of last resort is not setC 192.168.10.0/24 is directly connected, FastEthernet0/0C 192.168.20.0/24 is directly connected, Serial 0/0Router#C代表的是:直接相连Configuring IP Routing in Our Network当1个router收到1个目标网络号没有在路由表中列出的包的时候,它并不发送广播寻找目标网络,而是直接丢弃它几种不同类型的路由:1.静态路由(static routing)2.默认路由(default routing)3.动态路由(dynamic routing)Static Routing静态路由:手动填加路由线路到路由表中,优点是:1.没有额外的router的CPU负担2.节约带宽3.增加安全性缺点是:1.网络管理员必须了解网络的整个拓扑结构2.如果网络拓扑发生变化,管理员要在所有的routers上手动修改路由表3.不适合在大型网络中静态路由的配置命令:ip route [dest-network] [mask] [next-hop address或exit interface][administrative distance] [permanent]ip route:创建静态路由dest-network:决定放入路由表的路由表mask:掩码next-hop address:下1跳的router地址exit interface:如果你愿意的话可以拿这个来替换next-hop address,但是这个是用于点对点(poi nt-to-point)连接上,比如广域网(WAN)连接,这个命令不会工作在LAN上administrative distance:默认情况下,静态路由的管理距离是1,如果你用exit interface代替next -hop address,那么管理距离是0 permanent:如果接口被shutdown了或者router不能和下1跳router通信,这条路由线路将自动从路由表中被删除.使用这个参数保证即使出现上述情况,这条路线仍然保持在路由表中静态路由的具体配置: Router Network Address Interface AddressRouterA 192.168.10.0 fa0/0 192.168.10.1192.168.20.0 s0/0 192.168.20.1RouterB 192.168.20.0 s0/0 192.168.20.2192.168.40.0 s0/1 192.168.40.1192.168.30.0 fa0/1 192.168.30.1RouterC 192.168.40.0 s0/0 192.168.40.2192.168.50.0 fa0/0 192.168.50.1准备工作:先配置RouterA,B和C的基本信息,注意RouterB作为DCE提供时钟频率:RouterA(config)#int fa0/0RouterA(config-if)#ip address 192.168.10.1 255.255.255.0RouterA(config-if)#no shutRouterA(config-if)#int s 0/0RouterA(config-if)#ip address 192.168.20.1 255.255.255.0RouterA(config-if)#no shutRouterA(config-if)#^ZRouterA#copy run startRouterB(config)#int fa0/0RouterB(config-if)#ip address 192.168.30.1 255.255.255.0RouterB(config-if)#no shutRouterB(config-if)#int s 0/0RouterB(config-if)#ip address 192.168.20.2 255.255.255.0RouterB(config-if)#clock rate 64000RouterB(config-if)#no shutRouterB(config-if)#ip address 192.168.40.1 255.255.255.0RouterB(config-if)#clock rate 64000RouterB(config-if)#no shutRouterB(config-if)#^ZRouterB#copy run startRouterC(config)#int fa0/0RouterC(config-if)#ip address 192.168.50.1 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#int s 0/0RouterC(config-if)#ip address 192.168.40.2 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#^ZRouterC#copy run start配置RouterA静态路由:RouterA了解自己的网络192.168.10.0和192.168.20.0(直接相连),所以RouterA的路由表必须加入192.168.30.0和192.168.40.0, 192.168.50.0的信息,注意下1跳接口,如下: RouterA(config)#ip route 192.168.30.0 255.255.255.0 192.168.20.2RouterA(config)#ip route 192.168.40.0 255.255.255.0 192.168.20.2RouterA(config)#ip route 192.168.50.0 255.255.255.0192.168.20.2验证路由信息:RouterA#sh ip route(略)S 192.168.50.0 [1/0] via 192.168.20.2(略)S代表静态路由,[1/0]分别为管理距离和度配置RouterB静态路由:RouterB所必须学习到的网络应该是192.168.10.0和192.168.50.0,注意它们的下1跳接口地址,配置如下:RouterB(config)#ip route 192.168.10.0 255.255.255.0 192.168.20.1RouterB(config)#ip route 192.168.50.0 255.255.255.0 192.168.40.2配置RouterC静态路由:RouterC所必须学习到的网络应该是192.168.10.0,192.168.20.0和192.168.30.0,注意它们的下1跳接口地址,配置如下:RouterC(config)#ip route 192.168.10.0 255.255.255.0 192.168.40.1RouterC(config)#ip route 192.168.20.0 255.255.255.0 192.168.40.1RouterC(config)#ip route 192.168.30.0 255.255.255.0 192.168.40.1Verifying Your Configuration根据上面的拓扑结构,我们来验证下是否能够端到端的ping通:RouterC#ping 192.168.10.1(略)Sending 5, 100-byte ICMP Echos to 192.168.10.1, timeout is 2 seconds:RouterA#ping 192.168.50.1(略)Sending 5, 100-byte ICMP Echos to 192.168.50.1, timeout is 2 seconds:(略)2端都能ping通,说明没问题Default Routing默认路由:一般使用在stub网络中,stub网络是只有1条出口路径的网络.使用默认路由来发送那些目标网络没有包含在路由表中的数据包.根据上面的拓扑图,你就不能把默认路由定义在RouterB上,因为RouterB拥有不止1个出口路径接口.其实你可以把默认路由理解成带通配符(wildcard)的静态路由配置默认路由:首先要去掉之前配置的静态路由RouterC(config)#no ip route 192.168.10.0 255.255.255.255 192.168.40.1RouterC(config)#no ip route 192.168.20.0 255.255.255.255 192.168.40.1RouterC(config)#no ip route 192.168.30.0 255.255.255.255 192.168.40.1接下来配置默认路由:RouterC(config)#ip route 0.0.0.0 0.0.0.0 192.168.40.1额外的命令,使各个接口打破分类IP规则,12.x的IOS默认包含这条命令,如下:RouterC(config)#ip classless再验证下:RouterC(config)#^ZRouterC#sh ip routeS* 0.0.0.0/0 [1/0] via 192.168.40.1S*代表默认路由Dynamic Routing动态路由协议,有很多优点,灵活等等,但是缺点也有,比如占用了额外的带宽,CPU负荷高组网利用到的2种路由协议:内部网关协议(Interior Gateway Protocols,IGPs)和外部网关协议(E xterior Gateway Protocols,EGPs) 自治系统(Autonomous System,AS):同1个管理域的网络集合,意味着在这里面的所有routers共享相同的路由表信息IGPs:在相同的AS内交换路由信息EGPs:AS间的通信Routing Protocol BasicsAdministrative Distances管理距离(AD): 0到255之间的1个数,它表示一条路由选择信息源的可信性值.该值越小,可信性级别越高.0为最信任,255为最不信任即没有从这条线路将没有任何流量通过.假如1个router收到远端的2条路由更新,router将检查AD,AD值低的将被选为新路线存放于路由表中.假如它们拥有相同的AD,将比较它们的度(metric).度低的将作为新线路.假如它们的AD和度都一样,那么将在2条线路做均衡负载.一些常用路由协议默认的AD:1.直接相连:02.静态路由:13.EIGRP:904.IGRP:1005.OSPF:1106.RIP:120记住,如果你在条线路上配置了静态路由,又配置了RIP,默认情况下,router只会使用静态路由,因为它的AD为1小于RIP的AD Routing Protocols3种路由协议:1.距离向量(distance vector)2.链路状态(link state)3.混合型(hybrid)距离向量:用于根据距离(distance)来判断最佳路径,当1个数据包每经过1个router时,被称之为经过1跳.经过跳数最少的则作为最佳路径.这类协议的例子有RIP和IGRP,它们将整个路由表向与它们直接相连的相邻routers链路状态:也叫最短路径优先(shortest-path-first)协议.每个router创建3张单独的表,1张用来跟踪与它直接相连的相邻router;1张用来决定网络的整个拓扑结构;另外1张作为路由表.所以这种协议对网络的了解程度要比距离向量高.这类协议例子有OSPF混合型:综合了前2者的特征,这类协议的例子有EIGRPDistance-Vector Routing Protocols距离向量路由算法将完整的路由表传给相邻router,然后这个router再把收到的表的选项加上自己的表来完成整个路由表,这个叫做routing by rumor,因为这个router是从相邻router接受更新而非自己去发现网络的变化。

RIP协议路由信息协议详解

RIP协议路由信息协议详解

RIP协议路由信息协议详解RIP(Routing Information Protocol)是一种基于距离矢量算法的路由协议,用于在网络中传输路由信息,并实现路由表的自动更新。

本文将详细解析RIP协议的工作原理、优缺点以及在实际网络中的应用。

一、RIP协议的工作原理RIP协议通过将网络中每个路由器的距离向量分享给相邻的路由器,从而完成路由信息的传递。

具体而言,RIP协议的工作过程如下:1. 距离矢量广播首先,每个路由器会将自己的路由表中的所有目的网络及其距离广播给相邻路由器,这个距离可以是跳数或其他度量单位。

2. 距离矢量更新当一个路由器接收到相邻路由器发送的距离矢量时,它会根据自己当前的路由表信息和接收到的矢量进行比较。

如果接收到的距离矢量中包含了之前未知的目的网络或者路径更短的目的网络,那么它将更新自己的路由表,并将这一变化继续广播给相邻路由器。

3. 路由表更新每个路由器会周期性地广播自己的路由表,以达到路由表的全网更新。

RIP协议默认的更新周期为30秒。

二、RIP协议的优点和缺点RIP协议作为一种较为早期的路由协议,具有以下优点和缺点。

1. 优点(1)实现简单:RIP协议的算法比较简单,容易理解和部署。

(2)适用于小型网络:RIP协议适用于小型网络,网络规模较小时,其收敛速度可以满足需求。

(3)低带宽消耗:RIP协议的更新消息较小,对网络带宽的消耗较低。

2. 缺点(1)收敛速度慢:由于RIP协议使用距离矢量算法,其收敛速度相对较慢。

在大型网络中,可能需要较长的时间才能完成路由表的更新。

(2)跳数限制:RIP协议的度量单位为跳数,理论上最多支持15个跳数。

这意味着当网络规模较大时,RIP协议无法实现准确的路由选择。

三、RIP协议的应用尽管RIP协议有其局限性,但仍广泛应用于小型网络和特定场景中。

1. SOHO网络在小型办公室/家庭办公网络(SOHO)中,往往规模有限且对带宽要求较低。

RIP协议作为一种简单易用的路由协议,被广泛用于此类网络的路由器之间的路由信息传递和自动更新。

RIP协议理解

RIP协议理解

RIP协议理解协议名称:RIP(Routing Information Protocol)协议理解一、背景介绍RIP(Routing Information Protocol)是一种基于距离向量算法的路由选择协议,用于在互联网中的路由器之间交换网络信息,以确定最佳路径。

RIP协议是一种动态路由协议,能够自动适应网络拓扑的变化,并通过周期性地广播路由表信息来实现路由的更新。

二、协议目的RIP协议的主要目的是通过交换路由信息,使网络中的路由器能够动态地更新路由表,从而实现数据包的最佳转发。

其具体目标包括:1. 发现并维护网络中的所有路由器。

2. 交换路由信息,包括网络地址和距离等。

3. 计算出最佳路径并更新路由表。

4. 快速适应网络拓扑的变化。

三、协议原理1. 距离向量算法:RIP协议使用距离向量算法来计算最佳路径。

每个路由器维护一个路由表,其中包含与其相邻路由器的距离信息。

通过交换路由表信息,路由器可以计算出到达目的网络的最佳路径,并更新路由表。

2. 距离度量:RIP协议使用跳数作为距离度量,即将到达目的网络所需经过的路由器数量作为距离的衡量标准。

每个路由器将自身到达目的网络的距离设置为0,并将其他网络的距离初始化为无穷大。

3. 路由表更新:RIP协议通过周期性地广播路由表信息来实现路由的更新。

每个路由器在广播自己的路由表之前,将其距离加1,并将其距离信息发送给相邻路由器。

当收到其他路由器的路由表信息后,路由器会比较距离,选择较短的路径更新路由表。

4. 路由器失效检测:RIP协议通过周期性地发送路由表信息来检测路由器的可达性。

如果一段时间内未收到相邻路由器的路由表信息,则认为该路由器失效,并将其距离设置为无穷大,从而避免将数据包发送到失效的路由器。

四、协议特点1. 简单易实现:RIP协议的设计简单,实现相对容易,适用于小型网络。

2. 较慢的收敛时间:由于RIP协议的更新周期较长,网络拓扑变化时,收敛时间较长,可能导致数据包的延迟。

RIP路由协议及工作原理

RIP路由协议及工作原理

RIP路由协议及⼯作原理)是应⽤较早、使⽤较普遍的内部⽹路由信息协议)是应⽤较早、使⽤较普遍的内部⽹RIP(Routing information Protocol,路由信息协议关协议(Interior Gateway Protocol,IGP),适⽤于⼩型同类⽹络的⼀个⾃治系统(AS)内的路由信息的传递。

RIP协议是基于距离⽮量算法(Distance VectorAlgorithms,DVA)的。

它使⽤“跳数”,即metric来衡量到达⽬标地址的路由距离。

⽂档来衡量到达⽬标地址的路由距离。

⽂档是⼀个⽤于路由器和主机间交换路由信息的距离向量协议,⽬见RFC1058、RFC1723。

它。

它是⼀个⽤于路由器和主机间交换路由信息的距离向量协议,⽬前最新的版本为v4,也就是RIPv4。

⾄于上⾯所说到的“内部⽹关协议”,我们可以这样理解。

由于历史的原因,当前的 INTERNET ⽹被组成⼀系列的⾃治系统,各⾃治系统通过⼀个核⼼路由器连到主⼲⽹上。

⽽⼀个⾃治系统往往对应⼀个组织实体(⽐如⼀个公司或⼤学)内部的⽹络与路由器集合。

每个⾃治系统都有⾃⼰的路由技术,对不同的⾃治系统路由技术是不相同的。

⽤于⾃治系统间接⼝上的路由协议称为“外部⽹关协议”,简称EGP (Exterior Gateway Protocol);⽽⽤于⾃治系统内部的路由协议称为“内部⽹关协议”,简称 IGP。

内部⽹关与外部⽹关协议不同,外部路由协议只有⼀个,⽽内部路由器协议则是⼀族。

各内部路由器协议的区别在于距离制式(distance metric, 即距离度量标准)不同,和路由刷新算法不同。

RIP协议是最⼴泛使⽤的IGP类协议之⼀,著名的路径刷新程序Routed便是根据RIP实现的。

RIP协议被设计⽤于使⽤同种技术的中型⽹络,因此适应于⼤多数的校园⽹和使⽤速率变化不是很⼤的连续线的地区性⽹络。

对于更复杂的环境,⼀般不使⽤RIP协议。

1. RIP⼯作原理RIP协议是基于Bellham-Ford(距离向量)算法,此算法1969年被⽤于计算机路由选择,正式协议⾸先是由Xerox于1970年开发的,当时是作为Xerox的“Networking Services(NXS)”协议族的⼀部分。

思科Cisco路由器RIP动态路由配置实验案例详解

思科Cisco路由器RIP动态路由配置实验案例详解

思科Cisco路由器RIP动态路由配置实验案例详解本⽂讲述了思科Cisco路由器RIP动态路由配置实验。

分享给⼤家供⼤家参考,具体如下:实验九 路由器RIP动态路由配置⼀、实验⽬的1. 掌握RIP协议的配置⽅法:2. 掌握查看通过动态路由协议RIP学习产⽣的路由;3. 熟悉⼴域⽹线缆的链接⽅式;⼆、实验背景 假设校园⽹通过⼀台三层交换机连到校园⽹出⼝路由器上,路由器再和校园外的另⼀台路由器连接。

现要做适当配置,实现校园⽹内部主机与校园⽹外部主机之间的相互通信。

为了简化⽹管的管理维护⼯作,学校决定采⽤RIPV2协议实现互通。

三、技术原理1. RIP(Routing Information Protocols,路由信息协议)是应⽤较早、使⽤较普遍的IGP内部⽹管协议,使⽤于⼩型同类⽹络,是距离⽮量协议;2. RIP协议跳数作为衡量路径开销的,RIP协议⾥规定最⼤跳数为15;3. RIP协议有两个版本:RIPv1和RIPv2,RIPv1属于有类路由协议,不⽀持VLSM,以⼴播形式进⾏路由信息的更新,更新周期为30秒;RIPv2属于⽆类路由协议,⽀持VLSM,以组播形式进⾏路由更细。

四、实验步骤 建⽴建⽴packet tracer拓扑图 (1)在本实验中的三层交换机上划分VLAN10和VLAN20,其中VLAN10⽤于连接校园⽹主机,VLAN20⽤于连接R1。

(2)路由器之间通过V.35电缆通过串⼝连接,DCE端连接在R1上,配置其时钟频率64000。

(3)主机和交换机通过直连线,主机与路由器通过交叉线连接。

(4)在S3560上配置RIPV2路由协议。

(5)在路由器R1、R2上配置RIPV2路由协议。

(6)将PC1、PC2主机默认⽹关设置为与直连⽹路设备接⼝IP地址。

(7)验证PC1、PC2主机之间可以互相同信;五、实验设备 PC 2台;Switch_3560 1台;Router-PT 2台;直连线;交叉线;DCE 串⼝线六、实验拓扑图七、实验命令PC1IP: 192.168.1.2Submask: 255.255.255.0Gateway: 192.168.1.1 PC2IP: 192.168.2.2Submask: 255.255.255.0Gateway: 192.168.2.1S3560enconf thostname S3560vlan 10exitvlan 20exitinterface fa 0/10switchport access vlan 10exitinterface fa 0/20switchport access valn 20exitendshow vlanconf tinterface vlan 10ip address 192.168.1.1 255.255.255.0no shutdownexitinterface vlan 20ip address 192.168.3.1 255.255.255.0no shutdownendshow ip routeshow runingconf trouter ripnetwork 192.168.1.0network 192.168.3.0version 2endshow ip routeR1enconf thostname R1interface fa 0/0no shutdownip address 192.168.3.2 255.255.255.0interface serial 2/0no shutdownip address 192.168.4.1 255.255.255.0clock rate 64000endshow ip routeconf trouter ripnetwork 192.168.3.0network 192.168.4.0version 2exitR2enconf thostname R2interface fa 0/0no shutdownip address 192.168.2.1 255.255.255.0interface serial 2/0no shutdownip address 192.168.4.2 255.255.255.0endshow ip routeconf trouter ripnetwork 192.168.2.0netword 192.168.4.0version 2end⼋、实验结果 配置PC0、PC1的IP地址: 配置S3560: 配置R1: 配置R2: PC0 ping PC1:。

Cisco路由器静态、动态路由配置

Cisco路由器静态、动态路由配置

Cisco路由器静态、动态路由配置2010-07-22 20:31Cisco路由器静态、动态路由配置本文介绍Cisco路由器静态、动态路由配置,动态路由协议这里只介绍RIP、EIGRP、OSPF三种。

下面是网络拓扑图:如上图网络拓扑,配置路由协议使其网络连通(PC0和PC1互通)。

一、配置静态路由1.配置IP地址信息台式机的IP地址配置很简单,我这里不用多说,PC0 IP:10.3.0.2 NETMASK:255.255.255.0 PC1 IP:192.16.3.2 NETMASK:255.255.255.0 。

下面配置router0下面配置router1这里我们来试试PC0和PC1互通性PC0 ping PC1如图所示:这里我们看到PC0和PC1并不能相通。

PC1 ping PC0如图所示:这里我们看到PC1和PC0也并不能相通。

2.配置静态路由协议Router(config)#ip route 192.16.3.0 255.255.255.0 172.16.2.2 R1(config)#ip route 10.3.0.0 255.255.255.0 172.16.2.1 下面我们再来试试PC0和PC1互通性PC0 ping PC1如图所示:这里我们看到PC0和PC1能相通,我们配置的静态路由协议起作用了。

PC1 ping PC0如图所示:这里我们看到PC1和PC0能相通,我们配置的静态路由协议也起作用了。

二、 RIP路由协议的配置1. 配置IP地址信息配置IP地址信息见上面配置静态路由中配置IP地址信息,我这里不多说。

这里配置了ip地址以后如静态路由中一样,PC0和PC1不能相通。

2. 配置rip路由协议配置router0Router(config)#router ripRouter(config-router)#version 2Router(config-router)#network 10.3.0.0Router(config-router)#network 172.16.2.0配置router1R1(config)#router ripR1(config-router)#version 2R1(config-router)#network 192.16.3.0R1(config-router)#network 172.16.2.03. 查看rip路由信息查看router0查看router1这里我们可以看到R开头的路由信息即是通过rip协议得到的路由信息。

RIP协议理解

RIP协议理解

RIP协议理解协议名称:RIP协议理解一、背景介绍RIP(Routing Information Protocol)是一种用于在计算机网络中实现动态路由的协议。

它是一种距离向量路由选择协议,广泛应用于小型局域网(LAN)和中型企业网络中。

RIP协议的主要目标是通过交换路由信息,使网络中的路由器能够选择最佳的路径来传输数据。

二、协议原理1. 距离向量算法RIP协议使用距离向量算法来确定最佳路由。

每个路由器通过交换路由表来了解网络的拓扑结构和距离信息。

路由器将自己的路由表中的信息发送给相邻路由器,并接收相邻路由器发送的路由表信息。

通过比较不同路径的距离,路由器可以选择最短路径作为最佳路由。

2. 距离度量RIP协议使用跳数(hop count)作为距离度量,即通过几个路由器可以到达目的地。

每个路由器将自己到目的地的跳数信息存储在路由表中,并将其传递给相邻路由器。

当路由器接收到其他路由器发送的路由表时,会根据跳数信息更新自己的路由表。

3. 路由更新RIP协议中,每隔一段时间,路由器会向相邻路由器发送路由更新信息,以确保网络中的路由表保持最新状态。

当网络中的拓扑结构发生变化时,路由器会发送路由更新信息通知其他路由器。

同时,RIP协议使用时间限制来避免路由环路问题。

三、协议规范1. 路由器配置在使用RIP协议的网络中,每个路由器需要进行相应的配置。

配置包括设置路由器的IP地址、子网掩码、RIP协议版本等。

每个路由器还需要指定一个默认网关,以便在无法找到目标路由时将数据包发送到默认网关。

2. 路由表维护每个路由器都维护着一个路由表,用于存储目的地的跳数信息。

路由表中的每一项包含目的地IP地址、下一跳路由器的IP地址和跳数。

当收到其他路由器发送的路由表信息时,路由器会根据跳数信息更新自己的路由表。

3. 路由更新RIP协议中,路由器会定期发送路由更新信息给相邻路由器。

路由更新信息包含当前路由器的路由表信息。

相邻路由器接收到路由更新信息后,会根据跳数信息更新自己的路由表。

思科rip协议配置命令

思科rip协议配置命令

思科rip协议配置命令思科RIP协议配置命令【协议双方】甲方:(公司名称)地址:联系人:电话:邮箱:乙方:(公司名称)地址:联系人:电话:邮箱:【协议内容】1. 各方身份甲方是网络服务提供者,提供网络维护与管理服务;乙方是网络服务使用者,使用甲方提供的网络服务。

2. 权利和义务甲、乙双方应根据协议所约定的规定,相互履行本协议的各项义务,认真维护网络的稳定、安全和正常运行。

甲方的权利和义务:(1)提供网络维护和管理服务,并保证网络正常运作;(2)对网络进行维护、升级、安全防护和管理;(3)处理网络服务相关的突发事件和紧急情况;(4)提供网络使用情况和服务报告;(5)按照协议收取网络服务费用。

乙方的权利和义务:(1)使用甲方提供的网络服务并进行设置;(2)遵守中国相关法律法规和协议规定,不得利用网络服务从事违反国家法律的行为;(3)及时缴纳甲方收取的网络服务费用;(4)与甲方协商为维护网络服务质量和安全所需的相关费用;(5)保护甲方网络服务的安全、稳定,不得干扰、破坏网络服务。

3. 履行方式甲方提供的网络服务为思科RIP协议,乙方应根据协议配置命令进行设置。

甲方应指派专门的技术人员为乙方提供技术支持,并提供技术服务培训。

4. 协议期限本协议自签订之日起生效,有效期为【】年,到期前双方可协商续签。

5. 违约责任若乙方未按照协议约定缴纳网络服务费用,则甲方有权中断或终止网络服务。

若甲、乙双方存在其他违反本协议规定的情况,则违约方应承担相应的违约责任。

6. 适用法律本协议适用中国的相关法律法规和国际法律惯例。

7. 法律效力和可执行性本协议签署后具有法律效力,并对甲、乙双方有约束力。

本协议的任何条款无效、被撤销或不能执行,均不影响其余条款的效力。

以上为思科RIP协议配置命令,甲、乙双方应遵守协议约定,共同维护网络服务稳定运行,保护网络服务的安全和稳定。

路由器动态路由协议RIPv2配置RIPv2

路由器动态路由协议RIPv2配置RIPv2

SW(config-vlan)#exit
SW(config)#vlan 20
SW(config-vlan)#exit
SW(config)#interface fa0/10
SW(config-if)#switchport access vlan 10
SW(config-if)# exit
SW(config)#interface fa0/20
青岛大学计算机科学技术学院 云红艳
在交换机S3560配置RIPv2 路由协议:
SW#conf t SW(config)#ip routing //启动IP路由功能 SW(config)#router rip //启动RIP路由进程 SW(config-route)#version 2 //配置RIP版本2 SW(config-route)# network 192.168.1.0 //配置参与RIPv2路由协 议的接口的范围,使之能够接收和发送RIPv2更新信息 SW(config-route)# network 192.168.3.0 SW(config-route)#end
RIPv1和RIPv2比较
青岛大学计算机科学技术学院 云红艳
实验
➢ 掌握查看通过动态路由协议RIP学习产生的路由;
➢ 熟悉广域网线缆的连接方式。
实验设备及网络拓扑:
2台2811路由器; 1台3560交换机; 1台PC;1台Server; 直通线、交叉线、DCE串口线
青岛大学计算机科学技术学院 云红艳
动态路由协议RIPv2配置
实验步骤:
➢ 建立Packet Tracer拓扑。 ➢ 为2台路由器添加带有2个高速串口的广
域网接口卡WIC-2T模块,使用DCE串口线 连接两个路由器,路由器R0的串口配置 时钟频率64000。

Cisco-Packet-Tracer实验7:RIP-路由协议的配置

Cisco-Packet-Tracer实验7:RIP-路由协议的配置

实验7:RIP 路由协议的配置一、实验目的1、练习RIP 动态路由协议的基本配置;2、掌握了解RIP 路由协议原理二、实验环境:Packet tracer 5.0三、关于RIP 的基础知识RIP(Routing Information Protocol)是最常使用的部网关协议(Interior Gateway Protocol)之一,是一种典型的基于D-V 算法的动态路由协议。

通过UDP(User Datagram Protocol)报文交换路由信息,使用跳数(Hop Count)来衡量到达目的地的距离(被称为路由权-Routing cost)。

由于在RIP 于或等于16 的跳数被定义为无穷大(即目的网络或主机不可达),所以RIP 一般用于采用同类技术的中等规模的网络,如校园网及一个地区围的网络,RIP 并非为复杂、大型的网络而设计。

启动RIP,进入RIP 视图:router Rip关闭RIP:no rip在指定的网络上使能RIP network{ network-number| all }在指定的网络上禁用RIP no network{ network-number| all四:实验步骤:拓扑图如下所示:配置过程:Router1:Router>enable //进入特权模式Router#conf ter //进入全局配置模式Enter configuration commands, one per line. End with CNTL/Z.Router(config)#int f0/0 //配置Fa0/0 接口Router(config-if)#ip add 1.1.1.2 255.255.255.0Router(config-if)#no shutdown%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to upRouter(config-if)#%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to upRouter(config-if)#exitRouter(config)#int s0/0/0 //配置串口Router(config-if)#ip add 1.1.6.1 255.255.255.0Router(config-if)#clock rate 64000Router(config-if)#no shutdown%LINK-5-CHANGED: Interface Serial0/0/0, changed state to downRouter(config-if)#exitRouter(config)#int s0/0/1 //配置串口Router(config-if)#ip add 1.1.2.1 255.255.255.0Router(config-if)#clock rate 64000Router(config-if)#no shutdown%LINK-5-CHANGED: Interface Serial0/0/1, changed state to downRouter(config-if)#exitRouter(config)#router rip //进入RIP 视图Router(config-router)#network 1.0.0.0 //发布直连网络Router(config-router)#exitRouter(config)#exitRouter#%SYS-5-CONFIG_I: Configured from console by consoleRouter#show ip route //查看路由表Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not set1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, FastEthernet0/0Router#Router2:Router>enableRouter#conf terEnter configuration commands, one per line. End with CNTL/Z.Router(config)#int f0/0Router(config-if)#ip add 1.1.5.2 255.255.255.0Router(config-if)#no shutdown%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to upRouter(config-if)#exitRouter(config)#int s0/0/1Router(config-if)#ip add 1.1.2.2 255.255.255.0Router(config-if)#clock rate 64000Router(config-if)#no shutdown%LINK-5-CHANGED: Interface Serial0/0/1, changed state to upRouter(config-if)#exitRouter(config)#int s0/0/0Router(config-if)#ip add 1.1.3.1 255.255.255.0Router(config-if)#clo rate 64000Router(config-if)#no shutdown%LINK-5-CHANGED: Interface Serial0/0/0, changed state to downRouter(config-if)#exitRouter(config)#router ripRouter(config-router)#network 1.0.0.0Router(config-router)#exitRouter(config)#exitRouter#%SYS-5-CONFIG_I: Configured from console by consoleRouter#Router#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not set1.0.0.0/24 is subnetted, 3 subnetsR 1.1.1.0 [120/1] via 1.1.2.1, 00:00:11, Serial0/0/1C 1.1.2.0 is directly connected, Serial0/0/1C 1.1.5.0 is directly connected, FastEthernet0/0Router#Router3:Router>enRouter#conf terEnter configuration commands, one per line. End with CNTL/Z.Router(config)#int f0/0Router(config-if)#ip add 1.1.4.2 255.255.255.0Router(config-if)#no shutdown%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to upRouter(config-if)#exitRouter(config)#int s0/0/0Router(config-if)#ip add 1.1.6.2 255.255.255.0Router(config-if)#clo rate 64000Router(config-if)#no shutdownRouter(config-if)#%LINK-5-CHANGED: Interface Serial0/0/0, changed state to upRouter(config-if)#exitRouter(config)#int s0/0/1Router(config-if)#ip add 1.1.3.2 255.255.255.0Router(config-if)#clock rate 64000Router(config-if)#no shutdown%LINK-5-CHANGED: Interface Serial0/0/1, changed state to upRouter(config-if)#exitRouter(config)#router ripRouter(config-router)#%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/1, changed state to upRouter(config-router)#network 1.0.0.0Router(config-router)#exitRouter(config)#exitRouter#%SYS-5-CONFIG_I: Configured from console by consoleRouter#show ip rouRouter#show ip routeCodes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGPi - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODRP - periodic downloaded static routeGateway of last resort is not set1.0.0.0/24 is subnetted, 6 subnetsR 1.1.1.0 [120/1] via 1.1.6.1, 00:00:02, Serial0/0/0R 1.1.2.0 [120/1] via 1.1.6.1, 00:00:02, Serial0/0/0[120/1] via 1.1.3.1, 00:00:10, Serial0/0/1C 1.1.3.0 is directly connected, Serial0/0/1C 1.1.4.0 is directly connected, FastEthernet0/0R 1.1.5.0 [120/1] via 1.1.3.1, 00:00:10, Serial0/0/1C 1.1.6.0 is directly connected, Serial0/0/0之后按照图示配置好主机的IP 地址,使用ping 命令测试相互之间的连通性,主机之间可以相互ping 通的,如下所示:。

思科CISCO动态路由与RIP协议详解

思科CISCO动态路由与RIP协议详解

思科CISCO动态路由与RIP协议详解动态路由是计算机网络中常用的一种路由选择机制。

与静态路由相比,动态路由可以根据网络状态自动调整路由表,提高网络的效率和可靠性。

思科CISCO作为网络设备的领导厂商,提供了丰富的动态路由协议,其中之一就是RIP协议。

一、动态路由的基本概念动态路由是指通过交换路由信息,自动构建和维护路由表的路由选择方法。

它主要包括路由器之间通过路由协议交换信息、计算最佳路径、更新路由表等步骤。

与静态路由相比,动态路由的优势在于提供了一种自动化的方式,可以根据网络环境的变化来调整路由路径,适应网络的动态变化。

二、RIP协议概述RIP(Routing Information Protocol)是思科CISCO提供的一种最常见的动态路由协议。

RIP协议使用跳数(即经过的路由器个数)来衡量路径的优劣,在路由选择时选择跳数最少的路径。

RIP协议简单易用,适用于小型网络,但是在大型网络中由于其算法的局限性,可能会产生一些问题。

1. RIP协议的工作原理RIP协议中的路由器使用路由信息表(Routing Table)来存储路由信息,每个路由器定期向相邻的路由器广播自己的路由信息,并接收和更新其他路由器的路由信息。

RIP协议中,每个路由器最初将其直连网络的距离设置为0,并随着接收到的路由信息更新路由表。

当路由器检测到相邻路由器的距离发生变化时,它会更新路由表,并将新的路由信息通知其他路由器。

2. RIP协议的特点RIP协议具有以下几个特点:- 距离向量协议:RIP协议以跳数作为衡量路径优劣的标准,采用的是距离向量算法。

这意味着RIP协议只关心路径中路由器的数量,而不考虑路径的带宽、延迟等其他因素。

- 路由更新频繁:RIP协议的路由更新频率较高,通常为30秒一次。

这样可以及时响应网络拓扑的变化,但也会导致网络中产生大量的路由更新报文,增加网络带宽的消耗。

- 发送完整路由表:RIP协议在路由更新时,会发送完整的路由表信息,而不是只发送变化的部分。

rip协议

rip协议

rip协议RIP协议:远程网关协议RIP协议,即远程网关协议(Routing Information Protocol),是一种基于距离向量算法的动态路由协议。

RIP 协议常用于小型网络环境中的路由器之间的通信。

RIP协议原本是由Xerox公司研发的路由技术,后被Cisco公司采用并推行,成为了广泛应用的一种路由协议。

RIP协议的特点:1. 支持IPv4和IPv6两种IP协议。

2. 采用距离向量算法,并以“跳数”作为测量距离的标准。

在两个路由器之间,一个路由器的“跳数”指的是从该路由器到目标地址的下一个路由器的距离。

3. RIP协议会周期性地向其他路由器广播路由信息,并根据接收到的路由信息更新其本地的路由表。

这个周期通常是30秒。

4. RIP协议的最大跳数为15。

因此,如果跨越15个路由器,RIP协议无法将路由信息传递到目标地址,将导致通信失败。

5. RIP协议使用UDP数据报进行通信,端口号为520。

RIP协议的工作过程:1. 每个路由器会周期性地向其他路由器发送“路由更新”信息,这个信息包含本地的路由表信息以及所有可达目的地的跳数。

2. 当其他路由器接收到这个路由更新信息后,会与本地的路由表进行比较,如果其中包含了新的目的地信息或者目的地信息的“距离”更短,则更新本地的路由表,并将此信息向其他路由器发送。

3. 如果某个路由器在指定时间内(通常是180秒)没有收到其他路由器的路由更新信息,则认为其他路由器已经失效,并进行删除。

4. 当某个路由器的本地路由表发生变化时,会向其所有的邻居路由器发送一条“路由通知”信息,以便其他路由器更新自己的路由表。

RIP协议的优缺点:RIP协议的主要优点是简单易用,能够自适应网络变化,且使用相对较少的资源。

而其缺点则在于其计算方式过于简单,只考虑跳数而不是带宽和延迟等因素,因此会导致网络的不稳定和效率低下。

此外,RIP协议的最大跳数限制也是其一个固有的缺点,这限制了网络的规模和连通性。

思科Cisco路由器配置——RIP路由配置实验详解

思科Cisco路由器配置——RIP路由配置实验详解

思科Cisco路由器配置——RIP路由配置实验详解本⽂实例讲述了思科Cisco RIP路由配置实验。

分享给⼤家供⼤家参考,具体如下:⼀、实验⽬的:使⽤RIP版本2配置路由器,让路由器可以接收到所有的路由条⽬⼆、拓扑图:三、具体步骤配置:(1)R1路由器配置Router>enable --进⼊特权模式Router#configure terminal --进⼊全局配置模式Enter configuration commands, one per line. End with CNTL/Z.Router(config)#hostname R1 --修改路由器名为R1R1(config)#interface s0/0/0 --进⼊端⼝R1(config-if)#ip address 192.168.1.1 255.255.255.0 --设置ip地址R1(config-if)#clock rate 64000 --设置时钟速率R1(config-if)#no shutdown --激活端⼝%LINK-5-CHANGED: Interface Serial0/0/0, changed state to downR1(config-if)#interface l0 --进⼊回环端⼝R1(config-if)#ip address 1.1.1.1 255.255.255.0 --设置ip地址R1(config-if)#exit --返回上⼀级R1(config)#router rip --开启rip协议R1(config-router)#version 2 --版本2R1(config-router)#no auto-summary --关闭⾃动汇总R1(config-router)#network 192.168.1.0 --添加直连⽹段到RIPR1(config-router)#network 1.1.1.0 --添加直连⽹段到RIPR1(config-router)#end --返回特权模式(2)R2路由器配置Router>enable --进⼊特权模式Router#configure terminal --进⼊全局配置模式Enter configuration commands, one per line. End with CNTL/Z.Router(config)#hostname R2 --修改路由器名为R2R2(config)#interface s0/0/0 --进⼊端⼝R2(config-if)#ip address 192.168.1.2 255.255.255.0 --设置ip地址R2(config-if)#no shutdown --激活端⼝R2(config-if)#interface s0/0/1 --进⼊端⼝R2(config-if)#ip address 192.168.2.1 255.255.255.0 --设置ip地址R2(config-if)#clock rate 64000 --设置时钟速率R2(config-if)#no shutdown --激活端⼝%LINK-5-CHANGED: Interface Serial0/0/1, changed state to downR2(config-if)#exit --返回上⼀级R2(config)#router rip --开启rip协议R2(config-router)#version 2 --版本2R2(config-router)#no auto-summary --关闭⾃动汇总R2(config-router)#network 192.168.1.0 --添加直连⽹段到RIPR2(config-router)#network 192.168.2.0 ----添加直连⽹段到RIPR2(config-router)#end --返回特权模式(3)R3路由器配置Router>enable --进⼊特权模式Router#configure terminal --进⼊全局配置模式Enter configuration commands, one per line. End with CNTL/Z.Router(config)#hostname R3 --修改路由器名R3R3(config)#interface s0/0/0 --进⼊端⼝R3(config-if)#ip address 192.168.3.1 255.255.255.0 --设置ip地址R3(config-if)#clock rate 64000 --设置时钟速率R3(config-if)#no shutdown --激活端⼝%LINK-5-CHANGED: Interface Serial0/0/0, changed state to downR3(config-if)#interface s0/0/1 --进⼊端⼝R3(config-if)#ip address 192.168.2.2 255.255.255.0 --设置ip地址R3(config-if)#no shutdown --激活端⼝R3(config-if)#exit --返回上⼀级R3(config)#router rip --开启rip协议R3(config-router)#version 2 --版本2R3(config-router)#no auto-summary --关闭⾃动汇总R3(config-router)#network 192.168.2.0 --添加直连⽹段到RIPR3(config-router)#network 192.168.3.0 --添加直连⽹段到RIPR3(config-router)#end --返回特权模式(3)R4路由器配置Router>enable --进⼊特权模式Router#configure terminal --进⼊全局配置模式Enter configuration commands, one per line. End with CNTL/Z. Router(config)#hostname R4 --修改路由器名为R4R4(config)#interface s0/0/0 --进⼊端⼝R4(config-if)#ip address 192.168.3.2 255.255.255.0 --设置ip地址R4(config-if)#no shutdown --激活端⼝R4(config-if)#interface l0 --进⼊回环端⼝R4(config-if)#ip address 2.2.1.1 255.255.255.0 --设置ip地址R4(config-if)#interface l1 --进⼊回环端⼝R4(config-if)#ip address 2.2.2.1 255.255.255.0 --设置ip地址R4(config-if)#interface l2 --进⼊回环端⼝R4(config-if)#ip address 2.2.3.1 255.255.255.0 --设置ip地址R4(config-if)#interface l3 --进⼊回环端⼝R4(config-if)#ip address 2.2.4.1 255.255.255.0 --设置ip地址R4(config-if)#exit 返回上⼀级R4(config)#router rip --开启rtp协议R4(config-router)#version 2 --版本2R4(config-router)#no auto-summary --关闭路由汇总R4(config-router)#network 192.168.3.0 --添加直连⽹段到RIPR4(config-router)#network 2.2.1.0 --添加直连⽹段到RIPR4(config-router)#network 2.2.2.0 --添加直连⽹段到RIPR4(config-router)#network 2.2.3.0 --添加直连⽹段到RIPR4(config-router)#network 2.2.4.0 --添加直连⽹段到RIPR4(config-router)#end --返回特权模式四、验证:(1)查看路由器路由表(2)测试ping通性。

RIP协议详情地原理和配置

RIP协议详情地原理和配置

RIP协议详情地原理和配置RIP(Routing Information Protocol)是一种距离向量路由协议,用于在小型网络中实现动态路由。

RIP协议基于传统的Bellman-Ford算法,通过交换路由表信息来确定最佳路径和距离。

下面将详细介绍RIP协议的原理和配置。

一、RIP协议原理:1.距离向量算法:RIP使用距离向量算法来确定路由表中的最佳路径。

每个路由器通过向周围的路由器发送其路由表信息,并接收其他路由器发送的路由表信息。

根据接收到的信息更新本地路由表,选择与目标网络距离最短的路径作为最佳路径。

路由器之间交换的信息称为路由更新。

2. 距离度量:RIP协议使用跳数(hop count)作为距离度量,表示从源路由器到目标网络所经过的中间路由器的个数。

跳数越少,表示路径越短,优先选择该路径作为最佳路径。

3.路由表:每个路由器都有一张路由表,记录了各个目标网络的最佳路径和距离。

每条路由表项包含目标网络地址、下一跳路由器地址、距离。

4.交互过程:路由器周期性地向相邻的路由器发送路由更新信息。

交互过程中使用UDP协议,目标端口号为520。

当收到路由更新信息时,路由器根据自身的路由表更新算法判断是否更新本地路由表,然后将更新信息继续向其他路由器传递。

当路由表发生变化时,路由器会向相邻的路由器广播一条路由失效报文,使相邻路由器更新它们的路由表。

5.定时器:RIP协议中有两个定时器,分别是路由更新定时器和路由失效定时器。

路由更新定时器用来控制路由更新的间隔时间,默认为30秒。

路由失效定时器用来检测路由失效的时间,默认为180秒。

如果路由器在180秒内未收到邻居路由器的路由更新信息,则将该路由标记为失效。

二、RIP协议配置:1.启用RIP协议:在路由器上使用RIP协议,首先要启用RIP。

可以通过开启RIP进程来启用RIP协议。

2.路由器接口配置:配置RIP协议需要为每个接口分配IP地址,并开启RIP协议。

动态路由协议RIPOSPFEIGRP

动态路由协议RIPOSPFEIGRP

动态路由协议RIPOSPFEIGRP动态路由协议是用于在计算机网络中自动选择最佳路径来传送数据的一种协议。

它们能自动探测网络中的路由器,并且将网络中的路由表信息分享给其他路由器。

在这篇文章中,我们将讨论三种常见的动态路由协议:RIP、OSPF和EIGRP。

1. RIP(Routing Information Protocol)是一种最早出现的动态路由协议,它基于距离向量算法。

RIP使用跳数作为衡量路径距离的指标。

当路由器收到其他路由器发送的路由表信息时,它会将这些信息保存在本地路由表中,并选择距离最短的路径作为下一跳。

RIP协议使用了限制性距离,使得在选择路径时可以避免出现问题,最大跳数为15、RIP协议的优点是简单易用,但是它的网络收敛速度较慢,且对大型网络的支持较弱。

2. OSPF(Open Shortest Path First)是一种基于链路状态算法的动态路由协议。

与RIP协议不同,OSPF通过收集路由器通告的网络拓扑信息来计算最短路径。

OSPF协议使用了不同的度量标准,包括带宽、延迟、可靠性等,来决定最佳路径。

OSPF协议的一个重要特点是将网络划分为不同的区域,每个区域内部的路由器仅需知道到达其他区域的最佳路径即可。

这种划分可以减少网络的复杂性,提高网络的扩展性以及收敛速度。

3. EIGRP(Enhanced Interior Gateway Routing Protocol)是一种由思科系统开发的高级路由协议。

EIGRP结合了距离向量和链路状态算法的优点。

与RIP和OSPF协议不同,EIGRP协议使用带宽、延迟、可靠性和负载等多个度量标准来选择最佳路径。

EIGRP协议还具有快速收敛、低带宽消耗和有效负载分担等特点。

EIGRP协议只能在思科设备之间使用,因此它适用于只使用思科设备的网络环境。

总结来说,RIP、OSPF和EIGRP是三种常见的动态路由协议。

RIP协议简单易用,适用于小型网络;OSPF协议通过链路状态算法提供更高的网络扩展性和收敛速度;EIGRP协议是一种高级路由协议,具有快速收敛、低带宽消耗和有效负载分担等特点。

思科 cisco ip_route

思科 cisco ip_route

路由协议(routing protocol):用于routers动态寻找网络最佳路径,保证所有routers拥有相同的路由表.一般,路由协议决定数据包在网络上的行走的路径.这类协议的例子有OSPF,RIP,IGRP,EIGRP等可路由协议(routed protocol):当所有的routers知道了整个网络的拓扑结构以后,可路由协议就可以用来发送数据.一般的,可路由协议分配给接口,用来决定数据包的投递方式.这类例子有IP和IPX路由:把1个数据包从1个设备发送到不同网络里的另1个设备上去.这些工作依靠routers来完成.routers并不关心主机,它们只关心网络的状态和决定网络中的最佳路径router可以路由数据包,必须至少知道以下状况:1.目标地址(destination address)2.可以学习到远端网络状态的邻居router3.到达远端网络的所有路线4.到达远端网络的最佳路径5.如何保持和验证路由信息The IP Routing Process路由原理:当IP子网中的一台主机发送IP包给同一IP子网的另一台主机时,它将直接把IP包送到网络上,对方就能收到.而要送给不同IP于网上的主机时,它要选择一个能到达目的子网上的router,把IP包送给该router,由它负责把IP包送到目的地.如果没有找到这样的router,主机就把IP包送给一个称为缺省网关(default gateway)的router上.缺省网关是每台主机上的一个配置参数,它是接在同一个网络上的某个router接口的IP地址,router转发IP包时,只根据IP包目的IP地址的网络号部分,选择合适的接口,把IP包送出去.同主机一样,router也要判定接口所接的是否是目的子网,如果是,就直接把包通过接口送到网络上,否则,也要选择下一个router来传送包.router也有它的缺省网关,用来传送不知道往哪儿送的IP包.这样,通过router把知道如何传送的IP包正确转发出去,不知道的IP包送给缺省网关,这样一级级地传送,IP包最终将送到目的地,送不到目的地的IP包则被网络丢弃了当主机A发送个IP包到主机B,目标MAC地址使用的是默认网关的以太网接口地址.这是因为帧不能放置在远端网络.show ip route:查看路由表信息,比如:Router#sh ip route(略)Gateway of last resort is not setC 192.168.10.0/24 is directly connected, FastEthernet0/0C 192.168.20.0/24 is directly connected, Serial 0/0Router#C代表的是:直接相连Configuring IP Routing in Our Network当1个router收到1个目标网络号没有在路由表中列出的包的时候,它并不发送广播寻找目标网络,而是直接丢弃它几种不同类型的路由:1.静态路由(static routing)2.默认路由(default routing)3.动态路由(dynamic routing)Static Routing静态路由:手动填加路由线路到路由表中,优点是:1.没有额外的router的CPU负担2.节约带宽3.增加安全性缺点是:1.网络管理员必须了解网络的整个拓扑结构2.如果网络拓扑发生变化,管理员要在所有的routers上手动修改路由表3.不适合在大型网络中静态路由的配置命令:ip route [dest-network] [mask] [next-hop address或exit interface][administrative distance] [permanent]ip route:创建静态路由dest-network:决定放入路由表的路由表mask:掩码next-hop address:下1跳的router地址exit interface:如果你愿意的话可以拿这个来替换next-hop address,但是这个是用于点对点(poi nt-to-point)连接上,比如广域网(WAN)连接,这个命令不会工作在LAN上administrative distance:默认情况下,静态路由的管理距离是1,如果你用exit interface代替next -hop address,那么管理距离是0permanent:如果接口被shutdown了或者router不能和下1跳router通信,这条路由线路将自动从路由表中被删除.使用这个参数保证即使出现上述情况,这条路线仍然保持在路由表中静态路由的具体配置:Router Network Address Interface AddressRouterA 192.168.10.0 fa0/0 192.168.10.1192.168.20.0 s0/0 192.168.20.1RouterB 192.168.20.0 s0/0 192.168.20.2192.168.40.0 s0/1 192.168.40.1192.168.30.0 fa0/1 192.168.30.1RouterC 192.168.40.0 s0/0 192.168.40.2192.168.50.0 fa0/0 192.168.50.1准备工作:先配置RouterA,B和C的基本信息,注意RouterB作为DCE提供时钟频率:RouterA(config)#int fa0/0RouterA(config-if)#ip address 192.168.10.1 255.255.255.0RouterA(config-if)#no shutRouterA(config-if)#int s 0/0RouterA(config-if)#ip address 192.168.20.1 255.255.255.0RouterA(config-if)#no shutRouterA(config-if)#^ZRouterA#copy run startRouterB(config)#int fa0/0RouterB(config-if)#ip address 192.168.30.1 255.255.255.0RouterB(config-if)#no shutRouterB(config-if)#int s 0/0RouterB(config-if)#ip address 192.168.20.2 255.255.255.0RouterB(config-if)#clock rate 64000RouterB(config-if)#no shutRouterB(config-if)#ip address 192.168.40.1 255.255.255.0RouterB(config-if)#clock rate 64000RouterB(config-if)#no shutRouterB(config-if)#^ZRouterB#copy run startRouterC(config)#int fa0/0RouterC(config-if)#ip address 192.168.50.1 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#int s 0/0RouterC(config-if)#ip address 192.168.40.2 255.255.255.0RouterC(config-if)#no shutRouterC(config-if)#^ZRouterC#copy run start配置RouterA静态路由:RouterA了解自己的网络192.168.10.0和192.168.20.0(直接相连),所以RouterA的路由表必须加入192.168.30.0和192.168.40.0, 192.168.50.0的信息,注意下1跳接口,如下: RouterA(config)#ip route 192.168.30.0 255.255.255.0 192.168.20.2RouterA(config)#ip route 192.168.40.0 255.255.255.0 192.168.20.2RouterA(config)#ip route 192.168.50.0 255.255.255.0 192.168.20.2验证路由信息:RouterA#sh ip route(略)S 192.168.50.0 [1/0] via 192.168.20.2(略)S代表静态路由,[1/0]分别为管理距离和度配置RouterB静态路由:RouterB所必须学习到的网络应该是192.168.10.0和192.168.50.0,注意它们的下1跳接口地址,配置如下:RouterB(config)#ip route 192.168.10.0 255.255.255.0 192.168.20.1RouterB(config)#ip route 192.168.50.0 255.255.255.0 192.168.40.2配置RouterC静态路由:RouterC所必须学习到的网络应该是192.168.10.0,192.168.20.0和192.168.30.0,注意它们的下1跳接口地址,配置如下:RouterC(config)#ip route 192.168.10.0 255.255.255.0 192.168.40.1RouterC(config)#ip route 192.168.20.0 255.255.255.0 192.168.40.1RouterC(config)#ip route 192.168.30.0 255.255.255.0 192.168.40.1Verifying Your Configuration根据上面的拓扑结构,我们来验证下是否能够端到端的ping通:RouterC#ping 192.168.10.1(略)Sending 5, 100-byte ICMP Echos to 192.168.10.1, timeout is 2 seconds:!!!!!(略)RouterA#ping 192.168.50.1(略)Sending 5, 100-byte ICMP Echos to 192.168.50.1, timeout is 2 seconds:!!!!!(略)2端都能ping通,说明没问题Default Routing默认路由:一般使用在stub网络中,stub网络是只有1条出口路径的网络.使用默认路由来发送那些目标网络没有包含在路由表中的数据包.根据上面的拓扑图,你就不能把默认路由定义在RouterB上,因为RouterB拥有不止1个出口路径接口.其实你可以把默认路由理解成带通配符(wildcard)的静态路由配置默认路由:首先要去掉之前配置的静态路由RouterC(config)#no ip route 192.168.10.0 255.255.255.255 192.168.40.1RouterC(config)#no ip route 192.168.20.0 255.255.255.255 192.168.40.1RouterC(config)#no ip route 192.168.30.0 255.255.255.255 192.168.40.1接下来配置默认路由:RouterC(config)#ip route 0.0.0.0 0.0.0.0 192.168.40.1额外的命令,使各个接口打破分类IP规则,12.x的IOS默认包含这条命令,如下:RouterC(config)#ip classless再验证下:RouterC(config)#^ZRouterC#sh ip route(略)S* 0.0.0.0/0 [1/0] via 192.168.40.1S*代表默认路由Dynamic Routing动态路由协议,有很多优点,灵活等等,但是缺点也有,比如占用了额外的带宽,CPU负荷高组网利用到的2种路由协议:内部网关协议(Interior Gateway Protocols,IGPs)和外部网关协议(E xterior Gateway Protocols,EGPs)自治系统(Autonomous System,AS):同1个管理域的网络集合,意味着在这里面的所有routers共享相同的路由表信息IGPs:在相同的AS内交换路由信息EGPs:AS间的通信Routing Protocol BasicsAdministrative Distances管理距离(AD): 0到255之间的1个数,它表示一条路由选择信息源的可信性值.该值越小,可信性级别越高.0为最信任,255为最不信任即没有从这条线路将没有任何流量通过.假如1个router收到远端的2条路由更新,router将检查AD,AD值低的将被选为新路线存放于路由表中.假如它们拥有相同的AD,将比较它们的度(metric).度低的将作为新线路.假如它们的AD和度都一样,那么将在2条线路做均衡负载.一些常用路由协议默认的AD:1.直接相连:02.静态路由:13.EIGRP:904.IGRP:1005.OSPF:1106.RIP:120记住,如果你在条线路上配置了静态路由,又配置了RIP,默认情况下,router只会使用静态路由,因为它的AD为1小于RIP的ADRouting Protocols3种路由协议:1.距离向量(distance vector)2.链路状态(link state)3.混合型(hybrid)距离向量:用于根据距离(distance)来判断最佳路径,当1个数据包每经过1个router时,被称之为经过1跳.经过跳数最少的则作为最佳路径.这类协议的例子有RIP和IGRP,它们将整个路由表向与它们直接相连的相邻routers链路状态:也叫最短路径优先(shortest-path-first)协议.每个router创建3张单独的表,1张用来跟踪与它直接相连的相邻router;1张用来决定网络的整个拓扑结构;另外1张作为路由表.所以这种协议对网络的了解程度要比距离向量高.这类协议例子有OSPF混合型:综合了前2者的特征,这类协议的例子有EIGRPDistance-Vector Routing Protocols距离向量路由算法将完整的路由表传给相邻router,然后这个router再把收到的表的选项加上自己的表来完成整个路由表,这个叫做routing by rumor,因为这个router是从相邻router接受更新而非自己去发现网络的变化。

动态路由协议RIPV1及RIPV2不连续网络及负载均衡

动态路由协议RIPV1及RIPV2不连续网络及负载均衡

实验动态路由协议RIPV1及RIPV2学院:信息科学与技术学院专业班级:姓名:学号:教师评分:一、实验目的:熟悉RIP协议功能,并能熟练配置RIP动态路由协议。

二、试验指导书:本试验为4个学时。

本次试验采用Cisco网络设备仿真软件Packet Tracer 5.0进行,要求将提供的网络拓扑图配置动态路由RIP。

1、按上图连接网络,并配置PC的IP地址,子网掩码,默认网关2、配置所有路由器的接口地址及掩码,启用接口3、启用所有路由器的RIPV1协议,并通告接口所在的网络(route rip;network192.168.0.0…)4、查看所有路由器的路由表(show ip route),并确定那些是直连网络,那些是通过RIP学习过来的网络。

对于172.16.0.0网络在上图中有几个?这种做了子网划分的网络,其路由表项是怎么显示的?5、由PC1去ping所有路由器的接口看是否能ping通。

6、查看路由器Router3到192.168.0.0/24网络的路由有几条?这有什么作用?请问默认情况下RIP是几条?最大是几条?如何才能扩大到最大?(说明一下这个命令在什么样的路由器中有效)7、按上图修改Router0和Route1的接口IP,同时重新通告网络(network 172.16.0.0)。

这个时候上图出现两个一样的172.16.0.0网络,分别落在路由器Router2的两边,请查看此路由器对172.16.0.0网络如何才能找到这两个网络。

用PC1去ping 172.16.2.1或172.16.7.1看是否能ping 通?为什么?请查看Router0的关于172.16.0.0网络的路由表项。

要重新产生路由表,你可以将路由器中的路由表清除(clear ip route)8、将所有的路由器启用RIPV2,重复第6项目,看结果为什么和6不一样?9、不管启用哪个版本的RIP协议,Router2都有到172.16.0.0网络的两个并行路由,请问这样的并行路由有什么样的作用?10、将Router0和Router1的接口ip改成上图后,网络中存在172.16.0.0网络下的变长子网络掩码。

盘点路由协议之RIP协议及IGRP协议

盘点路由协议之RIP协议及IGRP协议

盘点路由协议之RIP协议及IGRP协议盘点路由协议之RIP协议及IGRP协议RIP协议简介RIP 是Routing Information Protocol(路由信息协议)的简称,是一种基于D-V算法的简单动态路由协议,主要用于小型网络。

它通过UDP交换路由信息,每隔30秒向外发送一次更新报文(将自己所有的路由表都发送给邻居)。

如果路由器经过180秒没有收到来自对方端的路由更新报文,则将所有来自此路由器的路由信息标志为不可达,如果在其后120 秒内仍未收到更新报文,就将该条路由从路由表中删除。

RIP使用跳数来衡量到达目的网络的距离,路由器到与它直接相连网络的跳数为0,通过一个路由器可达网络的跳数为1,其余依此类推。

为限制收敛时间,RIP规定metric最大跳数为15,高于此的都不可达,这是限制RIP不能用于大型网络的主要因素。

RIP协议处于UDP协议的上层,RIP所接收的路由信息都封装在UDP的数据报中,RIP在520号端口上接收来自远程路由器的路由修改信息,并对本地的路由表做相应地修改,同时通知其他路由器。

通过这种方式,达到全局路由的同步。

RIP协议的实现系统初始化1.RIP启动时的初始路由表仅包含本路由器的一些直连接口路由。

2.RIP协议启动后向各接口广播一个Request报文。

3.邻居路由器的RIP协议从某接口收到Request报文后,根据自己的路由表,形成Response报文向该接口对应的网络广播。

4.RIP接收邻居路由器回复的包含邻居路由器路由表的'Response 报文,形成自己的路由表。

路由更新RIP协议以30秒为周期用Response报文广播自己的路由表。

收到邻居发送而来的Response报文后,RIP协议计算报文中路由项的度量值,比较其与本地路由表路由项度量值的差别,更新自己的路由表。

报文中路由项度量值的计算公式为:metric=MIN(metric + cost, 16)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态路由与RIP协议路由协议的作用:动态学习互连网络的路由信息,为路由器建立完整的路由表。

与静态相比,路由协议可以自动适应网络的动态变化。

自治系统AS:一个统一的管理区域,对外表现一个统一的实体,具有统一的管理策略。

在互连网上通过划分不同的自治系统,可以方便管理,优化网络性能。

协议的分类:1. 运行范围IGP 内部网关路由协议---- 学习同一AS内的路由RIP EIGRP OSPF IS-ISEGP 外部网关路由协议---- 学习不同AS间的路由BGP协议2. 运行原理距离矢量型RIP EIGRP链路状态型OSPF IS—IS(中间系统—中间系统,ISO开发的路由协议)RIP协议(routing information protocol)在所有路由器上启动RIP协议,路由器便会自动向邻居通告自己所知道的路由信息,同时接收邻居通告过来的路由信息,最终自动建立完整的路由表。

1. 路由信息的通告:每30秒周期性地通告,度量值加1。

( 以跳数作为度量值)2. 路由信息的接收:对照自己的路由表没有接收有比较度量值大忽略小接收配置:R1(config )# router rip // 启用RIP协议R1 (config –router)#net work 10.0.0.0 // 指定10.0.0.0网段的接口参加RIP协议,向外发送路由更新,同时接收邻居发送的路由更新。

network的作用:指定哪个接口参于运行RIP协议。

RIP只能指定主网号,而OSPF更加灵活,可指定子网号进行严格限定例:network 10.2.0.0 等同于指定主网10.0.0.0(RIP只查看主网号)。

实验:RIP的基本配置。

1. 配置命令:R1(config)# router ripR1(config –router )# network 192.168.1.0 指定F0/0参于RIPR1(config –router )# network 192.168.2.0 指定S1/0参于RIPR2(config )# router ripR2(config –router )# network 192.168.2.0R2(config –router )# network 192.168.3.02. 查看路由表:下一跳,度量值R# sh ip route路由环路:由于路由错误,数据在网络中的两个或多个路由器间死循环,直到TTL=0被丢弃。

(通常错误的静态路由和距离矢量协议会导致路由环路。

)解决办法:1. 定义最大跳数。

16不可达;2. 水平分割:路由器不能把从某个接口学到的路由再从该接口通告出去;(默认开启)作用: 防止路由环路;减少更新流量;3. 路由毒化:将不可达的路由度量值设为16 跳向外通告;4. 触发更新:发现某条路由不可达后,立即向外发送不可达消息;RIP协议的特点:1.度量值:以跳数作为唯一的度量值,在复杂的环境中可能会选择次佳路径,最大支持15跳。

2.路由表的建立:简单照抄,把自己没有的路由信息简单抄进路由表。

(距离矢量协议,道听途说,听到的路由可能不是最优的,甚至是错的。

对整个网络没有完整的认识)3.信息的更新:每30秒周期性地通告自己的路由表。

收敛慢,且占用带宽。

无效时间180秒(连续180秒收不到邻居的路由更新,认为邻居down掉,将从邻居学到的路由标记为不可用)。

4.适用环境;小型简单的网络环境。

V1与V2的区别:1.V1版本:更新信息不带子网掩码,有类路由协议。

不适用子网不连续的网络环境。

. V2版本:更新信息携带子网掩码,无类路由协议。

适用于子网不连续的网络环境。

2. V1广播(255.255.255.255)更新,V2使用组播(224.0.0.9)更新,防止对局域网PC的影响。

3. V1不支持身份验证,V2 支持。

有类与无类协议有类协议(分类协议,区分A、 B 、C类)早期网络的带宽很低(33K-64K),为节省带宽资源,早期的路由协议,如RIP V1在发送路由更新时,不携带掩码。

但路由表中,必须存在掩码,则接收方根据类别进行假设:1.同一主网,采用自己接口地址掩码。

2.不同主网,归到相应的A、B、C主类网络。

(自动汇总)例一:子网连续10.1.0.0/16 10.2.0.0/16 172.16.1.0/24 172.16.2.0/24――――――――R1 ---------------------- R2 -------------------------- R3 --------------------F0/0 F0/1R 10.1.0.0/16 F0/010.2.0.0/16172.16.1.0/24R 172.16.2.0/24 F0/1例二:子网不连续172.16.1.0/24 12.0.0.0 23.0.0.0 172.16.8.0/24――――――――R1 ---------------------- R2 -------------------------- R3 --------------------F0/0 F0/1172.16.1.0172.16.0.0→←172.16.0.0R2 172.16.0.0/16 F0/0 负载均衡172.16.0.0/16 F0/1同时,在R1上既没有172.16.8.0/24的路由,也没有172.16.0.0/16的路由,网络不通。

说明:事实上,当R向邻居发送更新时,若发现更新条目和自已接口(发送)不在同一网段,则进行自动汇总。

解决办法:采用无类协议,如RIPV2 / OSPF / EIGRP 等,路由更新中携带子网掩码,可以构建精确的路由表。

包括:RIPV2 OSPF EIGRP IS-IS BGPV4RIP V2的配置R1(config )# router ripR1(config –router )# version 2 启用V2版本R1(config –router )# net 172.16.0.0R1(config –router )# net 12.0.0.0R1(config –router)# no auto-summary 关闭自动汇总实验:子网不连续环境中RIP V2的配置.1. 配置RIP V2:R1(config )# router ripR1(config –router )# version 2 启用V2版本R1(config –router )# net 172.16.0.0R1(config –router )# net 12.0.0.0R2(config )# router ripR2(config –router )# version 2 启用V2版本R2(config –router )# net 12.0.0.0R2(config –router )# net 23.0.0.0R3(config )# router ripR3(config –router )# version 2 启用V2版本R3(config –router )# net 172.16.0.0R3(config –router )# net 23.0.0.0调试命令:R#sh ip route2. 子网不连续网络,需要关闭自动汇总。

R1(config)# router ripR1(config –router)# no auto-summary 关闭自动汇总R2(config)# router ripR2(config –router)# no auto-summary 关闭自动汇总R3(config)# router ripR3(config –router)# no auto-summary 关闭自动汇总3. 抑制RIP传播(被动接口)不要把路由告诉不需要知道的设备Passive-interface命令可以防止RIP更新向不必要的网络扩散,如局域网PC的接口。

R1(config –router )# Passive-interface f0/0R1# debug ip rip 调试RIP运行状况R1#un debug all 关闭所有调试4. 手工任意位汇总。

R1(config)# int S1/0# ip summary-address rip 172.16.0.0 255.255.248.0R3(config)# int S1/1# ip summary-address rip 172.16.8.0 255.255.248.0汇总可以自动抑制明细路由●路由汇总.1.减少路由更新(RIP/OSPF/EIGRP)流量, 节省链路开销。

2.减小路由表,节省R内存资源,提高路由查找效率。

自动汇总:RIP V2 、EIGRP默认开启自动汇总(汇到主类网)手工任意位汇总:RIPV2、多区OSPF 、EIGRP、BGP协议可按需进行任意位汇总课后作业:1. 在下图中配置RIPV2协议,实现全网互通。

2. 查看R1和R3的主备选路。

3. 进行故障切换测试,并查看数据转发的路径。

相关文档
最新文档