华南理工离散数学作业题2017版
(完整版)华南理工《离散数学》命题逻辑练习题(含答案)

第一章命题逻辑1.1命题与联结词一、单项选择题1、A .明年“五一”是晴天 B .这朵花多好看呀!C.这个男孩真勇敢啊! D .明天下午有会吗?在上面句子中,是命题的是2. A . 1 + 101 = 110 •中国人民是伟大的。
C.这朵花多好看呀! 计算机机房有空位吗? 在上面句子中,是命题的是3. A .如果天气好,那么我去散步。
B •天气多好呀!C.x=3。
•明天下午有会吗?在上面句子中()是命题下面的命题不是简单命题的是4.A. 3是素数或4是素数).2018年元旦下大雪C. 刘宏与魏新是同学•圆的面积等于半径的平方与之积5. 下面的表述与众不一致的一个是A. P :广州是一个大城市().P:广州是一个不大的城市C.6 .设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
”可符号化为:()A. P Q B . P QC. P Q D . P Q7.设:P :刘平聪明。
Q刘平用功。
在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:()A. P Q B . P QC. P Q D . P Q&设:P:他聪明;Q:他用功。
则命题“他虽聪明但不用功。
”在命题逻辑中可符号化为()A. P Q B . P QC. P Q D . P Q9 .设:P:我们划船。
Q:我们跑步。
在命题逻辑中,命题:“我们不能既划船又跑步。
”可符号化为:()A. P Q B . (P QC. P Q D . P Q10 .设: P:王强身体很好;Q:王强成绩很好。
命题“王强身体很好化为()A. P Q B . P QC. P Q D . P QP :广州是一个很不小的城市D. P:广州不是一个大城市11 .设:P:你努力;Q你失败。
则命题“除非你努力,否则你将失败,成绩也很好。
”在命题逻辑中可符号在命题逻辑中可符号化为()A. Q P B . P QC. P Q D . Q P12 .设:p:派小王去开会。
4.离散数学随堂练习6+华南理工大学网络教育

第六章特殊图论6.1 二部图(含补充的欧拉图与哈密尔顿图)一、单项选择题1 •下列说法不对的是()A.欧拉图可以一笔画成,图要一笔画成则一定要是欧拉图B.欧拉路经过每条边一次且仅有一次,经过的节点可多次C.汉密尔顿路经过每个节点一次且仅一次,经过的边可多次D.当且仅当简单图的闭包是汉密顿图时,这个简单图是汉密顿图2.下列说法不对的是()A.无向图为欧拉路则其奇数度节点可以是一个B.—个图是欧拉图当且仅当它连通且均为偶数度节点C.当一个图每一对节点的度数之和都大于或等于节点数减一,就有汉密尔顿路D.若一个图G V,E , S V, S ,G含有汉密尔顿路,则W G S S3.下列为欧拉图的是()4.在下列关于图论的命题中,为真的命题是( )A.完全二部图Kn, m (n 1, m 1)是欧拉图B.欧拉图一定是哈密尔顿图C.无向完全图Kn (n 3)都是欧拉图D.无向完全图Kn ( n 3)都是哈密尔顿图5.在下列关于图论的命题中,为假的命题是( )A.完全二部图Kn, m (n , m 为非零正偶数)是欧拉图B.哈密尔顿图一定是欧拉图C.有向完全图Kn (n 2)都是欧拉图D.无向完全图Kn ( n 3且为奇数)都是欧拉图6.在下列关于图论的命题中,为假的命题是( )A. n =m 且大于1 时,完全二部图Kn, m 是哈密尔顿图B.强连通的有向图都是哈密尔顿图C.完全二部图Kn, m (n , m 为非零正偶数)的欧拉回路含mn条边D.无向完全图K2n(n 2)至少加n条边才能成为欧拉图6.2平面图一、单项选择题1 •下列说法不对的是()A.—个有限平面图的次数之和等于边数的两倍B.平面图G的节点数为v,面数为r,边数为e,则有v-e+r=2C. G是一个V个节点,e条边的连通简单平面图,则V 3 e 3v 6D. —个图是平面图,当且仅当他不含有与K3,3或K5在2度节点内同构子图2.下列各图为平面图的是()3•设G为任意的连通的平面图,且G有n个顶点,m条边,r个面,则平面图的欧拉公式为()A. n - m + r = 2 B . m - n + r = 2C.n + m - r =2 D . r + n + m = 26.3树与有向树一、单项选择题1•下列不能作为一棵树的度数列的一组数是()A. 1,1,2,2,3,3,4,4 B . 1,1,1,1,2,2,3,3C. 1,1,1,2,2,2,2,3 D . 1,1,1,1,2,2,2,3,32.在下列关于图论的命题中,为假的命题是()A. 6阶连通无向图至少有6棵生成树B. n阶m条边的无向连通图,对应它的生成树,至少有m-n+1条基本回路C.高为h的正则二叉树至少有h+1片树叶D.波兰符号法的运算规则是每个运算符与它前面紧邻的两个数进行运算3•下列四个图中与其余三个图不同构的图是()A .15B .14C .17D .11(Kruskal 算法) 求一棵最小生成树并计算它的权值为1) 2) (3) (4) 出 图 G 的一棵生成树为( )A . { (1, 2), (1, 3),( 2, 4) ,( 3, 5) }B .{ (1, 2), (1, 3),( 2, 3) ,(2, 4) }C .{ (1, 2), (1, 3),( 3, 5) ,( 4, 5) }D . { (1, 2), ( 3, 4),( 3, 5) ,( 4, 5) }5. 如 图所 示带权 图, 用避 圈法 (Krus k al 算法) 求一棵最小生成树并计算它的权值为( )4.给定无孤立点无向图 G 的边集:{ (1 , 2), (1, 3) , (2, 3), ( 2, 4) , (2, 5), ( 3, 4), (3, 5) },找 6.如图所示带权图,用避圈法A. 15 B . 16 C . 17 D . 197 •求带权图G 的最小生成树,并计算它的权值为 () A. 10 B . 15 C .7 D . 98给定权为 2, 6, 3,8,4;则该二叉树的权为()A. 51 B . 63 C .48 D .7218•给定权为 1,9, 4,7, 3; 构造一颗最优二叉树,则该二叉树的权为 ()A. 31 B . 45 C .51 D .569.给定权为 2, 6, 5, 9, 4, 1 ;构造一颗最优二叉树,则该二叉树的权为 ()A. 48 B . 51 C .55 D .6410•给定权为 3,4, 5, 6, 7, 8, 9;构造一棵最优二叉树,则该二叉树的权为()A. 96 B . 85 C .120 D .116答案:6.1、单项选择题- 1、A 2、A 3 、(4) 4、D 5、B 6、B6.2、单项选择题- 1、B 2、(3) 3、A6.3、单项选择题 1、A 2、D 3、( 3) 4、A 5、D 6、A 7、C 8、A 8、C 9、D 10、D。
离散数学试题2018模拟1+答案

华南理工大学网络教育学院2016–2017学年度第一学期期末考试 《 离散数学 》试卷(模拟卷)(客观题电脑给分,主观题依过程给分)教学中心: 专业层次:学 号: 姓 名: 座号: 注意事项:1. 本试卷共 三 大题,满分100分,考试时间90分钟,闭卷;2. 考前请将以上各项信息填写清楚;3. 所有答案必须做在答题纸上,做在试卷、草稿纸上无效; 4.考试结束,试卷、答题纸、草稿纸一并交回。
一、单项选择题(本大题30分,每小题6分)1.设,P :他聪明;Q :他用功。
在命题逻辑中,命题: “他既聪明又用功。
” 可符号化为:( ) A .P ∧ Q B .P → Q C .P ∨ ⌝Q D .P ∧⌝Q 【答案:A 】2.下列式子( )是永真式A .Q →(P ∧ Q )B .P →(P ∧ Q )C .(P ∧ Q )→ PD .(P ∨Q )→ Q 【答案:C 】 3.设S (x ):x 是运动员,J (y ):y 是教练员,L (x ,y ):x 钦佩y 。
命题“所有运动员都钦佩一些教练员”的符号化公式是( ) A .∀x (S (x )∧ ∀ y (J (y )∧ L (x ,y ))) B .∀x ∃y (S (x )→(J (y )→ L (x ,y ))) C .∀x (S (x )→ ∃y (J (y )∧ L (x ,y ))) D .∃y ∀x (S (x )→(J (y )∧ L (x ,y ))) 【答案:C 】4.下列命题是真的是( )A .如果A ⊆B 及B ∈C,则A ⊆C B .如果A ⊆B 及B ∈C,则A ∈C C .如果A ∈B 及B ⊆C,则A ⊆CD .如果A ∈B 及B ⊆C,则A ∈C 【答案:D 】5.设G 是n 有个结点,m 条边的简单有向图。
若G 是连通的,则m 的下界是( )A .nB .1n -C .()1n n -D .()112n n -【答案:B 】二、 判断题(本大题20分,每小题4分)1. 设A ,B 是命题公式,则蕴涵等值式为A →B ⇔⌝A ∧B 。
离散数学作业标准答案

离散数学作业标准答案离散数学作业⼀、选择题1、下列语句中哪个是真命题(C )。
A .我正在说谎。
B .如果1+2=3,那么雪是⿊⾊的。
C .如果1+2=5,那么雪是⽩⾊的。
D .严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 是( C )。
A. 恒假的B. 恒真的C. 可满⾜的D. 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ??→中的变元x ( C )。
A .是⾃由变元但不是约束变元 B .既不是⾃由变元⼜不是约束变元 C .既是⾃由变元⼜是约束变元 D .是约束变元但不是⾃由变元4、设A={1,2,3},则下列关系R 不是等价关系的是(C )A .R={<1,1>,<2,2>,<3,3>}B .R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C .R={<1,1>,<2,2>,<3,3>,<1,4>}D .R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R ,σ(x )= -x 2+2x-1,则σ是( D )。
A .单射⽽⾮满射 B .满射⽽⾮单射 C .双射 D .既不是单射,也不是满射 6、下列⼆元运算在所给的集合上不封闭的是( D ) A. S={2x-1|x ∈Z +},S 关于普通的乘法运算 B. S={0,1},S 关于普通的乘法运算 C. 整数集合Z 和普通的减法运算D. S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所⽰,哪个能使({a,b},*)成为含⼳元半群( D )b a b b a a b a * b b b a a a b a * a a b a a a b a * a b b b a a b a *A B C D8、下列图中是欧拉图的是( A )。
华南理工网络教育学院离散数学试题A

华南理工网络教育学院离散数学试题A一、选择题1、在下列命题中,不是命题的是()A.这是一个苹果B.今天是星期一C.苏州在南京的南边D.明天会下雨吗?E.所有猫都是动物2、下列命题中,真命题是()A.如果a>b,那么ac>bcB.如果a>b,c>d,那么a+c>b+dC.如果a>b>0,c>d>0,那么ac>bdD.如果a>b>0,那么对任意实数c,ac>bc3、下列命题中,假命题是()A.如果一个命题的逆命题是真命题,那么这个命题是假命题B.如果一个命题的否命题是假命题,那么这个命题是真命题C.如果一个命题的逆否命题是假命题,那么这个命题是假命题D.如果一个命题的否命题是真命题,那么这个命题是真命题二、填空题1、填空题中的空档里,请按照数学表达式的正确格式填写答案。
设A和B是两个集合,用符号表示它们之间的关系,相交关系为 A ∩B,全集为 U,则 A的补集表示为 A'。
2、如果一个命题的逆命题是真命题,那么这个命题是____________。
3、如果一个命题的否命题是假命题,那么这个命题____________。
4、如果一个命题的逆否命题是假命题,那么这个命题是____________。
5、在下列各小题中,选择一个适当的答案填入空格内。
(1)如果a>b>0,那么对任意实数c,ac________bc;(2)如果a>b>0,c>d>0,那么ac________bd;(3)如果a>b>0,那么对任意实数c,ac________bc;(4)如果a>b>0,那么对任意实数c,ac________bc。
答案:(1)> (2)> (3)> (4)<解析:根据不等式的性质进行判断。
6、下列各小题中,选择一个适当的答案填入空格内。
(1)如果a<b<0,那么对任意实数c,ac________bc;(2)如果a<b<0,c<d<0,那么ac________bd;(3)如果a<b<0,那么对任意实数c,ac________bc;(4)如果a<b<0,那么对任意实数c,ac________bc。
(完整版)《离散数学》同步练习答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。
q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。
(2)设A,B都是命题公式,A B,则A B的真值是T。
(3)设:p:刘平聪明。
q:刘平用功。
在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。
(5)设,p:径一事;q:长一智。
在命题逻辑中,命题:“不径一事,不长一智。
" 可符号化为: p q 。
(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。
(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。
”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。
在命题逻辑中,命题:“他既聪明又用功。
" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。
(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。
(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。
(12)设P:你努力.Q:你失败。
在命题逻辑中,命题:“除非你努力,否则你将失败。
”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。
q:小王是400米赛跑冠军。
在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。
(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。
二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。
()2.命题公式p q r是析取范式。
( √ )3.陈述句“x + y > 5”是命题。
(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。
C.2是偶数。
D.铅球是方的。
2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。
离散数学形考任务17试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华南理工大学网络教育学院
2014–2015学年度第一学期
《离散数学》作业
(解答必须手写体上传,否则酌情扣分)
1.设命题公式为⌝Q∧(P→Q)→⌝P。
(1)求此命题公式的真值表;
(2)求此命题公式的析取范式;
(3)判断该命题公式的类型。
解:(1)真值表如下:
P Q ⌝Q P →Q ⌝Q∧(P→Q)⌝P ⌝Q∧(P→Q)→⌝P
0 0 1 1 1 1 1
0 1 0 1 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 1
(2)⌝Q∧(P→Q)→⌝P⇔⌝(⌝Q∧(⌝P∨ Q)) ∨⌝ P
⇔( Q∨⌝ (⌝P∨ Q)) ∨⌝ P ⇔⌝ ( ⌝P∨ Q) ∨ (Q∨⌝P) ⇔1(析取范式)
⇔(⌝P∧⌝ Q) ∨ (⌝P∧ Q) ∨ (P∧⌝ Q) ∨(P∧ Q)(主析取范式)(3)该公式为重言式
2.用直接证法证明
前提:P∨Q,P→R,Q→S
结论:S∨R
解:(1)⌝S P
(2)Q →S P
(3) ⌝ Q (1)(2)
(4)P∨ Q P
(5)P (3)(4)
(6) P → R P
(7)R (5)(6)
(8)⌝S→ R (1)(7)
即SVR得证
3.在一阶逻辑中构造下面推理的证明
每个喜欢步行的人都不喜欢坐汽车。
每个人或者喜欢坐汽车或者喜欢骑自行车。
有的人不喜欢骑自行车。
因而有的人不喜欢步行。
令F(x):x喜欢步行。
G(x):x喜欢坐汽车。
H(x):x喜欢骑自行车。
解:前题:∀x (F (x) →⌝G(x)), ∀x (G (x) ∨H(x))
∃ x ⌝H (x)
结论:∃ x ⌝F (x)
证:(1)∃ x ⌝F (x) p
(2) ⌝H (x) ES(1)
(3) ∀x (G (x) ∨H (x))P
(4)G(c) vH(c)US(3)
(5)G(c) T(2,4)I
(6)∀x (F (x) →⌝G(x)), p
(7)F (c) →⌝G(c) US(6)
(8) ⌝F (c) T(5,7)I
(9)( ∃ x) ⌝F (x) EG(8)
4.用直接证法证明:
前提:(∀x)(C(x)→W(x)∧R(x)),(∃x)(C(x)∧Q(x))
结论:(∃x)(Q(x)∧R(x))。
证:
(1)(∃x)(C(x)∧Q(x))P
(2) C (c) ∧Q(c)ES(1)
(3)(∀x)(C(x)→W(x)∧R(x))P
(4)(C(c)→W(c)∧R(c)US(3)
(5) C(c) T(2)I
(6) W(c)∧R(c)T(4,5)I
(7)R (c) T(6)I
(8) Q(c)T(2)I
(9) Q(c)∧R(c)T(7,8)I
(10) ( x)(Q(x)∧R(x))EG(9)
5.设R是集合A = {1, 2, 3, 4, 6, 12}上的整除关系。
(1) 给出关系R;
(2)给出COV A
(3)画出关系R的哈斯图;
(4)给出关系R的极大、极小元、最大、最小元。
解:R={<1,2>,<1,3>,<1,4>,<1,6>,<1,12>,<2,4>,<2,6>,<2,12>,<3,6>,<3,12>, <4,12>,<6,12>}UI
A
COV A={<1,2>,<1,3>,<2,4>,<2,6>,<3,6>,<4,12>,<6,12>}
作哈斯图如右:
极小元和最小元为:1
极大元和最大元为:12
6.求带权图G的最小生成树,并计算它的权值。
解:C(T)=1+2+3+1=7
.7.给定权为1,9,4,7,3;构造一颗最优二叉树。
解:1 3 4 7 9
4 4 7 9
8 7 9
15 9
24
W(T)=4*1+4*3+3*4+2*7+1*9=51
8.给定权为2,6,3,9,4;构造一颗最优二叉树。
解:2 3 4 6 9
5 4
6 9
9 15
24
W(T)=3*(2+3)+2*4+2*(6+9)=53
9、给定权为2,6,5,9,4,1;构造一颗最优二叉树。
解:1 2 4 5 6 9
3 4 5 6 9
7 5 6 9
7 11 9
11 16
27
W(T)=4*1+4*2+3*4+2*9+2*5+2*6=64
10、设字母,,,,,
a b c,
a b c d e f在通讯中出现的频率为::30%,:25%,:20%
d e f。
试给出传输这6个字母的最佳前缀码?问传输1000个字符需要:10%,:10%,:5%
多少位二进制位?
解先求传输100个字符所需要的位数。
:30%,:25%,:20%
a b c,
d e f,是依照出现频率得出的个数。
构造最优二叉树如下::10%,:10%,:5%
5 10 10 20 25 30
15 10 20 25 30
25 20 25 30
25 45 30
45 55
100
需要二进制位数为10W(T)=10*{4*(5+10)+3*10+2*(20+25+30)}=2400。