核磁共振与化学位移课件

合集下载

CNMR核磁共振碳谱化学位移总览表医学知识课件

CNMR核磁共振碳谱化学位移总览表医学知识课件
1.质子宽带去偶法 2.偏共振去偶法 3.门控去偶法 4.反转门控去偶法 5.选不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
13C NMR spectrum with the protons coupled
4.1 核磁共振碳谱的特点 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。 13C核磁共振谱的信号是1957年由P. C. Lauterbur首先观察到
的。碳是组成有机物分子骨架的元素,人们清楚认识到13C NMR对于化学研究的重要性。由于13C的信号很弱,加之1H 核的偶合干扰,使13C NMR信号变得很复杂,难以测得有实 用价值的谱图。20世纪70年代后期,质子去偶和傅里叶变换 技术的发展和应用,才使13C NMR的测定变成简单易得。20 多年来,核磁共振技术取得巨大发展,目前,13C NMR已广 泛应用于有机化合物的分子结构测定、反应机理研究、异构 体判别、生物大分子研究等方面,成为化学、生物化学、药 物化学及其他相关领域的科学研究和生产部门不可缺少的分 析测试手段,对有关学科的发展起了极大的促进作用。
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,I请N联E系P本T人谱改正中。不出现季 碳的信号 CH3和CH为正峰,而 CH2为负峰 只出现CH的正峰
1) INEPT法
由于核磁共振本身信号灵敏度很低,尤其是低天然丰度的核( 如13C、15N等)更为突出。INEPT法是在具有两种核自旋的系统中 ,以CH为例,通过脉冲技术,把高灵敏1H核的自旋极化传递到低 灵敏的13C核上去,这样由1H到与其偶合的13C的完全极化传递可使 ,13C信号强度增强4倍。
4.不能用积分高度来计算碳的数目 13C NMR的常规谱是质子全去偶谱。对于大多数碳,尤其是

核磁共振与化学位移

核磁共振与化学位移

H CC
~0.9 H3C C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 化学位移 δ(ppm)
2020/7/17
精品课件
2020/7/17
内容选择:
• 第一节 核磁共振基本原理
principle of nuclear magnetic resonance
• 第二节 核磁共振与化学位移
-O-H,
-C-
H,
2020/7/17
精品课件
大 小
电负性对化学位移的影响
3.5
3.0
2.5
OC3H NC3H CC3H
3.42-4.02 2.12-3.10 0.77-1.88
F C 3H CC l3H BC r3H IC 3H
4 .2 6 3 .0 5 2 .6 8 2 .6 0
碳杂化轨道电负性:SP>SP2>SP3
O H 3C C H
2020/7/17
δ 3 .5 5
OH H
精品课件
δ 2 .3 1
O H C CH 3
δ 3 .7 5
HO H
空间效应
去屏蔽效应
δ
1.H10Cδ
2.40 δ 4.68
HbHa OH
δ 0.88HCδ3.55 δHbHO3.92
Ha
(A)
Ha=4.68ppm
Hb=2.40ppm
价电子产生诱导 磁场,质子位于其磁力 线上,与外磁场方向一 致,去屏蔽。
2020/7/17
精品课件
影响化学位移的因素3
价电子产生诱 导磁场,质子位于其磁 力线上,与外磁场方向 一致,去屏蔽。
2020/7/17

核磁共振与化学位移

核磁共振与化学位移
18:01:48
2. 化学位移的表示方法
(1)位移的标准 (1)位移的标准 没有完全裸露的氢核,没 有绝对的标准。 相对标准:四甲基硅烷 Si(CH3)4 (TMS)(内标) 位移常数 δTMS=0 (2) 为什么用 为什么用TMS作为基准 作为基准? 作为基准 a. 12个氢处于完全相同的化学环境,只产生一个尖峰; b.屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭; c.化学惰性;易溶于有机溶剂;沸点低,易回收。
18:01:48
4.37ppm
3.空间效应 3.空间效应
δ 1.77
O H3C C H
δ 2.31
O H C CH3
δ 3.55
H OH
δ 3.75
HO H
18:01:48
空间效应
去屏蔽效应
2.40
δ 1.10 H Cδ
δ 4.68 H bH a OH
δ
0.88
δ
3.55
HC
δ
3.92
H bHO
O ~2.1 H3C C
~3.0 H 3C
H
N
~1.8 H3 C C C
~3.7 H 3C O
H C
~0.9 H 3C C
O C OH
H C O
C
15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
0
化学位移 δ(ppm)
18:01:48
内容选择: 内容选择:
• 第一节 核磁共振基本原理
principle of nuclear magnetic resonance
③芳香烃
芳烃质子: 芳烃质子:δH=6.5~8.0ppm 供电子基团取代-OR,-NR2 时:δH=6.5~7.0ppm , 供电子基团取代 吸电子基团取代-COCH3,-CN,-NO2 时:δH=7.2~8.0ppm 吸电子基团取代 ,

化学位移ppt课件

化学位移ppt课件
由于存在溶剂效应,在查阅或报道核磁共振数据时应 注意标明测试时所用的溶剂。如使用混合溶剂,还应 说明两者的比例。
31
4.2.2.各类1H的化学位移
1~2:相邻没有电负性基团的饱和碳上的氢(CCHn)、烯烃或 炔烃α-H 2~4.5:相邻有电负性基团(如:C=O、O、N、S、Cl、Br等) 的饱和碳上的氢 (XCHn)、苯环α-H 其它氢核:炔氢:2~3 烯氢:4.5~8 芳氢(ArH): 6.0~9.0
23
c)围绕部分双键(受阻旋转)的互变 DMF:
24
• 活泼氢的快速交换反应
分子中的-OH、-NH2、-SH和-COOH等活泼氢可在分子间进行 快速交换。
因此, 酸性氢核的化学位移是不稳定的,与交换快慢、 交换是否进行有关。
交换速率:-OH > -NH > -SH
25
(5) 氢键的影响
两个电负性基团与氢相连,产生吸电子诱导作用,共振发 生在低场。
O
C
.. N
CH3 b
H
CH3 a
OC
+ N
CH3 b
H
CH3 a
在氘代氯仿溶剂中,b2.88;a2.97。
逐步加入各向异性溶剂苯,a和b甲基的化学位移逐渐
靠近,然后交换位置。
29
30
溶剂效应的产生是由于溶剂的磁各向异性造成或者是 由于不同溶剂极性不同,与溶质形成氢键的强弱不同引 起的.
27
(6) 范德华效应
当两个质子在空间结构上非常靠近时,电子云就会互相排 斥,从而使这些质子周围的电子云密度减少,屏蔽作用下降, 共振信号向低场移动,这种效应称为范德华效应。这种效应 与相互影响的两个原子之间的距离密切相关。
28

【实用】核磁共振氢谱化学位移PPT资料

【实用】核磁共振氢谱化学位移PPT资料
(3)外加射频的能量hv等于自旋核磁能级的能量差:
由T温(化3M)于度学外S沸屏 : 位加点蔽大移射低效多的频(应数表的27不信示能℃同号方量),导的法h容v致共与等易化振测于去学位定自除环置旋,境受核有不温磁利同度能于的影级回原响的收子很能样核小量品共,差。振但:频-OH率, 不-N同H磁到这和,-场的种S因H而在强磁核在升度场外不高同温等强电的度于度子位时置形小对σ上成B于原出氢0,现键原子吸的此外核收程时峰度加的,降原磁 影这低子种,场响现化核强称象学实称位度为为移际B屏化移受0学向,蔽位高移场。,
h B ( 1 ) 9),TMS中氢核与碳核周围的电子0云密度高,屏蔽效置应大上,产出生现NMR吸信号收所峰需的,磁场这强种度比现一般象有称机物为中的化氢学核和位碳核产生NMR信号所 21 移。 需的磁场强度大得多,处于较高场,与绝大部分样品信号不发生重叠和干扰;
2
B0 ( 1 )
降低。
化学位移的表示方法与测定 (1) 双键的磁各向异性效应
效应,σ称为屏蔽常数。
(92),)苯T环M的S中磁氢修各核向与正异碳性的核效周核应围的磁电共子云振密度条高件,屏:蔽效由应大于,产屏生蔽NMR效信号应所不需的同磁场导强致度比化一般学有环机物境中的不氢同核和的碳核产生NMR信号所
h 需核的外磁 电场子强的度影大响得,多屏,蔽处效于应较,高化场学,位与移绝大部分样品原信号子不核发生共重叠振和频干扰率; 不同,因而在不同的位
化那学么位 ,移在的一表定示条方件法下与测测定定时,所有1H只产生一条谱线,所有流的,13C电也只子产环生一流条产谱线生,相这样应对的于有感机应物结磁构场分析,就感没有什么意义。
TMS是一个对称结构,四个甲基的化学环境完全相同,不论应在氢磁谱场还是的碳方谱都向只与产生原一外个吸加收磁峰;场的方向相反,

CNMR核磁共振碳谱化学位移总览表医学知识课件

CNMR核磁共振碳谱化学位移总览表医学知识课件
不同环境的碳,受到的屏蔽作用不同,δ值不同,其共振频率 νC也不同。
4.3.2 影响 C化学位移的因素 13 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
1.碳杂化轨道
碳原子的杂化轨道状态(sp3、sp2、sp)很大程度上决定13C 化学位移。sp3杂化碳的共振信号在高场,sp2杂化碳的共振信号 在低场,sp杂化碳的共振信号介于前二者之间。以TMS为标准, 对于烃类化合物来说,sp3碳的δ值范围在0-60ppm;sp2杂化碳的 δ值范围在100-150ppm,sp杂化碳的δ值范围在60-95ppm。
20多年来核磁共振技术取得巨大发展目前13cnmr已广泛应用于有机化合物的分子结构测定反应机理研究异构体判别生物大分子研究等方面成为化学生物化学药物化学及其他相关领域的科学研究和生产部门不可缺少的分析测试手段对有关学科的发展起了极大的促进作用
4.1 核磁共振碳谱的特点 文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。 13C核磁共振谱的信号是1957年由P. C. Lauterbur首先观察到
3.炔烃的化学位移值
炔基碳为sp杂化,其化学位移介于sp3与sp2杂化碳之间,为 67-92ppm。
4.芳环碳和杂芳环碳的δ 值 文档仅供参考,不能作为科C学依据,请勿模仿;如有不当之处,请联系本人改正。
芳环碳的化学位移值一般在120-160ppm范围内,峰往往出现
在较低场,这点与脂肪族季碳峰在较低场是类似的。
3
4
3 21
56
4
1 2
5 6
文档仅供参考,不能作为科学依据,请勿模仿;如有不当之处,请联系本人改正。
13C NMR spectrum with the protons

核磁共振氢谱(化学位移)

核磁共振氢谱(化学位移)

影响化学位移的因素
5. 氢键:分子形成氢键后,氢核周围的电子云密度降低, 产生去屏蔽作用,化学位移向低场移动,增大。
6. 温度:大多数信号的共振位置受温度影响很小,但-OH, -NH和-SH在升高温度时形成氢键的程度降低,化学位移 移向高场,降低。 7. 溶剂效应:溶剂的磁各向异性和溶质与溶剂之间形成 氢键将对溶质中不同位置的氢核的化学位移产生影响。
LOGO
核磁共振氢谱(1H-NMR)
——化学位移(chemical shifts)
Produced by Jiwu Wen
内容提要
化学位移的产生 化学位移的表示方法与测定 影响化学位移的因素 不同质子的化学位移
化学位移的产生
•核磁共振条件及面临的问题
1. 核磁共振的条件小结:
(1)自旋核(I≠0)
化学位移的产生
•核外电子的影响,屏蔽效应,化学位移
核外电子在外加磁场作用下产生电子环
流,电子环流产生相应的感应磁场,感
应磁场的方向与原外加磁场的方向相反,
磁场强度等于σB0,此时原子核实际受 到的磁场强度小于原外加磁场强度B0, 这种核外电子对原子核的影响称为屏蔽
效应,σ称为屏蔽常数。
修正的核磁共振条件: 由于屏蔽效应不同导致化学环境不同的
3. 杂化效应
影响化学位移的因素
4. 磁各向异性效应,屏蔽与去屏蔽 (1) 双键的磁各向异性效应
影响化学位移的因素
(2)苯环的磁各向异性效应
环内氢 = -2.99 环外氢 = 9.28
影响化学位移的因素
(3)叁键的磁各向异性效应
影响化学位移的因素
(4)单键的磁各向异性效应
直立键上的氢核处于屏蔽区,在较高场,平伏键上的氢核处于去屏 蔽区,在较低场,化学位移值大约相差0.5 ppm。

核磁共振化学位移

核磁共振化学位移

HO
O CH3
7.85ppm 7.48ppm 7.54ppm
7.26ppm
6.84ppm 7.18ppm 6.90ppm
苯甲醚
苯甲醛
溴甲烷
溴乙烷
1-溴丙烷
H 7.27
7.78
Ha
A
H
OH
C=O
H 6.73
H 7.81
OCH3 Hb
6.70
8.58
Ha1 O
COCH3
OCH3 B
Hb 8.08 Ha2 C 7.94
Cl CH2 H Cl2 CH H Cl3 C H
3.05 5.30 7.27
基团距离越远,受到的影响越小
CH3 CH2 CH2 Br
1.25 1.69 3.30
CH3F CH3OH CH3Cl CH3Br CH3I CH3-H
/ppm 4.26
3.40
3.05
2.68
2.16
0.23
cba
正屏蔽:
由于结构上的变化或介质的影响使氢核外
电子云密度增加,或者感应磁场的方向与外磁
场相反,则使谱线向高磁场方向移动(右移), 值减小,亦叫抗磁性位移。
去屏蔽:
由于结构上的变化或介质的影响使氢核外
电子云密度减少,或者感应磁场的方向与外磁
场相同,则使谱线向低磁场方向移动(左移), 值增加,亦称顺磁性位移。
优点:
12个氢处于完全相同的化学环境,只有一个 峰,
电负性 Si C, 屏蔽作用很高,一般质子的 吸收峰都出现在它的左边-----低场,
沸点低,27oC,易挥发,能与许多有机溶剂 相溶。
标准:四甲基硅(TMS),δ=0
TMS的化学位移最大,但规定 TMS=0,

CNMR核磁共振碳谱化学位移总览表课件

CNMR核磁共振碳谱化学位移总览表课件
耦合常数
根据碳碳耦合和耦合常数,确定邻近碳原子 的类型和它们之间的关系。
峰形和强度
通过峰形和相对强度,确定化合物的结构和 它们在分子中的位置。
峰的位置和积分峰面积
通过峰的相对位置和积分峰面积,计算化合 物中各类碳原子的数量。
化学位移的基本概念和计算方法
1 化学位移
化学位移是一种定量指标,描述碳原子的磁场感受性,通常表示为δ值。
CNMR核磁共振碳谱化学 位移总览表课件
CNMR核磁共振碳谱化学位移总览表课件。
什么是核磁共振碳谱
核磁共振碳谱(CNMR)是一种分析化学的技术,用于确定和解释有机化合 物中碳原子的化学环境。
CNMR谱图的读取与解读方法
峰高与化学位移
测量CNMR谱图中峰的高度,根据化学位移 数值判断化合物中的碳原子类型。
2 计算方法
化学位移可以通过将每个峰位置相对于标准物质(如三甲基硅烷)进行测定和计算得到。
常见化合物的谱图和化学位移数值对照 表
谱图解读
通过解读常见化合物的CNMR谱图,学习化学位 移数值在不同类型化合物中的变化规律。
数值对照表
提供一张常见化合物的CNMR化学位移数值对照 表,帮助快速确定未知化合物的结构。
影响化学位移的因素及其解释
电子效应
电子的吸引或排斥会改变碳 原子的化学位移。
取代基效应
取代基的种类和位置会对化 学位移产生影响。
溶剂效应
溶剂分子的影响会改变化学 位移数值。
核磁共振碳谱在有机化学和药物研发中 的应用
1
结构确认
核磁共振碳谱帮助鉴组分定量
通过测量峰面积,核磁共振碳谱可以用于定量分析。
3
改进合成路径
通过核磁共振碳谱的结果,调整合成路径以获得更理想的产物。

核磁共振氢谱2化学位移PPT教案

核磁共振氢谱2化学位移PPT教案
• 用积分曲线表示峰面积。积分曲线的高度与峰面 积成正比关系。
• 例:乙醇CH3CH2OH 3 组质子的积分曲线高度比为 3:2:1
第9页/共55页
积分曲线 (integration line)
第10页/共55页
甲基与苯环质子的积分曲线高度比为 3:2
第11页/共55页
乙醚的核磁共振氢谱
CH3CH2OCH2CH3
氘代溶剂的干扰峰
CDCl3
7.27(s)
CD3CN
2.0
CD3OD
3.3(5), 4.5(OH)
CD3COCD3 2.1(5) , 2.7(水)
CD3SOCD3 2.5 (5), 3.1(水)
D2O
4.7(s)
C6D6
7.3(s)
第8页/共55页
积分曲线 (integration line)
• 1H NMR谱中的峰面积 (peak area) 正比于等价质 子的数目
例如: CH3CH3 CH2=CH2 HC≡CH δ(ppm): 0.86 5.25 1.80
第21页/共55页
sp杂化碳原子上的质子:叁键
碳碳叁键:直线构型,π电子云呈
圆筒型分布,形成环电流,产生 的感应磁场与外加磁场方向相反。
H质子处于屏蔽区,屏蔽效应强, 共振信号移向高场, δ减小。 δ= 1.8~3 H-C≡C-H: 1.8
重氢环己烷C6D11H 的低温1H-NMR谱
第31页/共55页
八、 溶剂效应 • 溶剂不同使化学位移改变的效应。 • 原因:溶剂与化合物发生相互作用。
如形成氢键、瞬时配合物等。 • 一般化合物在CCl4和CD3Cl中NMR谱重现性好。
在苯中溶剂效应则较大。
第32页/共55页

核磁共振与化学位移优秀课件

核磁共振与化学位移优秀课件

3.42-4.02 2.12-3.10 0.77-1.88
F C 3H CC l3H BC r3H IC 3H
4 .2 6 3 .0 5 2 .6 8 2 .6 0
碳杂化轨道电负性:SP>SP2>SP3
H 3 C B H 3 r C 2 C B H C 3 r (C 2 H ) 2 B H C r 3 (C 2 H ) 3 B H
O CH 3 N CH 3
C
C O
CH
3
C CH 3.2~3.2ppm H=1.8ppm H=2.1ppm H=2~3ppm
2020/11/16
各类有机化合物的化学位移 ②烯烃
端烯质子:H=4.8~5.0ppm 内烯质子:H=5.1~5.7ppm 与烯基,芳基共轭:H=4~7ppm
~0.9 H3C C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 化学位移 δ(ppm)
2020/11/16
在有机化合物中,各 种氢核 周围的电子云密度 不同(结构中不同位置) 共振频率有差异,即引起 共振吸收峰的位移,这种 现象称为化学位移。
2020/11/16
2. 化学位移的表示方法
(1)位移的标准 没有完全裸露的氢核,没
有绝对的标准。
相对标准:四甲基硅烷 Si(CH3)4 (TMS)(内标)
位移常数 TMS=0
③芳香烃
芳烃质子:H=6.5~8.0ppm 供电子基团取代-OR,-NR2 时:H=6.5~7.0ppm 吸电子基团取代-COCH3,-CN,-NO2 时:H=7.2~8.0ppm
2020/11/16
各类有机化合物的化学位移
-COOH:H=10~13ppm

核磁共振与化学位移共20页

核磁共振与化学位移共20页
不 容忽视 的。— —爱献 生
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
核磁共振与化学位移
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

核磁共振解析PPT课件

核磁共振解析PPT课件

溶剂的选择原则: • 溶解性 1.谱峰的分辨率
注意:氘代试剂不能污染
第45页/共72页
核磁分析的溶剂和样品量
单体:
300MHz
10mg
400-500MHz 5-10mg
600MHz
3-5mg
600MHz带低温探头 1-2mg
低于20 mg
混合物:30-50 mg 左右,不超过60mg 氘代溶剂:,高度不低于3-3.5 cm
第28页/共72页
耦合常数 J
nJA-B 来表示 A,B 为彼此耦合的核 n 为 A,B 核之间相隔化学键的数目
如 3JH-H=8.0Hz
表示两个相隔三根化学键质子间的 耦合常数为 8.0 赫兹。
耦合常数 J 只与化学键性质有关 而与外加磁场无关
它是 NMR 谱图分析的参数之一
第29页/共72页
Spin-Spin Coupling
对于自旋量子数I=1/2的一级类型的耦合 可以归纳以下几条规则:
1. 某核和n个磁等价的核耦合时,可产生n+1条谱线, 若它再与另一组m个磁等价核耦合,则谱线的数目 是(n+1)(m+1)条。
2. 谱线裂分的间距即是它们的耦合常数J 。
3. 一级类型的多重峰通过其中点作对称分布,中心 位置即为化学位移值。
I=1, I=2 I=3
中子数和质子数均为奇数
第13页/共72页
核磁共振氢谱
第14页/共72页
1H 自旋量子数( I ) 1/2 没有外磁场时,其自旋磁距取向是混乱的 在外磁场H0中,它的取向分为两种(2I+1=2) 一种和磁场方向相反,能量较高(E=H0) 一种和磁场方向平行,能量较低( E= H0)
化学位移的产生原因编辑ppt21屏蔽作用参考标准常用的标准物质是四甲基硅烷chsitetramethylilane简写tms只有一个峰电负性si屏蔽作用很高一般质子的吸收峰都出现在它的左边编辑ppt22化学位移chemical1010标准样品标准标准样品ppm百万分之一无量纲无量纲tms的值定为0其他质子的值应为负值可是文献中常将负号略去将它看作正数编辑ppt23吸收峰数多少种不同化学环境质子峰的位置质子类型峰的面积每种质子数目结构解析的几个重要参数化学位移耦合常数10002000300040005000600070008000900010000110001200020101109duguojungancaoganppm20101109duguojungancaogan自旋自旋耦合作用核的自旋方式有两种

第四章NMR与化学位移

第四章NMR与化学位移
用一个与仪器无关的相对值- 表示( 化学位移常数) 定义为: = [( 样 - 标) / 0] ×106 (ppm)
样 —— 样品的共振频率 标 —— 标准物的共振频率 0 ——仪器振荡器的频率
98
1,2,2-三氯丙烷(CH3CCl2CH2Cl) 在60MHz、 100MHz 仪器上测得的1H-NMR谱
化合物 CH3Br CH3CH2Br CH3( CH2)2Br CH3(CH2)3 Br
/ppm 2.68
1.65
1.04
0.9
(d)在具有共轭效应的的芳环体系中,也有同样的作用。
苯胺/ppm 苯甲醛/ppm
邻位 6. 52 7. 85
间位 7. 03 7. 48
对位 6. 64 7. 54
2.共轭效应
为标准。规定其 TMS=0.00
CH3 CH3- Si- CH3
CH3
四甲基硅烷作为标准物的优点: (1)12个氢处于完全相同的化学环境,只产生一个尖峰; (2)屏蔽强烈,化学位移最大。与有机化合物中的质子峰 不重迭; (3)化学惰性,与样品之间不会发生反应和分子间缔合; (4)易溶于有机溶剂,沸点低(27℃),样品易回收;
/ppm 0.96 5.84 1.80
C6H5 - H R-CO - H
7.28 7.80-10.5
各向异性效应: 化学键产生一个小磁场并通过空间作用 影响邻近的氢核。
当化合物电子云分布不是球形对称时,就对邻近质子附加 了一个各向异性的磁场,对外磁场起着增强或减弱的作用。
增强外磁场的作用-去屏蔽效应 (-)表示, H 值增大 减弱外磁场的作用- 屏蔽效应 (+)表示, H 值减小
位移的表示方法
与裸露的氢核相比,TMS 的化学位移最大,但规定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
价电子产生诱导磁 场,质子位于其磁力线 上,与外磁场方向一致, 去屏蔽。
核磁共振与化学位移
8
影响化学位移的因素3
价电子产生诱导磁 场,质子位于其磁力线 上,与外磁场方向一致, 去屏蔽。
核磁共振与化学位移
9
影响化学位移的因素4
苯环上的6个电子产生较 强的诱导磁场,质子位于其磁 力线上,与外磁场方向一致, 去屏蔽。
核磁共振与化学位移
3
2. 化学位移的表示方法
(1)位移的标准 没有完全裸露的氢核,没
有绝对的标准。
相对标准:四甲基硅烷 Si(CH3)4 (TMS)(内标)
位移常数 TMS=0
(2) 为什么用TMS作为基准? a. 12个氢处于完全相同的化学环境,只产生一个尖峰; b.屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭; c.化学惰性;易溶于有机溶剂;沸点低,易回收。
CH
3
C CH 3
CH 3
H=3.2~4.0ppm H=2.2~3.2ppm H=1.8ppm H=2.1ppm H=2~3ppm
核磁共振与化学位移
14
各类有机化合物的化学位移 ②烯烃
端烯质子:H=4.8~5.0ppm 内烯质子:H=5.1~5.7ppm 与烯基,芳基共轭:H=4~7ppm
③芳香烃
Ha=3.92ppm Hb=3.55ppm Hc=0.88ppm
核磁共振与化学位移
13
4.各类有机化合物的化学位移
①饱和烃
-CH3: -CH2: -CH:
CH3=0.791.10ppm CH2 =0.981.54ppm CH= CH3 +(0.5 0.6)ppm
O CH 3 N CH 3
C
C O
O H 3C C H
δ 2 .3 1
O H C CH 3
ห้องสมุดไป่ตู้
δ 3 .5 5
OH H
δ 3 .7 5
HO H
核磁共振与化学位移
12
空间效应
去屏蔽效应
δ
1.H10Cδ
2.40 δ 4.68
HbHa OH
δ 0.88
HC
δ 3.55 δ
HbHO
3.92
Ha
(A)
(B)
Ha=4.68ppm Hb=2.40ppm Hc=1.10ppm
-O-H,
-C-H,


低场
高场
核磁共振与化学位移
6
电负性对化学位移的影响
3.5
3.0
2.5
OC3H NC3H CC3H
3.42-4.02 2.12-3.10 0.77-1.88
F C 3H CC l3H BC r3H IC 3H
4 .2 6 3 .0 5 2 .6 8 2 .6 0
碳杂化轨道电负性:SP>SP2>SP3
H 3 C B H 3 r C 2 C B H C 3 r (C 2 H ) 2 B H C r 3 (C 2 H ) 3 B H r
2 . 6 8 1 . 6 5
1 . 0 4
0 . 9 0
Cl H3CCl H2CCl
3.05
5.33
Cl HCCl
Cl 7..24
核磁共振与化学位移
7
影响化学位移的因素--磁各向异性效应
第十一章 核磁共振波谱 分析法
nuclear magnetic resonance spectroscopy
第二节 核磁共振与化学位移
一、核磁共振与化学位移
nuclear magnetic resonance and chemical shift
二、影响化学位移的因素
factors influenced chemical shift
核磁共振与化学位移
2
化学位移:
chemical shift
0 = [ / (2 ) ](1- )H0
由于屏蔽作用的存在,氢核产生 共振需要更大的外磁场强度(相对 于裸露的氢核),来抵消屏蔽影响。
在有机化合物中,各 种氢核 周围的电子云密度 不同(结构中不同位置) 共振频率有差异,即引起 共振吸收峰的位移,这种 现象称为化学位移。
芳烃质子:H=6.5~8.0ppm 供电子基团取代-OR,-NR2 时:H=6.5~7.0ppm 吸电子基团取代-COCH3,-CN,-NO2 时:H=7.2~8.0ppm
核磁共振与化学位移
15
各类有机化合物的化学位移
-COOH:H=10~13ppm
-OH: (醇)H=1.0~6.0ppm (酚)H=4~12ppm
-NH2:(脂肪)H=0.4~3.5ppm (芳香)H=2.9~4.8ppm (酰胺)H=9.0~10.2ppm
-CHO:H=9~10ppm
核磁共振与化学位移
16
常见结构单元化学位移范围
O
核磁共振与化学位移
5
二、影响化学位移的因素
factors influenced chemical shift
1.电负性--去屏蔽效应
与质子相连元素的电负性 越强,吸电子作用越强,价 电子偏离质子,屏蔽作用减 弱,信号峰在低场出现。
-CH3 , =1.6~2.0,高场;
-CH2I, =3.0 ~ 3.5,
nuclear magnetic resonance and chemical shift
核磁共振与化学位移
1
一、核磁共振与化学位移
nuclear magnetic resonance and chemical shift
1.屏蔽作用与化学位移
理想化的、裸露的氢核;满足共振条件:
0 = H0 / (2 )
核磁共振与化学位移
4
位移的表示方法
与裸露的氢核相比,TMS 的化学位移最大,但规定
TMS=0,其他种类氢核的位
移为负值,负号不加。
小,屏蔽强,共振需
要的磁场强度大,在高场出 现,图右侧;
大,屏蔽弱,共振需
要的磁场强度小,在低场出 现,图左侧;
= [( 样 - TMS) / TMS ] 106 (ppm)
核磁共振与化学位移
10
2.氢键效应
形成氢键后1H核屏蔽作用减少,氢键属于去屏蔽效应。
H
H 3CH 2C O H O CH 2CH 3 5 .7 2 p p m CCl 4 3 .7 p p m
OH OH
H OO
CH 3
CCl 7.45ppm
4
4.37ppm
核磁共振与化学位移
11
3.空间效应 δ 1 . 7 7
产生单一的吸收峰; 实际上,氢核受周围不断运动着的电子影响。在外磁场作 用下,运动着的电子产生相对于外磁场方向的感应磁场,起 到屏蔽作用,使氢核实际受到的外磁场作用减小:
H=(1- )H0 :屏蔽常数。 越大,屏蔽效应越大。
0 = [ / (2 ) ](1- )H0
屏蔽的存在,共振需更强的外磁场(相对于裸露的氢核)。
相关文档
最新文档