概率论与数理统计试题及答案

合集下载

概率论与数理统计考试试卷与答案

概率论与数理统计考试试卷与答案

概率论与数理统计考试试卷与答案一.填空题(每空题2分,共计60分)1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,=)B -A (p 0.1 ,)(B A P ⋅= 0.4 , =)B A (p 0.6。

2、一个袋子中有大小相同的红球6只、黑球4只。

(1)从中不放回地任取2只,则第一次、第二次取红色球的概率为: 1/3 。

(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。

(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。

3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。

4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。

(1)抽到次品的概率为: 0.12 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,Y X 与的协方差为: - 0.2 , 2Y X Z +=的分布律为:6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,(~,12N Y X Y 则+= 5 , 16 )。

7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E - 4 ,=-)2(Y X D 6 。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率论和数理统计试题及答案

概率论和数理统计试题及答案

概率论和数理统计试题及答案一、填空题:1 11、 设 A 与 B 相互独立,P(A) = , P(B)=,贝U P (B-A)=.3 2 ----------------11 1解: P(B _A)二 P(B)[1 _P(A)](1 ): 23 32、 设 X~U[1,3](均匀分布),则 E(X 2)=, D(2X)二 ______________.E(5X _2) = ___________________ ,解: E(X)二 2;D(X) =1/ 3E(X 2) = D(X) E(X)2 =13/3 D( 2X 4D (X =)4 / 3E(5X - 2)= 5E X ) 2 102Y~ P(3),Z ~ N(3,2 ),且 X , Y,Z 相互独立,则3、设随机变量X 服从指数分布,即X ~ E(2),定义随机变量2,X 3 Y £,X =3-1,X :3解:F Y (Y)=P(Jy)二 P(丫 乞 一1) = P(X :: 3)2e'x dx = -e^x 0F Y (Y)二 P(Y D二 P(—1 :: 丫 乞1) = P(X 空 3)3=2e "dx =-e'xF Y (Y)二 P(丫 乞 y)二 P(1 :: Y ^2) = P(X 3)则Y 的分布列为二 1 —e ■6 -2C其中二是与y 无关的量2e"dx _ -e^x4、设 X ~ B(200,0.1)E(2X -3Y -Z 5) = , D(2X -3Y -Z 5)二 ____________________2XE(D(2X -3Y -Z 5) =4D(X) 9D(Y) D(Z) =72 27 4 =10325、设总体X ~ N(j 匚),X i, X2, X3 为来自X 的样本,二0.5/ • 0.1X2 - ax 3 是未知参数丄的无偏估计,则a =。

解:因为是无偏估计所以E(?)=E(0.X+ 0.x1— ax =) 0E5x 什)E.2X-( aJEj x ()= (0.5 0.-1 E)X(=)( 0.5- 01"口二)(0.5 0•中=)1a ~ -0. 46、设X〜N(叫,打),Y~N(」2,/),X与丫相互独立,且X与丫分别为X,Y的样2 2本均值,样本容量分别为n i,n2。

概率论与数理统计试题及答案(自考)

概率论与数理统计试题及答案(自考)

概率论与数理统计试题及答案(自考)一、单选题1.如果D(X)=3,令Y=2X+5,则D(Y)为A、12B、18C、7D、11【正确答案】:A解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(2X+5)=D(2X)=4D(X)=4×3=12,因此选A。

2.设总体X~N(μ1,σ12),Y~N(μ2,σ22),σ12=σ22未知,关于两个正态总体均值的假设检验为H0:μ1≤μ2,H1:μ1 > μ2,则在显著水平α下,H0的拒绝域为A、B、C、D、【正确答案】:B解析:无3.设总体为来自X的样本,为样本值,s为样本标准差,则的无偏估计量为( )。

A、sB、C、D、【正确答案】:C解析:样本均值是总体均值的无偏估计量。

故选C.4.设随机变量X的方差D(X)=2,则利用切比雪夫不等式估计概率P{|X-E(X)|≥8}的值为( )。

A、B、C、D、【正确答案】:B解析:5.如果D(X)=2,令Y=3X+1,则D(Y)为A、2B、18C、3D、4【正确答案】:B解析:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X),因此D(Y)=D(3X+1)=D(3X)=9D(X)=9×2=18,因此选B。

6.在假设检验中,H0为原假设,则显著性水平的意义是A、P{拒绝H0| H0为真}B、P {接受H0| H0为真}C、P {接受H0| H0不真}D、P {拒绝H0| H0不真}【正确答案】:A解析:本题考察假设检验“两类错误”内容。

选择A。

7.则k=A、0.1B、0.2C、0.3D、0.4【正确答案】:D解析:本题考察一维离散型随机变量分布律的性质:。

计算如下0.2 + 0.3 + k + 0.1=1,k=0.4故选择D。

8.掷四次硬币,设A表示恰有一次出现正面,则P(A)=A、1/2B、1/4C、3/16D、1/3【正确答案】:B解析:样本空间Ω={正正正正,正正正反,正正反正,正反正正,反正正正,正正反反,正反正反,反正正反,正反反正,反正反正,反反正正,正反反反,反反正反,反正反反,反反反正,反反反反};其中恰有一次正面向上的样本点是{正反反反,反反正反,反正反反,反反反正}所以概率就是1/4。

概率论与数理统计试题库及答案(考试必做)

概率论与数理统计试题库及答案(考试必做)

概率论与数理统计试题库及答案(考试必做)概率论试题一、填空题1.设A、B、C是三个随机事件。

试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,P (A)=0.5,P(B)=0.6,P(BA)=0.8。

则P(B A)=3.若事件A和事件B相互独立, P(A)= ,P(B)=0.3,P(A B)=0.7,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词__的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X分布律为P{X k} 5A(1/2)A=______________7. 已知随机变量X的密度为f(x)k(k 1,2, )则ax b,0 x 1,且P{x 1/2} 5/8,则0,其它a ________b ________28. 设X~N(2, ),且P{2 x 4} 0.3,则P{x 0} _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x+ x+1=0有实根的概率是280,则该射手的命8111.设P{X 0,Y 0}34,P{X 0} P{Y 0} ,则P{max{X,Y} 0} 7712.用(X,Y)的联合分布函数F(x,y)表示P{a X b,Y c} 13.用(X,Y)的联合分布函数F(x,y)表示P{X a,Y b} 14.设平面区域D 由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。

15.已知X~N( 2,0.4),则E(X 3)=16.设X~N(10,0.6),Y~N(1,2),且X与Y相互独立,则17.设X的概率密度为f(x)22D(3X Y)x2,则D(X)=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,2),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)= 219.设D(X) 25,D Y 36, xy 0.4,则D(X Y) 20.设X1,X2, ,Xn, 是独立同分布的随机变量序列,且均值为,方差为,那么当n充分大时,近似有X~或2~。

概率论与数理统计题库及答案

概率论与数理统计题库及答案

概率论与数理统计题库及答案一、单选题1. 在下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 51,41,31,21 (B) 81,81,41,21 (C) 21,21,21,21- (D) 161,81,41,212. 下列数组中,( )中的数组可以作为离散型随机变量的概率分布.(A) 41414121(B)161814121(C)1631614121 (D)81834121-】3. 设连续型随机变量X 的密度函数⎩⎨⎧<<=,,0,10,2)(其他x x x f则下列等式成立的是( ).(A) X P (≥1)1=- (B) 21)21(==X P (C) 21)21(=<X P (D) 21)21(=>X P4. 若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=bax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()$5. 设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有X a P <(≤=)b ( ). (A)⎰b ax x F d )( (B) ⎰bax x f d )((C) )()(a f b f - (D) )()(b F a F -6. 下列函数中能够作为连续型随机变量的密度函数的是( ).7. 设⎥⎦⎤⎢⎣⎡2.04.03.01.03210~X ,则=<)2(X P ( ). (A) (B) (C) (D)`8. 设)1,0(~N X ,Φ)(x 是X 的分布函数,则下列式子不成立的是( ).(A) Φ5.0)0(= (B) Φ+-)(x Φ1)(=x (C) Φ=-)(a Φ)(a (D) 2)(=<a x P Φ1)(-a9. 下列数组中,不能作为随机变量分布列的是( ).(A )61,61,31,31 (B) 104,103,102,101 (C) 12141818,,, (D) 131619112,,,10. 若随机变量)1,0(~N X ,则~23-=X Y ( ).¥(A) )3,2(-N (B) )3,4(-N (C) )3,4(2-N (D) )3,2(2-N11. 随机变量X 服从二项分布),(p n B ,则有=)()(X E X D ( ).(A) n (B) p (C) 1- p (D)p-1112. 如果随机变量X B ~(,.)1003,则E X D X (),()分别为( ). (A) E X D X (),().==321 (B) 9.0)(,3)(==X D X E (C) E X D X ().,()==033 (D) E X D X ().,().==0321《13. 设),(~p n B X ,2.1)(,2)(==X D X E ,则p n ,分别是( ).(A) 4.0,5 (B) 2.0,10 (C) 5.0,4 (D) 25.0,814. 设),(~p n B X ,且6.3)(,6)(==X D X E ,则=n ( ).(A) 30 (B) 20 (C) 15 (D) 1015. 设)10,50(~2N X ,则随机变量( )~)1,0(N .|(A)10050-X (B) 1050-X(C) 50100-X (D) 5010-X16. 对于随机事件A B ,,下列运算公式( )成立.(A) )()()(B P A P B A P +=+ (B) )()()(B P A P AB P =(C) )()()(A B P B P AB P = (D) )()()()(AB P B P A P B A P -+=+17. 下列事件运算关系正确的是( ).(A) A B BA B += (B) A B BA B += (C) A B BA B += (D) B B -=1%18. 设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B19. 设A B ,为随机事件,A 与B 不同时发生用事件的运算表示为( ).(A) A B + (B) A B + (C) AB AB + (D) A B20. 若随机事件A ,B 满足AB =∅,则结论( )成立. …(A) A 与B 是对立事件 (B) A 与B 相互独立 (C) A 与B 互不相容 (D) A 与B 互不相容21. 甲、乙二人射击,A B ,分别表示甲、乙射中目标,则AB 表示( )的事件.(A) 二人都没射中 (B) 至少有一人没射中 (C) 两人都射中 (D) 至少有一人射中22. 若事件A B ,的概率为6.0)(=A P ,5.0)(=B P ,则A 与B 一定( ).(A) 相互对立 (B) 相互独立 (C) 互不相容 (D) 相容%23. 设A ,B 为两个任意事件,则P (A +B ) =( ).(A) P (A ) + P (B ) (B) P (A ) + P (B ) - P (A )P (B ) (C) P (A ) + P (B ) - P (AB ) (D) P (AB ) – [P (A ) + P (B ) ]24. 对任意两个任意事件A B ,,等式( )成立.(A) P AB P A P B ()()()= (B) P A B P A P B ()()()+=+(C) P A B P A P B ()()(())=≠0 (D) P AB P A P B A P A ()()()(())=≠025. 设A ,B 是两个任意事件,则下列等式中( )是不正确的. %(A) )()()(B P A P AB P =,其中A ,B 相互独立 (B) )()()(B A P B P AB P =,其中0)(≠B P (C) )()()(B P A P AB P =,其中A ,B 互不相容 (D) )()()(A B P A P AB P =,其中0)(≠A P26. 若事件A 与B 互斥,则下列等式中正确的是( ). (A) P AB P A P B ()()()= (B) P B P A ()()=-1(C) P A P A B ()()= (D) P A B P A P B ()()()+=+27. 设A ,B 为两个任意事件,则下列等式成立的是( ). ?(A) B A B A +=+ (B) B A AB ⋅=(C) B A B B A +=+ (D) B A B B A +=+28. 设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+ (C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=-29. 甲、乙两人各自考上大学的概率分别为,,则甲、乙两人同时考上大学的概率为( ). (A) (B) (C) (D)~30. 若A B ,满足( ),则A 与B 是对立事件.(A) 1)(=+B A P (B) A B U AB +==∅, (C) P A B P A P B ()()()+=+ (D) P AB P A P B ()()()=31. 若A 与B 相互独立,则等式( )成立.(A) P A B P A P B ()()()+=+ (B) P AB P A ()()=(C) P A B P A ()()= (D) P AB P A P B ()()()=32. 设n x x x ,,,21 是正态总体),(2σμN (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.—(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α33. 假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小34. 从正态总体),(2σμN 中随机抽取容量为n 的样本,检验假设0H :,0μμ=1H :0μμ≠.若用t 检验法,选用统计量t ,则在显著性水平α下的拒绝域为( ).(A) )1(-<n t t α (B) t ≥)1(1--n t α (C) )1(->n t t α (D) )1(1--<-n t t α;35. 在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ).(A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差36. 对正态总体),(2σμN 的假设检验问题中,U 检验解决的问题是( ).(A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差37. 设n x x x ,,,21 是正态总体),(2σμN 的一个样本,2σ是已知参数,μ是未知参数,记∑==ni i x n x 11,函数)(x Φ表示标准正态分布)1,0(N 的分布函数,975.0)96.1(=Φ,900.0)28.1(=Φ,则μ的置信水平为的置信区间为( ).>(A) (x -n σ,x +n σ) (B) (x -nσ,x +nσ)(C) (x -nσ,x +nσ) (D) (x -nσ,x +nσ)38. 设321,,x x x 是来自正态总体N (,)μσ2的样本,则μ的无偏估计是( ).(A)3321x x x -+ (B) 321x x x -+(C) 321x x x ++ (D) 321x x x --39. 设x x x n 12,,, 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321x x x ++ (B)321525252x x x ++ (C) 321515151x x x ++ (D) 321535151x x x ++%40. 设21,x x 是取自正态总体)1,(μN 的容量为2的样本,其中μ为未知参数,以下关于μ的估计中,只有( )才是μ的无偏估计.(A) 213432x x + (B) 214241x x + (C) 214143x x - (D)215352x x +41. 设总体X 的均值μ与方差2σ都存在,且均为未知参数,而n x x x ,,,21 是该总体的一个样本,记∑==ni i x n x 11,则总体方差2σ的矩估计为( ).(A) x (B) ∑=-n i i x n 12)(1μ(C) ∑=-n i i x x n 12)(1 (D) ∑=n i i x n 12142. 设n x x x ,,,21 是来自正态总体22,)(,(σμσμN 均未知)的样本,则( )是统计量. /(A) 1x (B) μ+x (C)221σx (D)1x μ43. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量. (A ) X (B)∑=31i iX(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X44. 设X 是连续型随机变量,其密度函数为⎩⎨⎧∉∈=],,1(,0],,1(,ln )(b x b x x x f 则常数b =( ).—(A) e (B) e + 1 (C) e – 1 (D) e 245. 随机变量)21,3(~B X ,则X P (≤=)2( ).(A) 0 (B) 81(C) 21 (D) 8746. 设),2(~2σN X ,已知2(P ≤X ≤4.0)4=,则X P (≤=)0( ).(A) (B) (C) (D)~47. 已知)2,2(~2N X ,若)1,0(~N b aX +,那么( ).(A) 2,2-==b a (B) 1,2-=-=b a (C) 1,21-==b a (D) 2,21==b a48. 设随机变量X 的密度函数为f x (),则E X ()2=( ).(A) xf x x ()-∞+∞⎰d (B)x x f x d )(2⎰∞+∞-(C)x x xf d )(2⎰∞+∞- (D)(())()x E X f x x --∞+∞⎰2d49. 若随机变量X 的期望和方差分别为)(X E 和)(X D ,则等式( )成立.【(A) )]([)(X E X E X D -= (B) 22)]([)()(X E X E X D +=(C) )()(2X E X D = (D) 22)]([)()(X E X E X D -=50. 设随机变量X 服从二项分布B (n , p ),已知E (X )=, D (X )=,则( ). (A) n = 8, p = (B) n = 6, p = (C) n = 6, p = (D) n = 24, p =二、证明题1. 试证:已知事件A ,B 的概率分别为P (A ) = ,P (B ) = ,P (B A +) = ,则P (AB ) = 0.:2. 试证:已知事件A ,B 相互独立,则)()(1)(B P A P B A P -=+. \3. 已知事件A ,B ,C 相互独立,试证)(B A +与C 相互独立.4. 设事件A ,B 的概率分别为21)(=A P ,32)(=B P ,试证:A 与B 是相容的.》5. 设随机事件A ,B 相互独立,试证:B A ,也相互独立.6. 设A ,B 为随机事件,试证:)()()(AB P A P B A P -=-./7. 设随机事件A ,B 满足AB =∅,试证:P A B P B ()()+=-1. '8. 设A ,B 为随机事件,试证:P A P A B P AB ()()()=-+.9. 设B A ,是随机事件,试证:)()()()(AB P B A P B A P B A P ++=+.'10. 已知随机事件A ,B 满足A B ⊃,试证:)()()(B P A P B A P -=-.三、计算题1. 设B A ,是两个随机事件,已知5.0)(=A P , 4.0)(=A B P ,求)(B A P .]2. 某种产品有80%是正品,用某种仪器检查时,正品被误定为次品的概率是3%,次品被误定为正品的概率是2%,设A 表示一产品经检查被定为正品,B 表示一产品确为正品,求P (A ).:3. 某单位同时装有两种报警系统A 与B ,每种系统独立使用时,其有效概率9.0)(=A P ,95.0)(=B P ,在A 有效的条件下B 有效的概率为97.0)(=A B P ,求)(B A P +.4. 设A , B 是两个独立的随机事件,已知P (A ) = ,P (B ) = ,求A 与B 只有一个发生的概率."5. 设事件A ,B 相互独立,已知6.0)(=A P ,8.0)(=B P ,求A 与B 只有一个发生的概率.6. 假设B A ,为两事件,已知4.0)(,6.0)(,5.0)(===A B P B P A P ,求)(B A P +. ?7. 设随机变量)2,3(~2N X ,求概率X P <-3(≤)5 (已知Φ3841.0)1(=,Φ7998.0)3(=φ).¥8. 设A , B 是两个随机事件,已知P (A ) = ,P (B ) = ,P (A B )=,求)(B A P .9. 从大批发芽率为8.0的种子中,任取4粒,问(1)4粒中恰有一粒发芽的概率是多少(2)至少有1粒种子发芽的概率是多少^10. 已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P +.11. 已知4.0)(=A P ,8.0)(=B P ,5.0)(=B A P ,求P B A ().[12. 已知7.0)(=A P ,3.0)(=B P ,5.0)(=B A P ,求)(B A P .-13. 已知P (B ) = ,)(B A P =,求)(AB P .14. 设随机变量X ~ N (3,4).求 P (1< X < 7)(Φ3841.0)1(=,Φ2977.0)2(=).;15. 设)5.0,3(~2N X ,求2(P ≤X ≤)6.3.已知Φ9884.0)2.1(=,2977.0)2(=Φ.@16. 设B A ,是两个随机事件,已知4.0)(=A P ,5.0)(=B P ,45.0)(=A B P ,求)(B A P +.17. 已知某批零件的加工由两道工序完成,第一道工序的次品率为,第二道工序的次品率为,两道工序的次品率彼此无关,求这批零件的合格率.%18.已知袋中有3个白球7个黑球,从中有放回地抽取3次,每次取1个,试求⑴恰有2个白球的概率;⑵有白球的概率.19.268-16. 某篮球运动员一次投篮投中篮框的概率为,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.、20.某篮球运动员一次投篮投中篮框的概率为,该运动员投篮3次,⑴求投中篮框不少于2次的概率;⑵求至少投中篮框1次的概率.&21.某气象站天气预报的准确率为70%,在4次预报中,求⑴恰有3次准确的概率;⑵至少1次准确的概率.22.已知某批产品的次品率为,在这批产品中有放回地抽取4次,每次抽取一件,试求⑴有次品的概率;⑵恰有两件次品的概率.[23.某射手射击一次命中靶心的概率是08.,该射手连续射击5次,求:⑴命中靶心的概率;⑵至少4次命中靶心的概率.24.设箱中有3个白球2个黑球,从中依次不放回地取出3球,求第3次才取到黑球的概率.—25.一袋中有10个球,其中3个黑球7个白球.今从中有放回地抽取,每次取1个,共取5次.求⑴恰有2次取到黑球的概率;⑵至少有1次取到白球的概率.@26.有甲、乙两批种子,发芽率分别是和,在这两批种子中各随机取一粒,求至少有一粒发芽的概率.27.机械零件的加工由甲、乙两道工序完成,甲工序的次品率是,乙工序的次品率是,两道工序的生产彼此无关,求生产的产品是合格品的概率.(28.一袋中有10个球,其中3个黑球7个白球.今从中依次无放回地抽取两个,求第2次抽取出的是黑球的概率.29.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。

概率论与数理统计测试题及答案

概率论与数理统计测试题及答案

概率论与数理统计测试题一、填空题(每小题3分,共15分)1.将3个小球随机地放到3个盒子中去,每个盒子都有1个小球的概率为__________. 2.设A ,B 是两事件,()1/4,(|)1/3P A P B A ==,则()P AB =__________.3.掷两颗骰子,已知两颗骰子点数之和是5,则其中有一颗是1点的概率是__________.4.设随机变量X 的分布函数为0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩,则X 的概率密度为__________.5.设总体X~U[0,1],123,,X X X 是其一个样本,则123{max(,,)1/2}P X X X <=__________. 二、单项选择题(每小题3分,共15分)1.设两事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )正确. (A )A B 与互不相容; (B )()()()P A B P A P B =; (C )()()()P AB P A P B =; (D )()().P A B P A -=2.一种零件的加工由两道工序完成,第一道工序、第二道工序的废品率分别为p ,q ,设两道工序的工作是独立的,则该零件的合格品率是 ( )(A )1p q --;(B) 1pq -; (C) 1p q pq --+;(D) (1)(1)p q -+-. 3.设~(),X t n 则2X 服从 ( )分布(A) 2()n χ; (B )(1,)F n ; (C )(,1)F n ; (D )(1,1)F n -. 4.设随机变量X 与Y 的协方差(,)0,Cov X Y =则下列结论正确的是 ( ) (A) X 与Y 独立; (B )()()()D X Y D X D Y +=+; (C )()()()D X Y D X D Y -=-; (D) ()()()D XY D X D Y =5.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211,(())1n ii X S X X n ==--∑分别为样本均值和样本方差,则下面结论中不正确的是 ( ) (A)2~(,);X N nσμ(B)22();E S σ=(C)22();1nE S n σ=- (D)222(1)/~(1).n S n σχ--三、解答题(6个小题,共60分) 1.(10分)设一仓库中有10箱同样规格产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的废品率依次为、、,从这10箱产品中任取一箱,再从该箱中任取一件产品.(1)求取到的产品为废品的概率;(2)若已知取到的产品为废品,求该废品是由甲厂生产的概率. 2.(10分)对一批次品率为的产品进行重复抽样检查,现抽取3件产品,以X 表示抽取的3件产品中次品的件数,试求(1)X 的分布律;(2)至少有一件是次品的概率.3.(12分)设连续型随机变量X 的概率密度为sin ,0()0,a x x f x π<<⎧=⎨⎩,其它求:(1)系数a ; (2) 分布函数();(3){/4/2}F x P X ππ<<. 4.(8分)设二维随机变量(,)X Y 的分布律为求X 与Y 的协方差Cov (X ,Y )及P{X +Y 1}. 5.(10分)设随机变量(X,Y)的概率密度为 6,01(,)0,y y x f x y <<<⎧=⎨⎩其它 (1)试求关于X 及Y 的边缘概率密度;(2)判断X 与Y 是否相互独立,并说明理由.6.(10分)设总体X 的概率密度为(1),01(;)0,x x f x θθθ⎧+<<=⎨⎩其它,其中(1)θθ>-是未知参数,12,,,n X X X 是X 的样本,求参数 的矩估计量与最大似然估计量.四、证明题(2个小题,共10分)1. (5分)设随机变量X ~N (0,1),证明随机变量(0)Y X σμσ=+>~2(,)N μσ.2.(5分)设4321,,,X X X X 是来自总体N(,2σ)的样本,证明2212342()()2X X X X Y σ-+-= 服从2χ分布,并写出自由度.Y X 0 10 1一、填空题(每小题3分,共15分) 1.2/9;2.1/12;3.1/2;4. 1/,1()0,x x ef x <<⎧=⎨⎩其它;5.1/8.二、单项选择题(每小题3分,共15分)1.(D )2. (C);3.(B );4.(B );5. (C). 三、解答题(6个小题,共60分)1.(10分)解: 123,,A A A 分别表示取得产品是甲、乙、丙厂生产的,B 表示取出的产品为废品,P(A 1)=,P(A 2)=,P(A 3)=,P(B|A 1)=,P(B|A 2)=,P(B|A 3)= ………3分(1)P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3) ………5分=++= ………7分 (2)111()(|)0.50.15(|)0.29()0.1717P A P B A P A B P B ⨯==== (1)0分2.(10分)解:(1) X ~b(3,, 33{}0.10.9(0,1,2,3)k k k P X k C k -=== ………3分X 0 1 2 3p………7分(2)P{X 1}=1-P{X=0}= ………10分 3.(12分)解:(1)01sin 1;2a xdx a π=⇒=⎰………3分(2)()()xF x f t dt -∞=⎰ (6)分00,01sin ,02x x tdt x x ππ≤⎧⎪⎪=<≤⎨⎪>⎪⎩⎰1,0,01cos ,02x x x x ππ≤⎧⎪-⎪=<≤⎨⎪>⎪⎩1, (10)分2412(3){/4/2}sin .24P X xdx ππππ<<==⎰ (12)分4.(8分)解: E (X )=,E (Y )=,E (XY )= ………4分Cov (X ,Y )=E (XY )-E (X )E (Y )=- ………6分 P{X +Y 1}=++= ………8分5.(10分)解: (1)()(,)X f x f x y dy ∞-∞=⎰06,010,xydy x ⎧<<⎪=⎨⎪⎩⎰其它23,010,x x ⎧<<=⎨⎩其它 ………4分 ()(,)Y f y f x y dx ∞-∞=⎰16,010,y ydx y ⎧<<⎪=⎨⎪⎩⎰其它6(1),010,y y y -<<⎧=⎨⎩其它 ………8分(2)X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………10分 6.(10分)解 (1)矩估计量1101()(1)2E X x x dx θθμθθ+==⋅+=+⎰ ………3分 11121μθμ-⇒=-12ˆ1X X θ-⇒=- ………5分 (2) 最大似然估计量 对于给定样本值12,,,,n x x x 似然函数为11()(;)(1)nni i i i L f x x θθθθ====+∏∏12(1)(),01n n i x x x x θθ=+<< ………7分1()ln(1)ln ni i lnL n x θθθ==++∑,1()ln 01ni i d nlnL x d θθθ==+=+∑ ………8分11ln ˆln nii nii n x xθ==+⇒=-∑∑,最大似然估计量为11ln ˆln nii nii n X Xθ==+=-∑∑ ………10分四、证明题(2个小题,共10分)1.证明 :X的概率密度为22(),x X f x -= ………1分函数,0,(,)y x y y σμσ'=+=>∈-∞∞,1(),(),y x h y h y μσσ-'===………3分22()22()[()]|()|~(,).y u Y X f y f h y h y Y N σμσ--'==⇒ ………5分2.证明:212~(0,2)~(0,1),X X N N σ-⇒~(0,1),N ………2分两者独立 ………4分因此 22212342()()~(2)2X X X X Y χσ-+-= ………5分。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

概率论与数理统计练习题附答案详解

概率论与数理统计练习题附答案详解

第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。

2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。

3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =;(C )(|)()P A B P B =; (D )(|)()P A B P A =。

4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P A B P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。

5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容; (C )()()()P AB P A P B =; (D )()()P A B P A -=。

6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P AB P A P B =+; (B )()()()P A B P A P B ≠+; (C )()()()P AB P A P B =; (D )()()()P AB P A P B =。

7、对于任意两个事件A 与B ,()P A B -等于( )(A )()()P A P B - (B )()()()P A P B P AB -+; (C )()()P A P AB -; (D )()()()P A P B P AB +-。

概率论与数理统计试卷及参考答案

概率论与数理统计试卷及参考答案

概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。

2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。

3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。

4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。

5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。

二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。

做不放回抽取,每次取一只,求第三次才取到次品的概率。

解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。

解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。

《概率论与数理统计》题库及答案

《概率论与数理统计》题库及答案

《概率论与数理统计》题库及答案一、填空题1.设有两门高射炮,每一门击中飞机的概率都是0.6,则同时发射一发炮弹而击中飞机的概率为 .若有一架敌机入侵领空,欲以99%以上的概率及中它,至少需 ___门高射炮.2.设ξ在[0,1]上服从均匀分布,则ξ的概率分布函数F (x )= ___,P (ξ≤2)= ___.3.设母体)4,30(~N ξ,),,,(4321ξξξξ为来自ξ的一个容量为4的样本,则样本均值~ξ___,=>)30(ξP ___,),,,(4321ξξξξ的概率密度为___.4. 将一枚均匀硬币掷四次,则四次中恰好出现两次正面朝上的概率为___.5. 两封信随机地投入四个邮筒, 则前两个邮筒没有信的概率为_______, 第一个邮筒只有一封信的概率为_________.6. 一批产品的废品率为0.2, 每次抽取1个, 观察后放回去, 下次再任取1个, 共取3次, 则3次中恰有两次取到废品的概率为_________.7.设ξ具有概率密度⎩⎨⎧<<+=其他031)(x b ax x f ,又)21(2)32(<<=<<ξξP P ,则a = ,b = .8.设ξ与η相互独立,ξ~N (0,1),η~N (1,2),令ζ=ξ+2η,则E ζ=___,D ζ=___, ζ的概率密度函数为___.9.已知B A ⊂,P (A )=0.1,P (B )=0.5,则P (AB )= ___,P (A +B )= ___,=)(B A P ___,P (A |B )= ___,=+)(B A P ___.10.设)4,3(~N ξ,则使得)()(c P c P ≤=>ξξ成立的=c ___. 11.已知1-=ξE ,3=ξD ,则 =-)]2(3[2ξE ___.12. 小概率原理认为:小概率事件在一次试验中是不会发生的,如果发生了则要 . 13. 相关系数的取值范围是 .14. 设总体),(~2σξa N ,2σ已知,),...,(1n X X 为来自ξ的一个样本,如检验00:a a H =(常数),则在0H 成立条件下,检验统计量服从 分布.15. 设总体ξ的概率分布列为),...,(,1)0(,)1(1n X X p P p P -====ξξ为来自ξ的一个样本,则=)(X D .16. 设ξ的密度函数为⎩⎨⎧<≥=-0,00,2)(2x x e x f x 当当,则=ξD .17. 设),(ηξ的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f , 则η的边沿密=)(y f .18. =+==⊂)(,5.0)(,1.0)(,B A P B P A P B A 则 .19. 若,5.0)(,6.0)(==B P A P 7.0)(=+B A P ,则=)(AB P . 20. 公交车每5分钟发一辆,则乘客等车时间不超过3分钟的概率为 .21. ⎪⎩⎪⎨⎧<<=其他,020,cos )(πx x A x f 为密度函数,则=A .22. 两随机变量ξ与η的方差分别为25及36,相关系数为0.4,则=-)(ηξD . 23. 设)1,0(~N ξ,)(~2n χη,且ξ与η相互独立,则统计量~nηξ. 二、选择题1.若事件A 、B 为互逆事件,则=)(B A P ( )A. 0B. 0.5C. 1D. Φ2.在四次重复贝努里试验中,事件A 至少发生一次的概率为80/81,则A 在每次试验中发生的概率p 为( )A.4532 B. 31 C.32D. 1-4532 3.若两个随机变量ξ和η的相关系数0=ξηρ,则下列结论正确的是( ).A. ()ηξηξD D D -=-B. ()ηξηξD D D +=+C. ()ηξξηD D D =D. ξ和η相互独立4. 设A 、B 、C 为三个事件,则A 、B 、C 至少发生一个的事件应表示为( )A. ABCB. A +B +CC. C B AD. C B A5. 每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤次成功的概率为( ).A. r n r r n p p C --)1(B. rn r r n p p C ----)1(11 C. rn r p p --)1( D. r n r r n p pC -----)1(1116. 设(ξ,η)具有概率密度函数⎪⎩⎪⎨⎧<<<<+=其他020,20)sin(),(ππy x y x A y x f ,则A=( )A. 0.1B. 0.5C. 1D. 27. 设),(~2σμξN ,且μ=0,12=σ,令βαξη+=,则D η=( )(α、β为常数)A.βα-B. βα+C.α ④2α 8. 已知ξ的概率密度函数为f (x ),则( )A.0≤f (x )≤1B.P (ξ=x )=f (x )C.⎰+∞∞-=1)(dx x f D.P (ξ=x )≤f (x )≤19. 若母体ξ的方差为2σ,则2σ的无偏估计为( )A.21S n n -B.2SC.21S n n- D.S 10.设A ,B 为两事件,B A ⊂,则不能推出结论( )A. )()(A P AB P =B. )()(B P B A P =⋃C.)()()(B P A P B A P -=D. )()()(A P B P B A P -= 11. 若事件A 、B 互不相容,则=)(B A PA .0.5B .0C .1D .0.25 12. 设事件A 、B 相互独立,已知5.0)(,25.0)(==B P A P ,则=-)(B A P A .12.0 B .125.0 C .25.0 D .5.013. 设随机变量ξ的概率密度函数为⎪⎩⎪⎨⎧≤≤-≤≤=其它,021,210,)(x x x x x f ,则=≤)1.5(ξPA .0.875B .⎰-5.10)2dx x ( C .⎰-5.11)2dx x ( D .⎰∞--5.1)2xdx x (14. 设)(x f 为连续型随机变量ξ的概率密度,)(x F 为ξ的分布函数,则下列正确的是 A .)()(x f x F = B .1)(0<<x f C .)()(x F x P ==ξ D .⎰∞+∞-=1)(dx x f15. 设),(ηξ的概率密度为⎩⎨⎧≥≥=+-其它,00,0,),()(y x Ce y x f y x ,则C =A . 1B .0.5C .0.25D .216. 设随机变量ξ的概率密度函数为⎩⎨⎧<≥=-0,00,)(x x e x f x λλ , 则=ξEA .λB .λ1 C .2λ D .21λ17. 设A 、B 、C 为三个事件,则A 、B 、C 恰有两个发生的事件应表示为 A.C B A BC A C AB ++ B. AC BC AB ++ C.ABC C B A BC A C AB +++ D. C A C B B A ++18. 袋中有5个黑球,3个白球,大小相同,一次随机地摸出4个球,其中恰有3个白球的概率为 A .83 B .81)83(5 C .81)83(348C D .485C19. 设)1,0(~),4,(~2N a N ηξ记),1(),4(21≥=-≤=ηξp p a p p 则下列正确的是 A .21p p = B .21p p ≠ C .21p p < D .21p p >20. 设ξ的概率密度为⎩⎨⎧<<=其它,010,)(2x Ax x f , 则A =A .31 B .3 C .21D .221. 已知连续型随机变量ξ的概率密度为)(x f ,)(x F 为ξ的分布函数,则下列正确的是 A .)()(x f x P ==ξ B .1)(=⎰∞+∞-dx x f xC .1)(0≤≤x FD .)()(x f x P =≤ξ22. 设随机变量ξ的概率密度函数为)(x f ,如果( ),恒有1)(0≤≤x f .A .),1(~2σξN B .)1,2(~N ξ C .),(~2σξa N D .),0(~2σξN三、计算题1.如果在1500件产品中有1000件不合格品,如从中任抽150件检查,求查得不合格品数的数学期望;如从中有放回抽取150次,每次抽一件,求查得不合格品数的数学期望和方差.2. 如果n ξξξ,,,21 是n 个相互独立、同分布的随机变量,μξ=i E ,),,2,1(8n i D i ==ξ.对于∑==ni i n 11ξξ,写出ξ所满足的切贝晓夫不等式,并估计)4|(|<-μξP .3.在密度函数(),1)(ααx x f +=10<<x 中求参数α 的矩估计和极大似然估计.4. 已知随机变量ξ~N (0,1),求(1) ξηe =的概率密度; (2) ||ξζ=的概率密度.5. 全班20人中有8人学过日语,现从全班20人中任抽3人参加中日友好活动,令ξ为3人中学过日语的人数,求(1) 3人中至少有1人学过日语的概率; (2) ξ的概率分布列及E ξ.6. 设总体ξ服从指数分布,其概率密度函数为⎪⎩⎪⎨⎧<≤=-001)(1x x ex f x θθ,(θ>0)试求参数θ的矩估计和极大似然估计.7.一个盒子中共有10个球,其中有5个白球,5个黑球,从中不放回地抽两次,每次抽一个球,求(1) 两次都抽到白球的概率; (2) 第二次才抽到白球的概率; (3)第二次抽到白球的概率.8.已知ξ~N (0,1),求(1)ξe 的概率密度; (2)2ξ的概率密度.9.设总体X ~N(μ,1), ),,(1n X X 为来自X 的一个样本,试求参数μ的矩估计和最大似然估计. 10. 设母体ξ具有指数分布,密度函数为⎩⎨⎧<≤=-00),(x xe xf xλλλ(0>λ),试求参数λ的矩估计和极大似然估计.11. 袋子中有5件某类产品,其中正品3件,次品2件,现从中任意抽取2件,求2件中至少有1件是正品的概率12. 一条生产线生产甲、乙两种工件,已知该生产线有三分之一的时间生产甲种工件,此时停机的概率为0.3,有三分之二的时间生产乙种工件,此时停机的概率为0.4.如该生产线停机,求它是在生产甲种工件的概率. 13. 有3人同时走进一栋五层楼房的入口,设每人进入1至5层是等可能的,求没有两人进入同一层的概率. 14. 某地区高考数学成绩服从正态分布)6,90(~2N ξ,某考生数学成绩为96分,问比他成绩低的考生占多少?()8413.0)1(=Φ。

(完整版)概率论与数理统计试题及答案.doc

(完整版)概率论与数理统计试题及答案.doc

2008- 2009 学年第1学期概率论与数理统计(46 学时 ) A一、单项选择题(本大题共 5 小题,每小题 3 分,共 15 分)。

1、 A、 B 为两个随机事件,若P( AB)0 ,则( A) A、 B 一定是互不相容的;(B)AB一定是不可能事件;(C) AB 不一定是不可能事件;(D)P( A)0或 P(B)0 .Y 0 1 22、二维离散型随机变量( X ,Y)的分布律为X1 1/6 1/3 02 1/4 1/6 1/12F ( x, y) 为 ( X ,Y) 的联合分布函数,则F (1.5,1.5)等于(A)1/6 ;(B)1/2 ;(C)1/3 ;( D)1/4.3、 X、 Y 是两个随机变量,下列结果正确的是(A)若E( XY)EXEY ,则X、Y独立;(B)若 X、Y 不独立 , 则 X、Y 一定相关;(C)若 X、Y 相关, 则 X、Y 一定不独立;(D)若D(X Y) DX DY ,则X、Y独立.4、总体 X ~ N ( , 2 ), , 2均未知, X 1, X 2 ,L , X n 为来自 X 的一个简单样本,X 为样本 均值, S 2 为样本方差。

若 的置信度为 0.98的置信区间为 (X c S n , X c S n ) ,则常数 c 为( A )t 0.01 (n 1) ;( ) 0.01 (n) ;B t( C )t0.02(n 1) ;( )(n) .D t 0.025、随机变量 X 1, X 2 ,L , X n 独立且都服从 N (2,4)__1 n分布,则 XX i 服从n i1(A ) N (0,1) ;(B ) N (2,4 n) ;(C ) N (2 n, 4n) ;(D ) N(2, 4) .n二、填空题(本大题共 5 小题,每小题 3 分,共 15 分)。

6、已知 A 、 B 为两个随机事件 ,若 P( A) 0.6, P( AB) 0.1,则 P( A | AB) =1.7、已知随机变量 X 服从区间 (0, 2) 上的均匀分布,则 E(2X) =( ).8、已知连续型随机变量 X 的概率密度函数为 f (x)2 x,0 x 1,则概率 P(| X | 1 2) =0,其它( ) .9、随机变量 X : b(3, 1 ), Y : b(3, 2 ) ,且 X ,Y 独立,则 D(X Y) =() .3310 、 已 知 随 机 变 量 X i , i 1,2,3 相互独立,且都服从 N(0,9)分布,若随机变量Y a( X 12X 22 X 32) :2(3) ,则常数 a =( ).三、解答题(本大题共 6 小题,每小题 10 分,共 60 分)。

概率论与数理统计试题及答案

概率论与数理统计试题及答案

概率论与数理统计一、单选题1.随机地掷一骰子两次,则两次出现的点数之和等于8的概率为()。

(4分)A :3/36B :4/36C :5/36D :2/362.A,B为任意两事件,若A,B之积为不可能事件,则称()。

(4分)A :A与B相互独立B :A与B互不相容C :A与B互为对立事件D :A与B为样本空间Ω的一个划分3.设A,B,C是三个事件,在下列各式中,不成立的是( ) .(4分)A :(A-B)UB=AUBB :(AUB)-B=AC :(AUB)-AB= UBD :(AUB)-C=(A-C)U(B-C)4.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A为().(4分)A :“甲种产品滞销,乙种产品畅销”;B :“甲,乙两种产品均畅销”;C :“甲种产品滞销”;D :“甲种产品滞销或乙种产品畅销”。

5..掷二枚骰子,事件A为出现的点数之和等于3的概率为()。

(4分)A :11B :44,214C :44,202D :都不对6.设A,B为两个事件,且B A,则下列各式中正确的是( ).(4分)A :P(AUB)= P(A)B :P(AB)=P(A)C :P(BIA)= P(B)D :P(B-A)=P(B)- P(A)7.某小组共9人,分得一张观看亚运会的入场券,组长将一张写有“得票”字样和8张写有“不得票”字样的纸签混合后让大家依次各抽一张,以决定谁得入场券,则()。

(4分)A :A.第1个抽签者得“得票”的概率最大B :第5个抽签者“得票”的概率最大C :每个抽签者得“得票”的概率相等D :最后抽签者得“得票”的概率最小8.设A,B是两个事件,且P(A)≤P(AIB)则有( ).(4分)A :P(A)= P(AIB)B :P(B)>0C :P(A)≥P(AIB)D :前三者都不一定成立9.设有10个零件,其中2个是次品,现随机抽取2个,恰有一个是正品的概率为().(4分)A :8/45B :16/45C :8/15D :8/3010.设盒中有10个木质球,6个玻璃球,玻璃球有两个为红色,4个为蓝色;木质球有3个为红色,7个为蓝色,现从盒中任取一球,用A表示“取到蓝色球”;B表示“取到玻璃球”。

概率论及数理统计练习题(含答案)

概率论及数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判定正误(1)必然事件在一次实验中必然发生,小概率事件在一次实验中必然不发生。

(B )(2)事件的发生与否取决于它所包括的全数样本点是不是同时显现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)假设()0,P A = 那么A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个小孩的家庭小孩的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),那么P{}1=3两个女孩。

(B )(8)假设P(A)P(B)≤,那么⊂A B 。

(B ) (9)n 个事件假设知足,,()()()i j i j i j P A A P A P A ∀=,那么n 个事件彼此独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件知足P(AB)=0,那么©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,那么P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,那么其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)假设A, B 为两随机事件,且B A ⊂,那么以下式子正确的选项是(A)A. P(A ∪B)=P(A)B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,那么()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 知足P(B|A)=1, 那么(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂(7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 那么(D)A. 事件A, B 互不相容B. 事件A 和B 相互对立C. 事件A, B 互不独立 D . 事件A, B 相互独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率别离是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

概率论与数理统计试题及答案

概率论与数理统计试题及答案

概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。

答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。

答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。

答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。

答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。

答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。

答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.选择题(18分,每题3分)1.如果1)()(>+B P A P ,则事件A 与B 必定())(A 独立;)(B 不独立;)(C 相容;)(D 不相容.2. 已知人的血型为 O 、A 、B 、AB 的概率分别是0.4;0.3;0.2;0.1。

现任选4人,则4人血型全不相同的概率为:())(A 0.0024;)(B 40024.0;)(C 0. 24;)(D 224.0.3. 设~),(Y X ⎩⎨⎧<+=.,0,1,/1),(22他其y x y x f π则X 与Y 为())(A 独立同分布的随机变量;)(B 独立不同分布的随机变量; )(C 不独立同分布的随机变量;)(D 不独立也不同分布的随机变量.4. 某人射击直到中靶为止,已知每次射击中靶的概率为0.75. 则射击次数的数学期望与方差分别为 ( ))(A 4934与; )(B 16934与; )(C 4941与;(D) 9434与.5.设321,,X X X 是取自N (,)μ1的样本,以下μ的四个估计量中最有效的是())(A 32112110351ˆX X X ++=μ;)(B 3212949231ˆX X X ++=μ; )(C 3213216131ˆX X X ++=μ;)(D 32141254131ˆX X X ++=μ. 6. 检验假设222201:10,:10H H σσ≤>时,取统计量)(~10)(22212n Xini χμχ-=∑=,其拒域为(1.0=α)())(A )(21.02n χχ≤;)(B )(21.02n χχ≥;)(C )(205.02n χχ≤;)(D )(205.02n χχ≥.二. 填空题(15分,每题3分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为⎪⎪⎭⎫⎝⎛-+c b a 4.01.02.04321,则常数c b a ,,应满足的条件 为.3.已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率=>>),(b Y a X P .4.设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D .5.设),,,(21n X X X 是从正态总体),(~2σμN X 中抽取的样本,则概率=≤-≤∑=)76.1)(37.0(222012012σσX XP ii .5. 设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 . 三. 计算题(54分,每题9分)1.自动包装机把白色和淡黄色的乒乓球混装入盒子,每盒装12只,已知每盒内装有的白球的个数是等可能的。

为检查某一盒子内装有白球的数量,从盒中任取一球发现是白球,求此盒中装的全是白球的概率。

2.设二维随机变量(X,Y )的联合密度函数为1,02,max{0,1}min{1,}(,)0,x x y x f x y otherwise≤≤-≤≤⎧=⎨⎩求:边缘密度函数(),()X Y f x f y .3. 已知随机变量X 与Z 相互独立,且)1,0(~U X ,)2.0,0(~U Z ,Z X Y +=, 试求:(),(),XY E Y D Y ρ.4. 学校食堂出售盒饭,共有三种价格4元,4.5元,5元。

出售哪一种盒饭是随机的,售出三种价格盒饭的概率分别为0.3,0.2,0.5。

已知某天共售出200盒,试用中心极限定理求这天收入在910元至930元之间的概率。

5. 设总体X 的概率密度为⎩⎨⎧∉∈+=)1,0(,0)1,0(,)1(),(x x x x f θθθ1θ>-为未知参数.已知12,,,n X X X 是取自总体X 的一个样本。

求:(1) 未知参数θ的矩估计量; (2) 未知参数θ的极大似然估计量; (3) )(X E 的极大似然估计量6. 为改建交大徐汇本部中央绿地,建工学院有5位学生彼此独立地测量了中央绿地的面积,得如下数据(单位:2km ) 1.23 1.22 1.20 1.26 1.23 设测量误差服从正态分布.试检验(0.05α=)(1)以前认为这块绿地的面积是μ=1.232km ,是否有必要修改以前的结果? (2)若要求这次测量的标准差不超过0.015σ=,能否认为这次测量的标准差显著偏大?四. 证明题(6分)设12,,,,n X X X 是相互独立且都服从区间],0[θ上的均匀分布的随机变量序列,令1max{}n i i nY X ≤≤=,证明1)(lim =<-∞→εθn n Y P .五.是非题(7分,每题1分)1. 设样本空间{}4321,,,ωωωω=Ω,事件{}431,,ωωω=A ,则75.0)(=A P . ()2. 设n 次独立重复试验中,事件A 出现的次数为X ,则 5n 次独立重复试验中,事件A 出现的次数未必为5X .()3.设a , b 为常数,F (x )是随机变量X 的分布函数. 若F (a ) <F (b ),则a <b . () 4. 若随机变量)5.0;1,0;1,0(~),(-N Y X ,则)1,0(~N Y X +() 5.)()()(Y E X E XY E =是X 与Y 相互独立的必要而非充分的条件.() 6. 若随机变量),(~m m F X ,则概率)1(≤X P 的值与自然数m 无关.() 7.置信度α-1确定以后,参数的置信区间是唯一的. ()附分布数值表99.0)33.2(,9032.0)30.1(,9474.0)62.1(,926.0)45.1(=Φ=Φ=Φ=Φ0150.2)5(,1318.2)4(,5706.2)5(,7764.2)4(05.005.0025.0025.0====t t t t 711.0)4(,488.9)4(,484.0)4(,143.11)4(295.0205.02975.02025.0====χχχχ一. 选择题(15分,每题3分) [ 方括弧内为B 卷答案 ]C AC AD . . [ A D B CA ] 二. 填空题(18分,每题3分)1. 62.0 [84.0];2..0,4.0,1.0,3.0≥≤-≥=+-c b a c b a 且 [0,3.0,2.0,4.0≥-≥≤=+-c b a c a b 且]; 3.),(),(),(1b F a F b a F +∞-∞+-+ [)22,(),6()22,6(1+∞-∞+-+F F F ]; 4. 4/,2/m m [ 4/,2/n n ] ;5. 985.0 [)1(-+m t mS X α]; 6.)1(--n t nS X α [98.0].五. 是非题(7分,每题1分)非非是是是是非. [ 是非是非非非是 ] 三.计算题(54分,每题9分)1. 解:令 A={抽出一球为白球},t B ={盒子中有t 个白球},12,,2,1,0 =t . 由已知条件,131)(=t B P ,12)(tB A P t =,12,,2,1,0 =t , [ 111)(=t B P ,10)(tB A P t =,10,,2,1,0 =t ](3分)由全概率公式,∑∑====1201212131)()()(t t t t t B A P B P A P , [∑==10010111)(t tA P ] (3分) 由Bayes 公式,132)()()()(1212131131121212===∑=t t A P B A P B P A B P . [ 112)(10=A B P ] (3分) 2. 解:,01()2,120,X x x f x x x otherwise ≤<⎧⎪=-≤≤⎨⎪⎩[1,[0,1]()0,[0,1]X x f x x ∈⎧=⎨∉⎩(4分)] (5分)1,[0,1]()0,[0,1]Y y f y y ∈⎧=⎨∉⎩ [,01()2,120,Y y y f y y y otherwise ≤<⎧⎪=-≤≤⎨⎪⎩(5分)] (4分)3.解:11111(),()()()222020E X E Y E X E Z ==+=+=(3分) cov(,)(())()()1()12X Y E X X Z E X E X Z D X =+-+==11101()()()()1212001200D Y D X Z D X D Z =+=+=+=[15013] (3分)1XYρ==[2625] (3分) 4.解:设i X 为第i 盒的价格(1,2,,200.)i = ,则总价2001ii X X==∑(1分)() 4.6,()0.19i i E X D X ==(2分) 2001()()200 4.6920i i E X E X ===⨯=∑.2001()()2000.1938i i D X D X ===⨯=∑. (2分)(910930)212(1.622)120.947410.8948P X P ≤≤=≤≤≈Φ-=Φ-=⨯-=[ 8064.01)298.1(2)928912(=-Φ≈≤≤X P ] (4分)5.解:(1)矩估计量12ˆ1X X θ-=- [ ˆ1X Xθ=- ] (3分) (2)极大似然估计量11ˆ11ln ni i X n θ==--∑ [11ˆ1ln ni i X n θ==-∑] (3分)(3))(X E 的极大似然估计量∑=-=++=n i in X X E 11ln 112ˆ1ˆ)(ˆθθ [ 1ln 11ˆˆ)(ˆ11-=+=∑=ni inXX E θθ ] (3分)7. 解:(1)假设01: 1.23;: 1.23H H μμ=≠. [ 01: 1.20;: 1.20H H μμ=≠ ] (1分) 当0H 为真,检验统计量)1(~/0--=n t nS X T μ(3分)0.0252(1)(4) 2.7764t n t α-==,拒绝域(, 2.7764][2.7764,)W =-∞-⋃+∞(3分)221.246,0.0288x s ==, [ 221.23,0.0224x s == ]0 1.242T W =∉,接受0H . [ W T ∈=571.30,拒绝0H ] (2分)(2)假设222201:0.015;:0.015H H σσ=>. (1分)当0H 为真,检验统计量)1(~)1(22022--=n S n χσχ(3分)220.05(1)(4)9.488n αχχ-==,拒绝域[9.488,)W =+∞. (3分) 2014.86W χ=∈,拒绝0H . (2分)四.证明题证:⎩⎨⎧∉∈=],0[,0],0[,/1)(~θθθx x x f X i 0,0(),01,1x x F x x x θθ<⎧⎪⎪=≤<⎨⎪≥⎪⎩1max{}n i i nY X ≤≤=的密度为1,[0,]()0,[0,]n n nY ny y f x y θθθ-⎧∈⎪=⎨⎪∉⎩(3分)0ε∀>11||00(||)()(1)0,n n n nny nn nny ny P Y dy dyas n θεθεθεθθθεεθθ----≥<-≥==-==-→→∞⎰⎰即0)(lim =≥-∞→εθn n Y P ,所以1)(lim =<-∞→εθn n Y P . (3分)。

相关文档
最新文档