天线隔离度的分析与计算讲稿[优质内容]
天线隔离度的相关问题解释
天线隔离度相关问题的解释
一,天线系统隔离度要求。
1,天线高度:由网络规划确定。
2,天线方位角:由网络规划确定。
3,天线下倾角:有网络规划确定,通常为0—10度可调
4,天线指向:由天线方位角确定,同一扇区的两付天线指向一定相同。
5,分集天线间距离:同一扇区两天线互为分集接受天线,两天线的垂直高度相同,水平方向距离d尽量大,满足公式D≥10—20λ(或H/d=11)。
d –分集天线间水平距离,H—天线到地面的高度,载频为1.9G时,分集距离大于1.5米;载频为800M时,分集距离大于3.5米。
二,天线异系统安装隔离度要求
三,天线隔离度的注意事项
全向天线:1)铁塔鼎平台安装全向天线时,天线水平间距必须大于4m
2)全向天线安装于铁塔塔身平台上时,天线与塔身的水平距离应大于3m
3)同平台全向天线与其它天线的间距应大于1.5m
4)上下平台全向天线的垂直距离应大于1m
定向天线:1)同一小区两单极化天线在辐射方向上间距应大于4m(最小不小于3.5m)
2 )相邻小区间两天线间距应大于0.5m
3)上下平台间天线垂直分极化距离应大于1m
900MHz天线和DCS1800MHz天线安装与同一平台上时,天线水平间距应大于1m。
微波天线与GSM天线安装于同一平台上时,微波天线朝向应处于GSM同一小区两天线之间。
直放站中的施主天线和重发天线应满足水平距离≥30m,垂直距离≥15m
GPS天线安装位置应高于其附近金属物,与附近金属物水平距离≥1.5m,两个或多个GPS天线安装时要保持2m以上的间距。
天线隔离度
CDMA系统:两发射天线之间以及发射和接收天线之间,隔离度至少30dB;天线垂直布置:Lh=28+40log(k/λ)(dB)天线水平布置:Lv=22+20log(d/λ)-(G1+G2)-(S1+S2)(dB)其中k为两天线的垂直距离,d为两天线的水平距离;G1,G2分别为两天线的增益;S1,S2分别是两天线的夹角方向的副瓣电平.以上天线隔离度公式中,λ为载波的波长,k为垂直隔离距离,d为水平隔离距离,G1 、G2分别为发射天线和接收天线在最大辐射方向上的增益(dBi),S1、S2分别为发射天线和接收天线在90°方向上的副瓣电平(dBp)。
通常65°扇形波束天线S约为-18dBp,90°扇形波束天线S约为-9dBp,120°扇形波束天线S约为-7dBp,这可以根据具体的天线方向图来确定。
全向天线的S为0。
关于直放站收发天线的隔离度天线隔离度即信号从直放站前向输出端口至前向输入端口(或者从反向输出端口至反向输入端口)的路径衰减值,与直放站设备本身没有关系,它取决于施主天线和重发天线的安装位置,与垂直及水平的距离、相向的角度有关。
其大小直接影响直放站的增益配置,关系到直放站系统的稳定。
施主天线和重发天线之间隔离度较大,才能提高主机增益,获得较大的输出功率。
天线之间的隔离是多方面因素共同作用的结果,主要包括空间隔离(水平隔离度和垂直隔离度)及建筑物隔离。
按照工程设计要求,天线隔离度L(dB)应大于直放站最大工作增益Gmax 约10dB~15dB,若取值12dB,考虑通常情况下Gmax为90 dB,故L一般应不小于102 dB。
●水平隔离度Lh是收发信天线在水平间隔距离上产生的空间损耗,表示公式如下:Lh=22.0+20lg(d/λ)-(Gt+Gr)+(Dt+Dr)(1)其中:22.0为传播常数;d为收发天线水平间隔(m);λ为天线工作波长(m);Gt、Gr分别为发射和接收天线的增益(dB);Dt、Dr分别为发射和接收天线的水平方向性函数造成的损耗,具体数值可以在天线方向图中查得,当上下行天线夹角为180°时,方向性损耗即为天线的前后比。
天线隔离度计算范文
天线隔离度计算范文
在一个多天线系统中,存在着天线之间的相互耦合和干扰现象。
这些
干扰可能会导致接收天线接收到无关信号或者发射天线发送的信号被其他
接收天线接收到,从而降低了系统的性能。
因此,准确计算天线隔离度是
非常重要的。
其中S21表示天线2的发射信号到达天线1的接收信号之间的耦合系数,S11表示天线1的发射信号到达天线1的接收信号之间的反射系数。
通过这个公式,我们可以计算出天线隔离度的数值。
该数值是以分贝(dB)为单位,表示天线之间的隔离程度。
数值越大,表示隔离程度越好,天线之间的相互干扰越小。
另一种计算天线隔离度的方法是通过进行实际测量。
这种方法可以更
加准确地得到天线隔离度的数值,但需要一定的实验条件和设备。
在实际
测量中,可以使用网络分析仪来测量天线之间的S参数,然后利用公式进
行计算。
除了计算天线隔离度,还需要考虑一些其他因素。
例如,天线之间的
物理距离和天线的方向性也会对天线隔离度产生影响。
在设计多天线系统时,需要合理选择天线的安装位置和方向,以最大程度地提高天线隔离度。
总而言之,天线隔离度的计算是非常重要的,可以帮助评估多天线系
统的性能和可靠性。
在设计和优化多天线系统时,需要选择适当的计算方法,并考虑其他因素,以确保天线之间的干扰最小化,从而提高系统的性能。
隔离度的计算
隔离度的计算隔离度的计算所谓自激是指经直放站放大后的信号再次进入接收端进行二次放大,导致功放工作于饱和状态。
直放站的自激只出现在无线直放站中,由于光纤直放站是直接耦合基站信号,所以光纤直放站不会产生自激。
关于自激解释如下:比如温度变化引起放大器增益变化、隔离度改变,基站参数改变造成直放站输入信号增大等。
调试直放站时,切不可过分追求直放站的放大作用而将增益调得过大,一定要留有余地。
直放站安装不当,收发天线隔离度不够,整机增益偏大时,输出信号经延时后反馈到入端,致使直放站输出信号发生严重失真产生自激,信号自激的频谱,发生自激后信号波形质量变差,严重影响信号质量。
克服自激现象的方法有两种,一是增大施主与重发天线的隔离度,二是降低直放站增益。
当要求直放站覆盖范围较小时,可采用降低增益的办法,当要求直放站的范围较大时,应增大隔离度,工程中主要采用以下几种方法:-增大收发天线的水平及垂直距离-增加遮挡物,如加装屏蔽网等-增加施主天线的方向性,如使用抛物面天线-选用方向更强的重发天线,如定向角度天线-调整施主与重发天线的角度和方向,使两者尽量背向直放站系统中的隔离度主要是由直放站接收天线和直放站的发射天线间的隔离损耗所决定。
隔离度I的计算方法如下:I=F/BD+LW+ F/BP+LP 收发隔离要求:I-10≥GREP式中:F/BD施主正对基站方向天线的前后比;F/BP覆盖天线的前后比;LW障碍物损耗GREP直放站的增益LP自由传播空间损耗,LP=32.4+20LOGD+20LOGF;D两天线间的距离,单位KMF频率,单位:MHZ测量收发隔离度收发隔离度,即信号从直放站输出端口至输入端口的空中路径衰减值,其大小直接影响着直放站的增益配置,在确定天线位置后,一定要测量隔离度。
直放站前向输出功率比反向输出功率大,主要考虑前向链路的收发隔离度。
收发隔离度分为水平隔离度和垂直隔离度。
水平隔离度Lh用分贝表示公式如下:Lh=22.0+20log10(d/λ)-(Gt+Gr)+(Xt+Xr) (1)其中:22.0为传播常数d为收发天线水平间隔(单位:米)λ为天线工作波长(单位:米)Gt、Gr分别为发射和接收天线的增益(单位:dB)Xt、Xr分别为发射和接收天线的前后比(单位:dB)垂直隔离度Lv用分贝表示公式如下:Lv=28.0+40log10(d/λ) (2)其中:28.0为传播常数d为收发天线水平间隔(单位:英尺)λ为天线工作波长(单位:英尺)按照工程设计要求,隔离度L(dB)应大于直放站最大工作增益Gmax约10-15dB。
天线隔离度
1.各系统之间的干扰分析1.1. 需考虑的干扰类型由于各系统需要共址建设,为了保证各系统间不至于互相影响,需要对各系统间的干扰情况进行分析。
从形成机理的角度,系统之间的干扰可以分为杂散辐射、接收机互调干扰和阻塞干扰(由于一般系统之间的间隔频率可以大约工作带宽数倍,所以系统间一般不容易出现邻频干扰)。
1)杂散辐射(Spurious emissions)由于发射机中的功放、混频、滤波等器件工作特性非理想,会在工作带宽以外较宽的范围内产生辐射信号分量(不包括带外辐射规定的频段),包括电子热运动产生的热噪声、各种谐波分量、寄生辐射、频率转换产物以及发射机互调等。
3GPP 将该部分信号通归为杂散辐射,因为其分布带宽很广,也有文献称为宽带噪声(Wideband Noise)。
邻频干扰和杂散辐射不同,邻频干扰中所考虑的干扰发射机泄漏信号指的是:被干扰接收机所处频段距离干扰发射机工作频段较近,但尚未达到杂散辐射的规定频段的情况;根据3GPP TS25.105,杂散辐射适用于指配带宽以外、有效工作带宽2.5倍以上的频段;当两系统的工作频段相差带宽2.5倍以上时,滤波器非理想性将主要表现为杂散干扰。
2)接收机互调干扰包括多干扰源形成的互调、发射分量与干扰源形成的互调(TxIMD)、交叉调制(XMD)干扰3种。
多干扰源形成的互调是由于被干扰系统接收机的射频器件非线性,在两个以上干扰信号分量的强度比较高时,所产生的互调产物。
发射分量与干扰源形成的互调是由于双工器滤波特性不理想,所引起的被干扰系统发射分量泄漏到接收端,从而与干扰源在非线性器件上形成互调。
交叉调制也是由于接收机非线性引起的,在非线性的接收器件上,被干扰系统的调幅发射信号,与靠近接收频段的窄带干扰信号相混合,将产生交叉调制。
3)阻塞干扰阻塞干扰并不是落在被干扰系统接收带宽内的,但由于干扰信号功率太强,而将接收机的低噪声放大器(LNA)推向饱和区,使其不能正常工作。
机载天线隔离度的分析计算与仿真
第6 期 1 2 月
飞 机 设 计 A I R C R A F TD S I G N 飞 机 设E 计
V o l . 2 9N o . 6 D e c 2 0 0 9 第2 9 卷
文章编号:1 6 7 3 4 5 9 9 (2 0 0 9 ) 0 6 0 0 3 2 0 3
线间隔离度的计算公式中加入衰减系数 。
A = - M C + ξ ηM
式中:
2
( 5 ) ( 6 )
θ2 2 M = ρ θ1 π/ λR L η和ξ的值取决于M 的值如下:
前的理论计算条件一致,设圆柱体的半径为5 0 0 m m ,长度为5 m ,天线1 和天线2 配置在圆柱体的 同轴表面上,两者的距离3 m ,相互间的倾斜角为 6 0 °,飞机模型及天线安装位置如图4 所示。天 线1 和2 均为1 / 4 波长的振子,高5 0 0 m m 。工作频带 为1 0 0 ~ 2 0 0 M H z 间,中心频率为1 5 0 M H z 。
( 2 )
式中: λ 为波长; R 为天线间的距离; G 为发射 1 天线增益;G 为接收天线增益;δ1 为发射天线方 2 向上的发射天线场方向图电平;δ2 为接收天线方 向上的接收天线场方向图电平; T 为发射天线馈 1 电系统传输系数; T 为接收天线馈电系统传输系 2
2 2 21 / 2 R = [ ρ( θ2 θ1 ) + (z z ) ] ( 4 ) 2 1 式中:ρ为圆柱体半径;θ2 θ1 为在圆柱体上天 线安装点之间的角度,弧度; z z 为沿圆柱体纵 2 1 轴方向的天线安装点之间的距离。 图3 上表示的是一般的几何关系,用来求得沿 圆柱上螺旋线线段配置在圆柱体上的两个天线间 的距离。当第一个天线配置在机身上,而第二个 天线配置在飞机壳体其他部件 (如垂直安定面,机 翼等) 上时,天线间的距离按线段之和来确定:即 由圆柱上螺旋线部分和从天线至圆柱上螺旋线切 点的直线部分来确定。
多运营商共址天线隔离度的测试与分析
1研 究 目的
针对多系统 的天线隔离度 ,就 不同运营 商的天线对不 同 安装方式进行实地测试验证, 以确 定各种 网络制式 间不存在
序 号 Biblioteka 运 营商 网络 Gs 9 】 0 o GS M1 8 O 0 M
现 场测 试 内容
运 营 后 台干扰 指标
0UT BANDl OU'  ̄ AN D1
> 5 %
0S M9 0 0
穆
0S Ml 8 0 0 M > 9 d B
0U TB A ND 1
>5 %
动
m . 1 DnF
TD - S CD MA I E DD - D
WCD MA
> - 3
> - 3 > - 3 > B
) _ 1 2
1 2
2 联 通
1 D. S C D MA P
L T BT D D. D WC D MA p o w e r ),下裁 速
率。 下行
R S S I 咖 上行干扰 I 1 F U S m I T F U S m
RS s I
G S M1 8 O 0 M
2天 线 隔离度 测试 与分 析
干扰评判 的标准参考如下 :
运 营 现场测试指标干扰判断标准 网络 运昔商后 台提取指标
商
m
) 9 d B
p O C p C S 璃 B J R S R
HC
R
Q E  ̄ /  ̄ o BI
< 1 0 %
干扰指标
o盯m A NDl
干扰标准
摘要 : 随着铁塔公 司的成立 , 基站站址优先改造利用存量资源 , 在能够共享的原则上不再新建。这意味着三 家运营商的
天线隔离度
1.各系统之间的干扰分析1.1. 需考虑的干扰类型由于各系统需要共址建设,为了保证各系统间不至于互相影响,需要对各系统间的干扰情况进行分析。
从形成机理的角度,系统之间的干扰可以分为杂散辐射、接收机互调干扰和阻塞干扰(由于一般系统之间的间隔频率可以大约工作带宽数倍,所以系统间一般不容易出现邻频干扰)。
1)杂散辐射(Spurious emissions)由于发射机中的功放、混频、滤波等器件工作特性非理想,会在工作带宽以外较宽的范围内产生辐射信号分量(不包括带外辐射规定的频段),包括电子热运动产生的热噪声、各种谐波分量、寄生辐射、频率转换产物以及发射机互调等。
3GPP 将该部分信号通归为杂散辐射,因为其分布带宽很广,也有文献称为宽带噪声(Wideband Noise)。
邻频干扰和杂散辐射不同,邻频干扰中所考虑的干扰发射机泄漏信号指的是:被干扰接收机所处频段距离干扰发射机工作频段较近,但尚未达到杂散辐射的规定频段的情况;根据3GPP TS25.105,杂散辐射适用于指配带宽以外、有效工作带宽2.5倍以上的频段;当两系统的工作频段相差带宽2.5倍以上时,滤波器非理想性将主要表现为杂散干扰。
2)接收机互调干扰包括多干扰源形成的互调、发射分量与干扰源形成的互调(TxIMD)、交叉调制(XMD)干扰3种。
多干扰源形成的互调是由于被干扰系统接收机的射频器件非线性,在两个以上干扰信号分量的强度比较高时,所产生的互调产物。
发射分量与干扰源形成的互调是由于双工器滤波特性不理想,所引起的被干扰系统发射分量泄漏到接收端,从而与干扰源在非线性器件上形成互调。
交叉调制也是由于接收机非线性引起的,在非线性的接收器件上,被干扰系统的调幅发射信号,与靠近接收频段的窄带干扰信号相混合,将产生交叉调制。
3)阻塞干扰阻塞干扰并不是落在被干扰系统接收带宽内的,但由于干扰信号功率太强,而将接收机的低噪声放大器(LNA)推向饱和区,使其不能正常工作。
天线隔离度计算的若干关键问题分析
/L
)+ ( R乩
() 1
的感 应场 造 成 的 ,该 感 应场 的电 场强 度 和距 离 平方
成反 比。这样 就容 易生成 较 大 的隔离度 。
其 使 用 条件 是 当两 天线 间 距 近似 满 足 远 场 条
垂 直 隔离公 式是 :
I[ ]2 + 0g d/) v B= 84 1 v d ( A ( 3 )
其 中d【 是发 射天 线 与接 收 天线 之 间 的垂 直距 m】 离 。 由于垂 直 隔离度 公式 不 能 由弗 里斯 公 式 直接 导 出, 曾经存 在 一定 的疑 义 , 一定 程 度 上影 响 h 式 也 r 公 在 工程 应 用 的信 心嘲 。近 年来 我 国的研 究人 员对该 公
水 平 角 q 0 , 性 量 纲 e  ̄线 =
9 3 0 0
图 1 天 线 之 间混 合 隔 离示 意 图
收天 线之 间 的垂直 夹角 。 从 国 内外 一 些 测 量 和 实 验 的对 比可 以看 到 , 计
0Байду номын сангаас
算 公式 基本 上 是准 确 的 , 以满 足工 程需 要精 度 。天 可 线 隔 离作 为一 种 电磁 现 象 ,受 到 远场 近场 、周 边 物
件, : 即 d> D/ h2 2 A ( 2 )
除 以上水 平 隔离 和 垂直 外 ,还可 以进 行 混合 隔
离 , 图l 示 。 如 所
混合 隔离 度可 以采用 下式 进行 计算 :
Ii( 一 ( /0 ) M=I 9 。+  ̄ v ( 4 )
其 中( ) ( ) 中 : i1发射 天 线 和 接 收天 线 1和 2 式 Dm :
隔离度计算方法和详细干扰分析
来表示,此时Pspu为多路信号合路产生的互调信 号功率。
10.05.2020
12
3、大功率发射信号对接收机的阻塞影响
当一个较大干扰信号进入接收机前端的低噪放 时,由于低噪放的放大倍数是根据放大微弱信 号所需要的整机增益来设定的,强干扰信号电 平在超出放大器的输入动态范围后可能会将放 大器推入到非线性区,导致放大器对有用的微 弱信号的放大倍数降低,甚至完全抑制,从而 严重影响接收机对弱信号的放大能力,影响系 统的正常工作。
在TIA/EIA-97-D《CDMA基站子系统最低性能标准》 的要求,没有对2G频带左右的带外阻塞指标做规定, 因此按照阻塞干扰公式 Eoverload=Ctotal_interfering-LRX_Filter-CAFF_RX 来计算阻塞干扰所需要的隔离度。
其中CDMA基站的接收滤波器对其他信号的衰减 LRX_Filter一般都在60dB以上;CDMA系统接收机 1dB压缩点一般为-18dBm,根据以上隔离度准则, CDMA基站RX接收到的载频总功率应比1dB压缩点 低5dB,即CAFF_RX=-23dBm。
825-840
1230
-113
5
1710-1725
200
-121
8
1900-1920
288
-119
5
1920-1980
3840
-108
4
2400-2483.5 22000
-101
5
-36 dBm -41.8 dBm -40.2 dBm
-29 dBm -21.4 dBm
72 dB 71 dB 74 dB 75 dB 74.6 dB
频率(MHz)
1920-1980 1900-1920/ 1980-1920
天线隔离度的定义
天线隔离度的定义
天线隔离度是指在多天线系统中,其中一对天线之间的相互影响程度。
在多天线系统中,如果不同天线之间存在干扰,会导致传输的信号质量下降,影响通信的可靠性和性能。
因此,天线隔离度是评估多天线系统性能的重要指标。
天线隔离度通常用信号干扰比(SIR)来衡量。
具体定义如下:天线隔离度= 接收信号功率/ 干扰信号功率。
接收信号功率指的是目标天线接收到的主要信号的功率,而干扰信号功率表示其他天线发送的信号对目标天线的干扰功率。
通过计算这两者的比值,可以评估天线系统中各天线之间的隔离效果。
天线隔离度越高,表示不同天线之间的相互干扰越小,系统的性能越好。
相反,天线隔离度越低,表示相互干扰越大,会导致通信的质量下降。
要提高天线隔离度,可以采取以下措施:
1. 合理设计天线的布置,避免天线之间距离过近,减少相互的物理干扰。
2. 使用高品质、高性能的天线和天线系统,减少信号损耗和干扰。
3. 采用适当的信号处理和调制技术,以降低多路径干扰和其他干扰来源对信号的影响。
综上所述,天线隔离度是评估多天线系统性能的重要指标,通过衡量接收信号和干扰信号的功率比来评估天线之间的相互干扰程度。
提高天线隔离度可以改善通信系统的质量和可靠性。
天线隔离度
CDMA系统:两发射天线之间以及发射和接收天线之间,隔离度至少30dB;天线垂直布置:Lh=28+40log(k/λ)(dB)天线水平布置:Lv=22+20log(d/λ)-(G1+G2)-(S1+S2)(dB)其中k为两天线的垂直距离,d为两天线的水平距离;G1,G2分别为两天线的增益;S1,S2分别是两天线的夹角方向的副瓣电平.以上天线隔离度公式中,λ为载波的波长,k为垂直隔离距离,d为水平隔离距离,G1 、G2分别为发射天线和接收天线在最大辐射方向上的增益(dBi),S1、S2分别为发射天线和接收天线在90°方向上的副瓣电平(dBp)。
通常65°扇形波束天线S约为-18dBp,90°扇形波束天线S约为-9dBp,120°扇形波束天线S约为-7dBp,这可以根据具体的天线方向图来确定。
全向天线的S为0。
关于直放站收发天线的隔离度天线隔离度即信号从直放站前向输出端口至前向输入端口(或者从反向输出端口至反向输入端口)的路径衰减值,与直放站设备本身没有关系,它取决于施主天线和重发天线的安装位置,与垂直及水平的距离、相向的角度有关。
其大小直接影响直放站的增益配置,关系到直放站系统的稳定。
施主天线和重发天线之间隔离度较大,才能提高主机增益,获得较大的输出功率。
天线之间的隔离是多方面因素共同作用的结果,主要包括空间隔离(水平隔离度和垂直隔离度)及建筑物隔离。
按照工程设计要求,天线隔离度L(dB)应大于直放站最大工作增益Gmax 约10dB~15dB,若取值12dB,考虑通常情况下Gmax为90 dB,故L一般应不小于102 dB。
●水平隔离度Lh是收发信天线在水平间隔距离上产生的空间损耗,表示公式如下:Lh=22.0+20lg(d/λ)-(Gt+Gr)+(Dt+Dr)(1)其中:22.0为传播常数;d为收发天线水平间隔(m);λ为天线工作波长(m);Gt、Gr分别为发射和接收天线的增益(dB);Dt、Dr分别为发射和接收天线的水平方向性函数造成的损耗,具体数值可以在天线方向图中查得,当上下行天线夹角为180°时,方向性损耗即为天线的前后比。
天线隔离度计算的若干关键问题分析_焦卫平
数据通信2011.4摘要:在移动通信系统的共建共享分析中,天线隔离度是一个关键参量。
文章给出了通常使用的3个天线隔离度计算公式,并且明确了其使用条件。
此外还辨析了若干关键问题:天线隔离度要求和天线隔离度的关系、近场耦合对天线隔离度的影响、金属塔架对天线隔离度的影响、频率关系对天线隔离度的影响、多天线隔离场景的分析。
关键词:天线;隔离度;耦合;塔架;频率图分类号:TN8文献标识码:A焦卫平胡刚(中国移动通信集团设计院有限公司北京分公司北京100038)天线隔离度计算的若干关键问题分析收稿日期:2011-07-18天线隔离度问题是移动通信系统干扰和电磁兼容特性分析的基本问题,特别是在蜂窝系统距离很近或者共享塔架时。
业界通常使用3个公式来计算天线隔离度,但是一些技术人员在工程实践中往往不能确切地理解概念。
同时,遇到复杂应用场景时,计算将不仅仅是3个公式那么简单,天线隔离度的计算还受到近场远场、金属塔架、频率配置关系、多天线互干扰等的影响。
本文旨在简要探析这些关键问题,以形成天线隔离度的全面的、正确的观念。
1天线隔离度计算基本公式目前天线隔离度计算使用3个基本的公式,这在我国行业标准中也有所反映[1]。
其中水平隔离度公式是:I H [dB ]=22+20lg d hλ-(G Tx +G Rx )-(SL (φ)Tx +SL (θ)Rx )(1)其使用条件是当两天线间距d h 近似满足远场条件,即:d h >2D 2/λ(2)其中(1)和(2)式中:D[m]:发射天线和接收天线的最大尺寸;d h [m ]:发射天线与接收天线之间的水平距离;λ[m ]:接收频段范围内的无线电波长;G Tx[dBi ]:发射天线在干扰频率上的增益;G Rx [dBi ]:接收天线在干扰频率上的增益;SL (φ)Tx [dB ]:发射天线在两天线中心连线的角度方向上的副瓣电平(相对于主瓣方向,为负值);SL (θ)Rx [dB ]:接收天线在两天线中心连线的角度方向上的副瓣电平(相对于主瓣方向,为负值)。
收发天线的隔离度计算
收发天线的隔离度计算
收发天线的隔离度
直放站正常⼯作的条件是:直放站⼯作增益G < 隔离度I ,否则会引起直放站⾃激⽽不能正常⼯作,并且要留10dB 左右的余量,即G+10 ≤ I (dB )。
图中E RP 是⽤户天线的发射功率电平,P RX 是施主天线的接收功率电平,所以系统的增益为:E RP -P RX 。
为避免系统⾃激须满⾜E RP -P RX < I 。
同⼀⽔平⾯上的背对背天线(两天线主瓣⽅向之间的夹⾓为180度)之间隔离度的公式为:
式中 I------------系统隔离度
F/B D ------施主天线的前后⽐
G D --------施主天线的增益
F/B P ------⽤户天线的前后⽐
G M -------⽤户天线的增益
L Z --------两天线之间物体遮挡损耗
L K --------两天线之间的空间路由损耗(LK=91+20logD (dB ),
D 为两天线间的距离,单位是km )。
例如:⼋⽊天线增益11dBi,前后⽐≥14 dB ;⽤户天线增益7 dBi ,前后⽐≥8 dB ,
微型直放站的增益为65 dB ,信号以900MHZ 为例,根据上述公式可以得出:
F/B D -G D +F/B P -G M +L Z +L K >65+10
则D ≥36m
K Z M p D D L L G F/B G F/B I ++-+-=。
隔离度计算
直放站建设中隔离度问题的几点考虑深圳市国人通信有限公司张学工丁天文摘要:隔离度是无线同频直放站应用中非常重要的工程调整参数,在不同的应用中有着不同的调整,如果不注意,会对网络造成很大影响。
本文根据实际应用的情况,总结了几种对隔离度调整的概念及方法,希望对使用直放站有所帮助。
关键词:直放站建设隔离度调整方法隔离度定义为直放站输入端口信号对输出端口信号的衰减度,是功率之比,单位dB。
隔离度是同频无线直放站建设中极为关键的因素,也是其它直放站调试中所必需注意的指标。
针对在不同应用中的隔离度问题,本文将从四个方面进行分析,以求得到关于隔离度参数调整的一般方法。
1.无线同频直放站的隔离度问题无线同频直放站采用同频放大转发的技术,施主天线和重发天线之间收到和发送的信号频率是一致的,又在开放的环境下收发信号,必然存在着信号的空间耦合。
如果这种耦合度不控制在一定的范围之内,就有可能引起直放站设备的自激,这将对整个网络造成影响。
降低耦合的重要方法是提高隔离度。
因此也可以说隔离问题是用好同频无线直放站的关键问题。
1.1 无线同频直放站的隔离度的定义及测试无线同频直放站的隔离度是指直放站的信号输入端口对信号输出端信号的抑制度(或衰减度),它取决于施主天线和重发天线间的相对位置,也同天线的方向角、前后比等参数有关,由于直放站的上行频率和下行频率之间差别不大,所以上行隔离度和下行隔离度可以近似看成相同。
在工程现场,多采用信号源加上频谱分析仪的方法现场测试,可以很方便的得到两个天线间的隔离度。
1.2自激的产生及同隔离度的关系图1 同频无线直放站产生自激原理图无线同频直放站在应用中最容易出现的问题就是自激,当系统内出现正反馈环路时,就会出现自激,如图1所示。
这是自激产生原理图,施主天线从施主基站接收频率为f1的下行信号,经增益为G的直放站放大后,由重发天线发射出去(同频信号f1)。
一部分信号再经过转发天线的后瓣(旁瓣)耦合到施主天线的后瓣(旁瓣),再由直放站放大。
谈天线隔离度
问题 :即由天线远区辐射场推算近场 、进而求得 措施的频带性较差 。
诸如天线耦合等近场参数 ,关注的人很少 。但 仍有学者致力于此并于 80 年代初取得可喜成 果[7 ] 。他们利用 Kern 所提出的平面波散射矩
4 恰当的天线布局 :显而易见 ,增大天线间 距可提高天线隔离度 ,但实际上经常遇到限制 。 因而选择适当的天线布局成为电磁兼容预测的
2 Mardiguian. Controlling Radiated Emissions by De2 sign. Van Nostrand Reinhold ,New York ,1992.
3 R. W. Dockey and R. F. German. New Techniques for Reducing Printed Circuit Board Common2mode Radia2 tion. Proceeding of t he IEEE International Symposium
·16 ·
1997 年第 11 期
·专题综述·
抛物面天线 ,间距仅 5m 。工作频率 2111 GHz 成为计算互阻抗的精确方法 。
(波长λ= 01142m) 。显然不满足远场条件 。以 上只是一近似算法 ,学者们希望寻求更加精确
4 面天线隔离度
的方法替代它 。
由口面场计算面天线间耦合在 60 年代已
2 正交极化法 :即两副天线采用相互正交 的极化 。这已是地面微波中继通信与卫星通信 普遍采用的措施 。双工状态的天线 ,发射与接 收分别采用两个正交线极化或者两个正交圆极 化 ,以增大其隔离效果 。
3 抵消法 :即在两天线之间人为开辟另一
6 复矢量方向性函数积分法[7 ]
耦合通道 ,使之与原耦合相互抵消 ,实现隔离效 果的增强 。以波导口为单元的相控阵天线曾采
天线隔离度的分析与计算讲稿[优质内容]
高级培训
20
电磁兼容中的天线耦合问题 天线隔离度与空间隔离度
令发射天线发射的功率为 PT,Gt 是发射天线的增益。
接收天线与发射天线间的距离为 r,收发天线外形尺
寸与 r 相比很小,天线可被当作一个点源,而且发射
天线发出的电磁波为球面波,在接收天线处,该球面 波的半径很大,可当作平面波,则隔离度表示为:
高级培训
11
电磁兼容中的天线耦合问题 天线的工作原理
方向性系数即是最大辐射方向的方向性增益 值。功率增益G( ,) 描述的是在远区场功率 密度增益随方向坐标的变化规律,具体定义 如下:给定方向上的辐射强度与天线从所连 发射机得到净功率之比的 4倍。若未指明方 向,则增益通常指最大辐射方向的功率增益。
分析可知,近区束缚场的主要成分是似静场,在似 静场中,复数坡印廷矢量是一个纯虚数,天线的有功 功率密度为零,因此,似静场的电磁能量是不会辐射 出去的。同样的,近区感应场的能量也不能被辐射出 去,我们将近区感应场与近区束缚场统称为近区场。
在远区场中,复数坡印廷矢量是一个实数,主要部 分所携带的电磁能量是向外传播的,因此,远区场的 主要部分被称为辐射场。
高级培训
24
电磁兼容中的天线耦合问题 天线隔离度与空间隔离度
简言之,如下天线隔离度公式:
S PT Pr
对于远区场,PT 代表发射天线的辐射功率,对于近区
场,PT 代表发射天线的输出功率。运用上式计算近区
场天线隔离度时是很不方便的。一般是将要分析的两
天线所组成的系统看成是一个双口网络。端口间电流、
无线电系统间电磁干扰主要传输途径是天线间的耦合,常用隔离 度来定量表征这种耦合的强弱程度。天线的载体和天线间的距离 以及障碍物不同,分析它们耦合的方法也不同,分析过程的难易 程度也有很大的区别。对于自由空间分隔相距比较远的天线,天 线间耦合的相互影响主要是通过天线的远区场进行的,与天线近 场情况的关系较小。但当天线间的距离比较近时,分析它们的耦 合就需要考虑天线的具体形式、馈电结构、安装位置和安装壳体 等各种因素的影响。
室内分布天线隔离度要求(最全)word资料
室内分布天线隔离度要求(最全)word资料室内分布天线空间隔离分析跨入21世纪,我国移动通信产业呈现出勃勃生机的局面,移动通信网络规模和用户规模得到高速发展,运营市场竞争日益激烈,形成了以中国移动和中国联通为主体的竞争格局。
两大移动运营商运营了5个不同频段的网络,加上即将建设的3G网络,那么两大运营商将至少运营7个不同频段的网络。
运营商基本独立建设兼容自己运营网络的覆盖分布系统,那么一栋楼宇里面至少会存在2套室内分布天馈系统,不同系统天线点的布放位置必须考虑最小耦合损耗能够满足规避系统共存干扰的相关要求。
多系统兼容合路时的干扰主要分为杂散干扰、互调干扰和阻塞干扰。
杂散干扰是系统本身不完善性造成在必要带宽之外的某个或某些频率的无用发射,对该频谱的其他用户造成干扰。
互调干扰是系统内部有用信号在单个系统或多个系统间相互作用而产生不需要的干扰分量。
一般干扰会造成系统接收灵敏度降低,减小系统覆盖范围,相应影响系统通信质量,严重时将阻塞系统接收,造成系统瘫痪,形成阻塞。
天线隔离间距的考虑主要分析是否达到某一系统无用发射经无源天馈和空中耦合衰耗后到达另一系统并造成干扰的空间耦合衰耗要求。
杂散干扰分析杂散干扰对系统最直接的一个影响就是降低了系统的接收灵敏度,在分析杂散干扰时我们主要考虑其它(b)系统的带外杂散落到本(a)系统带宽内的功率与本系统的底部噪声功率的比值关系,具体计算过程如下:1)、a系统接收到的b系统杂散干扰电平:P b>a=CTX-E系隔-10log(W b/W a)其中,P b>a为本系统接受到的杂散干扰电平;CTX为b系统杂散干扰电平;E系隔为系统间的隔离度,包含合路器端口间隔离度、两基站到合路器之间的线损和分配损耗等;W b 为杂散干扰电平的测量带宽;W a为被干扰系统的信道带宽。
2)、而此时的a系统基站接收机输入端等效热噪声电平:P bts =KTB+F bts其中,KTB常温下该值与测量带宽B有关;F bts为a系统基站的噪声系数。
天线隔离度
CDMA系统:两发射天线之间以及发射和接收天线之间,隔离度至少30dB;天线垂直布置:Lh=28+40log(k/λ)(dB)天线水平布置:Lv=22+20log(d/λ)-(G1+G2)-(S1+S2)(dB)其中k为两天线的垂直距离,d为两天线的水平距离;G1,G2分别为两天线的增益;S1,S2分别是两天线的夹角方向的副瓣电平.以上天线隔离度公式中,λ为载波的波长,k为垂直隔离距离,d为水平隔离距离,G1 、G2分别为发射天线和接收天线在最大辐射方向上的增益(dBi),S1、S2分别为发射天线和接收天线在90°方向上的副瓣电平(dBp)。
通常65°扇形波束天线S约为-18dBp,90°扇形波束天线S约为-9dBp,120°扇形波束天线S约为-7dBp,这可以根据具体的天线方向图来确定。
全向天线的S为0。
关于直放站收发天线的隔离度天线隔离度即信号从直放站前向输出端口至前向输入端口(或者从反向输出端口至反向输入端口)的路径衰减值,与直放站设备本身没有关系,它取决于施主天线和重发天线的安装位置,与垂直及水平的距离、相向的角度有关。
其大小直接影响直放站的增益配置,关系到直放站系统的稳定。
施主天线和重发天线之间隔离度较大,才能提高主机增益,获得较大的输出功率。
天线之间的隔离是多方面因素共同作用的结果,主要包括空间隔离(水平隔离度和垂直隔离度)及建筑物隔离。
按照工程设计要求,天线隔离度L(dB)应大于直放站最大工作增益Gmax 约10dB~15dB,若取值12dB,考虑通常情况下Gmax为90 dB,故L一般应不小于102 dB。
●水平隔离度Lh是收发信天线在水平间隔距离上产生的空间损耗,表示公式如下:Lh=22.0+20lg(d/λ)-(Gt+Gr)+(Dt+Dr)(1)其中:22.0为传播常数;d为收发天线水平间隔(m);λ为天线工作波长(m);Gt、Gr分别为发射和接收天线的增益(dB);Dt、Dr分别为发射和接收天线的水平方向性函数造成的损耗,具体数值可以在天线方向图中查得,当上下行天线夹角为180°时,方向性损耗即为天线的前后比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁兼容中的天线耦合问题 引言 天线的工作原理
远区场与近区场的概念以及判定 天线的输入阻抗以及辐射效率 天线的远场方向图 方向性系数与功率增益
天线隔离度与空间隔离度 天线隔离度与空间隔离度的概念与物理意义 近区场与远区场的隔离度分析与计算公式
高级培训
1
电磁兼容中的天线耦合问题
引言
高级培训
7
电磁兼容中的天线耦合问题 天线的工作原理
天线的输入阻抗以及辐射效率
从天线的输入端看到的阻抗被称为天线的输入阻抗,它可以表示为:
zin Rin jX in
其中,Rin为天线结构及附件的热损耗以及辐射损耗所带来的电阻,被 称为损耗电阻或输入电阻,X in为存储在天线近区场中的无功功率所带
高级培训
11
电磁兼容中的天线耦合问题 天线的工作原理
方向性系数即是最大辐射方向的方向性增益 值。功率增益G( ,) 描述的是在远区场功率 密度增益随方向坐标的变化规律,具体定义 如下:给定方向若未指明方 向,则增益通常指最大辐射方向的功率增益。
分析可知,近区束缚场的主要成分是似静场,在似 静场中,复数坡印廷矢量是一个纯虚数,天线的有功 功率密度为零,因此,似静场的电磁能量是不会辐射 出去的。同样的,近区感应场的能量也不能被辐射出 去,我们将近区感应场与近区束缚场统称为近区场。
在远区场中,复数坡印廷矢量是一个实数,主要部 分所携带的电磁能量是向外传播的,因此,远区场的 主要部分被称为辐射场。
在任何一个具有综合功能的移动系统中,如飞机、火车、舰船等, 为了保持该系统与其他系统或地面的联络,大多采用无线电通讯方式, 有的在系统内部也采用无线电通讯技术。这些无线电通讯工具的发射 机和接收机的天线,除了发射调谐频率的无线电信号之外,还发射无 意的交调失真信号。这些有意的发射信号和无意的发射信号往往成为 天线的干扰源。例如一辆小轿车内安装的无线电话收发系统,它的工 作频率在1MHz~1GHz范围内,而车内发动机的点火装置产生的干扰 信号频谱可达到200MHz,城市里的广播电视发射天线的调谐频率在 十几MHz到数百MHz之间,因此轿车内的无线电话收发机的工作频率 一般设在较低的频段,否则就会遭到广播电视信号或发动机点火噪声 的干扰。
的变化曲线称为场强方向图或功率方向图。记场强随方向坐标
变化的归一化方向性函数为 F( ,) E( ,),功率随方向坐 标变化的函数为 P( ,),它们二者之间的Em关ax系:
P( ,) F( ,) 2
以分贝为单位的场强方向图:
F(,) 20lg F(,) dB
以分贝为单位的功率方向图:
P( ,)dB 10 lg P( ,)
高级培训
12
电磁兼容中的天线耦合问题 天线的工作原理
功率增益与方向性增益的关系如下: G( ,) eD( ,)
如果以分贝为单位,则有:
DdB 10 lg D GdB 10 lg G
在后面的天线隔离度计算与分析中,最常用 的是天线远场功率增益或者方向性增益的方 向图。
高级培训
13
电磁兼容中的天线耦合问题 天线隔离度与空间隔离度
高级培训
2
电磁兼容中的天线耦合问题
随着电子技术、通信技术的快速发展 ,越来越多的电子设备 被集成在一个系统中 ,同时 ,一个电子系统可能需要几副甚至 十几副工作在不同波段的天线来接收或发射电子信号 ,例如一 架飞机或一艘军舰上会装载各种各样的完成不同功能的电子 设备及其天线 .同一系统中不同天线的近场耦合很强 ,严重干 扰了各收发电台的正常工作 ,因此怎样预估及避免这种干扰 , 对于通信设备的正常工作至关重要 .另外 ,当天线发射功率很 大时 ,其周围的电子设备也会受到很强的干扰 ,而无法正常工 作 ,因此天线近场的分析也是电磁兼容的一个重要问题。
无线电系统间电磁干扰主要传输途径是天线间的耦合,常用隔离 度来定量表征这种耦合的强弱程度。天线的载体和天线间的距离 以及障碍物不同,分析它们耦合的方法也不同,分析过程的难易 程度也有很大的区别。对于自由空间分隔相距比较远的天线,天 线间耦合的相互影响主要是通过天线的远区场进行的,与天线近 场情况的关系较小。但当天线间的距离比较近时,分析它们的耦 合就需要考虑天线的具体形式、馈电结构、安装位置和安装壳体 等各种因素的影响。
高级培训
10
电磁兼容中的天线耦合问题 天线的工作原理
方向性系数与功率增益
天线在空间各个方向上的辐射不可能是均匀 的。辐射强度随空间方向的变化是由天线的 方向性增益 D( ,)来表示的。所谓方向性增益, 即是给定方向的辐射强度与参考天线的辐射 强度之比。它的物理意义即是“在距离等于 常数的球面上,给定方向的功率密度与平均 功率密度之比”。
高级培训
4
电磁兼容中的天线耦合问题 天线的工作原理
source
P
R
r r`
高级培训
5
电磁兼容中的天线耦合问题 天线的工作原理
若D为天线最大尺寸,通常,认为远场条件为:
rr2DD2
r
近区感应场条件: 0.62 D3 r 2D2
近区束缚场条件:
0 r 0.62
D3
高级培训
6
电磁兼容中的天线耦合问题 天线的工作原理
高级培训
3
电磁兼容中的天线耦合问题 天线的工作原理
远区场与近区场的概念以及判定
若已知源分布,求解电场与磁场分布时,一般首先 根据源分布求解矢量位:
再由求出电场与磁场分布:A~H~ J~e4A~jRkR dV
E~ j A~ ( A~) j
因此,讨论电磁场的空间分布,只需讨论矢量位的 分布即可。如下图所示:
来的电抗,被称为输入电抗。
从能量角度考虑,天线的平均损耗功率为:
或者:
Pin
1 2
Rin
I in
2
( I in:输入端电流的峰值)
Pin
PL
Pr
1 2
RL
I in
2
1 2
Rri
I in
2
高级培训
8
电磁兼容中的天线耦合问题 天线的工作原理
其中,PL 为热损耗功率,Pr为辐射损耗功率,RL为损耗电阻,Rr为i 辐
射电阻。
天线的输入阻抗与几何形状、馈电方法和周围物体的临近程度等 多种因素有关。
天线的辐射效率是天线的辐射功率与净输入功率的比值:
e Pr Pin
由式(1.15)进一步可得: e Rri Rin
高级培训
9
电磁兼容中的天线耦合问题 天线的工作原理
天线的远场方向图
在距离r 等于常数的球面上,场强或功率密度随方向坐标 (、)