核磁共振氢谱(化学位移)

合集下载

2-1HNMR-化学位移

2-1HNMR-化学位移

高场
• 积分曲线高度与相应的质子数目成正比—氢的数目
• 谱峰呈现出的多重峰形—耦合作用
4.2.1 1H 的化学位移
1.影响化学位移的因素
2. 各类1H的化学位移
1.影响化学位移的因素
(1)电子效应 • 诱导效应
化学位移随着相邻电负性基团的电负性的增大而增大
X F OCH3 Cl Br NH2 CH3 H Si(CH3)3 Li
交换快速时,NH表现为尖锐单峰,相邻CH上质子不被 NH裂分。大多数脂肪族胺属此种情况。δ= 0.5 ~ 3.0 中等交换速率时,NH部分去耦表现为一个宽峰,但相邻 CH上质子不被NH裂分。如N-甲基对硝基苯胺。
交换缓慢时,NH质子能“看到”以中等速度变化的14N核
的三种自旋,表现为宽峰,相邻CH上质子被NH裂分。吡 咯、吲哚、酰胺、胺甲酸酯属此种情况。 δ= 5.0~8.5 在CDCl3中芳香族胺δ= 3.0~ 5.0
a) 醇中的质子(δ= 1~5.5) 分子间氢键取决于浓度、温度和溶剂效应。非极性
溶剂中浓度降低或升高温度,峰在较高场,醇分子表
现为略微的“聚合”形式。 分子内氢键不受溶剂和浓度影响,升高温度稍微向 高场位移。 交换快时呈单峰,中等交换速率时,多重峰合并成
宽峰,交换慢时,呈现耦合裂分峰。
乙醇中CH2质子裂分的“杆状”图
g) 巯基质子 巯基质子交换缓慢,因而通常不与同一分子或另一
分子中的羟基、羧基或烯醇质子发生快速交换,因
而可以看到各自的吸收峰。 因交换缓慢,常可观察到与邻碳质子的耦合作用( J~8Hz)。 巯基质子与氘的交换是足够快的,因而可以用重水 交换而使其信号消除。 硫醇SH, δ= 1.2~1.6;硫酚SH,δ= 2.8~3.6;可变

核磁共振氢谱

核磁共振氢谱

+ C
+ + +
C +
- C
+
C -
- C
+
C -
ห้องสมุดไป่ตู้
- C
+
O -
-
电子云密度小, 屏蔽 电子云密度小,负屏蔽(-)
电子云密度高, 屏蔽 电子云密度高,正屏蔽(+)
1.乙酸乙酯中得的三种类型氢核电子屏蔽效 1.乙酸乙酯中得的三种类型氢核电子屏蔽效 应是否相同?若发生核磁共振, 应是否相同?若发生核磁共振,共振峰应 当怎么排列? 值大小如何? 当怎么排列?δ值大小如何?
3.3 氢键缔合对化学位移的影响
氢核电子云密度减小,其化学位移增大, 氢核电子云密度减小,其化学位移增大,向低场 位移
浓度越大,氢核化学位移向低场移动, 浓度越大,氢核化学位移向低场移动,数值增大
分子间氢键与分子内氢键
3.4 其他因素对化学位移的影响
溶剂、分子内范德华力、 溶剂、分子内范德华力、不对称因素
CH3-COO-CH2-CH3
2. 下列各组化合
1
CH3CH2CH2C
CH

CH3CH2CH2CH CH2 O CH3

物用箭头标记 的氢核中, 的氢核中,何 者共振峰位于 地场? 地场?为什么 ?

CH3
2



O
3
CH3

O


CH3
4

H3C


3.3 氢核交换对化学位移的影响
RCOOHa + R`OHb = RCOOHb + R`OHa 平均峰化学位移δobs = Naδa+ Nbδb 平均峰化学位移 例如:乙酸的浓度是 水也是0.1mol/L,而纯 例如:乙酸的浓度是0.5mol/L, 水也是 , 乙酸和水的化学位移分别为11.6 和5.2 ppm, 计算平均 乙酸和水的化学位移分别为 化学位移

核磁共振氢谱(化学位移)(共17张PPT)

核磁共振氢谱(化学位移)(共17张PPT)

不同质子的化学位移
不同质子的化学位移
LOGO
•TMS化学性质不活泼,与样品之间不发生化学反响和分子间缔合;
•TMS是一个对称结构,四个甲基的化学环境完全相同,不管在氢谱还 是碳谱都只产生一个吸收峰; •Si的电负性小(1.9),TMS中氢核与碳核周围的电子云密度高,屏蔽效应大, 产生NMR信号所需的磁场强度比一般有机物中的氢核和碳核产生NMR信号 所需的磁场强度大得多,处于较高场,与绝大局部样品信号不发生重叠和干 扰;
不同质子的化学位移
核外电子的影响,屏蔽效应,化学位移 核磁共振氢谱(1H-NMR) ——化学位移(chemical shifts) 测定和计算方法——标准物质(通常用TMS,即四甲基硅)对照法: 四甲基硅(TMS)作为标准物质的优点: 核外电子的影响,屏蔽效应,化学位移 Produced by Jiwu Wen 核外电子的影响,屏蔽效应,化学位移 由于屏蔽效应不同导致化学环境不同的原子核共振频率不同,因而在不同的位置上出现吸收峰,这种现象称为化学位移。 TMS沸点低(27℃),容易去除,有利于回收样品。 诱导效应:吸电子诱导效应降低原子核周围的电子云密度,化学位移向低场移动, 增大。 氢键:分子形成氢键后,氢核周围的电子云密度降低,产生去屏蔽作用,化学位移向低场移动, 增大。 (3)叁键的磁各向异性效应 核磁共振条件及面临的问题 TMS是一个对称结构,四个甲基的化学环境完全相同,不管在氢谱还是碳谱都只产生一个吸收峰; Produced by Jiwu Wen
h
h
2
B0(1
)
核共振频率不同,因而在不同的位置上出现 吸收峰,这种现象称为化学位移。
1
2
B0(1
)
化学位移的表示方法与测定

常见的核磁共振氢谱(化学位移)

常见的核磁共振氢谱(化学位移)

常见的核磁共振氢谱(化学位移)1. 烷烃 (Alkanes)烷烃中的氢原子通常出现在0.81.3 ppm 的区域。

具体位置取决于烷烃的分支程度和相邻基团的影响。

例如,甲基(CH3)通常在0.9 ppm 左右,而乙基(CH2)则在1.21.4 ppm。

2. 烯烃 (Alkenes)烯烃中的氢原子由于双键的存在,其化学位移通常在 5.06.5 ppm。

双键的位置和相邻基团也会影响具体的化学位移值。

例如,乙烯基(CH=CH2)的氢原子通常在5.05.5 ppm。

3. 芳香烃 (Arenes)芳香烃中的氢原子由于芳香环的存在,其化学位移通常在7.08.5 ppm。

苯环上的氢原子根据其取代基的位置和类型,化学位移会有所不同。

例如,苯环上的甲基(CH3)通常在2.2 ppm 左右,而苯环上的氢原子则在7.27.6 ppm。

4. 醇 (Alcohols)醇中的氢原子由于羟基(OH)的存在,其化学位移通常在1.05.0 ppm。

具体位置取决于羟基与相邻基团的影响。

例如,伯醇(CH2OH)的氢原子通常在3.54.5 ppm,而仲醇(CHOH)则在4.04.5 ppm。

5. 醚 (Ethers)醚中的氢原子由于氧原子的影响,其化学位移通常在 3.04.5 ppm。

具体位置取决于醚键与相邻基团的影响。

例如,甲基醚(OCH3)的氢原子通常在3.23.5 ppm,而乙基醚(OCH2CH3)则在3.54.0 ppm。

6. 酮 (Ketones)ppm。

具体位置取决于羰基与相邻基团的影响。

例如,甲基酮(COCH3)的氢原子通常在2.02.2 ppm,而乙基酮(COCH2CH3)则在2.22.5 ppm。

7. 醛 (Aldehydes)醛中的氢原子由于羰基(C=O)的存在,其化学位移通常在9.010.0 ppm。

具体位置取决于羰基与相邻基团的影响。

例如,甲醛(CHO)的氢原子通常在9.510.0 ppm,而乙醛(CH2CHO)则在9.510.0 ppm。

核磁共振碳谱和氢谱中 化学位移产生的原因

核磁共振碳谱和氢谱中 化学位移产生的原因

核磁共振(NMR)技术是一种应用广泛的谱学技术,常用于分析有机物和生物分子的结构和性质。

在核磁共振谱中,化学位移是一个重要的参数,它与化合物中原子核周围的电子环境有关。

化学位移在碳谱和氢谱中都是十分常见的,在本文中,我们将探讨化学位移在核磁共振碳谱和氢谱中产生的原因。

1. 基本概念在核磁共振谱中,化学位移是指核磁共振信号的频率与参考物质(通常是三氯化甲烷或二甲基硅烷)信号频率之差。

化学位移通常用ppm (parts per million)表示,它是一个相对值,可以用来比较不同化合物中原子核的化学环境差异。

2. 碳谱中化学位移的影响因素碳谱中的化学位移受到多种因素的影响,其中主要包括化学环境、电子效应和磁场效应。

- 化学环境:不同化学环境下的碳原子核受到不同的化学位移影响。

芳香环上的碳原子与脂肪链上的碳原子所受的化学环境不同,因此它们的化学位移也会有所差异。

- 电子效应:分子中的电子密度分布会影响到周围原子核的化学位移。

含有电子丰富基团的碳原子通常会表现出较低的化学位移,而含有电子贫瘠基团的碳原子则会表现出较高的化学位移。

- 磁场效应:外加磁场对原子核周围的电子运动轨迹会产生影响,从而影响原子核的化学位移。

这种效应在核磁共振谱分析中是不可忽视的。

3. 氢谱中化学位移的影响因素类似于碳谱,氢谱中的化学位移也受到化学环境、电子效应和磁场效应的影响。

- 化学环境:不同化学环境下的氢原子核受到不同的化学位移影响。

α-位置上的氢原子与β-位置上的氢原子所受的化学环境不同,因此它们的化学位移也会有所差异。

- 电子效应:分子中的电子密度分布会影响到周围原子核的化学位移。

对甲苯中的甲基氢和对位氢受到的电子效应不同,因此它们的化学位移也会有所差异。

- 磁场效应:外加磁场对原子核周围的电子运动轨迹会产生影响,从而影响原子核的化学位移。

这种效应在氢谱分析中同样需要考虑。

4. 结语化学位移在核磁共振碳谱和氢谱中的产生是一个复杂而又精密的过程,受到多种因素的影响。

核磁共振氢谱(化学位移)

核磁共振氢谱(化学位移)

核磁共振氢谱(化学位移)核磁共振氢谱 (PMR或1HNMR)核磁共振技术是20世纪50年代中期开始应用于有机化学领域,并不断发展成为有机物结构分析的最有用的工具之一。

它可以解决有机领域中的以下问题:(1)结构测定或确定,一定条件下可测定构型和构象;(2)化合物的纯度检查;(3)混合物分析,主要信号不重叠时,可测定混合物中各组分的比例;(4)质子交换、单键旋转、环的转化等化学变化速度的测定及动力学研究。

NMR的优点是:能分析物质分子的空间构型;测定时不破坏样品;信息精密准确。

NMR通常与IR并用,与MS、UV及化学分析方法等配合解决有机物的结构问题,还广泛应用于生化、医学、石油、物理化学等方面的分析鉴定及对微观结构的研究。

一、基本概念核磁共振(简称为NMR)是指处于外磁场中的物质原子核系统受到相应频率(兆赫数量级的射频)的电磁波作用时,在其磁能级之间发生的共振跃迁现象。

检测电磁波被吸收的情况就可以得到核磁共振波谱。

因此,就本质而言,核磁共振波谱是物质与电磁波相互作用而产生的,属于吸收光谱(波谱)范畴。

根据核磁共振波谱图上共振峰的位置、强度和精细结构可以研究分子结构。

发展1.1946 年斯坦福大学的F. Bloch 和哈佛大学E.M .Purcell领导的两个研究组首次独立观察到核磁共振信号,由于该重要的科学发现,他们两人共同荣获1952 年诺贝尔物理奖。

NMR发展最初阶段的应用局限于物理学领域,主要用于测定原子核的磁矩等物理常数。

2.1950 年前后W .G. Proctor等发现处在不同化学环境的同种原子核有不同的共振频率,即化学位移。

接着又发现因相邻自旋核而引起的多重谱线,即自旋—自旋耦合,这一切开拓了NMR 在化学领域中的应用和发展。

3.20 世纪60 年代,计算机技术的发展使脉冲傅里叶变换核磁共振方法和谱仪得以实现和推广,引起了该领域的革命性进步。

随着NMR 和计算机的理论与技术不断发展并日趋成熟,NMR 无论在广度和深度方面均出现了新的飞跃性进展,具体表现在以下几方面:1)仪器向更高的磁场发展,以获得更高的灵敏度和分辨率,现己有300、400、500、600MHz,甚至1000MHz的超导NMR 谱仪;2)利用各种新的脉冲系列,发展了NMR 的理论和技术,在应用方面作了重要的开拓;3)提出并实现了二维核磁共振谱以及三维和多维核磁谱、多量子跃迁等NMR 测定新技术,在归属复杂分子的谱线方面非常有用。

核磁氢谱中常见的官能团化学位移

核磁氢谱中常见的官能团化学位移

在核磁氢谱中,不同官能团的化学位移常常具有一定的特征性。

以下是一些常见的官能团化学位移值:
1. 烷基(烷烃):通常位于0-3 ppm范围内,如甲基(CH3)的化学位移约为0.9 ppm。

2. 烯烃:通常位于4.5-6.5 ppm范围内,如乙烯(CH2=CH2)的化学位移约为5.5 ppm。

3. 脂肪醇:通常位于0.5-5 ppm范围内,如乙醇(CH3CH2OH)的化学位移约为3.6 ppm。

4. 醛:通常位于9-10 ppm范围内,如乙醛(CH3CHO)的化学位移约为9.7 ppm。

5. 酮:通常位于2-3 ppm范围内,如丙酮(CH3COCH3)的化学位移约为2.2 ppm。

6. 羧酸:通常位于10-12 ppm范围内,如乙酸(CH3COOH)的化学位移约为11.5 ppm。

7. 酰胺:通常位于7-8 ppm范围内,如乙酰胺(CH3CONH2)的化学位移约为8.3 ppm。

这些化学位移值只是一般范围,实际数值可能会受到环境条件和分子结构的影响而有所变化。

在实际应用中,可以通过比对参考谱图或数据库中的数据来确定特定官能团的化学位移。

醛基核磁共振氢谱化学位移

醛基核磁共振氢谱化学位移

醛基核磁共振氢谱化学位移
醛基的核磁共振氢谱化学位移是一种用于确定分子中醛基的化
学环境的技术。

在核磁共振氢谱中,化学位移是以部分百万分之一(ppm)为单位的数值,用于描述特定氢原子与参考化合物(通常是
三氯乙烯或二甲基硅烷)之间的相对化学位移。

醛基的化学位移通
常出现在较低的区域,约在9-10 ppm之间。

醛基的化学位移受到分子结构和周围化学环境的影响。

例如,
醛基所处的分子中的相邻基团、溶剂效应、氢键形成等因素都可能
影响化学位移的数值。

此外,磁场强度也会对化学位移产生影响,
通常以标准化的方式进行校正。

在核磁共振氢谱中,醛基的化学位移通常表现为单峰或者多重峰,具体形态取决于分子的对称性和周围化学环境的复杂性。

通过
分析峰的形状、相对积分强度以及与其他峰的耦合情况,可以进一
步确定醛基的化学结构。

总的来说,醛基的核磁共振氢谱化学位移是一项重要的分析技术,可以为化学研究人员提供关于分子结构和化学环境的有用信息。

通过综合考虑分子结构、化学位移数值和峰的特征,可以全面理解醛基在核磁共振氢谱中的表现。

常见核磁氢谱位移

常见核磁氢谱位移

常见核磁氢谱位移
核磁氢谱中的化学位移是衡量分子中氢原子特性的重要参数。

以下是常见的核磁氢谱位移:
1.烷基(烷烃):通常位于0-3 ppm范围内,如甲基(CH3)的化学位移约
为0.9 ppm。

2.烯烃:通常位于4.5-6.5 ppm范围内,如乙烯(CH2=CH2)的化学位移约
为5.5 ppm。

3.脂肪醇:通常位于0.5-5 ppm范围内,如乙醇(CH3CH2OH)的化学位移
约为1.3 ppm。

4.芳香族化合物:通常位于6.5-8.0 ppm范围内,如苯(C6H6)的化学位移
约为7.3 ppm。

5.活泼氢:通常位于10-14 ppm范围内,如羧酸中的羧基(-COOH)的化学
位移约为13 ppm。

需要注意的是,不同官能团的化学位移具有一定的特征性,但也会因分子结构和其他因素而有所变化。

因此,在实际应用中,需要根据具体分子结构和其他测试数据进行综合分析。

核磁共振氢谱中化学位移影响因素

核磁共振氢谱中化学位移影响因素

核磁共振氢谱中化学位移影响因素
1. 共价键的极性:共价键的极性会影响氢原子的化学位移,极性较强的共价键会使氢原子的化学位移偏移向较高的数值。

2. 氢原子所在的官能团:氢原子所在的官能团会对其化学位移产生影响。

例如,OH官能团的氢原子化学位移偏移向较高的数值。

3. 化学环境:周围的化学环境也会影响氢原子的化学位移。

例如,分子中的氢原子与其他原子之间的相互作用会影响其化学位移。

4. 分子的几何结构:分子的几何结构会影响氢原子的化学位移。

例如,分子中的氢原子所处的位置会决定其与其他氢原子和原子核之间的相互作用,从而影响其化学位移。

5. 磁场强度:磁场强度也是影响氢原子化学位移的因素之一。

较强的磁场会使氢原子的化学位移偏移向较高的数值。

核磁共振氢谱化学位移

核磁共振氢谱化学位移

核磁共振氢谱化学位移核磁共振氢谱化学位移是一种重要的分析技术,它可以用来确定物质的结构、性质及其形成机理。

由于其高灵敏度和高精确度,它被广泛应用于化学、物理、生物学等领域,特别是在活性物质(如药物)的结构鉴定中,它的重要性无可替代。

核磁共振氢谱化学位移是一种采用空间位移来分辨和鉴定氢原子结构的技术。

当受到磁场作用时,氢原子会产生氢谱学而位移,从而可以确定其构型。

这个原理可以用来揭示有机物或无机物的某些分子结构特征,也可以用来比较一些原子之间的空间位移差异。

核磁共振氢谱化学位移技术的原理是,在磁场中,氢原子在不同结构环境中会表现出不同的核磁共振氢谱信号。

通过观察这种信号的位移,就可以判断氢原子处于什么样的结构环境中。

因此,核磁共振氢谱位移可以用来鉴定物质中的某一种结构,并有助于解析其形成机理。

核磁共振氢谱化学位移技术具有一定的优势,例如,位移信号强度高,信噪比较高,实验费用低,而且样品采集速度也很快,它可以用来测定物质的稳定性、活性物质的结构及其形成机理。

然而,核磁共振氢谱化学位移技术也有一定的局限性,例如,它只能确定氢原子的结构和结构位移,在复杂的有机物的结构分析中,如果没有其他技术的辅助,它难以完全正确描述物质的结构。

另外,当氢原子被其他原子包围时,其位移信号容易被弱化,也就是说,当氢原子处于特定的结构环境时,它的核磁共振氢谱位移信号难以被检测到。

从上面的介绍可以看出,核磁共振氢谱化学位移是一种重要的分析技术,它可以用来鉴定物质的结构、性质及其形成机理。

它在分析活性物质中有着不可替代的作用。

但是,这项技术也存在一定的局限性,需要有其他技术的辅助,才能正确描述物质的结构。

因此,未来应当在研发新技术,以期更好地实现核磁共振氢谱化学位移技术的功能。

核磁氢谱化学位移对照表

核磁氢谱化学位移对照表

核磁氢谱化学位移对照表
在氯仿(CHCl3)中,甲基氢的化学位移范围约为 3.5-4.0 ppm,亚甲基氢的化学位移范围约为1.5-2.5 ppm;
在二甲基甲酰胺(DMF)中,甲基氢的化学位移范围约为2.5-
2.8 ppm,亚甲基氢的化学位移范围约为1.9-2.5 ppm;
在乙醇(EtOH)中,甲基氢的化学位移范围约为0.8-1.0 ppm,羟基氢的化学位移范围约为3.3-4.5 ppm。

需要注意的是,化学位移受溶剂、温度、溶液浓度等因素的影响,因此在进行核磁共振实验时,需要对这些因素进行控制和考虑。

同时,不同化合物中氢原子的化学环境不同,因此其化学位移也会
有所不同。

在解读核磁氢谱时,需要结合化学位移、积分峰面积和
耦合常数等信息,综合分析确定化合物的结构和性质。

总的来说,核磁氢谱化学位移对照表是化学工作者在解读核磁
共振实验结果时的重要参考,能够帮助他们确定化合物的结构和特性。

希望这些信息能够对你有所帮助。

氢谱化学位移值表

氢谱化学位移值表

氢谱化学位移值表
氢谱化学位移值表是一种表格,用于记录不同类型氢原子在核磁共振氢谱中的化学位移值。

化学位移值是衡量核磁共振谱中信号峰位置的一种数值,它反映了原子核周围的电子环境和磁环境。

通过比较不同类型氢原子的化学位移值,可以推断出它们在分子中的位置和与周围原子的关系。

以下是常见的氢谱化学位移值范围:
1.醛氢:9-10.5 ppm
2.芳环及苯环:6-9.5 ppm
3.烯氢:
4.5-7.5 ppm
4.与氧原子相连的氢:3.0-
5.5 ppm
5.与氮原子相连的氢:2.0-3.5 ppm
6.炔氢:1.6-3.4 ppm
7.脂肪氢:0-2.5 ppm
8.活泼氢:醇类:0.5-5.5 ppm,酚类:4.0-12.0 ppm,酸类:9-13.0 ppm
9.氨活泼氢:酰胺:5-8.5 ppm,芳香氨:3.0-5.0 ppm,脂肪氨:0.6-3.5 ppm
这些数值可以帮助我们判断不同类型氢原子的相对位置和电子环境,从而推断出分子的结构和性质。

核磁共振氢谱

核磁共振氢谱

核磁共振氢谱
核磁共振氢谱(Nuclear Magnetic Resonance Hydrogen Spectrum)是一种用于分析和确定化合物结构的技术。

在核磁共振谱仪中,氢原子的核自旋和核磁矩与外加磁场相互作用,产生共振信号。

核磁共振氢谱通过测量氢原子的化学位移(Chemical Shift),研究化合物中氢原子的周围环境及化学结构。

化学位移是一个相对于参考标准(通常为四氢呋喃或二甲基硅烷)的数值,由ppm(部分百万)表示。

不同化学环境下的氢原子具有不同的化学位移,提供了有关它们周围结构的信息。

此外,核磁共振氢谱还提供了关于氢原子的耦合信息。

氢原子之间的耦合是由相邻氢原子间的相互作用引起的,称为耦合常数(Coupling Constants)。

通过分析这些耦合常数,可以确定化合物中各个氢原子的相对位置和它们之间的化学键。

核磁共振氢谱在有机化学、药物学、化学生物学等领域广泛应用,可以帮助确定物质的结构、研究反应机理、鉴定化合物等。

nmr h的计算公式

nmr h的计算公式

nmr h的计算公式
核磁共振氢谱(NMR H)的计算公式涉及到化学中的核磁共振现象,用于确定分子结构中氢原子的化学环境。

在核磁共振氢谱中,
化学位移(chemical shift)是一个重要的参数,通常以δ值表示。

化学位移的计算公式如下:
δ = (ν ν_ref) / ν_ref.
其中,δ表示化学位移,ν表示样品中氢原子的共振频率,
ν_ref表示参考物质的共振频率。

化学位移的单位通常以ppm
(parts per million)表示。

另外,核磁共振氢谱中还涉及耦合常数(coupling constant)
的计算。

耦合常数是指不同氢原子之间的相互作用,通常以Hz为单位。

耦合常数的计算涉及复杂的量子力学理论,通常需要通过实验
数据或者计算方法得出。

除此之外,核磁共振氢谱还涉及信号强度的计算,信号强度与
氢原子的数量和化学环境有关,通常通过积分峰面积来计算。

综上所述,核磁共振氢谱的计算涉及化学位移、耦合常数和信号强度等参数,需要结合实验数据和理论计算来确定。

希望这些信息能够帮助你理解核磁共振氢谱的计算公式。

核磁共振氢谱

核磁共振氢谱

B= B0-B’=B0-σB0=B0(1-σ)
σ为屏蔽常数, σB0为感应产生的次级磁场强度。 B为氢核真正受到的有效外磁场强度。
化学位移的表示
由于氢核具有不同的屏蔽常数σ,引起外磁场或共振 频率的移动,这种现象称为化学位移。固定照射频 率, σ大的原子出现在高磁场处, σ小的原子出现在 低磁场处。同一种原子核在不同化学环境中具有不 同的核磁共振信号频率,通常以四甲基硅烷为基准 进行衡量。
OCH3

0
为化学位移,ppm;
为标准物磁核共振频率;
CH3O
Si
OCH3
1 为样品磁核的共振频率;
OCH3
特征质子的化学位移值
影响化学位移的因素---诱导效应
电负性强的原子或基团吸电子诱导效应大,使得靠近它们的质子周围电子云密度减小,质子
所受到的抗磁性屏蔽减小,所以共振发生在较低场, 值较大
CH3X
CH3F
CH3OCH3
CH3Cl
CH3Br
CH3CH3
CH3H
CH3Li
X的电负性
4.0
4.26
3.5
3.24
3.1
3.05
2.8
2.68
2.5
0.88
2.1
0.2
0.98
-1.95
(ppm)
Cl CH2 H Cl2 CH H Cl3 C H
3.05 5.30 7.27
CH3 CH2 CH2 Br 1.25 1.69 3.30
磁各向异性效应
H: 7.3
H 4.5-5.7
H:23
苯环的屏蔽作用
在苯环的外周区域感应磁场的方向 与外加磁场的方向相同,苯环质子 正好位于去屏蔽区,实受磁场强度 为外加磁场和感应磁场之和,其δ值 比较大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响化学位移的因素
5. 氢键:分子形成氢键后,氢核周围的电子云密度降低, 产生去屏蔽作用,化学位移向低场移动,增大。
6. 温度:大多数信号的共振位置受温度影响很小,但-OH, -NH和-SH在升高温度时形成氢键的程度降低,化学位移 移向高场,降低。 7. 溶剂效应:溶剂的磁各向异性和溶质与溶剂之间形成 氢键将对溶质中不同位置的氢核的化学位移产生影响。
LOGO
核磁共振氢谱(1H-NMR)
——化学位移(chemical shifts)
Produced by Jiwu Wen
内容提要
化学位移的产生 化学位移的表示方法与测定 影响化学位移的因素 不同质子的化学位移
化学位移的产生
•核磁共振条件及面临的问题
1. 核磁共振的条件小结:
(1)自旋核(I≠0)
化学位移的产生
•核外电子的影响,屏蔽效应,化学位移
核外电子在外加磁场作用下产生电子环
流,电子环流产生相应的感应磁场,感
应磁场的方向与原外加磁场的方向相反,
磁场强度等于σB0,此时原子核实际受 到的磁场强度小于原外加磁场强度B0, 这种核外电子对原子核的影响称为屏蔽
效应,σ称为屏蔽常数。
修正的核磁共振条件: 由于屏蔽效应不同导致化学环境不同的
3. 杂化效应
影响化学位移的因素
4. 磁各向异性效应,屏蔽与去屏蔽 (1) 双键的磁各向异性效应
影响化学位移的因素
(2)苯环的磁各向异性效应
环内氢 = -2.99 环外氢 = 9.28
影响化学位移的因素
(3)叁键的磁各向异性效应
影响化学位移的因素
(4)单键的磁各向异性效应
直立键上的氢核处于屏蔽区,在较高场,平伏键上的氢核处于去屏 蔽区,在较低场,化学位移值大约相差0.5 ppm。
化学位移的表示方法与测定
2.05 3.66
影响化学位移的因素
1. 诱导效应:吸电子诱导效应降低原子核周围的电子云 密度,化学位移向低场移动,增大。
CH3X中甲基和各种取代基连接后的化学位移
-X
F OCH3 Cl Br CH3 H
4.26 3.24 3.05 2.68 0.88 0.2
2. 共轭效应
h
h
2
B0 ( 1
)
1
2
B0 ( 1
)
原子核共振频率不同,因而在不同的位 置上出现吸收峰,这种现象称为化学位 移。
化学位移的表示方法与测定
•高场与低场的区分
•化学位移的表示方法——位移常数 •测定和计算方法——标准物质(通常用TMS,即四甲基 硅)对照法:
样品 TMS 106 仪器
不同质子的化学位移
不同质子的化学位移
不同质子的化学位移
LOGO
化学位移的表示方法与测定
四甲基硅(TMS)作为标准物质的优点:
•TMS化学性质不活泼,与样品之间不发生化学反应和分子间缔合; •TMS是一个对称结构,四个甲基的化学环境完全相同,不论在氢 谱还是碳谱都只产生一个吸收峰; •Si的电负性小(1.9),TMS中氢核与碳核周围的电子云密度高,屏 蔽效应大,产生NMR信号所需的磁场强度比一般有机物中的氢核 和碳核产生NMR信号所需的磁场强度大得多,处于较高场,与绝 大部分样品信号不发生重叠和干扰; •TMS沸点低(27℃),容易去除,有利于回收样品。
(2)外加磁场B0 (3)外加射频的能量hv等于自旋核磁能级的能量差:
hvLeabharlann Eh2B0
1
2
B0
2. 面临的问题:
从核磁共振条件式可以看出,磁性原子核的共振频率ν只和 磁旋比γ和外加磁场强度B0有关。那么,在一定条件下测定 时,所有1H只产生一条谱线,所有的13C也只产生一条谱线, 这样对于有机物结构分析就没有什么意义。
相关文档
最新文档