北师大版七年级下期末总复习代数部分
北师大版七年级(下册)数学知识点总结
北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意:底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。
p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
北师大七年级数学下册期末复习讲义(机构专用)
11.化简求值: ,其中 .
12.先化简,再求值.
,其中
13.化简与求值: ,其中 , .
14.化简求值: ,其中 .
15.先化简,再求值: .其中 , .
16.先化简,再求值:
,其中 .
17.先化简,再求值. ,其中m,n满足 .
03乘法公式应用专题
1.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个长方形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的长方形.
3.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.
4.如图,对一个正方形进行面积分割,下列等式能够正确表示该图形面积关系的是( )
A.(a+b)2=a2+2ab+b2B.(a+b)2=a2+2ab﹣b2
C.(a﹣b)2=a2﹣2ab+b2D.(a+b)(a﹣b)=a2﹣b2
(3)直接写出字母a、b、c之间的数量关.
12.(1)已知4m=a,8n=b,用含a、b的式子表示下列代数式:
①求:22m+3n的值;②求:24m-6n的值;
(2)已知2×8x×16=226,求x的值.
13.观察下面三行单项式:
x, , , , , , ;①
, , , , , , ;②
, , , , , , ;③
8.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是25,小正方形的面积是4,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为_______.
新北师大版七年级下册代数部分总复习
新北师大版七年级下册代数部分总复习一、填空1、计算(-2)2011+(-2)2012=_____2、若a m =2,a n =5,则a m+n=_____3、计算(-a 2)3+(-a 3)2=______4、计算-(-3a 2b 3)4=________5、若x+y=6,x-y=5,则x 2-y 2=_______6、若x 2-y 2=30,x-y=-5,则x+y=____7、若x 2+mx+4是一个完全平方式,则m=_____8、( )2=9a 2-______+16b 29、已知x 2+16x+k 是完全平方式,则常数k 等于( )10、x 2+10x+______=(x+_____)211、若 (x-4)2=x 2+8x+m 2成立,则m=____ 12、(-a-2b )2 =______13、已知x+x 1=5,则x 2+21x=_______14、若x+y=3,xy=1,则x 2+y 2=_______ 15、-(y 4)3=_____ 16、(-x 3)2(-x 2)3=_____ 17、 (-a 3)2·(-a 2)3·(-a)=_____18、 若(x+m )与(x+3)的乘积中不含x 的一次项,则m 的值为______. 二、计算2(a 5)2·(a 2)2-(a 2)4·(a 3)2 2x 3y ·(-2x 2y )2 (-x)2·(-x)3+2x ·(-x)4-(-x)·x 4(2x 2y)·(-4xy 3) (41a 2b )·(-2ab 2)2+(0.5a 4b 5) ()()22232b ab a ab ---(x 2)n (-y n )3+(-x n )2(y 3)n (-3×103)3×(2×108)÷(5×104) (-32)-2-(-4)2010×(-41)2011-π0+(-3)2 ()()()20422010321---+-⨯--π( -32)0+52+(-21)-2+(-2)3 (-21)0+(-2)3+(31)-1+|-2| (-0.125)15×(215)3+(135)2012·(-253)2011(3x+2)2-(x-1)(x+2) 5)1(3)12(2+--+a a a (2x-3y )(x+5y )()()y x y x y x y x 22246332427÷++- (x-2y)(x+2y)-(x+2y)2[(x+1)(x+2)-2]÷(-x )20022-2001×2003 4032×3931 5012899×901+1(a+b-c)2 (x+y-z) (x-y+z) (a-2b+3c) (a-2b-3c) (x+y-z)(x+y-z)(-2p-q+1)(-q+2p+1) -3x 2y 3(x 2-1)-(x 2+1)·5x 2y 3 (x-2y-m)(x-2y+m)(1-221)(1-231)(1-241)…(1-2101) (a+b)(a 2+b 2)(a 4+b 4)(a-b) 223333⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+x x(2x-1)2-(3x+1)(3x-1)+5x(x-1) (-3a 2)3-a(-a)5+5a 8÷a 2三、化简求值1、(3x+1)(2x-3)-2(x-1)(4x+1),其中x=-22、 x(x 2-4)-(x+3)(x 2-3x+2)-2x(x-2),其中x=23. 3、(3x-1)2-(2x+1)(2x-1)-5x(x-2),其中x=-214、先化简再求值:()()()()()y x y x y x y x y x ---+-+-3222,其中21=x ,31=y 5、已知3m =6,9n =2,求32m-4n+1的值6、已知a m =3,a n =5,求a 3m-2n的值7、已知x 2-4=0,求代数式x(x+1)2-x(x 2+x)-x-7的值8、[(y-2x )(-2x-y )-4(x-2y )2+y 2]÷(-2y )其中x=1.y=-29、()()()222210,24x y x y x y y x y y ⎡⎤-=+--+-÷⎣⎦已知:求的值 10、已知A=2x+y ,B=2x-y ,计算A 2-B 2. 四、整式拓展 1、已知x+x 1=4,求(1)x 2+21x;(2)(x-x 1)2. 请阅读下面的解题过程:已知x 2+x+1=0,求x+x 2+x 3+…+x 30. 解:x+x 2+x 3+…+x30=(x+x 2+x 3)+(x 4+x 5+x 6)+…+(x 28+x 29+x 30)=x (1+x+x 2)+x 4(1+x+x 2)+…+x 28(1+x+x 2) =0+0+…+0 =0仿照上面的解题过程完成下题已知1+x+x 2+x 3=0,求x+x 2+x 3+…+x 2012的值.2、某同学在计算3(4+1)(42+1)时,把3写成4-1后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4-1)(4+1)(42+1)=(42-1)(42+1)=162-1.很受启发,后来在求(2+1)(22+1)(24+1)(28+1)…(22048+1)的值时,又改造此法,将乘积式前面乘以1,且把1写为2-1得(2+1)(22+1)(24+1)(28+1)…(22048+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(22-1)(22+1)(24+1)(28+1)…(22048+1)=(24-1)(28+1)…(22048+1)=(22048-1)(22048+1)=24096-1 回答下列问题:(1)请借鉴该同学的经验,计算: (1+21)(1+221)(1+421)(1+821)+1521=________; (2)借用上面的方法,再逆用平方差公式计算: (1-221)(1-231)(1-421)…(1-2101)3、先观察下列各式,再解答后面问题:(x+5)(x+6)=x 2+11x+30;(x-5)(x-6)=x 2-11x+30;(x-5)(x+6)=x 2+x-30;(1)乘积式中的一次项系数、常数项与两因式中的常数项有何关系? (2)根据以上各式呈现的规律,用公式表示出来; (3)试用你写的公式,直接写出下列两式的结果; ①(a+99)(a-100)=________;②(y-500)(y-81)=__________.4、你能求(x-1)(x 99+x 98+x 97+…+x+1)的值吗遇到这样的问题,我们可以先思考一下,从简单的情形入手.先计算下列各式的值:(1)(x-1)(x+1)=_______;(2)(x-1)(x 2+x+1)=________;(3)(x-1)(x 3+x 2+x+1)=_______;…由此我们可以得到(x-1)(x 99+x 98+x 97+…+x+1)=_______; 请你利用上面的结论,完成下面两题的计算:(1)299+298+297+…+2+1; (2)(-2)50+(-2)49+(-2)48+…(-2)+1. 5、如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n 的代数式表示:第n 行的第一个数是,最后一个数是,第n 行共有个数; (3)求第n 行各数之和.6、观察下面的几个算式,你发现了什么规律? ①16×14=224=1×(1+1)×100+6×4 ②23×27=621=2×(2+1)×100+3×7 ③32×38=1216=3×(3+1)×100+2×8 ……(1)按照上面的规律,仿照上面的书写格式,迅速写出81×89的结果.(2)用公式(x +a )(x +b )=x 2+(a +b )x +ab 证明上面所发现的规律.(提示:可设这两个两位数分别是(10n +a )、(10n +b ),其中a +b =10) (3)简单叙述以上所发现的规律. 7、观察下面的几个算式,解答.1×2×3×4+1=24+1=25=52 ;2×3×4×5+1=120+1=121=1123×4×5×6+1=360+1=361=192….(1)4×5×6×7+1=______+1=______ =______ 2;7×8×9×10+1=_________+1=______=______2(2)试猜想(n+1)(n+2)(n+3)(n+4)+1=__________28、有足够多的长方形和正方形卡片,如下图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是___________.(2)小明想用类似方法解释多项式乘法(a+3b )(2a+b )=2a 2+7ab+3b 2,那么需用2号卡片_________张,3号卡片_________张. 9、乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达). (4)运用你所得到的公式,计算下列各题:①7.93.10⨯ ② )2)(2(p n m p n m +--+ 10、图a 是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图b 的形状拼成一个正方形。
北师大版七年级数学下册期末复习练习题(含答案)
北师大版七年级数学下册期末复习练习题(含答案)期末复练题一、选择题1.(-4)的结果是()。
A。
-4B。
-40C。
0D。
42.下列图形中,是轴对称图形的是()。
A。
B。
C。
D。
3.某种秋冬流感病毒的直径约为0.xxxxxxxx3米,该直径用科学记数法表示为()米。
A。
2.03×10^-8B。
2.03×10^-7C。
2.03×10^-6D。
0.203×10^-64.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()。
A。
30B。
20C。
60D。
405.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,XXX通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有()个。
A。
34B。
30C。
10D。
66.如图,可以判定AB∥CD的条件是()。
A。
∠1=∠2B。
∠3=∠4C。
∠D=∠5D。
∠BAD+∠B=180°7.如图,太阳光线AC和A' C'是平行的,在同一时刻,若两根木杆的影子一样长,则两根木杆高度相等。
这利用了全等图形的性质,其中判断△ABC≌△A' B' C'的依据是()。
A。
SASB。
ASAC。
SSSD。
AAS8.当x=1时,代数式ax^3-bx+4的值是7,则当x=-1时,代数式ax^3-bx+4的值是()。
A。
-7B。
7C。
3D。
19.如图,在△ABC中,已知BC=13,AB的中垂线交BC 于D,AC的中垂线交BC于E,则△ADE的周长等于()。
A。
11B。
13C。
14D。
1510.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()。
A。
B。
C。
D。
11.如图,XXX,CD、BE分别是△XXX的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA 平分∠XXX;③∠ABG=∠ACB;④∠CFB=135°。
北师大七年级数学下册代数部分复习题
代数部分复习题1.下列式子正确的是()A、 20=0B、C、 D、2. ()A、 B、 C、 D、3、下列多项式中是完全平方式的是 ( )A、 B、 C、 D、4. ,,你能计算出的值为()A、 B、 C、 D、5.(宿迁·中考题)下列事件中,随机事件是()A.太阳从东方升起; B.掷一枚骰子,出现6点朝上C.袋中有3个红球,从中摸出白球; D.若a是正数,则-a是负数6.给出下列结论①黑暗中小明从他的一大串钥匙中,随便选择一把,用它开门 , 不能开门的可能性大于能开门的可能性②小明上次的体育测试是“优秀”,这次测试它百分之百的为“优秀”③小明射中目标的概率为1/3,因此,小明连射三枪一定能够击中目标④随意掷一枚骰子,“掷得的数是奇数”的概率与“掷得的数是偶数”的概率相等其中正确的结论有( )个个个个7.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应该是【】. A.y=12x =18x =x =x8. 向高为10厘米的容器中注水,注满为止,若注水量V(厘米3)与水深h(厘米)之间的关系的图象大致如图3所示,则这个容器是下列四个图中的【】.二.填空4.等腰三角形的周长为12厘米,底边长为厘米,腰长为厘米. 则与的之间的关系式是 y= .5. 一根弹簧原长13厘米,并且每挂1千克就伸长厘米,则当挂物体质量为10千克,弹簧长度为________厘米,挂物体X(千克)与弹簧长度y(厘米)的关系式为_______.(不考虑x的取值范围三.解答1.2、3.已知2x=3x+3,求代数式的值.4.从男女学生共36人的班级中,选一名班长,任何人都有同样的当选机会,如果选得男生的概率为,求男女生数各多少?5.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速行驶小时的时候,其中一辆自行车出故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶1小时到达目的地.请在图8,画出符合他们行驶的路程S(千米)与行驶时间t(时)之间的图象.6.将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求4张白纸粘合后的总长度;(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式,并求当x=20时,y的值.8、(厦门·中考题)某商场为了吸引更多的顾客,安排了一个抽奖活动,并规定:顾客每购买100元商品,就能获得一次抽奖的机会。
期末复习(压轴题49题)—2023-2024学年七年级数学下学期期末考点(北师大版)(解析版)
z 期末复习(压轴题49题20个考点)一.规律型:数字的变化类(共1小题)1.为了求1+2+22+23+…+22011+22012的值,可令S =1+2+22+23+…+22011+22012,则2S =2+22+23+24+…+22012+22013,因此2S ﹣S =22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是( )A .52013﹣1B .52013+1C .D . 【答案】D【解答】解:令S =1+5+52+53+ (52012)则5S =5+52+53+…+52012+52013,5S ﹣S =﹣1+52013,4S =52013﹣1,则S =.故选:D .二.同底数幂的乘法(共1小题) 2.阅读材料:求1+2+22+23+24+…+22013的值.解:设S =1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S =2+22+23+24+25+…+22013+22014 将下式减去上式得2S ﹣S =22014﹣1即S =22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).【答案】见试题解答内容【解答】解:(1)设S =1+2+22+23+24+ (210)将等式两边同时乘2得:2S =2+22+23+24+…+210+211,将下式减去上式得:2S ﹣S =211﹣1,即S =211﹣1,则1+2+22+23+24+…+210=211﹣1;z (2)设S =1+3+32+33+34+…+3n ①,两边同时乘3得:3S =3+32+33+34+…+3n +3n +1②,②﹣①得:3S ﹣S =3n +1﹣1,即S =(3n +1﹣1),则1+3+32+33+34+…+3n =(3n +1﹣1).三.多项式乘多项式(共1小题)3.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片 张.【答案】见试题解答内容【解答】解:(a +2b )(a +b )=a 2+3ab +2b 2.则需要C 类卡片3张.故答案为:3.四.完全平方公式(共3小题)4.已知a ﹣b =b ﹣c =,a 2+b 2+c 2=1,则ab +bc +ca 的值等于 .【答案】见试题解答内容【解答】解:∵a ﹣b =b ﹣c =,∴(a ﹣b )2=,(b ﹣c )2=,a ﹣c =, ∴a 2+b 2﹣2ab =,b 2+c 2﹣2bc =,a 2+c 2﹣2ac =, ∴2(a 2+b 2+c 2)﹣2(ab +bc +ca )=++=, ∴2﹣2(ab +bc +ca )=, ∴1﹣(ab +bc +ca )=, ∴ab +bc +ca =﹣=﹣. 故答案为:﹣.z 5.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a +b )6= .【答案】见试题解答内容【解答】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 66.回答下列问题(1)填空:x 2+=(x +)2﹣ =(x ﹣)2+(2)若a +=5,则a 2+= ;(3)若a 2﹣3a +1=0,求a 2+的值. 【答案】见试题解答内容【解答】解:(1)2、2.(2)23. (3)∵a =0时方程不成立,∴a ≠0,∵a 2﹣3a +1=0两边同除a 得:a ﹣3+=0,移项得:a +=3,∴a 2+=(a +)2﹣2=7. 五.平方差公式的几何背景(共1小题)7.如图,边长为m +4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.z【答案】见试题解答内容【解答】解:设拼成的矩形的另一边长为x ,则4x =(m +4)2﹣m 2=(m +4+m )(m +4﹣m ),解得x =2m +4.故答案为:2m +4.六.整式的混合运算(共1小题)8.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =bB .a =3bC .a =bD .a =4b 【答案】B 【解答】解:左上角阴影部分的长为AE ,宽为AF =3b ,右下角阴影部分的长为PC ,宽为a ,∵AD =BC ,即AE +ED =AE +a ,BC =BP +PC =4b +PC ,∴AE +a =4b +PC ,即AE ﹣PC =4b ﹣a ,∴阴影部分面积之差S =AE •AF ﹣PC •CG =3bAE ﹣aPC =3b (PC +4b ﹣a )﹣aPC =(3b ﹣a )PC +12b 2﹣3ab ,则3b ﹣a =0,即a =3b .解法二:既然BC 是变化的,当点P 与点C 重合开始,然后BC 向右伸展,设向右伸展长度为X ,左上阴影增加的是3bX ,右下阴影增加的是aX ,因为S 不变,∴增加的面积相等,z ∴3bX =aX ,∴a =3b .故选:B .七.函数的图象(共4小题)9.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (分)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元;(2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A .1个B .2个C .3个D .4个【答案】C【解答】解:依题意得A :(1)当0≤x ≤120,y A =30, (2)当x >120,y A =30+(x ﹣120)×[(50﹣30)÷(170﹣120)]=0.4x ﹣18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70﹣50)÷(250﹣200)](x ﹣200)=0.4x ﹣30,所以当x ≤120时,A 方案比B 方案便宜20元,故(1)正确;当x ≥200时,B 方案比A 方案便宜12元,故(2)正确;z 当y =60时,A :60=0.4x ﹣18,∴x =195,B :60=0.4x ﹣30,∴x =225,故(3)正确;当B 方案为50元,A 方案是40元或者60元时,两种方案通讯费用相差10元,将y A =40或60代入,得x =145分或195分,故(4)错误;故选:C .10.在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )A .B .C .D . 【答案】C 【解答】解:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选:C .11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;z ④兔子在途中750米处追上乌龟.其中正确的说法是 .(把你认为正确说法的序号都填上)【答案】见试题解答内容【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x ﹣200(40≤x ≤60),y 2=100x ﹣4000(40≤x ≤50),当y 1=y 2时,兔子追上乌龟,此时20x ﹣200=100x ﹣4000,解得:x =47.5,y 1=y 2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.12.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 分钟.【答案】见试题解答内容【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),z 所以他从单位到家门口需要的时间是(分钟).故答案为:15.八.二次函数的图象(共1小题) 13.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .【答案】A 【解答】解:当F 在PD 上运动时,△AEF 的面积为y =AE •AD =2x (0≤x ≤2),当F 在AD 上运动时,△AEF 的面积为y =AE •AF =x (6﹣x )=﹣x 2+3x (2<x ≤4),图象为:故选:A .z 九.平行线的性质(共2小题)14.如图,将长方形ABCD 沿线段EF 折叠到EB 'C 'F 的位置,若∠EFC '=100°,则∠DFC '的度数为( )A .20°B .30°C .40°D .50°【答案】A【解答】解:由翻折知,∠EFC =∠EFC '=100°,∴∠EFC +∠EFC '=200°,∴∠DFC '=∠EFC +∠EFC '﹣180°=200°﹣180°=20°,故选:A .15.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120°,∠BCD =80°,则∠CDE = 度. 【答案】见试题解答内容【解答】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF ∥DE ,∴∠BCF +∠ABC =180°,∴∠BCF =60°,∴∠DCF =20°,∴∠CDE =∠DCF =20°.故答案为:20.z十.三角形的面积(共4小题)16.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A .5B .4C .3D .2【答案】A【解答】解:满足条件的C 点有5个,如图平行于AB 的直线上,与网格的所有交点就是.故选:A . 17.如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是 .【答案】见试题解答内容【解答】方法1解:∵△ABC 的三条中线AD 、BE ,CF 交于点G ,∴S △CGE =S △AGE =S △ACF ,S △BGF =S △BGD =S △BCF ,∵S △ACF =S △BCF =S△ABC=×12=6,z ∴S △CGE =S △ACF =×6=2,S △BGF =S △BCF =×6=2,∴S 阴影=S △CGE +S △BGF =4.故答案为4.方法2设△AFG ,△BFG ,△BDG ,△CDG ,△CEG ,△AEG 的面积分别为S 1,S 2,S 3,S 4,S 5,S 6,根据中线平分三角形面积可得:S 1=S 2,S 3=S 4,S 5=S 6,S 1+S 2+S 3=S 4+S 5+S 6①,S 2+S 3+S 4=S 1+S 5+S 6② 由①﹣②可得S 1=S 4,所以S 1=S 2=S 3=S 4=S 5=S 6=2,故阴影部分的面积为4.故答案为:4.18.如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积 .【答案】见试题解答内容【解答】解:如图,连接AB 1,BC 1,CA 1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB 1=S △ABC =1,S △A 1AB 1=S △ABB 1=1,∴S △A 1BB 1=S △A 1AB 1+S △ABB 1=1+1=2,同理:S △B 1CC 1=2,S △A 1AC 1=2,∴△A 1B 1C 1的面积=S △A 1BB 1+S △B 1CC 1+S △A 1AC 1+S △ABC =2+2+2+1=7.故答案为:7.z 19.如图,对面积为s 的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A n B n ∁n ,则其面积S n = .【答案】见试题解答内容【解答】解:连接A 1C ;S △AA 1C =3S △ABC =3S ,S △AA 1C 1=2S △AA 1C =6S ,所以S △A 1B 1C 1=6S ×3+1S =19S ;同理得S △A 2B 2C 2=19S ×19=361S ; S △A 3B 3C 3=361S ×19=6859S ,S △A 4B 4C 4=6859S ×19=130321S , S △A 5B 5C 5=130321S ×19=2476099S ,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n 次后,得到△A n B n ∁n , 则其面积Sn =19n •S .十一.三角形内角和定理(共3小题)20.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是( )A.0个B.1个C.2个D.3个【答案】C【解答】解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)z在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠Az 在△BCP 中利用内角和定理得到:∠P =180﹣(∠PBC +∠PCB )=180﹣(180°+∠A )=90°﹣∠A ,故成立.∴说法正确的个数是2个.故选:C .21.已知△ABC 中,∠A =α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C =90°+;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C = ;请你猜想,当∠B 、∠C 同时n 等分时,(n ﹣1)条等分角线分别对应交于O 1、O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C = (用含n 和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O 2B 和O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC +∠O 2CB =(∠ABC +∠ACB )=(180°﹣α)=120°﹣α;∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=180°﹣(120°﹣α)=60°+α;在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O n ﹣1B 和O n ﹣1C 分别是∠B 、∠C 的n 等分线,∴∠O n ﹣1BC +∠O n ﹣1CB =(∠ABC +∠ACB )=(180°﹣α)=﹣. ∴∠BO n ﹣1C =180°﹣(∠O n ﹣1BC +∠O n ﹣1CB )=180°﹣(﹣)=+.z 故答案为:60°+α;+.22.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.【答案】见试题解答内容【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =∠ABC ,∠A 1CA =∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即∠ACD =∠A 1+∠ABC ,∴∠A 1=(∠ACD ﹣∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD ﹣∠ABC ,∴∠A 1=∠A ,∴∠A 1=m °,∵∠A 1=∠A ,∠A 2=∠A 1=∠A , …以此类推∠A 2013=∠A =°. 故答案为:.十二.全等图形(共1小题)23.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°【答案】B【解答】解:在△ABC与△EDC中,,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.z十三.全等三角形的判定(共3小题)24.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【答案】D【解答】解:∵AB=AC,D为BC中点,在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS)∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE(SSS;在△BOD和△COD中,,∴△BOD≌△COD(SAS);在△AOC和△AOB中,,∴△AOC≌△AOB(SSS);故选:D.25.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有 ①②③(填序z号).【答案】见试题解答内容【解答】解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)z ∴△ACN ≌△ABM (ASA )(③正确)∴CN =BM (④不正确).所以正确结论有①②③.故填①②③.26.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =BD ,EN =CE ,得到图③,请解答下列问题:(1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是 ;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; 【答案】见试题解答内容【解答】解:(1)①BD =CE ;②AM =AN ,∠MAN =∠BAC ,∵∠DAE =∠BAC ,∴∠CAE =∠BAD ,在△BAD 和△CAE 中∵∴△CAE ≌△BAD (SAS ),∴∠ACE =∠ABD ,z ∵DM =BD ,EN =CE ,∴BM =CN ,在△ABM 和△ACN 中,∵∴△ABM ≌△ACN (SAS ),∴AM =AN ,∴∠BAM =∠CAN ,即∠MAN =∠BAC ;十四.全等三角形的判定与性质(共12小题) 27.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68 【答案】A【解答】解:∵AE ⊥AB 且AE =AB ,EF ⊥FH ,BG ⊥FH ,∴∠EAB =∠EF A =∠BGA =90°,∵∠EAF +∠BAG =90°,∠ABG+∠BAG=90°,z ∴∠EAF =∠ABG ,在△EF A 和△AGB 中,,∴△EF A ≌△AGB (AAS ),∴AF =BG ,AG =EF .同理证得△BGC ≌△CHD 得GC =DH ,CH =BG .故FH =F A +AG +GC +CH =3+6+4+3=16故S =(6+4)×16﹣3×4﹣6×3=50.故选:A .28.如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .a 2B .a 2C .a 2D .a 2【答案】D【解答】解:过E 作EP ⊥BC 于点P ,EQ⊥CD 于点Q ,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,z∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.29.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC ,其中结论正确的有( )zA .1个B .2个C .3个D .4个 【答案】D【解答】解:∵△ABD 、△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE ≌△DBC ,∴∠BAE =∠BDC ,∵∠BDC +∠BCD =180°﹣60°﹣60°=60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°,∴②正确;在△ABP 和△DBQ 中,, ∴△ABP ≌△DBQ (ASA ),∴BP =BQ ,∴△BPQ 为等边三角形,∴③正确;∵∠DMA =60°,∴∠AMC =120°,∴∠AMC +∠PBQ =180°,∴P 、B 、Q 、M 四点共圆,z ∵BP =BQ ,∴,∴∠BMP =∠BMQ ,即MB 平分∠AMC ;∴④正确;综上所述:正确的结论有4个;故选:D .30.如图,在正方形ABCD 中,如果AF =BE ,那么∠AOD 的度数是 .【答案】见试题解答内容【解答】解:由ABCD 是正方形,得AD =AB ,∠DAB =∠B =90°.在△ABE 和△DAF 中,, ∴△ABE ≌△DAF (SAS ),∴∠BAE =∠ADF .∵∠BAE +∠EAD =90°,∴∠OAD +∠ADO =90°,∴∠AOD =90°,故答案为:90°.31.如图,△ABC 和△EBD 中,∠ABC =∠DBE =90°,AB =CB ,BE =BD ,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE =CD ;(2)求证:AE ⊥CD ;(3)连接BM ,有以下两个结论:①BM 平分∠CBE ;②MB 平分∠AMD .其中正确的有 ② (请写序号,少选、错选均不得分).z【答案】见试题解答内容【解答】(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBE =∠DBE +∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD , ∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .z∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△CBM ≌△EBM ,则AB =BD ,显然不可能,故①错误.故答案为②.32.(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD .求证:EF =BE +FD ;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立? (3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】见试题解答内容【解答】证明:(1)延长EB 到G ,使BG =DF ,连接AG .z∵∠ABG =∠ABC =∠D =90°,AB =AD ,∴△ABG ≌△ADF .∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =∠BAD .∴∠GAE =∠EAF .又∵AE =AE ,∴△AEG ≌△AEF .∴EG =EF .∵EG =BE +BG .∴EF =BE +FD(2)(1)中的结论EF =BE +FD 仍然成立.(3)结论EF =BE +FD 不成立,应当是EF =BE ﹣FD . 证明:在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵AB =AD ,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.33.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案】见试题解答内容【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC ,∴△DAB≌△F AC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.z34.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.) 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】见试题解答内容【解答】证明:(1)①∵∠ADC =∠ACB =∠BEC =90°,∴∠CAD +∠ACD =90°,∠BCE +∠CBE =90°,∠ACD +∠BCE =90°. ∴∠CAD =∠BCE .∵AC =BC ,∴△ADC ≌△CEB (AAS ).②∵△ADC ≌△CEB ,∴CE =AD ,CD =BE .∴DE =CE +CD =AD +BE .解:(2)∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE.又∵AC =BC ,∴△ACD ≌△CBE (AAS ).∴CE =AD ,CD =BE .∴DE =CE ﹣CD =AD ﹣BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE =BE ﹣AD (或AD =BE ﹣DE ,BE =AD +DE 等).∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE ,又∵AC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,CD =BE ,∴DE =CD ﹣CE =BE ﹣AD .35.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】见试题解答内容【解答】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,z∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形.36.在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.【答案】见试题解答内容【解答】解:(1)DF=EF.(2)猜想:DF=FE.证明:过点D作DG⊥AB于G,则∠DGB=90°.∵DA=DB,∠ADB=60°.∴AG=BG,△DBA是等边三角形.z ∴DB =BA .∵∠ACB =90°,∠ABC =30°,∴AC =AB =BG .在Rt △DBG 和Rt △BAC 中,∴Rt △DBG ≌Rt △BAC (HL ).∴DG =BC .∵BE =EC ,∠BEC =60°,∴△EBC 是等边三角形.∴BC =BE ,∠CBE =60°.∴DG =BE ,∠ABE =∠ABC +∠CBE =90°.∵∠DFG =∠EFB ,∠DGF =∠EBF ,在△DFG 和△EFB 中,∴△DFG ≌△EFB (AAS ).∴DF =EF .(3)猜想:DF =FE .过点D 作DH ⊥AB 于H ,连接HC ,HE ,HE 交CB 于K ,则∠DHB =90°.∵DA =DB , ∴AH =BH ,∠1=∠HDB .∵∠ACB =90°,∴HC =HB .在△HBE 和△HCE 中,∴△HBE ≌△HCE (SSS ).∴∠2=∠3,∠4=∠BEH .∴HK ⊥BC .∴∠BKE =90°.∵∠ADB =∠BEC =2∠ABC ,z ∴∠HDB =∠BEH =∠ABC .∴∠DBC =∠DBH +∠ABC =∠DBH +∠HDB =90°,∠EBH =∠EBK +∠ABC =∠EBK +∠BEK =90°.∴DB ∥HE ,DH ∥BE .∴四边形DHEB 是平行四边形.∴DF =EF .37.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合)连接DC ,以DC 为边在BC上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 在等边△ABC 边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】见试题解答内容z 【解答】解:(1)AF =BD ;证明如下:∵△ABC 是等边三角形(已知),∴BC =AC ,∠BCA =60°(等边三角形的性质);同理知,DC =CF ,∠DCF =60°;∴∠BCA ﹣∠DCA =∠DCF ﹣∠DCA ,即∠BCD =∠ACF ;在△BCD 和△ACF 中,, ∴△BCD ≌△ACF (SAS ),∴BD =AF (全等三角形的对应边相等);(2)证明过程同(1),证得△BCD ≌△ACF (SAS ),则AF =BD (全等三角形的对应边相等),所以,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF =BD 仍然成立;(3)Ⅰ.AF +BF ′=AB ;证明如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立.新的结论是AF =AB +BF ′;证明如下:在△BCF ′和△ACD 中,,∴△BCF ′≌△ACD (SAS ), ∴BF ′=AD (全等三角形的对应边相等);又由(2)知,AF =BD ;∴AF =BD =AB +AD =AB +BF ′,即AF =AB+BF ′.z 38.操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:线段BM 、MN 、NC 之间的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.AN =NC (如图②);②DM ∥AC (如图③).附加题:若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.【答案】见试题解答内容【解答】解:(1)BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连接DM 1由已知条件知:∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠ABD =∠ACD =90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∴∠MDM 1=(120°﹣∠MDB )+∠M 1DC =120°.又∵∠MDN =60°,∴∠M 1DN =∠MDN =60°.∴△MDN ≌△M 1DN .∴MN =NM 1=NC+CM 1=NC +MB .z (2)附加题:CN ﹣BM =MN证明:如图,在CN 上截取CM 1,使CM 1=BM ,连接MN ,DM 1∵∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠DBM =∠DCM 1=90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∵∠BDM +∠BDN =60°,∴∠CDM 1+∠BDN =60°.∴∠NDM 1=∠BDC ﹣(∠M 1DC +∠BDN )=120°﹣60°=60°.∴∠M 1DN =∠MDN . ∵ND =ND ,∴△MDN ≌△M 1DN . ∴MN =NM 1=NC ﹣CM 1=NC ﹣BM,即MN =NC ﹣BM .z 十五.角平分线的性质(共1小题)39.如图,△ABC 的三边AB 、BC 、CA 长分别为40、50、60.其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .【答案】见试题解答内容【解答】解:过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,∵OA ,OB ,OC 是△ABC 的三条角平分线,∴OD =OE =OF ,∵△ABC 的三边AB 、BC 、CA 长分别为40、50、60,∴S △ABO :S △BCO :S △CAO =(AB •OD ):(BC •OF ):(AC •OE )=AB :BC :AC =40:50:60=4:5:6.故答案为:4:5:6.十六.线段垂直平分线的性质(共1小题) 40.如图,△ABC 中,AB =AC ,∠BAC =54°,点D 为AB 中点,且OD ⊥AB ,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为度.【答案】见试题解答内容z 【解答】解:法一:如图,连接OB 、OC ,∵∠BAC =54°,AO 为∠BAC 的平分线,∴∠BAO =∠BAC =×54°=27°,又∵AB =AC ,∴∠ABC =(180°﹣∠BAC )=(180°﹣54°)=63°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =27°,∴∠OBC =∠ABC ﹣∠ABO =63°﹣27°=36°,∵AO 为∠BAC 的平分线,AB =AC ,∴△AOB ≌△AOC (SAS ),∴OB =OC ,∴点O 在BC 的垂直平分线上,又∵DO 是AB 的垂直平分线,∴点O 是△ABC 的外心,∴∠OCB =∠OBC =36°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE =CE , ∴∠COE =∠OCB =36°, 在△OCE 中,∠OEC =180°﹣∠COE ﹣∠OCB =180°﹣36°﹣36°=108°.法二:证明点O 是△ABC 的外心,推出∠BOC =108°,根据OB =OC ,推出∠OCE =36°可得结论.故答案为:108.z 十七.等腰三角形的性质(共4小题)41.如图,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )A .2.5秒B .3秒C .3.5秒D .4秒 【答案】D【解答】解:设运动的时间为x cm ,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动, 当△APQ 是等腰三角形时,AP =AQ ,AP =20﹣3x ,AQ =2x即20﹣3x =2x ,解得x =4(cm ).故选:D .42.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n = 9 .【答案】见试题解答内容【解答】解:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A,…,∵∠BOC =9°,z ∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°n <90°,解得n <10.由于n 为整数,故n =9.故答案为:9.43.如图所示,AOB 是一钢架,且∠AOB =10°,为了使钢架更加坚固,需在其内部添加一些钢管EF ,FG ,GH …,添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.【答案】见试题解答内容【解答】解:∵添加的钢管长度都与OE 相等,∠AOB =10°,∴∠GEF =∠FGE =20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.44.如图,△ABC 中AB =AC ,BC =6,点P 从点B 出发沿射线BA 移动,同时,点Q 从点C 出发沿线段AC 的延长线移动,已知点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线垂足为E ,当点P 、Q 在移动的过程中,线段BE 、DE 、CD 中是否存在长度保持不变的线段?请说明理由.【答案】见试题解答内容【解答】解:(1)如图,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP =CQ ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴证得△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=3,∴CD=CF=;(2)分两种情况讨论,得ED为定值,是不变的线段,如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,z∵△PBF为等腰三角形,∴PB=PF,BE=EF,∴PF=CQ,∴FD=DC,∴ED=EF+FD=BE+DC=BC=3,∴ED为定值,同理,如图,若P 在BA的延长线上,z作PM ∥AC 的延长线于M ,∴∠PMC =∠ACB ,又∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠PMC ,∴PM =PB ,根据三线合一得BE =EM ,同理可得△PMD ≌△QCD ,所以CD =DM ,∵BE =EM ,CD =DM ,∴ED =EM ﹣DM =﹣DM =+﹣DM =3+DM ﹣DM =3, 综上所述,线段ED 的长度保持不变.十八.等边三角形的性质(共1小题)45.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉如图正三角形纸板边长的)后,得图③,④,…,记第n (n ≥3)块纸板的周长为P n ,则P n﹣P n ﹣1的值为( )zA .B .C .D . 【答案】C【解答】解:P 1=1+1+1=3,P 2=1+1+=,P 3=1+++×3=,P 4=1+++×2+×3=, …∴P 3﹣P 2=﹣==, P 4﹣P 3=﹣==,则Pn ﹣Pn ﹣1==.故选:C .十九.轴对称-最短路线问题(共3小题)46.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( )。
北师大版七年级下册数学期末总复习资料整理
北师大版七年级数学下册总复习第一章 整式的乘除一、幂的运算性质1、同底数幂相乘:底数不变,指数相加. n m n m a a a +=∙ ()0≠a2、幂的乘方:底数不变,指数相乘. ()mn nm a a = ()0≠a3、积的乘方:把积中的每一个因式各自乘方,再把所得的幂相乘. ()m m m b a ab = ()0,0≠≠b a4、零指数幂:任何一个不等于0的数的0次幂等于1.10=a ,(0≠a )注意00没有意义.5、负整数指数幂:p p aa 1=-(p 为正整数,0≠a ) 6、同底数幂相除:底数不变,指数相减.n m n m a a a -=÷ ()0≠a注意:以上公式的正反两方面的应用. 二、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式.三、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项. 四、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘以另一个多项式的每一项. ()()bn bm an am n m b a +++=++ 五、平方差公式两数的和乘以这两数的差,等于这两数的平方差.即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方. ()()22b a b a b a -=-+ 六、完全平方公式两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍.()2b a +=222b ab a ++ ()2222b ab a b a +-=-七、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式. 八、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式.第二章 相交线与平行线一、互余、互补、对顶角1、相加等于90°的两个角称这两个角互余.性质:同角(或等角)的余角相等.2、相加等于180°的两个角称这两个角互补.性质:同角(或等角)的补角相等.3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角.性质:对顶角相等.4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角.(相邻且互补)二、三线八角:两直线被第三条直线所截①在两直线的相同位置,在第三条直线的同侧的两个角叫同位角.②在两直线之间(内部),在第三条直线的两侧的两个角叫内错角.③在两直线之间(内部),在第三条直线的同侧的两个角叫同旁内角.三、平行线的判定及性质同位角相等→两直线平行内错角相等→两直线平行同旁内角互补→两直线平行四、尺规作图(用圆规和直尺作图)①作一条线段等于已知线段.②作一个角等于已知角.第三章三角形一、认识三角形1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边.(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)3、三角形的内角和是180°;直角三角形的两锐角互余.4、三角形按角分类:锐角三角形 (三个角都是锐角);直角三角形 (有一个角是直角);钝角三角形 (有一个角是钝角)5、三角形的特殊线段:a) 三角形的中线:连结顶点与对边中点的线段.(分成的两个三角形面积相等)b) 三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段.c) 三角形的高:顶点到对边的垂线段.(每一种三角形的作图)二、全等三角形:1、全等三角形:能够重合的两个三角形.2、全等三角形的性质:全等三角形的对应边、对应角相等.3、全等三角形的判定:注意:三个角对应相等的两个三角形不能判定两个三角形形全等;AAA两条边与其中一条边的对角对应相等的两个三角形不能判定两个三角三角形全等SSA 4、全等三角形的证明思路:5、三角形具有稳定性,三、作三角形1、已经三边作三角形2、已经两边与它们的夹角作三角形3、已经两角与它们的夹边作三角形(已经两角与其中一角的对边转化成这种情况)4、已经斜边与一条直角边作直角三角形第四章变量之间的关系一、变量、自变量与因变量①两个变量x与y,y随x的改变而改变,那么x是自变量(先变的量),y是因变量(后变的量).二、变量之间的表示方法:①列表法②关系式法:能精确地反映自变量与因变量之间数值的对应关系.③图象法:用水平方向的数轴(横轴)上的点表示自变量,用坚直方向的数轴(纵轴)表示因变量.第五章生活中的轴对称一、轴对称图形与轴对称①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形.这条直线叫做对称轴.②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称.这条直线叫做对称轴.③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形二、角平分线的性质:角平分线上的点到角两边的距离相等.∵∠1=∠2 PB⊥OB PA⊥OA ∴ PB=PA三、线段垂直平分线:①概念:垂直且平分线段的直线叫做这条线段的垂直平分线.②性质:线段垂直平分线上的点到线段两个端点的距离相等.∵ OA=OB CD⊥AB ∴ PA=PB四、等腰三角形性质: (有两条边相等的三角形叫做等腰三角形)①等腰三角形是轴对称图形; (一条对称轴)②等腰三角形底边上中线,底边上的高,顶角的平分线重合; (三线合一)③等腰三角形的两个底角相等. (简称:等边对等角)五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等.(简称:等角对等边)六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质.①等边三角形的三条边相等,三个角都等于60;②等边三角形有三条对称轴.七、轴对称的性质:①关于某条直线对称的两个图形是全等形;②对应线段、对应角相等;③对应点的连线被对称轴垂直且平分;④对应线段如果相交,那么交点在对称轴上. 八、镜子改变了什么:1、物与像关于镜面成轴对称;(分清左右对称与上下对称)2、常见的问题:①物体成像问题;②数字与字母成像问题;③时钟成像问题第六章 概率初步事件P 出现的结果数一、概率:反映事件发生可能性大小的数.所有出现的结果总数出现的结果数事件的概率事件pp所有出现的结果的总数 二、事件的分类三、游戏是否公平:双方事件发生的概率是否相等.。
北师大版七年级第二学期期末数学试卷及答案七
北师大版七年级第二学期期末数学试卷及答案一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上.1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.2.(3分)计算a4÷(﹣a2)的结果是()A.a2B.a C.﹣a2D.﹣a63.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣84.(3分)如图把一块含有30°角的直角三角板两个顶点放在一把直尺的对边上,如果∠1=25°,那么∠2的度数为()A.25°B.35°C.45°D.55°5.(3分)汽车开始行驶时,油箱内有油50升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为()A.B.C.D.6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC7.(3分)一个小球在如图所示的方砖上自由滚动,并随机地停留在某块方砖上,则最终停在阴影部分上的概率是()A.B.C.D.不确定8.(3分)若9x2﹣kxy+49y2是一个完全平方式,那么k的值是()A.42B.﹣42C.±21D.±429.(3分)如图,已知AD是△ABC的角平分线,ED是线段AB的垂直平分线,∠ACB=90°,AC=6,则BE的长为()A.5B.6C.7D.1210.(3分)如图,在长方形ABCD中,AD=16,AB=8,点M、N分别在AD、BC上,将长方形ABCD沿MN折叠,使点A,B分别落在长方形ABCD外部的点A′,B′处,则阴影部分的图形的周长为()A.12B.24C.48D.56二、填空题(每小题3分,共15分)11.(3分)已知∠a=35°,则∠a的余角是.12.(3分)若m=20,按下列程序计算,最后得出的结果是.13.(3分)某镇要修建一条灌溉水渠,如图所示,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,为了保持水渠CE与AB方向一致,则∠BCE为度.14.(3分)如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=),若圆柱的容积为300π,则三个球的体积之和为.(结果保留π)15.(3分)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x(x+4y),其中x=1,y=﹣1.17.(10分)计算(1)(x3y3+4x2y2﹣3xy)÷(﹣3xy);(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2.18.(9分)如图,在正方形网格中,每个小正方形的边长都是1,网格中有一条直线l,△ABC的三个顶点A、B、C均在格点处.(1)画出△ABC关于直线l的对称图形△A'B'C';(2)求△A'B'C'的面积.19.(9分)桌子上放有两张卡片,正面分别写有4cm,5cm;小明手里有四张卡片,正面分别写有1cm,3cm,4cm和5cm.将卡片正面向下,小亮随机从小明手里抽取一张,与桌子上的卡片放在一起,以卡片上的数量分别作为三条线段的长度,请回答下列问题:(1)求这三条线段能构成三角形的概率;(2)求这三条线段能构成等腰三角形的概率.20.(9分)如图,在△ABC和△BDE中,BA=BC,BE=BD,∠ABC=∠DBE=90°,连接AE、DC,试说明:△ABE≌△CBD.21.(9分)直线AB、CD交于点O,OE为∠BOD的平分线,OF⊥OE,CG∥OE,且∠C=30°.(1)求∠AOE为多少度;(2)判断∠FOA与∠FOD的大小关系,并说明理由.22.(10分)(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是.(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:.(4)应用公式计算:(1﹣)(1﹣)(1﹣).23.(11分)在一次劳动技能竞赛中,甲、乙两名工人同时生产相同数量的一种口罩,他们生产的口罩数y(个)与生产所用时间t(时)之间的关系如图所示.(1)在甲生产的过程中,自变量是,因变量是;(2)甲、乙两人中,先完成生产任务;(3)当甲、乙所生产的口罩个数相等时,求t的值.参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上.1.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念的对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)计算a4÷(﹣a2)的结果是()A.a2B.a C.﹣a2D.﹣a6【分析】根据整式的运算法则即可求出答案.【解答】解:原式=﹣a2,故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.3.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000095=9.5×10﹣7,故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)如图把一块含有30°角的直角三角板两个顶点放在一把直尺的对边上,如果∠1=25°,那么∠2的度数为()A.25°B.35°C.45°D.55°【分析】根据两直线平行,内错角相等可得∠3=∠1,然后根据∠2=60°﹣∠3计算即可得解.【解答】解:∵直尺的两边互相平行,∴∠3=∠1=25°,∴∠2=60°﹣∠3,=60°﹣25°,=35°.故选:B.【点评】本题考查了平行线的性质,直角三角板的知识,熟记性质并准确识图是解题的关键.5.(3分)汽车开始行驶时,油箱内有油50升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的关系用图象表示应为()A.B.C.D.【分析】根据题意,可以写出Q与t的函数关系式,然后即可判断哪个选项中的函数图象符合题意,本题得以解决.【解答】解:由题意可得,Q=50﹣5t,当t=0时,Q=50,当Q=0时,t=10,故选:C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能使△ABC≌△DCB的是()A.AB=DC B.∠A=∠D C.AC=DB D.∠ACB=∠DBC【分析】根据全等三角形的判定解决问题即可.【解答】解:∵∠ABC=∠DCB,BC=CB,要使得△ABC≌△DCB,可以添加:∠A=∠D,AB=DC,∠ACB=∠DBC,故选:C.【点评】本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.7.(3分)一个小球在如图所示的方砖上自由滚动,并随机地停留在某块方砖上,则最终停在阴影部分上的概率是()A.B.C.D.不确定【分析】根据几何概率的求法:最终停留在阴影区域的概率就是阴影区域的面积与总面积的比值.【解答】解:观察这个图可知:阴影区域(6块)的面积占总面积(15块)的=,则它最终停留在阴影部分的概率是,故选:A.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.8.(3分)若9x2﹣kxy+49y2是一个完全平方式,那么k的值是()A.42B.﹣42C.±21D.±42【分析】利用完全平方公式的结构特征判断即可确定出k的值.【解答】解:∵9x2﹣kxy+49y2是一个完全平方式,∴k=±42,故选:D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9.(3分)如图,已知AD是△ABC的角平分线,ED是线段AB的垂直平分线,∠ACB=90°,AC=6,则BE的长为()A.5B.6C.7D.12【分析】依据角平分线的性质即可得到DC=DE,再判定Rt△ACD≌Rt△AED,即可得到AC=AE,进而得出BE的长与AC的长相等.【解答】解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AE,∴DC=DE,∠C=∠AED=90°,又∵AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵ED是线段AB的垂直平分线,∴AE=BE,∴AC=AE=BE=6,故选:B.【点评】本题主要考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.10.(3分)如图,在长方形ABCD中,AD=16,AB=8,点M、N分别在AD、BC上,将长方形ABCD沿MN折叠,使点A,B分别落在长方形ABCD外部的点A′,B′处,则阴影部分的图形的周长为()A.12B.24C.48D.56【分析】根据折叠的性质,得A'M=AM,A'B'=AB,B'N=BN,即可得出阴影部分的周长等于矩形的周长.【解答】解:根据折叠的性质,得A'M=AM,A'B'=AB,B'N=BN,∴阴影部分图形的周长=A'B'+B'N+NC+A'M+MD+CD=AB+(BN+NC)+(AM+MD)+CD=AB+BC+AD+CD=2AD+2AB=2(16+8)=48.故选:C.【点评】此题主要考查了翻折变换以及矩形的性质,关键是要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.二、填空题(每小题3分,共15分)11.(3分)已知∠a=35°,则∠a的余角是55°.【分析】根据余角的概念计算,得到答案.【解答】解:90°﹣∠a=90°﹣35°=55°,则∠a的余角是55°,故答案为:55°.【点评】本题考查的是余角的概念,如果两个角的和等于90°,就说这两个角互为余角.12.(3分)若m=20,按下列程序计算,最后得出的结果是21.【分析】根据数值转换机列代数式,再代入计算即可求解.【解答】解:由题意得,当m=20时,原式=.故答案为21.【点评】本题主要考查代数式求值,列代数式是解题的关键.13.(3分)某镇要修建一条灌溉水渠,如图所示,水渠从A村沿北偏东65°方向到B村,从B村沿北偏西25°方向到C村,为了保持水渠CE与AB方向一致,则∠BCE为90度.【分析】利用平行线的性质得出CE∥BD,可得∠NCE=25°+65°=90°,进而得出∠BCE的度数即可得出答案.【解答】解:如图所示:由题意可得:∠1=65°,当CE保持与AB的方向一致,则CE∥BD,可得∠NCE=25°+∠1=25°+65°=90°,故∠BCE=180°﹣∠NCE=90°,故答案为:90.【点评】此题主要考查了方向角以及平行线的性质,得出∠FCE的度数是解题关键.14.(3分)如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=),若圆柱的容积为300π,则三个球的体积之和为200π.(结果保留π)【分析】根据圆柱体的体积和球的体积的计算公式即可得到结果.【解答】解:设球的半径为r,根据题意得:三个球的体积之和=3×πr3=4πr3,圆柱体盒子容积=πr2•6r=6πr3,=,300π×=200π.答:三个球的体积之和是200π.故答案为:200π.【点评】本题考查了圆柱体的体积,球的体积的计算,整式的混合运算,熟记圆柱体的体积和球的体积的计算公式是解题的关键.15.(3分)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为18或70.【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x(x+4y),其中x=1,y=﹣1.【分析】原式利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2+2xy+y2+x2﹣y2﹣2x2﹣8xy=﹣6xy,当x=1,y=﹣1时,原式=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.17.(10分)计算(1)(x3y3+4x2y2﹣3xy)÷(﹣3xy);(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2.【分析】(1)直接利用整式的除法运算法则计算得出答案;(2)直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【解答】解:(1))(x3y3+4x2y2﹣3xy)÷(﹣3xy)=x3y3÷(﹣3xy)+4x2y2÷(﹣3xy)﹣3xy÷(﹣3xy)=﹣x2y2﹣xy+1;(2)﹣12+(π﹣3.14)0﹣(﹣)﹣2=﹣1+1﹣9=﹣9.【点评】此题主要考查了整式的除法运算以及实数运算,正确掌握相关运算法则是解题关键.18.(9分)如图,在正方形网格中,每个小正方形的边长都是1,网格中有一条直线l,△ABC的三个顶点A、B、C均在格点处.(1)画出△ABC关于直线l的对称图形△A'B'C';(2)求△A'B'C'的面积.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)利用分割法求三角形的面积即可.【解答】解:(1)如图,△A'B'C'即为所求.(2)S△A′B′C′=3×4﹣×1×4﹣×2×2﹣×2×3=12﹣2﹣2﹣3=5.【点评】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是熟练掌握轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(9分)桌子上放有两张卡片,正面分别写有4cm,5cm;小明手里有四张卡片,正面分别写有1cm,3cm,4cm 和5cm.将卡片正面向下,小亮随机从小明手里抽取一张,与桌子上的卡片放在一起,以卡片上的数量分别作为三条线段的长度,请回答下列问题:(1)求这三条线段能构成三角形的概率;(2)求这三条线段能构成等腰三角形的概率.【分析】先利用列举法展示所有5种可能的结果数,再分别根据三角形三边的关系、等腰三角形的判定找出两个事件的结果数,然后根据概率公式计算即可.【解答】解:(1)共有5种可能的结果数,它们是:1、4、5;3、4、5;4、4、5;5、4、5;其中这三条线段能构成三角形的有3、4、5;4、4、5;5、4、5这3种结果,∴这三条线段能构成三角形的概率为;(2)这三条线段能构成等腰三角形的有2种结果,所以这三条线段能构成等腰三角形的概率为=.【点评】本题考查概率公式、三角形的三边关系、等腰三角形的判定,解题的关键是明确题意,可以写出所有的可能性,求出相应的概率.20.(9分)如图,在△ABC和△BDE中,BA=BC,BE=BD,∠ABC=∠DBE=90°,连接AE、DC,试说明:△ABE≌△CBD.【分析】由“SAS”可证△ABE≌△CBD.【解答】证明:∵∠ABC=∠DBE=90°,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS).【点评】本题考查了全等三角形的判定,掌握全等三角形的判定是本题的关键.21.(9分)直线AB、CD交于点O,OE为∠BOD的平分线,OF⊥OE,CG∥OE,且∠C=30°.(1)求∠AOE为多少度;(2)判断∠FOA与∠FOD的大小关系,并说明理由.【分析】(1)利用平行线的性质可得∠DOE=∠C,再结合角平分线定义可得∠BOE=∠DOE=30°,根据邻补角互补可得答案;(2)利用垂线定义,邻补角的性质分别计算出∠FOA与∠FOD的度数即可.【解答】解:(1)∵CG∥OE,∴∠DOE=∠C=30°,∵OE为∠BOD的平分线,∴∠BOE=∠DOE=30°,∴∠AOE=180°﹣30°=150°;(2)∠AOF=∠DOF,理由:∵∠BOE=∠DOE=30°,∴∠AOD=120°,∵OF⊥OE,∴∠EOF=90°,∴∠DOF=60°,∴∠AOF=60°,∴∠AOF=∠DOF.【点评】此题主要考查了平行线的性质,以及角平分线的定义,关键是理清图中角之间的关系.22.(10分)(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是a2﹣b2.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是(a+b)(a﹣b).(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:(a﹣b)(a+b)=a2﹣b2.(4)应用公式计算:(1﹣)(1﹣)(1﹣).【分析】(1)根据面积的和差,可得答案;(2)根据矩形的面积公式,可得答案;(3)根据图形割补法,面积不变,可得答案;(4)根据平方差公式计算即可.【解答】解:(1)如图①所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知(a﹣b)(a+b)=a2﹣b2,故答案为:(a﹣b)(a+b)=a2﹣b2;(4)(1﹣)(1﹣)(1﹣)====.【点评】本题考查的是平方差公式的推导和运用,灵活运用平方差公式、掌握数形结合思想是解题的关键.23.(11分)在一次劳动技能竞赛中,甲、乙两名工人同时生产相同数量的一种口罩,他们生产的口罩数y(个)与生产所用时间t(时)之间的关系如图所示.(1)在甲生产的过程中,自变量是t,因变量是y;(2)甲、乙两人中,乙先完成生产任务;(3)当甲、乙所生产的口罩个数相等时,求t的值.【分析】(1)根据自变量与因变量的含义得到时间是自变量,口罩数是因变量;(2)观察图象可得甲、乙两人中,乙先完成生产任务;(3)观察图象可得,当甲、乙所生产的口罩个数相等时,t的值有两个,其中一个值是3,另一个值可列方程解答.【解答】解:(1)函数图象反映口罩数随时间变化的图象,则t是自变量,y为因变量;故答案为:t;y;(2)观察图象可知,乙先完成生产任务;故答案为:乙;(3)当甲、乙所生产的口罩个数相等时,t的值有两个,其中一个是3,甲后来的速度为:(4000﹣400)÷(8﹣2)=600(个/小时),乙后来的速度为:(4000﹣1000)÷(7﹣5)=1500(个/小时),则:400+600(t﹣2)=1500(t﹣5),解得t=,即当甲、乙所生产的口罩个数相等时,t=3或.【点评】本题主要考查了函数的图象,从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.。
北师大版七年级数学下册知识点梳理
北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。
2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。
3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。
4.整式是单项式和多项式的统称。
二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
逆用:a的m+n次方等于a的m次方乘以a的n次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。
逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。
3.幂的乘方法则:a的m次方的n次方等于a的mn次方。
逆用:a的mn次方等于a的m次方的n次方。
4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。
逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。
5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。
6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。
7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。
8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。
9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。
推广:有一项完全相同,另一项只有符号不同,结果等于相同。
连用变化。
10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。
a-b)的平方等于a的平方减去2ab加上b的平方。
逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。
a的平方减去2ab加上b的平方等于(a-b)的平方。
完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。
2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。
(完整版)北师大版七年级下期末总复习代数部分
望子成龙学校 七年级〔下〕 数学资料 Jump for the sun, at least you may land on the moon.期末复习之代数篇知识要点平方差公式: ( a b)( a b)完满平方和: (a b) 2完满平方差: (a b) 2专题复习专题一:整式的运算一、选择题2mn ,π,21、代数式- 7x 2+ 1,4xy ,21 1中,单项式的个数是〔〕5232、以下运算正确的选项是〔 〕A. 3x 2x 1B. ( 2 a 1) 24 a 24a123a 6( a 2 )3a 6C. ( a)·a D. 3、以下运算正确的选项是〔〕A . y 7· y= y 7B. (2ab) 2 4a 2 2ab b 2C . ( 3ab) 26a 2b 2 D . ( 2a 3)( 2a 3) 9 4a 24、如图〔一〕,在边长为 a 的正方形中,挖掉一个边长为b 的小正方形 (a b) ,把余下的局部剪成一个矩形 〔如图 〔二〕〕,经过计算两个图形 〔阴影局部〕 的面积, 考据了一个等式,那么这个等式是〔〕A . a2b 2(a b)(a b)aB . (ab)2a 2 2ab b2abC . (a b)2 a 22ab b 2D . (a2b)( a b)a 2 ab 2b 2b第4题图2图一图二5、1 的相反数是 ( )3A.1B.1 C. 9D.9996、多项式2a 2 b3x 25的项数和次数分别为〔〕A.3 ,2B. 3, 5 , 3D. 2,37、以下计算正确的选项是〔 〕A. 2a 2a 22a 4B.2a 1 12aC. ( x 1)( x 1)x 2 1D.( ab) 2a 2 2ab b 21望子成龙学校七年级〔下〕数学资料Jump for the sun, at least you may land on the moon.8、假设x4y43x2 y b 4x a y3是一个二项式,那么 a b等于〔〕A. 1B.8C.8D.1 889、以下计算中正确的选项是〔〕A.2m? 3n6m n B. (a - b)2 a 2 - b2 C. (-3a4)26a8 D. (a - b)3(b - a)2(a - b)510、假设a = (-3)- 2-1π0,那么 a 、b、 c 的大小关系是〔〕2, b = (-1), c = (-)2A、 a>b> cB、a> c> bC、 c> a>bD、c>b>a11、以下各式能用平方差公式计算的是〔〕A、〔 2a+ b〕〔 2b- a〕B11、〔 x+1〕〔-x- 1〕22C、〔 3x- y〕〔- 3x+ y〕D、〔- x- y〕〔- x+ y〕12、如图,长方形的长为a,宽为 b,横向阴影局部为长方形,纵向阴影部分为平行四边形,它们的宽都为c,那么空白局部的面积为〔〕cA、bc ab ac c 2B、 ab bc ac c 2bcC、a2ab bc acD、 b2bc a 2aba13、3m n4 , 35,那么 33m 2n=〔〕A、 39B、 2C64D4、25、514、在数轴上,大于- 2.5 且小于的整数有〔〕A.3 个个个个15、以下关于-23的说法中,正确的选项是〔〕A. 三个- 2 相乘B.–2 的三次幂的–3 次幂 D.2 的三次幂的相反数二、填空题1、单项式m2 n,次数是.的系数是52、计算:(-2xy3z2)4=.3、假设3m 4 ,9n= 5,那么33m 4 n = . 4、假设 2x 3y4 ,那么4x8 y的值为2望子成龙学校七年级〔下〕 数学资料 Jump for the sun, at least you may land on the moon.5、若是 x 23x 3 0 ,那么代数式x 3 5x 2 3x 10 的值为6、假设 x 2 mx 15 x 3 x n ,那么 m =, n =.7、 假设(2x1)(3 x) ax 2bx c ,那么 a=,b=,c=.8、: a + 1= 3,那么 a 2+1=aa 29、假设 a+b=3,ab=3, 那么 a2b 2.10、 (x+y) 2-2x-2y+1=0 ,那么 x+y= .11、 x y 6且 xy4,那么 (x y)2=; x 4y 4 =.12、 a1999x 2000, b1999x 2001 , c1999x2002,那么多项式a 2 +b 2 +c 2 - ab - ac - bc 的值13、假设 x22m 5 xy9 y 2 是一个完满平方式,那么m=.14、若是多项式 x 2+ 8x+ k 是一个完满平方式,那么 k 的值是15、在多项式 4x 2 1 中,增加一个单项式,使其成为一个完满平方式,那么增加的单项式是.〔只写出一个即可〕16、假设 x23x 4 x 2 ax 1 的张开式中,含 x 2 项的系数为1,那么 a 的值是.17、长方形面积是 3a 2- 3ab + 6a ,一边长为 3a ,那么它周长是.三、计算题1、解答以下各题 .①a 3 a 3a 4 =; ②771 = ; ③2711 20219 π 0=.22132 、计算:2m 2 n3 3m 3 n4 mn 223 、先化简 , 再求值 : x y2x y x y 2 y 2y x1y , 其中 x1 ,220211 y202134、计算 .(1) (2021 )0-2 2+ ( 1) 211(2)(9x3 y 26x 2 y 3xy 2 ) ( 3xy )23(3) (a2) 2(2a 1)(a 4)〔4〕用乘法公式计算:x 2y 3 x 2 y3〔5〕(1x2)(1x 2) ( 3 x)( x 3)〔 6〕(9x3y2 6 x2 y 3xy 2 ) (3xy) 225. 解关于 x 的方程:(x2)2( x 2)( x 2) 26. 先化简,再求值[(2 x+y) 2-y( y+ 4x) - 8x]÷ 2x.其中 x=2, y=-14专题二:生活中的数据1、以下数据中,是精确值的有〔〕个〔 1〕在 5· 12大地震中,估计有12000人死亡;〔 2〕某细胞的直径为百万分之一米;〔 3〕中国的国土面积约为960 万 km2〔 4〕我家有3 口人〔 5〕七〔 2〕班有 53 人A、 1B、 2C、 3D、 42、课上老师给出了下面的数据,请问哪一个数据是精确的〔〕A、 2003 年美国发动的伊拉克战争每个月耗资约40 亿美元B、地球上煤储量为 5 万亿吨左右C、人的大脑约有1× 1010亿个细胞D、某次期中考试中小颖的数学成绩是98 分3、〔台州·中考题〕关于四舍五入获取的近似数3.20 × 105,以下说法正确的选项是〔〕A、有 3 个有效数字,精确到百分位B、有 6 个有效数字,精确到个位C、有 2 个有效数字,精确到万位D、有 3 个有效数字,精确到千位4、关于近似数的说法错误的选项是〔〕A.它有三个有效数字B.它可表示为 5.30 × 10-1C.它精确到百分位D.它精确到5、关于由四舍五入获取的近似数和,以下说法正确的选项是〔〕关于由四舍五入获取的近似数和,以下说法正确的选项是〔〕A. 有效数字和精确度都相同B.有效数字相同,精确度不相同C. 有效数字不相同,精确度相同D.有效数字和精确度都不相同6、以下说法正确的选项是〔〕A、近似数与 6.40 的精确度相同B、近似数有两个有效数字C、近似数 2 万与 20000 的有效数字都是2D、近似数9.03 × 104精确到百位,有效数字是9,0,37、我校操场面积大体是2500 平方米,他的百万分之一能容纳以下哪一种动物〔〕A、蝉B、小狗C、公鸡D、鸽子8、一种细胞的直径约为 1.56 × 10-6米,那么它的一百万倍相当于〔〕A、玻璃跳棋棋子的直径B、数学课本的宽度C、初中学生小丽的身高D、五层楼房的高度9、梵帝岗的国土面积约为0.44 平方千米,它的百万分之一相当于〔〕A、一个操场B、一间房子C、一张桌子D、一本书的封面10、用科学记数法表示0.0000907 ,并保存两个有效数字得〔〕A、 9.1 × 10-4B、 9.1 × 10-5C、 9.0 × 10-5D、 9.0 × 10-411、纳米是一种长度单位, 1 纳米 =10 -9米,某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉直径为〔〕5望子成龙学校七年级〔下〕 数学资料 Jump for the sun, at least you may land on the moon.A.3.5 ×10 4 米×10 -4 米× 10 -5米× 10 -9米12、 2006 年我国自行研制的第三代战机歼— 10 横空出生,其翱翔速度高出倍音速,达到千米 / 小时,该数据用科学计数法表示为〔〕〔保存两个有效数字〕A 、 3×103B、3.0 ×103C 、2.9 × 103D 、2.9 ×10413、某原子的直径约为 0.000 000 000 196米,保存两个有效数字,用科学记数法表示为 。
北师大版七年级下册数学各章知识点总结复习整理
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘 整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1(0)p p a a a -=≠法则:单项式与单项式相乘,把它们的系数、p是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
【高效培优】北师大版七年级数学下册第一章 整式的乘除(章末整理与复习课件)
(ab)n anbn,(其中n为正整数), (abc)n anbncn (其中n为正整数)
练习:计算下列各式。
(2xyz)4,( 1 a2b)3,(2xy2 )3,(a3b2 )3 2
温故知新 4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示:
(其中m、n为正整数)
名师归纳
幂的乘法运算包括同底数幂的乘法、幂的乘方、 积的乘方.这三种运算性质贯穿全章,是整式乘法 的基础.其逆向运用可将问题化繁为简,负数乘方 结果的符号,奇次方得负,偶次方得正.
举一反三
1.下列计算不正确的是( D )
A.2a3 ·a=2a4
B. (-a3)2=a6
C. a4 ·a3=a7
D. a2 ·a4=a8
(其中m、n为正整数)
[(a m )n ] p a mnp (其中m、n、P为正整数)
练习:判断下列各式是否正确。
(a4 )4 a44 a8,[(b2 )3]4 b234 b24 (x2 )2n1 x4n2,(a4 )m (am )4 (a2m )2
温故知新 3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再 把所得的幂相乘。(即等于积中各因式乘方的积。)
(一)整式的乘法
1、同底数的幂相乘 2、幂的乘方
3、积的乘方
4、同底数的幂相除
5、单项式乘以单项式 6、单项式乘以多项式
7、多项式乘以多项式 8、平方差公式
9、完全平方公式
(二)整式的除法
1、单项式除以单项式 2、多项式除以单项式
温故知新 (一)整式的乘法
1、同底数的幂相乘 法则:同底数的幂相乘,底数不变,指数相加。
名师归纳
北师大版七年级数学下册数学各章节知识点总结
第一章:整式的运算同底数幂的乘法幂的乘方积的乘方幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配律.2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入"进行计算。
二、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作a n,读作a的n次方(幂),其中a为底数,n为指数,a n的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:a m﹒a n=a m+n.4、此法则也可以逆用,即:a m+n = a m﹒a n。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
三、幂的乘方1、幂的乘方是指几个相同的幂相乘。
(a m)n表示n个a m相乘。
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。
(a m)n =a mn.3、此法则也可以逆用,即:a mn =(a m)n=(a n)m。
四、积的乘方1、积的乘方是指底数是乘积形式的乘方。
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。
即(ab)n=a n b n。
3、此法则也可以逆用,即:a n b n =(ab)n。
五、三种“幂的运算法则”异同点1、共同点:(1)法则中的底数不变,只对指数做运算. (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式).(3)对于含有3个或3个以上的运算,法则仍然成立.2、不同点:(1)同底数幂相乘是指数相加。
北师大版七年级数学下册-应用代数题100题训练
北师大版七年级数学下册-应用代数题100题训练概述这份文档旨在提供100个应用代数题的训练题目,适用于北师大版七年级数学下册。
这些题目旨在帮助学生巩固和应用他们在代数方面的知识和技能。
目标通过完成这100个应用代数题,学生将能够:- 理解代数概念并有效应用;- 培养解决实际问题的能力;- 提升逻辑思维和推理能力;- 加强对数学的兴趣和自信心。
题目示例以下是一些示例题目,这些题目涵盖了不同的概念和应用场景:1. 用代数式表示一个数字的平方减去5;2. 已知一个正整数的平方与它本身的和是30,求这个正整数;3. 求一个数和它的两倍之和的代数表达式;4. 某数的平方与它自身之和的两倍等于24,求这个数;5. 解方程3(x + 2) = 27;6. 某数字的平方与它自身的和是20,找出这个数字。
请参考文档中的其他题目进行练。
使用建议以下是一些建议,帮助学生有效使用这份训练题目:1. 每个题目都应该认真阅读,并明确问题的要求;2. 尝试在纸上将问题转换为代数表达式;3. 在解决问题时,可以利用已知的数学知识和技巧;4. 如果遇到困难,可以寻求老师或同学的帮助;5. 通过校对答案来检查自己的解答。
总结这份文档提供了100个应用代数题的训练题目,适合北师大版七年级数学下册的学生使用。
通过解决这些问题,学生可以巩固和应用他们在代数方面的知识和技能。
建议学生认真阅读题目并尝试用代数表达式解决问题。
如果遇到困难,可以寻求他人的帮助。
通过这些训练题目,学生将提高解决实际问题的能力,并加强对数学的兴趣和自信心。
北师大版七年级数学下册期末易错题复习详解
北师大版七年级数学下册期末易错题复习详解七(下)数学期末复易错题以下是第一、三、六章的易错题:1.下列事件是必然事件的是()A。
抛掷一枚均匀的骰子,出现6点向上B。
两直线被第三条直线所截,同位角相等C。
366人中至少有2人生日相同D。
实数的绝对值是非负数2.下列事件中,必然事件有:④通常情况下,将水加热到100℃时,水会沸腾。
3.从4名女生和6名男生中选5名学生参加竞赛,规定男生选n名,当n=0时,4名女生中的XXX当选是必然事件;当n=6时,女生XXX当选是不可能的事件;当n=2时,女生XXX当选是随机事件。
4.已知1纳米=0.000 000 001米,则2.04纳米用科学记数法表示为2.04×10^-9米。
5.下列计算正确的是()B。
-a^5C。
(-a-3)(-a+3)=9-a^2D。
(a-b)(a+b)=a^2-b^26.已知x-y=4,xy=-3,则x^2+y^2=25.7.已知A=2x,B是多项式,在计算B+A时,XXX同学把XXX看成了B÷A,结果得到x^2+2x,则XXX。
8.若9a^2+mab+4b^2是一个完全平方式,则m=±12ab。
9.式子4+(a-b)的最小值是4,4-(a-b)的最大值是4,当a=b时取到。
10.代数式5-a^2+2ab-b^2的最大值是4,当a=b=1时取到,此时以a,b为边的三角形是等边三角形。
11.梯形上底长为4,下底长为x,高为2,则梯形面积y与下底x之间的关系式是y=3x-6.12.如图(1)在长方形ABCD中,动点P从B出发,沿BC、CD、DA匀速运动到A停止。
设P运动的路程为x,△ABP的面积为y,y关于x的图像如图(2),则△ABC的面积为()C。
18.13.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资,(调进调出物资的速度均保持不变)。
该仓库库存物资W(吨)与时间t(小时)之间的关系如图所示,则这批物资从开始调进到全部调出所需的时间是()D。
北师大版七年级下数学期末总复习
北师大版七年级下数学期末总复习(培优)一.填空题(共32小题)1.已知m=,n=,那么2016m﹣n=.2.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a+b)5=,并说出第7排的第三个数是.3.已知x4﹣5x3+ax2+bx+c能被(x﹣1)2整除,则(a+b+c)2=.4.我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n为正整数)5.已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=6.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12,12=42﹣22,16=52﹣32,15=42﹣12,21=52﹣22,27=62﹣32……)从上面的例子中可以看到所有大于3的奇数都是智慧数,则2021是第个“智慧数”;第2021个“智慧数”是.7.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,三角形与正方形重叠部分的面积为y,在下面的平面直角坐标系中,线段AB表示的是三角形在正方形内部移动的面积图象,C点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是.8.如图,△ABC的外角平分线CP和内角平分线BP相交于点P,若∠BPC=80°,则∠CAP=.9.如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BC=3DC,S△GEC=3,S△GBD=8,则△ABC的面积是.10.如图,BP是△ABC的内角∠ABC的角平分线,交外角∠ACD的角平分线CP于点P,已知∠A=70°,则∠P的度数为.11.如图,在五边形ABCDE中,已知∠BAE=120°,∠B=∠E=90°,AB=BC=2,AE=DE=4,在BC、DE上分别找一点M、N,则△AMN的最小周长为.12.如图,在△ABC中,AB=6cm,AC=4cm,BD平分∠ABC,CD平分∠ACB,EF过点D且EF∥BC,则△AEF的周长是cm.13.已知(2021﹣a)2+(a﹣2019)2=7,则代数式(2021﹣a)(a﹣2019)的值为.14.计算:(﹣3)2013•(﹣)2011=.15.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.16.若m为正实数,且m﹣=3,则m2﹣=.17.已知a+=3,则a2+的值是.18.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是.19.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).20.在代数式a,π,ab,a﹣b,,x2+x+1,5,2a,中,整式有个;单项式有个,次数为2的单项式是;系数为1的单项式是.21.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=.22.计算:2(1+)(1+)(1+)(1+)+=.23.多项式(mx+8)(2﹣3x)展开后不含x一次项,则m=.24.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.25.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=.26.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.27.如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1=.28.如图,将一张长方形纸片ABCD折叠成如图所示的形状,∠EGC=26°,则∠DFG=.29.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.30.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFB=65°,则∠AED′等于°.31.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是.32.如图①是长方形纸带,∠DEF=α,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中的∠CFE 的度数是.二.解答题(共23小题)33.阅读下列材料:一般地,n个相同的因数a相乘记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.34.已知5m=2,5n=4,求52m﹣n和25m+n的值.35.已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3和x2项.(1)求m、n的值;(2)求(m+n)(m2﹣mn+n2)的值.36.阅读下列解答过程:已知:x≠0,且满足x2﹣3x=1.求:的值.解:∵x2﹣3x=1,∴x2﹣3x﹣1=0∴,即.∴==32+2=11.请通过阅读以上内容,解答下列问题:已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7,求:(1)的值;(2)的值.37.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18超过18吨的部分吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.38.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)012345温度(℃)201482﹣4﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?39.宁安市与哈尔滨市两地相距360千米.甲车在宁安市,乙车在哈尔滨市,两车同时出发,相向而行,在A地相遇.为节约费用(两车相遇并换货后,均需按原路返回出发地),两车换货后,甲车立即按原路返回宁安市.设每车在行驶过程中速度保持不变,两车间的距离y(千米)与时间x(小时)的函数关系如图所示.根据所提供的信息,回答下列问题:(1)求甲、乙两车的速度;(2)说明从两车开始出发到5小时这段时间乙车的运动状态.40.如图,AC、BD相交于O,BE、CE分别平分∠ABD、∠ACD,且相交于点E.求证:∠E=(∠A+∠D).41.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE =BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.42.已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.43.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.44.如图,AB=50km,AB到沪渝高速公路直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP与直线X 垂直,垂足为P),P到A、的距离之和S1=P A+PB,图(2)是方案二的示意图(点A关于直线X的对称点是A′,连接B′A′交直线X于点P),P到A、B的距离之和S2=P A+PB.(1)求S1、S2,并比较它们的大小;(2)请你说明S2=P A+PB的值为最小;(3)假设另外一条高速公路Y与沪渝高速公路垂直,如图(3),B到直线Y的距离为30km,请你在X 旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.45.如图(1),A、B两单位分别位于一条封闭街道的两旁(直线L1、L2是街道两边沿),现准备合作修建一座过街人行天桥.(1)天桥应建在何处才能使由A经过天桥走到B的路程最短?在图(2)中作出此时桥PQ的位置,简要叙述作法并保留作图痕迹.(注:桥的宽度忽略不计,桥必须与街道垂直).(2)根据图(1)中提供的数据计算由A经过天桥走到B的最短路线的长.(单位:米)46.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)47.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?48.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.49.如图,在等腰△ABC中,AB=AC=3cm,∠B=30°,点D在BC边上由C向B匀速运动(D不与B、C重合),匀速运动速度为1cm/s,连接AD,作∠ADE=30°,DE交线段AC于点E.(1)在此运动过程中,∠BDA逐渐变(填“大”或“小”);D点运动到图1位置时,∠BDA=75°,则∠BAD=.(2)点D运动3s后到达图2位置,则CD=.此时△ABD和△DCE是否全等,请说明理由;(3)在点D运动过程中,△ADE的形状也在变化,判断当△ADE是等腰三角形时,∠BDA等于多少度(请直接写出结果)50.如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;(ⅱ)如图2,若AB=10,S△ABC=30,∠CAF=∠ABD,求线段BP的长.51.如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH⊥BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连接MD,过点D作DN⊥DM 交线段OA延长线于N点,则S△BDM﹣S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.52.已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.53.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线L上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程.54.如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.55.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程为km;快车的速度为km/h;慢车的速度为km/h;(2)出发h,快慢两车距各自出发地的路程相等;(3)快慢两车出发h相距150km.参考答案一.填空题(共32小题)1.1;2.a5+5a4b+10a3b2+10a2b3+5ab4+b5;15;3.16;4.;k n+2017;5.2;6.1514;2697;7.乙;8.10°;9.30;10.35°;11.4;12.10;13.﹣;14.9;15.﹣;16.3;17.7;18.6;19.ab;20.8;5;ab;a;21.﹣9;22.4;23.12;24.15°;25.82°;26.40°;27.90°;28.77°;29.80;30.50;31.55°;32.180°﹣3α;。
北师大版七年级数学下册知识点总结
北师大版七年级数学下册知识点总结一、整式的乘除。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n(m、n 为正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方。
- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m、n为正整数)。
- 例如:(3^2)^3 = 3^2×3=3^6。
3. 积的乘方。
- 法则:积的乘方等于乘方的积。
即(ab)^n=a^n b^n(n为正整数)。
- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。
4. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。
- 例如:5^5÷5^3 = 5^5 - 3=5^2。
5. 零指数幂。
- 规定:a^0 = 1(a≠0)。
6. 负整数指数幂。
- 规定:a^-p=(1)/(a^p)(a≠0,p为正整数)。
- 例如:2^-3=(1)/(2^3)=(1)/(8)。
7. 整式的乘法。
- 单项式乘以单项式:系数相乘,同底数幂相乘。
例如:3x^2·2x^3=(3×2)(x^2+3) = 6x^5。
- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(x + 3)=2x^2+6x。
- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x+6。
8. 整式的除法。
- 单项式除以单项式:系数相除,同底数幂相除。
例如:6x^5÷2x^3=(6÷2)(x^5 - 3)=3x^2。
- 多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加。
北师大版七年级下册数学复习提纲(完美版面)
北师大版七年级下册数学复习提纲(完美版面)第一章有理数- 1.1 有理数的概念- 1.1.1 整数的概念和分类- 1.1.2 有理数的概念和表示方法- 1.2 有理数的运算- 1.2.1 加法运算- 1.2.2 减法运算- 1.2.3 乘法运算- 1.2.4 除法运算- 1.3 有理数的比较- 1.3.1 正数和负数的比较- 1.3.2 有理数的大小比较第二章平方根- 2.1 平方根的概念- 2.1.1 平方根的定义和性质- 2.2 平方根的计算- 2.2.1 平方根的估算- 2.2.2 平方根的精确计算- 2.2.3 平方根的应用- 2.3 平方根的运算- 2.3.1 平方根的加法与减法- 2.3.2 平方根的乘法与除法第三章初步认识代数- 3.1 代数的基本概念- 3.1.1 代数的定义和发展- 3.1.2 代数中的字母和数字- 3.2 数学语言及运算法则- 3.2.1 代数式的表示- 3.2.2 代数运算法则- 3.3 字母的应用- 3.3.1 字母的应用问题- 3.3.2 代数式的化简与展开第四章分式与整式- 4.1 分式的概念- 4.1.1 分式的定义和性质- 4.2 分式的运算- 4.2.1 分式的加法与减法- 4.2.2 分式的乘法与除法- 4.3 整式的基本概念- 4.3.1 整式的定义和分类- 4.3.2 整式的加法与减法- 4.3.3 整式的乘法与除法第五章算式的根式表示- 5.1 平方根表达式与算式- 5.1.1 平方根表达式的转化- 5.1.2 平方根表达式的计算- 5.2 立方根表达式与算式- 5.2.1 立方根表达式的转化- 5.2.2 立方根表达式的计算- 5.3 算式的根式表示的应用- 5.3.1 算式的根式表示的实际应用- 5.3.2 表达式化简与问题解答。
北师大版七下数学几何部分期末练习
北师大版七年级下册数学几何及概率部分练习题精选1.已知AB∥CD,分别探讨下列四个图形中∠APC和∠PAB、∠PCD的关系,并说明理由.2.如图所示的四幅图形,都满足AB∥CD,请在每幅图形中写出∠A、∠C,与∠AEC的数量关系(都指图中小于180°的角),并任选一个完成它的证明过程.3.已知直线AB∥CD,(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是.(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是.(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.4.如图,AC∥BD,AB∥CD,∠1=∠E,∠2=∠F,AE交CF于点O,试说明:AE⊥CF5.如图所示,△ABC中,AD⊥BC,AE平分∠BAC.(1)若∠B=30°,∠C=70°,求∠DAE的度数;(2)△ABC中,若∠B=α,∠C=β(α<β),请你根据(1)问的结果大胆猜想∠DAE与α,β间的等量关系,并说明理由6.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.7.如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请你判断他的发现是否正确,并说明理由8.情境观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.求证:AE=2CD.拓展延伸:如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.9. 如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.10.如图,在△ABC中,AB=AC,AD是BC边上的高,AM是△ABC外角∠CAE的平分线.(1)用尺规作图方法,作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明)(2)设DN与AM交于点F,判断△ADF的形状,并证明你的结论11.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E,若∠AFD=158°,求∠EDF的度数12.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数13.已知:如图,在△ABC中,∠ABC=∠ACB,AD⊥BD,AE⊥CE,且AD=AE.求证:△AEC≌△ADB14.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由15.如图,在等边△ABC中,点D为AC上一点,CD=CE,∠ACE=60°.(1)求证:△BCD≌△ACE;(2)延长BD交AE于F,连接CF,若AF=CF,猜想线段BF、AF的数量关系,并证明你的猜想16.如图,AD是△ABC的中线,BE⊥AD于点E,CF⊥AD交AD的延长线于点F.求证:BE=CF17.如图,△ABC是等边三角形,D是AC上一点,BD=CE,∠1=∠2,试判断BC与AE的位置关系,并证明你的结论18.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°,求证:①DC=BC;②AD+AB=AC19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.20.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AB=CD,请你再添加个条件,使得AE=DF,并说明理.21.已知:如图,△ABC和△EFC都是等腰直角三角形,∠ACB=∠ECF=90°,点E在AB边上.(1)求证:△ACE≌△BCF;(2)若∠BFE=60°,求∠AEC的度数22.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E,(1)如图1,①线段CD和BE的数量关系是;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD,BE,DE之间的数量关系.23.已知:如图,AE=CF,DE⊥AC,BF⊥AC,垂足分别为E,F,DE=BF.求证:AB∥CD.24.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA25.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF(1)求证:△ABE≌△CBF;(2)若∠BAE=25°,求∠ACF的度数.26.在△ABC中,AB=AC,AD⊥BC于D,BE⊥AC于E,AE=BE.求证:(1)∠DAB=∠EBC;(2)AF=2CD.27.如图,AB∥ED,已知AC=BE,且点B、C、D三点共线,若∠E=∠ACB.求证:BC=DE.28.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.29.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF30.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.31.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.32.已知:如图,点A,D,C在同一直线上,AB∥EC,AC=CE,∠B=∠EDC.求证:BC=DE.33.如图,∠BAC=∠DAE,∠ABD=∠ACE,AB=AC.求证:BD=CE.34.如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:AD=CF.35.阅读发现:(1)如图①,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD,AE.易证:△BCD≌△BAE.(不需要证明)提出问题:(2)在(1)的条件下,当BD∥AE时,延长CD交AE于点F,如图②,求AF的长.解决问题:(3)如图③,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD,AE.当∠BAE=45°时,点E到AB的距离EF的长为2,求线段CD的长为36.已知:如图,在△ABC中,∠ACB=90°,点D在BC上,且BD=AC,过点D作DE⊥AB于点E,过点B作CB的垂线,交DE的延长线于点F.求证:AB=DF.37.如图,已知∠ABC=90°,D是AB延长线上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,求证:FD⊥CD.38.如图,请你在下列各图中,过点P画出射线AB或线段AB的垂线.39.如图(1),由三角形的内角和或外角和可知:∠ABC=∠A+∠C+∠O在图(2)中,直接利用上述的结论探究:①若AD、CD分别平分∠OAB,∠OCB,且∠O=80°∠B=120°,求∠ADC的度数②AD、CD分别平分∠OAB,∠OCB,猜想∠O,∠ABC,∠ADC之间的等量关系,并说明理由.40.已知:如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E41.如图,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N.试猜想BD与CE 有何关系?并证明你的猜想42.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且OB=OC.求证:AO平分∠BAC43.已知:如图,在△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点E,F 分别在AB,AC边上,连接DE,DF,∠EDF=90°,求证:BE=AF44.如图:△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,点B,C,E在同一条直线上,连结DC.(1)请找出图中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE.45.探究:(1)如图1,在ABC与ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,连结BD、CE.请写出图1中所有全等的三角形:(不添加字母).(2)如图2,已知△ABC,AB=AC,∠BAC=90°,l是过A点的直线,CN⊥l,BM⊥l,垂足为N、M.求证:△ABM≌△CAN.解决问题:(3)如图3,已知△ABC,AB=AC,∠BAC=90°,D在边BC上,DA=DE,∠ADE=90°,求证:AC⊥CE.46.已知:如图,EF⊥BC于点F,ED⊥AB于点D交BC于点M,BD=EF.求证:BM=EM47.如图,在△ABC的外部,分别以AB、AC为直角边,点A为直角顶点,作等腰直角△ABD和等腰直角△ACE,CD与BE交于点P.试证:(1)CD=BE;(2)∠BPC=90°48.如图(1),△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN于点D,BE⊥MN于点E.(1)请说明:△ADC≌△CEB.(2)请你探索线段DE,AD,EB间的等量关系,并说明理由;(3)当直线MN绕点C旋转到图(2)的位置时,其它条件不变,线段DE,AD,EB又有怎样的等量关系?(不必说理由).49.(1)如图①∵∠B+∠D+∠1=180°又∵∠1=∠A+∠2∠2=∠C+∠E∴∠A+∠C+∠E+∠B+∠D=180°(2)将图①变形成图②,∠A+∠DBE+∠C+∠D+∠E仍然为180°,请证明这个结论.(3)将图①变形成图③,则∠A+∠B+∠C+∠D+∠E还为180°,请继续证明这个结论.50.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由51.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F(1)若△CMN的周长为20cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数52.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上53.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论54.已知△ABC,∠ACB=90°,AC=4,MN垂直平分AB,且BM=2CM,求CM的长.55.作图题:(不写作法,但必须保留作图痕迹)如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.56.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留痕迹57.△ABC中,DE,FG分别垂直平分边AB,AC,垂足分别为点D,G.(1)如图,①若∠B=30°,∠C=40°,求∠EAF的度数;②如果BC=10,求△EAF的周长;③若AE⊥AF,则∠BAC=°.(2)若∠BAC=n°,则∠EAF= °(用含n代数式表示)58.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E59.已知△ABC中∠BAC=120°,BC=26,AB、AC的垂直平分线分别交BC于E、F,与ABAC分别交于点D、G.求:(1)∠EAF的度数.(2)求△AEF的周长60.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B61.已知,如图,P是∠AOB平分线上的一点,PC⊥OA,PD⊥OB,垂足分别C、D,求证:OP是CD的垂直平分线.62如图,在△ABC中,E、F分别是AB、AC上的点,AD平分∠BAC,DE⊥AB,DF⊥AC,求证:AD垂直平分EF.63已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长BC至点E,使CE=CD.求证:DB=DE64如图,已知l1,l2分别是△ABC的边AB、BC的垂直平分线,l1与l2相交于点O,试判断线段0A与OC的数量关系65如图,在△ABC中,∠BAC的平分线与BC的垂直平分线相交于点P,连接BP、CP.试问:∠ABP+∠ACP的度数是定值吗?请证明你的结论66.图,已知在△ABC中,∠C=90°,AB的垂直平分线MN交BC于点D.(1)如果∠CAD=20°,求∠B的度数.(2)如果∠CAB=50°,求∠CAD的度数.(3)如果∠CAD:∠DAB=1:2,求∠CAB的度数67.如图,△ABC中,∠B=25°,∠C=40°,AB的垂直平分线DN交BC于D,AC的垂直平分线EF交BC于E,连接AD、AE.求△ADE各内角的度数68. 数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E 作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).69.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.70.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N,(1)若△CMN的周长为21cm,求AB的长;(2)若∠MCN=50°,求∠ACB的度数.71.已知:如图,AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD的周长是14cm,求AB和AC的长.72.已知:如图,在△ABC中,∠BAC=120°,若PM、QN分别垂直平分AB、AC.(1)求∠PAQ的度数;(2)如果BC=10cm,求△APQ的周长.73.△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°.(1)如图①,当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)如图②,当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由.74.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PD=2,求PC的长.75.如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.76.如图,AP,CP分别是△ABC外角∠MAC和∠NCA的平分线,它们交于点P.求证:BP为∠MBN的平分线77.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为49和40,求△EDF的面积为多少?78.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD=CD 、BE=CF .(1)求证:AD 平分∠BAC ;(2)直接写出AB+AC 与AE 之间的等量关系.79.如图所示,已知∠B=∠C=90°,DM 平分∠ADC ,AM 平分∠DAB ,求证:M 是BC 的中点.80.已知:∠AOB=90°,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D ,PC 和PD 有怎样的数量关系,请说明理由.81.如图,在△ABC 中,∠ACB=3∠B ,∠1=∠2,CD ⊥AD 于D ,求证:AB-AC=2CD82.如图,在△ABC 中,已知AD 平分∠BAC ,过AD 上一点P 作EF ⊥AD ,交AB 于E 、交AC 于F ,交BC 延长线于M ,则有正确结论:∠M=21(∠ACB-∠B ).请说明理由83.如图,AD ∥BC ,∠DAB 的平分线与∠CBA 的平分线交于点P ,过点P 的直线垂直于AD ,垂足为D ,交BC 于点C .试问:点P 是线段CD 的中点吗?为什么?84.如图,在△ABC中,D为BC中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC 交AC的延长线于G,求证:BF=CG85.观察、猜想、探究:在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的角平分线时,求证:AB=AC+CD;(2)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.86.(1)如图1,在△ABC中,∠ABC的平分线BF交AC于F,过点F作DF∥BC,求证:BD=DF.(2)如图2,在△ABC中,∠ABC的平分线BF与∠ACB的平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?并证明这种关系.(3)如图3,在△ABC中,∠ABC的平分线BF与∠ACB的外角平分线CF相交于F,过点F作DE∥BC,交直线AB于点D,交直线AC于点E.那么BD,CE,DE之间存在什么关系?请写出你的猜想.(不需证明)87.一个不透明的口袋里装有2个红球、1个黄球和若干个绿球(除颜色不同外其余都相同),若从中任意1摸出1个球是绿球的概率是4(1)求口袋中绿球的个数;(2)若第一次从口袋中任意摸出1个球,放回搅匀,第二次再摸出1个球,用列表或画树状图方法写出所有可能性,并求出刚好摸到一个红球和一个绿球的概率88.在一个不透明的布口袋里装着白、红、黑三种颜色的小球,它们除颜色之外没有任何其它区别,其中有白球3只、红球2只、黑球1只.袋中的球已经搅匀.(1)随机地从袋中取出1只球,求取出的球是黑球的概率;(2)若取出的第1只球是红球,将它放在桌上,然后从袋中余下的球中再随机地取出1只球,这时取出的球还是红球的概率是多少?89.在一个不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球21个,蓝球1个.若从中任意摸出一个球,它是蓝球的概率为4(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,求两次摸到球的颜色是红色与黄色这种组合(不考虑红、黄球顺序)的概率.90.将6个完全相同的小球分装在甲、乙两个不透明的口袋中,甲袋中有3个球,分别标有数字1、3、5;乙袋中有3个球,分别标有数字2、4、6,从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率;(2)摸出的两个球上数字之和为多少时的概率最大?。
北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)
第一章 整式的运算第一节 整式1.整式的有关概念:(1)单项式的定义:像1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式.(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(3)多项式的概念:几个单项式的和叫做多项式.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(5)整式的概念:单项式和多项式统称为整式.2.定义的补充: (1)单项式的系数:单项式中的数字因数叫做单项式的系数.(2)多项式的项数:多项式中单项式的个数叫做多项式的项数.(3)区别是否是整式:关键:分母中是否含有字母?分母有字母的为分式,如a 分之3是分式。
3.例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?并指出它们的系数和次数? (!)ab +c (2)ax 2+bx +c (3)-5(4)π.2y x - (5)12-x x 例2:求多项式363222+--b ab a 的各项系数之和?第二节 整式的加减一、 知识点复习:1、填空:整式包括单项式和多项式.2、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.3、所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
4、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
二、练习: 例1:下列各式,是同类项的一组是( ) (A )y x 222与231yx (B )n m 22与22m n 例2、计算:(1))134()73(22+-++k k k k (2))2()2123(22x xy x x xy x +---+例3:先化简,再求值:()[],673235222x x x x x x +++--其中x=21 例4、已知:A=x 3-x 2-1,B=x 2-2,计算:(1)B -A (2)A -3B第三节 同底数幂的乘法一、复习提问2.指出下列各式的底数与指数:(1)34;(2)a 3;(3)(a+b)2;(4)(-2)3;(5)-23.3、同底数幂的乘法法则: m n m n a a a += (,m n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 m n p m n p a a a a++=(其中m 、n 、p 均为正数);⑤公式还可以逆用: m n m n aa a +=(m 、n 均为正整数)二、巩固练习(1)107×104; (2)x 2·x 5;(3)10·102·104;(4)-a ·(-a)3;(5)(-a)2·(-a)3三、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a 的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a 2的底数a ,不是-a .计算-a 2·a 2的结果是-(a 2·a 2)=-a 4,而不是(-a)2+2=a 4.5.若底数是多项式时,要把底数看成一个整体进行计算第四节 幂的乘方与积的乘方一、知识点复习:1. 幂的乘方法则:()m n mn a a =(,m n 都是正整数)幂的乘方,底数不变,指数相乘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习之代数篇平方差公式:=-+))((b a b a完全平方和:=+2)(b a 完全平方差:=-2)(b a专题一:整式的运算一、选择题1、代数式-7x 2+1,mn 52-,π,()242y x -,2131中,单项式的个数是( ) A.1 B.2 C.3 D.42、下列运算正确的是( )A.321x x -=B. (144)1222++=+-a a aC.236()a a a -=·D.236()a a -=- 3、下列运算正确的是( )A .y 7·y=7y B .22224)2(b ab a b a +-=-C .2226)3(b a ab -=-D .249)32)(32(aa a -=---4、如图(一),在边长为a 的正方形中,挖掉一个边长为b 的小正方形)(b a >,把余下的 部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式, 则这个等式是( )A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .222))(2(b ab a b a b a -+=-+ 5、 的相反数是( ) A.91 B.91-C.9D.9- 6、多项式52232π-+-x b a 的项数和次数分别为( ) A. 3,2 B. 3,5 C.3,3 D. 2,3 7、下列计算正确的是( )A. 42222a a a =+B.aa2121=- C. 1)1)(1(2-=+--x x x D. 2222)(b ab a b a ++=--231-⎪⎭⎫ ⎝⎛-8、若324443y x y x y x a b -+是一个二项式,则ba -等于( )A.81 B.8 C.8- D. 81-9、下列计算中正确的是( ) A .nm nm+=•632 B.222-)-(b a b a = C.8246)3-(a a = D.523)-()-()-(b a a b b a =10、若2-)23-(=a ,1-)1-(=b ,0)2π-(=c ,则 a 、b 、c 的大小关系是( ) A 、a >b >c B 、a >c >b C 、c >a >b D 、c >b >a 11、下列各式能用平方差公式计算的是( )A 、(2a +b )(2b -a )B 、(12x +1)(-12x -1)C 、(3x -y )(-3x +y )D 、(-x -y )(-x +y ) 12、如图,长方形的长为a ,宽为b ,横向阴影部分为长方形,纵向阴影部 分为平行四边形,它们的宽都为c ,则空白部分的面积为( ) A 、2c ac ab bc ++- B 、2c ac bc ab +-- C 、ac bc ab a -++2 D 、ab a bc b -+-2213、已知43=m,53=n,则nm 233-=( )A 、39B 、2C 、6425D 、4514、在数轴上,大于-2.5且小于3.2的整数有( ) A.3个 B.4个 C.5个 D.6个 15、下列关于-23的说法中,正确的是( )A.三个-2相乘B. –2的三次幂C.2的–3次幂D.2的三次幂的相反数二、填空题1、单项式52nm -的系数是 ,次数是 .2、计算:324(-2)xy z = . 3、若43=m,n9= 5,则nm 433- = . 4、若432=+y x ,则yx 84⋅的值为5、如果0332=-+x x ,则代数式103523-++x x x 的值为6、若()()n x x mx x ++=-+3152,则m = ,n = .7、 若c bx ax x x ++=+-2)3)(12(,则a= ,b= ,c= .8、已知:13a a +=,则221a a+= 9、若a+b=3,ab=3,则=-22b a .10、已知(x+y)2-2x-2y+1=0,则x+y= .11、已知,且46==+xy y x 则2)(y x -= ;44y x += .12、已知20001999+=x a ,20011999+=x b ,20021999+=x c ,则多项式222a b c ab ac bc ++---的值13、若()22952y xy m x +-+是一个完全平方式,则m= .14、如果多项式28x x k ++是一个完全平方式,则k 的值是15、在多项式241x +中,添加一个单项式,使其成为一个完全平方式,则添加的单项式 是 .(只写出一个即可)16、若()()14322+-+-ax x x x 的展开式中,含2x 项的系数为1-,则a 的值是 .17、长方形面积是a 6+ab 3-a 32,一边长为3a ,则它周长是 .三、计算题1、解答下列各题.①()()433a a a -÷⋅-= ; ②7177⨯÷= ;③()()0220099211π--⎪⎭⎫⎝⎛-+--= . 2、计算: ()()32432322132⎪⎭⎫⎝⎛-⋅÷-mn n m n m3、先化简,再求值:()()()()[]⎪⎭⎫⎝⎛-÷---+-+y x y y y x y x y x 21222,其中20091=x ,20081-=y4、计算.(1) 0)(2009-22-+ (21)2131-⎪⎭⎫ ⎝⎛-- (2))3()369(2223xy xy y x y x -÷+-(3))4)(12()2(2+---a a a (4)用乘法公式计算:()()3232-++-y x y x(5))3)(3()221)(221(--+-+-+x x x x (6))3()369(2223xy xy y x y x ÷+-5.解关于x 的方程:2)2)(2()2(2=+--+x x x6.先化简,再求值[(2x +y )2-y (y +4x )-8x ]÷2x .其中x =2,y =-1专题二:生活中的数据1、下列数据中,是精确值的有()个(1)在5·12大地震中,估计有12000人死亡;(2)某细胞的直径为百万分之一米;(3)中国的国土面积约为960万km2 (4)我家有3口人(5)七(2)班有53人A、1B、2C、3D、42、课上老师给出了下面的数据,请问哪一个数据是精确的()A、2003年美国发动的伊拉克战争每月耗费约40亿美元B、地球上煤储量为5万亿吨左右C、人的大脑约有1×1010亿个细胞D、某次期中考试中小颖的数学成绩是98分3、(台州·中考题)对于四舍五入得到的近似数3.20×105,下列说法正确的是()A、有3个有效数字,精确到百分位B、有6个有效数字,精确到个位C、有2个有效数字,精确到万位D、有3个有效数字,精确到千位4、关于近似数0.530的说法错误的是()A.它有三个有效数字 B.它可表示为5.30×10-1C.它精确到百分位 D.它精确到0.0015、对于由四舍五入得到的近似数2.8和2.80,下列说法正确的是()对于由四舍五入得到的近似数2.8和2.80,下列说法正确的是()A. 有效数字和精确度都相同B. 有效数字相同,精确度不同C. 有效数字不同,精确度相同D. 有效数字和精确度都不同6、下列说法正确的是()A、近似数6.4与6.40的精确度相同B、近似数0.0310有两个有效数字C、近似数2万与20000的有效数字都是2D、近似数9.03×104精确到百位,有效数字是9,0,37、我校操场面积大约是2500平方米,他的百万分之一能容纳下列哪种动物()A、蝉B、小狗C、公鸡D、鸽子8、一种细胞的直径约为1.56×10-6 米,那么它的一百万倍相当于()A、玻璃跳棋棋子的直径B、数学课本的宽度C、初中学生小丽的身高D、五层楼房的高度9、梵帝岗的国土面积约为0.44平方千米,它的百万分之一相当于()A、一个操场B、一间房子C、一张桌子D、一本书的封面10、用科学记数法表示0.0000907,并保留两个有效数字得()A、9.1×10-4B、9.1×10-5C、9.0×10-5D、9.0×10-411、纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉直径为()A.3.5×104 米B. 3.5×10-4米C. 3.5×10-5米D.3.5×10-9米 12、2006年我国自行研制的第三代战机歼—10横空出世,其飞行速度超过2.4倍音速,达到2947.6千米/小时,该数据用科学计数法表示为( )(保留两个有效数字) A 、3×103B 、3.0×103C 、2.9×103D 、2.9×10413、某原子的直径约为0.000 000 000 196米,保留两个有效数字,用科学记数法表示为 。
14、据悉,世界上最小的开花结果植物是澳大利亚的出水浮漂,这种植物的果实像一个微小的无花果,质量只有0.0000000701克,该数据可用科学记数法表示为 克,这个数有 个有效数字.15、3562mm 的芯片上集成了5亿个元件,则一个元件所占面积为 .(要求用 科学计数法表示,并保留两位有效数字)专题三:概率1、下列说法正确的是( )A. 抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等;B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖;C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨;D.一颗质地均匀的骰子已连续抛掷了2000次,其中抛掷出5点的次数最少,则第2001 次一定抛掷出5点.2、随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( )A .41B .21C .43D .13、气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是( )A 、本市明天将有80%的地区降水B 、本市明天将有80%的时间降水C 、明天肯定下雨D 、明天降水的可能性比较大 4、假如小蚂蚁在如下图所示的地砖上自由爬行,它最终没有停在黑色方砖上的概率为( )A 、31 B 、94C 、21D 、955、盒子里有3个红球和2个白球,它们除了颜色外均相同,从中任取一个球是白球的概率是 。
6、袋中有4个红球6个白球,小明摸出一个红球后,小红接着摸出一球,摸出这球是红球 的概率是 .7、下表是初三某班被录取到高一级学校的学生情况统计表(1)请将表格内容补填完整; (2)求下列各事件的概率:①P(录取到重点学校的学生); ②P(录取到普通学校的女生); ③P (录取到非重点学校的学生):8、将分别标有数字1、2、3的三张卡片洗匀后,背面朝上放在桌面上.请完成下列各题: (1)随机地抽取一张,求P (抽到奇数);(2)随机地抽取一张作为十位上的数字,不放回...再抽取一张作为个位上的数字,写出所有 可能的结果(如:(1,2)等);(3)在(2)的条件下,试求恰好是“32”的概率.9、如图转盘,连续转动转盘两次,如果两次指针指向相同的颜色,则甲获胜;如果两次指 针指向的颜色不同,则乙获胜.这个游戏公平吗?请用表格或树状图说明两人获胜的概率.10、广东卫视“第一次心动”选秀复赛将在暑期举行,组委会设置了甲、乙、丙三类门票. 初二、1班购买了甲票2张、乙票8张、丙票10张,班长采取抽签的方式来确定观众名单. 已知该班有40名学生,请给出下列问题的答案: (1)该班某个学生恰能抽到丙票的概率是多少? (2)该班某个学生能有幸去观看比赛的概率是多少?(3)后来,该班同学强烈呼吁甲票太少,要求每人抽到甲票的概率要达到15%,则还要购买甲票多少张?。