概率论与数理统计期末考试卷答案
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
(完整word版)概率论与数理统计期末试卷及答案
一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。
概率论与数理统计期末考试试题(答案)
概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。
事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
概率论与数理统计期末考试试题库及答案
概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。
试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。
23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
《概率论与数理统计》期末考试试题及解答
一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________. 答案:0.3解: 即 所以9.0)(1)()(=-==AB P AB P B A P Y .2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.答案: 解答:由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22即 0122=--λλ 解得1=λ,故3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________. 答案:解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故另解 在(0,2)上函数2y x =严格单调,反函数为()h y =所以4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________.答案:2λ=,-4{min(,)1}1e P X Y ≤=-解答:2(1)1(1)P X P X ee λ-->=-≤==,故 2λ=41e -=-.5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21Λ是来自X 的样本,则未知参数θ的极大似然估计量为_________.答案: 解答: 似然函数为解似然方程得θ的极大似然估计为$1111ln ni i x n θ==-∑.二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C U 与B 也独立. (C )若()0P C =,则A C U 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( )答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图可见A 与C 不独立.2.设随机变量~X ()x Φ,则(||2)P X >的值为 (A )2[1(2)]-Φ(2)1Φ-. (C )2(2)-Φ. 2(2)Φ. ( ) 答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ). 3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为 若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A )12,99αβ==. (C ) 11,66αβ== (D )51,1818αβ==. ( )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α====== ∴29α=, 19β=故应选(A ).,n X 为来自X 的样本,则下列结论中 (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( ) 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02, 求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+ (2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===. 四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数, 求X 的分布列、分布函数、数学期望和方差.解:X 的概率分布为即1232754368125125125125XPX 的分布函数为231835525DX =⨯⨯=. 五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率 (1)(,)X Y 的概率密度为(2)利用公式()(,)Z f z f x z x dx +∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 0z <或1z >时()0Z f z =01z ≤≤时 00()222z zZ f z dx x z ===⎰故Z 的概率密度为 六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望.1){,)}(,)D P X Y D f x y dxdy ∈=⎰⎰2221122888211()8r r red ee e ------=-=-⎰;22818x y edxdy π+-+∞-∞-∞=⎰⎰22882r r edr dr --+∞+∞-∞==⎰七、(11分)设某机器生产的零件长度(单位:cm )2~(,)X N μσ,今抽取容量为16的样本,测得样本均值10x =,样本方差20.16s =. (1)求μ的置信度为0.95的置信区间;(2)检验假设20:0.1H σ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t === 解:(1)μ的置信度为1α-下的置信区间为所以μ的置信度为0.95的置信区间为(9.7868,10.2132)(2)20:0.1H σ≤的拒绝域为22(1)n αχχ≥-.221515 1.6240.1S χ==⨯=,20.05(15)24.996χ= 因为 220.052424.996(15)χχ=<=,所以接受0H .《概率论与数理统计》期末考试试题(A )专业、班级: 姓名: 学号:一、单项选择题(每题3分共18分)《概率论与数理统计》课程期末考试试题(B)专业、班级:姓名:学号:页眉内容共8页第8页。
《概率论与数理统计》期末考试试题及解答.doc
《概率论与数理统计》期末考试试题及解答一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)?P(B)?0.5,则A,B至少有一个不发生的概率为__________.答案:0.3解:P(A?B)?0.3即0.3?P(A)?P(B)?P(A)?P(AB)?P(B)?P(AB)?0.5?2P(AB)所以P(AB)?0.1P(?)?P(AB)?1?P(AB)?0.9.2.设随机变量X服从泊松分布,且P(X?1)?4P(X?2),则P(X?3)?______.答案:1?1e6解答:P(X?1)?P(X?0)?P(X?1)?e????e,??P(X?2)??22e??????2?? 由P(X?1)?4P(X?2) 知e??e?2?e2 即2????1?0 解得??1,故P(X?3)?1?1e 623.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y?X在区间(0,4)内的概率密度为fY(y)?_________.答案:0?y?4,fY(y)?FY?(y)?fX? 0,其它.?解答:设Y的分布函数为FY(y),X的分布函数为FX(x),密度为fX(x)则FY(y)?P(Y?y)?P(X?2y)?y?)yX)Xy? ?)y 因为X~U(0,2),所以FX(?0,即FY(y)?FX故10?y?4,fY(y)?FY?(y)?fX? 0,其它.?另解在(0,2)上函数y?x2严格单调,反函数为h(y)?所以0?y?4,fY(y)?fX? ?0,其它.?24.设随机变量X,Y相互独立,且均服从参数为?的指数分布,P(X?1)?e,则??_________,P{min(X,Y)?1}=_________.答案:??2,P{min(X,Y)?1}?1?e-4解答:P(X?1)?1?P(X?1)?e???e?2,故??2P{min(X,Y)?1}?1?P{min(X,Y)?1}?1?P(X?1)P(Y?1)?1?e?4.5.设总体X的概率密度为???(??1)x,0?x?1, f(x)?? ???1. ?其它?0,X1,X2,?,Xn是来自X的样本,则未知参数?的极大似然估计量为_________.答案:???11nlnxi?ni?1?1解答:似然函数为L(x1,?,xn;?)??(??1)xi??(??1)n(x1,?,xn)?i?1nlnL?nln(??1)??n?lnxi?1ni解似然方程得?的极大似然估计为dlnLn???lnxi?0 d???1i?12?? ?11n?lnxini?1?1.二、单项选择题(每小题3分,共15分)1.设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(A)若P(C)?1,则AC与BC也独立.(B)若P(C)?1,则A?C与B也独立.(C)若P(C)?0,则A?C与B也独立.(D)若C?B,则A与C也独立. ()答案:(D).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D).事实上由图可见A与C不独立.2.设随机变量X~N(0,1),X的分布函数为?(x),则P(|X|?2)的值为(A)2[1??(2)]. (B)2?(2)?1.(C)2??(2). (D)1?2?(2). ()答案:(A)解答:X~N(0,1)所以P(|X|?2)?1?P(|X|?2)?1?P(?2?X?2)(2)??(?2)?1?[2?(2?) ?1??1]?2?[1 ? 应选(A).3.设随机变量X和Y不相关,则下列结论中正确的是(A)X与Y独立. (B)D(X?Y)?DX?DY.(C)D(X?Y)?DX?DY. (D)D(XY)?DXDY. () 3答案:(B)解答:由不相关的等价条件知,?xy?0?cov(x,y)?0 D(X?Y)?DX?DY+2cov (x,y)应选(B).4.设离散型随机变量X和Y的联合概率分布为(X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3) P111169183??若X,Y独立,则?,?的值为(A)??29,??19. (A)??129,??9.(C)??16,??16 (D)??518,??118.4 )(答案:(A)解答:若X,Y独立则有??P(X?2,Y?2)?P(X?2)P(Y?2) 1121 ?(????)(??)?(??) 393921 ???,??99 故应选(A).5.设总体X的数学期望为?,X1,X2,?,Xn为来自X的样本,则下列结论中正确的是(A)X1是?的无偏估计量. (B)X1是?的极大似然估计量.(C)X1是?的相合(一致)估计量. (D)X1不是?的估计量. ()答案:(A)解答:EX1??,所以X1是?的无偏估计,应选(A).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A?‘任取一产品,经检验认为是合格品’B?‘任取一产品确是合格品’则(1)P(A)?P(B)P(A|B)?P()P(A|)?0.9?0.95?0.1?0.02?0.857.(2)P(B|A)?四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.5 P(AB)0.9?0.95??0.9977. P(A)0.857解:X的概率分布为P(X?k)?C3()()k25k353?kk?0,1,2,3.X即X的分布函数为P02712515412523612538 125x?0,?0,?27?,0?x?1,?125??81,1?x?2, F(x)???125?117 2?x?3,?125,?x?3.?1,?26EX?3??,552318DX?3???.5525五、(10分)设二维随机变量(X,Y)在区域D?{(x,y)|x?0,y?0,x?y?1} 上服从均匀分布. 求(1)(X,Y)关于X的边缘概率密度;(2)Z?X?Y的分布函数与概率密度.(1)(X,Y)的概率密度为?2,(x,y)?Df(x,y)??0,其它.?fX(x)?(2)利用公式fZ(z)? 其中f(x,z?x)????????????2?2x,0?x?1f(x,y)dy??0,其它??f(x,z?x)dx?2,0?x?1,0?z?x?1?x?2,0?x?1,x?z?1.??0,其它??0,其它.当z?0或z?1时fZ(z)?0 0?z?1时fZ(z)?2?z0dx?2x0?2zz6故Z的概率密度为??2z,0?z?1,fZ(z)????0,其它.Z的分布函数为fZ(z)??z??z?0?0,?0,z?0,?z??fZ(y)dy???2ydy,0?z?1??z2,0?z?1, 0??1,z?1.?z?1??1,或利用分布函数法?z?0,?0,?FZ(z)?P(Z?z z1,)?P(X?Y?)z,y0??????2dxd?D1?1,z?1.??0,?2, ??z?1,?z?0,0?z?1, z?1.?2z,?0,0?z?1,其它.fZ(z)?FZ?(z)??六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,2)分布. 求(1)命中环形区域D?{(x,y)|1?x?y?2}的概率;(2)命中点到目标中心距离Z?1)P{X,Y)?D}?222.??f(x,y)dxdyD???2??4D?x2?y28dxdy? 18?r282??2?21e?r28rdrd??(2)EZ?E? ?21e?r28d(?)??e 82??e?e;1?18?12 ?? ??r28 ????1e?04 ???1e8??x2?y28dxdy?18???2???0re?rdrd??r28r2dr7??rer2?8????0??0e?r28dr??????r28dr?.七、(11分)设某机器生产的零件长度(单位:cm)X~N(?,?2),今抽取容量为16的样本,测得样本均值?10,样本方差s2?0.16. (1)求?的置信度为0.95的置信区间;(2)检验假设H0:?2?0.1(显著性水平为0.05).(附注)t0.05(16)?1.746,t0.05(15)?1.753,t0.025(15)?2.132,解:(1)?的置信度为1??下的置信区间为(?t?/2(n?222?0.05(16)?26.296,?0.05(15)?24.996,?0.025(15)?27.488. ?t?/2(n??10,s?0.4,n?16,??0.05,t0.025(15)?2.132所以?的置信度为0.95的置信区间为(9.7868,10.2132)2 (2)H0:?2?0.1的拒绝域为?2???(n?1).15S22?15?1.6?24,?0.05 ??(15)?24.996 0.12 因为?2?24?24.996??0.05(15),所以接受H0.2《概率论与数理统计》期末考试试题(A)专业、班级:姓名:学号:一、单项选择题(每题3分共18分)891011121314151617《概率论与数理统计》课程期末考试试题(B)专业、班级:姓名:学号:181920212223242526272829共8页30。
大学《概率论与数理统计》期末考试试卷含答案
大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
概率论与数理统计期末试卷含答案
概率论与数理统计期末试卷含答案一、选择题(本大题共8小题,每题3分,共24分)1.设表示三个随机事件,则表示------------------------- ( C ) (A)都发生 (B)都不发生 (C)不都发生 (D)中至少有一个发生2. 同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为---------- ( C ) (A).0.125 (B)0.25 (C)0.375 (D)0.50 3.设,,其中、为常数,且,则 ----------------------------------------------------------( D ); ; ;4.设随机变量X 的概率密度为,则P(0.2<X<0.8)= ( A )(A)0.3 (B)0.6 (C)0.66 (D)0.75.设是一随机变量,则下列各式中错误的是----------------------- ( B ) (A) (B) (C) +1 (D)6.设总体,其中已知,未知,为来自的一个样本,则下列各式不是统计量的是-------------------------------( D ) (A)(B)(C)(D)7.设总体,未知,为来自的样本,样本均值为,样本标准差为,则的置信水平为的置信区间为--( C ) (A) (B)(C)(D)8.总体中已知,是其样本均值,是其样本方差,则假设检验问题所取的检验统计量为----------------------( A )(A) (B) (C) (D) 二、填空题(本大题共4小题,每题4分,共16分)1.已知P (A )=3/4,P (B )=1/4,B A ,则有P (B|A )=1/3 2.设随机变量X ~B ,则P{X 1}=3.设随机变量X 的数学期望是方差为 则根据切比雪夫不等式4.设是来自正态总体的一个简单随机样本,则样本均值服从 ,,A B C ABC ,,A B C ,,A B C ,,A B C ,,A B C ()2,~σμN X b aX Y -=a b 0≠a ~Y ()A ()222,b a b a N +-σμ()B ()222,b a b a N -+σμ()C ()22,σμa b a N +()D ()22,σμa b a N -⎪⎩⎪⎨⎧≤<-≤<=其它021210)(x x x xx f X )(5)5(X E X E -=-)()5(X D X D -=-)(5)15(X E X E =+)()5(X D X D =+2~(,)X N μσμ2σ12,,,n X X X X ∑=ni iX11()nii Xμ=-∑1()nii XX =-∑221()ni i X σ=-∑2~(,)X N μσ2,μσn X X X ,,,21 X X S μα-1),(22αασσZ nX Z n X +-22((1),(1))X n X n αα---))1(),1((22-+--n t ns X n t ns X αα))(),((22n t nsX n t ns X αα+-)2(,)N μσ2σX 2S 0010:,:H H μμμμ=≠XX 22(1)n S σ-211()1n i i X n μ=--∑⊂⎪⎭⎫⎝⎛31,3≥2719μ2σ{||2}P X μσ-≤≥41n X X X ,,,21 ),(~2σμN X 11n i i X X n ==∑),(2nN σμ三、计算题(本大题共4小题,每题7分,共28分)1.设是样本空间中的两个事件,且 求(1) ;(2) 解:-------- (1) -------- (2) -------- 2.设离散型随机变量X 的分布律为且已知E (X )=0.3,试求:(1)p 1 p 2;(2)D (-3X +2);(3)X 的分布函数F (x )解: -------- (2)--------(3) --------3、设随机变量的概率密度为求(1)常数; (2)解:(1) ∴ --------(2). --------4、设总体X 的概率密度为其中>0为未知参数,x 1 x 2 … x n 为来自总体X 的样本,试求的最大似然估计。
(完整版)《概率论与数理统计》期末考试试题及解答
一、填空题(每小题3分,共15分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发B A ,5.0)()(=+B P A P B A ,生的概率为__________.答案:0.3解:3.0)(=+A B A P 即)(25.0)()()()()()(3.0AB P AB P B P AB P A P A P B A P -=-+-=+=所以1.0)(=AB P.9.0)(1)((=-==AB P AB P B A P 2.设随机变量服从泊松分布,且,则______.X )2(4)1(==≤X P X P ==)3(X P 答案:161-e 解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 知 λλλλλ---=+e e e 22)2(4)1(==≤X P X P即 0122=--λλ 解得,故1=λ161)3(-==e X P 3.设随机变量在区间上服从均匀分布,则随机变量在区间内的概率X )2,0(2X Y =)4,0(密度为_________.=)(y fY答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它 解答:设的分布函数为的分布函数为,密度为则Y (),Y F y X ()F x ()X f x2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为,所以,即~(0,2)XU (0X F =()Y X F y F =故04,()()0,.Y Y Xyf y F y f<<'===⎩其它另解在上函数严格单调,反函数为(0,2)2y x=()h y=所以04,()0,.Y Xyf y f<<==⎩其它4.设随机变量相互独立,且均服从参数为的指数分布,,则YX,λ2)1(-=>eXP=λ_________,=_________.}1),{min(≤YXP答案:,2λ=-4{min(,)1}1eP X Y≤=-解答:,故2(1)1(1)P X P X e eλ-->=-≤==2λ={min(,)1}1{min(,)1}P X Y P X Y≤=->1(1)(1)P X P Y=->>.41e-=-5.设总体的概率密度为X.⎪⎩⎪⎨⎧<<+=其它,0,1,)1()(xxxfθθ1->θ是来自的样本,则未知参数的极大似然估计量为_________.nXXX,,,21Xθ答案:1111lnniixnθ==-∑解答:似然函数为111(,,;)(1)(1)(,,)nnn i niL x x x x xθθθθθ==+=+∏1ln ln(1)lnniiL n xθθ==++∑1lnln01niid L nxdθθ==++∑@解似然方程得的极大似然估计为θ.1111ln ni i x n θ==-∑二、单项选择题(每小题3分,共15分)1.设为三个事件,且相互独立,则以下结论中不正确的是,,A B C ,A B (A )若,则与也独立.()1P C =AC BC (B )若,则与也独立.()1P C =A C B (C )若,则与也独立.()0P C =A C B (D )若,则与也独立.( )C B ⊂A C 答案:(D ). 解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图可见A 与C 不独立.2.设随机变量的分布函数为,则的值为~(0,1),X N X ()x Φ(||2)P X > (A ). (B ).2[1(2)]-Φ2(2)1Φ- (C ). (D ).( )2(2)-Φ12(2)-Φ 答案:(A )解答: 所以~(0,1)X N (||2)1(||2)1(22)P X P X P X >=-≤=--<≤应选(A ).1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ3.设随机变量和不相关,则下列结论中正确的是X Y (A )与独立. (B ).X Y ()D X Y DX DY -=+ (C ).(D ).( )()D X Y DX DY -=-()D XY DXDY =解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ()+2cov x y D X Y DX DY -=+(,)应选(B ).4.设离散型随机变量和的联合概率分布为X Y (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若独立,则的值为,X Y ,αβ (A ). (A ).21,99αβ==12,99αβ== (C ) (D ).( )11,66αβ==51,1818αβ==解答: 若独立则有,X Y(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+, ∴29α=19β=故应选(A ).5.设总体的数学期望为为来自的样本,则下列结论中X 12,,,,n X X X μ X 正确的是(A )是的无偏估计量.(B )是的极大似然估计量.1X μ1X μ (C )是的相合(一致)估计量. (D )不是的估计量. ( )1X μ1X μ 答案:(A ) 解答:,所以是的无偏估计,应选(A ).1EX μ=1X μ三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设‘任取一产品,经检验认为是合格品’A =‘任取一产品确是合格品’B =则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯=(2) .()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===四、(12分) 从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设为途中遇到红灯的次数,X求的分布列、分布函数、数学期望和方差.X解:的概率分布为X3323()(()0,1,2,3.55k k kP X k C k -===即01232754368125125125125XP的分布函数为X0,0,27,01,12581(),12,125117,23,1251, 3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩263,55EX =⨯= .231835525DX =⨯⨯=五、(10分)设二维随机变量在区域 上服从(,)X Y {(,)|0,0,1}D x y x y x y =≥≥+≤均匀分布. 求(1)关于的边缘概率密度;(2)的分布函数与概(,)X Y X Z X Y =+率密度.(1)的概率密度为(,)X Y 2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx+∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 或时0z <1z >()0Z f z =时 01z ≤≤00()222zzZ f z dx x z===⎰故的概率密度为Z 2,01,()0,Z z z f z ⎧≤≤⎪=⎨⎪⎩其它.的分布函数为Z200,00,0,()()2,01,01,1, 1.1,1z z Z Z z z f z f y dy ydy z z z z z -∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰ 或利用分布函数法10,0,()()()2,01,1, 1.Z D z F z P Z z P X Y z dxdy z z ⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Z z z f z F z ≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标和纵坐标相X Y 互独立,且均服从分布. 求(1)命中环形区域2(0,2)N 22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离的数学期望.Z =1){,)}(,)DP X Y D f x y dxdy∈=⎰⎰22222880111248x y r De dxdy erdrd πθππ+--==⋅⎰⎰⎰⎰;2221122888211()8r r red ee e ------=-=-⎰ (2)22818x y EZ E edxdyπ+-+∞-∞-∞==⎰⎰22228801184r r rerdrd e r drπθπ--+∞+∞==⎰⎰⎰222888r r r reedr dr +∞---+∞+∞-∞=-+==⎰七、(11分)设某机器生产的零件长度(单位:cm ),今抽取容量为16的2~(,)X N μσ样本,测得样本均值,样本方差. (1)求的置信度为0.95的置信10x =20.16s =μ区间;(2)检验假设(显著性水平为0.05).20:0.1H σ≤ (附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)的置信度为下的置信区间为μ1α- /2/2(((X t n X t n αα--+-0.02510,0.4,16,0.05,(15) 2.132X s n t α=====所以的置信度为0.95的置信区间为(9.7868,10.2132)μ (2)的拒绝域为.20:0.1H σ≤22(1)n αχχ≥- ,221515 1.6240.1S χ==⨯=20.05(15)24.996χ= 因为 ,所以接受.220.052424.996(15)χχ=<=0H 《概率论与数理统计》期末考试试题(A )专业、班级:姓名:学号:一、单项选择题(每题3分 共18分)1.D 2.A 3.B 4.A 5.A 6.B 题 号一二三四五六七八九十十一十二总成绩得 分一、单项选择题(每题3分 共18分)(1).0)(,0)(;;0)(0)();(( ).,0)(=>===A B P A P (D)B A (C)B P A P (B)B A (A)AB P B A 则同时出现是不可能事件与或互不相容互斥与则以下说法正确的是适合、若事件(2)设随机变量X 其概率分布为 X -1 0 1 2P 0.2 0.3 0.1 0.4则( )。
《概率论与数理统计》期末考试试题与解答
一、填空题(每小题 3 分,共 15 分)1.设事件A, B仅发生一个的概率为0.3,且P( A)P(B)0.5 ,则 A, B 至少有一个不发生的概率为 __________.答案: 0.3解:P( AB AB)0.3即0.3 P( AB ) P( AB) P(A) P( AB) P(B) P( AB) 0.52P( AB)所以P( AB) 0.1P( A B ) P( AB ) 1 P( AB) 0.9.2.设随机变量X服从泊松分布,且P ( X1) 4 P( X2) ,则P(X3)______.答案:1 e16解答:2P( X1)P( X0)P( X1)e e,P( X2)e2 2e 2由 P( X 1)4P( X 2) 知e e即 2 2 1 0解得1,故1 e1P(X3)63.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y X 2在区间(0,4)内的概率密度为 f Y ( y)_________.答案:11,0 y4,f Y ( y)F Y ( y)f X ( y ) 4 yy20, 其它 .解答:设 Y 的分布函数为F Y( y),X 的分布函数为F X ( x) ,密度为 f X ( x) 则F Y ( y)P( Y y)2X y)P(y X)y X F()y F()yP(X因为 X ~ U (0,2) ,所以F X(y )0 ,即 F Y ( y)F X (y )故11,0 y 4,f Y ( y) F Y ( y) 4 yf X ( y )2y0,其它 .另解在 (0, 2) 上函数 y x2严格单调,反函数为h( y)y所以11,0 y 4,f Y ( y) f X ( y) 4 y2y,其它 .4.设随机变量X ,Y 相互独立,且均服从参数为的指数分布,P( X 1) e 2,则_________ ,P{min( X ,Y)1} =_________.答案: 2 ,P{min( X ,Y)1} 1 e-4解答:P( X 1) 1 P( X 1) e e 2,故2P{min( X ,Y ) 1} 1P{min( X ,Y )1}1P( X1)P(Y1)1e 4.5.设总体X的概率密度为f ( x)(1) x , 0x1,0,其它1.X1 , X 2 , , X n是来自X的样本,则未知参数的极大似然估计量为 _________.答案:111 nln x in i1解答:似然函数为n1)n ( x1 , , x n )L( x1 , , x n ; )(1)x i (i1nln L n ln(1)ln x ii 1d ln L n nln x i 0d1i 1解似然方程得的极大似然估计为11.1nln x in i 1二、单项选择题(每小题 3 分,共 15 分)1.设A, B,C为三个事件,且A, B 相互独立,则以下结论中不正确的是( A )若P(C )1,则AC与BC也独立.( B)若P(C )1,则A C 与 B 也独立.( C)若P(C )0 ,则A C 与 B 也独立.( D)若C B ,则 A 与C也独立.()答案:( D) .解答:因为概率为1的事件和概率为0 的事件与任何事件独立,所以( A ),( B),(C)都是正确的,只能选(D) .事实上由图S可见 A 与 C 不独立 .A BC2.设随机变量X ~ N (0,1),X 的分布函数为( x) ,则 P(| X |2) 的值为( A )2[1(2)] .( B)2(2) 1 .( C)2(2) .( D )12(2) .()答案:( A )解答:X ~ N (0,1)所以 P(| X |2) 1P(| X | 2) 1 P( 2 X 2) 1( 2 )( 2 ) 1 [ 2( 2 )1] 2 [ 1应选( A) .3.设随机变量X 和 Y 不相关,则下列结论中正确的是( A )X与Y独立 .(B)D ( X Y) DX DY .( C)D ( X Y) DX DY .(D)D ( XY )DXDY .()答案:( B)解答:由不相关的等价条件知,xy0cov( x, y) 0D ( X Y ) DX DY +2cov( x, y)应选( B ) .4.设离散型随机变量X 和 Y 的联合概率分布为( X ,Y ) (1,1)(1,2)(1,3)(2,1) (2, 2) (2,3)1111P91836若 X ,Y 独立,则,的值为( A ) 2 ,1.( A )99( C)1,1( D )661 ,2.995 ,1.()1818答案:( A )解答: 若 X ,Y 独立则有1 2 3P( X2, Y 2) P(X2)P(Y 2)11 1 119183(1)(1)2 ( 1)6 11 393 9232131 1 1,992918故应选( A ) .5.设总体X 的数学期望为 , X 1 , X 2 , , X n 为来自 X 的样本,则下列结论中正确的是 ( A ) X 1 是 的无偏估计量 .( B ) X 1 是 的极大似然估计量 . ( C ) X 1 是的相合(一致)估计量. ( D ) X 1 不是 的估计量 . ()答案:( A )解答:EX 1 ,所以 X 1 是 的无偏估计,应选( A ) .三、( 7 分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求( 1)一个产品经检查后被认为是合格品的概率;( 2)一个经检查后被认为是合格品的产品确是合格品的概率.解: 设 A ‘任取一产品,经检验认为是合格品’B ‘任取一产品确是合格品’则( 1) P( A)P( B)P(A | B) P( B)P( A | B)0.90.95 0.1 0.02 0.857.( 2) P( B | A)P( AB) 0.9 0.950.9977 .P( A)0.857四、( 12 分)从学校乘汽车到火车站的途中有3 个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设 X 为途中遇到红灯的次数,求 X 的分布列、分布函数、数学期望和方差.解: X 的概率分布为P( X k )C 3k( 2) k( 3)3 kk 0,1,2,3.55X0 1 2 3 即P2754368125125125125X 的分布函数为0 , x 0,27 , 0 x 1,125F ( x)81 1 x2,,125117 , 2x 3,1251 ,x 3.EX3 2 6 ,5 5DX 32 3 1 85 5.2 5五、( 10 分)设二维随机变量(X , Y) 在区域 D {( x, y) | x 0, y0, x y 1} 上服从均匀分布 . 求( 1) ( X ,Y) 关于 X 的边缘概率密度; ( 2) Z X Y 的分布函数与概率密度 .解: y(1) ( X ,Y ) 的概率密度为12, ( x, y) Df ( x, y)x+y=10, 其它 .DD 1xf X ( x)2 2x, 0 x 1 z1f ( x, y)dy0 ,其它x+y=z( 2)利用公式 f Z (z) f (x, z x)dx2, 0 x 1,0 z x 1 x 2, 0 x 1, x z1.其中 f (x, z x)其它0, 其它.0,当 z0 或 z 1时 f Z (z) 0zzz=x0 z 1时 f Z ( z) 2z2z0 dx 2x 0故 Z 的概率密度为2z, 0 z1,f Z ( z)0 , 其它.Z 的分布函数为0,z00 ,z0,z zf Z ( y)dy z 1z2 ,0z 1,f Z (z)2ydy, 01 ,z 1.1,z1或利用分布函数法0,z0 ,F Z ( z) P( Z z) P( X Y )z 2 d x d, y 0z1 ,D11,z 1.0,z0,z2,0z 1,1,z 1.f Z ( z)F Z2z,0z1, (z),其它.六、( 10 分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标 Y 相互独立,且均服从 N (0, 22 ) 分布.求(1)命中环形区域 D {( x, y) |1x2y22} 的概率;( 2)命中点到目标中心距离Z X 2Y 2的数学期望 .解: y( 1)P{ X ,Y)D} f (x, y) dxdyD1x2 y212r 2e dxdy28e 8 rdrdD2481012xr 22r 2211 2r ) e 8 e 8 e 2;e 8 d (181x2y2( 2)EZ E(X 2Y 2 )x2y 2 1 e8 dxdy812r 21r 2re 8 rdrd e8 r 2dr8040r 2r 22 1 r 2re8e 8dre 8dr 2 .22七、( 11 分)设某机器生产的零件长度(单位:cm ) X ~ N ( , 2) ,今抽取容量为 16 的样本,测得样本均值x 10 ,样本方差 s 20.16 . ( 1)求 的置信度为 0.95 的置信区间;( 2)检验假设 H 0 :20.1(显著性水平为 0.05) .(附注) t 0.05 (16) 1.746, t 0.05 (15) 1.753, t 0.025 (15)2.132,2 (16) 26.296,2 (15) 24.996,2 (15) 27.488.0.050.050.025解:( 1) 的置信度为 1下的置信区间为( X t /2 (n 1) s , X t /2 ( n 1) s)n nX 10, s0.4, n 16, 0.05, t 0.025 (15) 2.132所以的置信度为 0.95 的置信区间为( 9.7868, 10.2132)( 2) H 0 :20.1的拒绝域为22(n 1) .215S 2 15 1.6 24 , 02.05 (15)24.9962 0.102.05 (15) ,所以接受 H 0 .因为24 24.996《概率论与数理统计》期末考试试题(A )专业、班级:姓名: 学号:一、单项选择题 (每题 3 分 共 18 分 )1.D 2.A 3.B 4. A 5. A 6.B题 号一 二 三 四 五 六 七 八 九 十 十一 十二总成绩得 分一、单项选择题 (每题 3 分共 18 分 )(1)若事件 A、B 适合 P( AB) 0, 则以下说法正确的是().(A) A 与 B 互斥 (互不相容 );(B) P(A) 0 或 P( B) 0;(C) A 与 B 同时出现是不可能事件 ;(D) P( A) 0 , 则 P (B A)0.( 2)设随机变量X其概率分布为X -1012P0.20.30.1 0.4则 P{ X 1.5} ()。
概率论与数理统计期末考试试卷答案
概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。
答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。
答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。
答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。
答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。
《概率论与数理统计》期末考试题(附答案)
《概率论与数理统计》期末考试题(附答案)三、(6分)设随机变量X ,Y 的概率密度分别为:=)(x f X ⎩⎨⎧≤≤其它 ,0,10 ,32x x ,=)(y f Y ⎩⎨⎧≤≤其它 ,0,10 ,2y y ,且随机变量X ,Y 相互独立(1)求(X ,Y )的联合概率密度为:),(y x f(2)计算概率值{}X Y p 2≤。
解:(1) X ,Y 的边缘密度分别为:⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-+∞∞-其他,,其他,, 010 26)()(010 36)()(1021022y y ydx x dx y x f y f x x ydy x dy y x f x f Y XX ,Y 相互独立,可见(X ,Y )的联合概率密度为)()(),(y f x f y x f Y X ⋅=, ⎩⎨⎧≤≤≤≤=其它 ,010,10 ,6),(2y x y x y x f 2’ ⎰⎰⎰⎰===<<10122220196),()2(y x y ydx x dy dxdy Y x f X Y P 4 四、(8分) 从总体X ~) ,(2σu N 中抽取容量为25的一个样本,样本均值和样本方差分别是:9,802==S X , 36.39)24(,4.12)24(,0639.2)24(2025.02975.0025.0===x x t求u 的置信度为0.95的置信区间和2σ 的置信度为0.95的置信区间。
解: (1)n=25,置信水平025.02/,95.01==-αα,,1315.2)1(025.0=t9,802==S X 由此u 的置信水平为0.95的置信区间为:)0639.225380(⨯±, 即)238.180(± 4’(2) n=25,置信水平025.02/,95.01==-αα,36.39)24(,4.12)24(2025.02975.0==x x92=S 由此2σ的置信水平为0.95的置信区间为:)42.17,49.5())24(924,)24(924(2975.02025.0=⨯⨯χχ 4’五 、(10分)设总体X 服从u u N ,),,(22已知σσ未知。
概率论和数理统计期末考试题及答案
概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
2021年大学必修概率论与数理统计期末考试卷及答案(完整版)
2021年大学必修概率论与数理统计期末考试卷及答案(完整版)一、单选题1、假设随机变量X 的分布函数为F(x),密度函数为f(x).若X 与-X 有相同的分布函数,则下列各式中正确的是 A )F(x) = F(-x); B) F(x) = - F(-x); C) f (x) = f (-x); D) f (x) = - f (-x). 【答案】C2、设12,,,n X X X ⋅⋅⋅为总体X 的一个随机样本,2(),()E X D X μσ==,12211()n i i i C XX θ-+==-∑为 2σ的无偏估计,C =(A )1/n (B )1/1n - (C ) 1/2(1)n - (D ) 1/2n - 【答案】C3、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则 2()E Y =A )1.B )9.C )10.D )6. 【答案】C4、设12,,,n X X X ⋅⋅⋅是取自总体X 的一个简单样本,则2()E X 的矩估计是(A )22111()1n i i S X X n ==--∑(B )22211()n i i S X X n ==-∑(C )221S X + (D )222S X + 【答案】D5、已知随机变量X 的密度函数f(x)=x x Ae ,x 0,λλ-≥⎧⎨<⎩(λ>0,A 为常数),则概率P{X<+a λλ<}(a>0)的值A )与a 无关,随λ的增大而增大B )与a 无关,随λ的增大而减小C )与λ无关,随a 的增大而增大D )与λ无关,随a 的增大而减小 【答案】C6、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。
那么对任意给定的a 都有A )()1()af a f x dx-=-⎰ B )01()()2a F a f x dx -=-⎰C ))()(a F a F -=D ) 1)(2)(-=-a F a F 【答案】B7、设X ~2(,)N μσ其中μ已知,2σ未知,123,,X X X 样本,则下列选项中不是统计量的是 A )123X X X ++ B )123max{,,}X X X C )2321i i X σ=∑ D )1X μ-【答案】C8、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是(A) (,)F m n (B) (1,1)F n m -- (C) (,)F n m (D)(1,1)F m n -- 【答案】C9、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是A) (,)F m n B) (1,1)F n m -- C) (,)F n m D) (1,1)F m n -- 【答案】C10、设离散型随机变量(,)X Y 的联合分布律为 (,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ且Y X ,相互独立,则A ) 9/1,9/2==βαB ) 9/2,9/1==βαC ) 6/1,6/1==βαD ) 18/1,15/8==βα 【答案】A 二、填空题1、θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。
概率论与数理统计期末考试试卷答案
数理统计练习 一、填空题1、设A 、B 为随机事件,且P (A )=0.5,P (B)=0.6,P (B |A )=0.8,则P (A+B )=__ 0。
7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 .4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1, 则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 , 成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN .7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34.8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N (-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0。
4, P (B )=0。
3, P (A ∪B )=0。
6,则P (B A )=_0.3__。
2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719.3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
《概率论与数理统计》期末复习试卷4套+答案
1、(10分)甲箱中有 个红球, 个黑球,乙箱中有 个黑球, 个红球,先从甲箱中随机地取出一球放入乙箱。混合后,再从乙箱取出一球,
(1)求从乙箱中取出的球是红球的概率;
(2)若已知从乙箱取出的是红球,求从甲箱中取出的是黑球的概率;
2、(8分)设二维随机变量的联合概率密度为:
求关于 的边缘概率密度,并判断 是否相互独立?
7、(8分)设有一种含有特殊润滑油的容器,随机抽取9个容器,测其容器容量的样本均值为10.06升,样本标准差为0.246升,在 水平下,试检验这种容器的平均容量是否为10升?假设容量的分布为正态分布。
( , )
第二套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若 是离散型随机变量,则随机变量 的取值个数一定为无限个。()
2、(8分)设二维随机变量(X,Y)的联合概率密度为:
求边缘概率密度 ,并判断 与 是否相互独立?
3、(8分)设随机变量 的分布函数为:
求:(1) 的值;
(2) 落在 及 内的概率;
4、(8分)设随机变量 在 服从均匀分布,求 的概率密度;
5、(10分)设 及 为 分布中 的样本的样本均值和样本方差,求 ( )
第一套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若随机变量 的取值个数为无限个,则 一定是连续型随机变量。()
3、 与 独立,则 。()
4、若 与 不独立,则 。()
5、若 服从二维正态分布, 与 不相关与 与 相互独立等价。()
二、选择题(3分 5)
1、对于任意两个事件 和 ()
5、袋中有5个球(3个新,2个旧),每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )
2020年大学必修课概率论与数理统计期末考试卷及答案
2020年大学必修课概率论与数理统计期末考试卷及答案(完整版)一、单选题1、设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值(X1,x2,…,x n)落入W的概率为0.15,则犯第一类错误的概率为 _____________ 。
(A) 0.1 (B) 0.15 (C) 0.2 (D) 0.25【答案】B2、对于事件人,B,下列命题正确的是(A)若A,B互不相容,则X与B也互不相容。
(B)若A,B相容,那么X与B也相容。
(C)若A,B互不相容,且概率都大于零,则A,B也相互独立。
(D)若A,B相互独立,那么X与B也相互独立。
【答案】D3、在一次假设检验中,下列说法正确的是______(A)既可能犯第一类错误也可能犯第二类错误⑻如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误。
增大样本容量,则犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误【答案】A4、若X〜t(n)那么%2〜A) F(1,n) B) F(n,1) C)殍(n) D) t(n)【答案】A5、在一个确定的假设检验中,与判断结果相关的因素有(A)样本值与样本容量(B)显著性水平a (C)检验统计量 (D)A,B,C同时成立【答案】D6、若X〜t(n)那么X2〜A) F(1,n)B) F(n,1) C) X2(n)D) t(n)【答案】A7、下列函数中,可作为某一随机变量的分布函数是11F (x ) = + — arctan x2兀【答案】B 8、袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。
则第二人取到黄球的概率是【答案】B 9、设X 〜N(从,o 2),那么当o增大时,尸{X 一四<o} =A )增大B )减少C )不变D )增减不定。
【答案】C 10、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》试卷A(考试时间:90分钟; 考试形式:闭卷)(注意:请将答案填写在答题专用纸上,并注明题号。
答案填写在试卷和草稿纸上无效)一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则AB =()A 、AB B 、A BC 、A BD 、A B2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P AB =,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P AB P A P B =+C 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 C、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14 D 、14- 13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
A 、指数B 、泊松C 、正态D 、均匀 16、下列结论中,()不是随机变量X 与Y 不相关的充要条件。
A 、()()()E XY E X E Y =B 、()D X Y DX DY +=+C 、(),0Cov X Y =D 、X 与Y 相互独立A 、100.6n p ==,B 、200.3n p ==,C 、150.4n p ==,D 、120.5n p ==,18、设()()(),,,p x y p x p y ξη分别是二维随机变量(),ξη的联合密度函数及边缘密度函数,则()是ξ与η独立的充要条件。
A 、()E E E ξηξη+=+B 、()D D D ξηξη+=+C 、ξ与η不相关D 、对,,x y ∀有()()(),p x y p x p y ξη= 19、设是二维离散型随机变量,则X 与Y 独立的充要条件是()A 、()E XY EXEy =B 、()D X Y DX DY +=+C 、X 与Y 不相关D 、对(),X Y 的任何可能取值(),i j x y i j i j P P P = 20、设(),X Y 的联合密度为40()xy x p x y ≤≤⎧=⎨⎩,,y 1,0,其它,若()F x y ,为分布函数,则(0.52)F =,()A 、0B 、14 C 、12D 、1二、计算题(本大题共6小题,每小题7分,共42分)1、 若事件 A 与B 相互独立,()0.8P A = ()0.6P B =。
求:()P A B +和{()}P A A B +2、 设随机变量(24)X N ,,且(1.65)0.95Φ=。
求( 5.3)P X ≥3、 已知连续型随机变量ξ的分布函数为0,0()04414x x F x x x ≤⎧⎪⎪=<≤⎨⎪>⎪⎩,,,求ξE 和ξD 。
4、 设连续型随机变量X 的分布函数为()F x A Barctgx x =+-∞<<+∞求: (1)常数A 和B ;(2)X 落入(-1,1)的概率;(3)X 的密度函数()f x5、某射手有3发子弹,射一次命中的概率为23,如果命中了就停止射击, 否则一直独立射到子弹用尽。
求:(1)耗用子弹数X 的分布列;(2)EX ;(3)DX6、设(),ξη的联合密度为40()xy x p x y ≤≤⎧=⎨⎩,,y 1,0,其它, 求:(1)边际密度函数(),()p x p y ξη;(2),E E ξη;(3)ξ与η是否独立三、解答题(本大题共2小题,每小题9分,共18分) 1、 设1X ,2X 是来自正态总体(1)N μ,的样本,下列 三个估计量是不是参数μ 的无偏估计量,若是无偏 估计量,试判断哪一个较优? 1212133X X μ=+ ,1211344X X μ=+,1211122X X μ=+。
2、设10~(,)(0)0xex f x θξθθθ-⎧>⎪=>⎨⎪⎩其它12,,...,n x x x 。
为 ξ的一组观察值,求θ的极大似然估计。
概率论与数理统计试卷答案及评分标准二、计算题(本大题共6小题,每小题7分,共42分)1、 解:∵A 与B 相互独立∴()()()()P A B P A P B P AB +=+-………(1分)()()()()P A P B P A P B =+- ………(1分)0.80.60.8?0.6=+-0.92= ………(1分)又[()]()()P A A B P A A B P A B ++=+………(1分)()()()()()P AB P A P B P A B P A B ==++………(2分)0.13= ………(1分)2、 解:( 5.3)1P X ⎛⎫≥=-⎪⎝⎭5.3-2Φ2 ………(5分)1(1.65)10.950.05=-=-=Φ ………(2分)3、解:由已知有()0,4U ξ………(3分)则:22a bE ξ+== ………(2分) ()24123b a D ξ-== ………(2分)4、解:(1)由()0F -∞=,()1F +∞=有:0212A B A B ππ⎧-=⎪⎨⎪+=⎩解之有:12A =,1B π= ………(3分)(2)1(11)(1)(1)2P X F F -<<=--= ………(2分) (3)21()()(1)f x F x x π'==+ ………(2分) 5、解:(1)………(3分)(2)31221131233999i ii EX x p===⨯+⨯+⨯=∑ ………(2分)(3) ∵3222221221231233999i ii EX x p ===⨯+⨯+⨯=∑ ∴222231338()()9981DX EX EX =-=-=………(2分) 6、解:(1) ∵10()()42p x p x y dy xydy x ξ+∞-∞===⎰⎰,∴20()x x p x ξ≤≤⎧=⎨⎩,10,其它同理:20()y y p x η≤≤⎧=⎨⎩,10,其它 ………(3分)(2) 1202()23E xp x dx x dx ξξ+∞-∞===⎰⎰ 同理:23E η=………(2分) (3) ∵()()()p x y p x p y ξη=,∴ξ与η独立 ………(2分)三、应用题(本大题共2小题,每小题9分,共18分) 1、 解:∵12121()33E E X X μμ=+= 同理:23E E μμμ==∴123μμμ,,为参数μ 的无偏估计量………(3分)又∵21212121415()33999D D X X DX DX μσ=+=+= 同理:221016D μσ=,2324D μσ=且D D D μμμ<<∴3μ较优 ………(6分)2、 解:12,,...,n x x x 的似然函数为:1112111(,,...,)niii x nxn ni L x x x eeθθθθθ=--=∑==∏,………(3分)11()ln ni i Ln L n x θθ==--∑21()10nii dLn L n xd θθθ==-+=∑解之有:11ni i x X n θ===∑ ………(6分)一、(共30分,每题5分)1、设事件A 与B 相互独立,8.0)(,5.0)(==B A P A P , 求)(B A P .解:因为事件A 与B 相互独立,所以)()()(B P A P B A P =)()()()()(B P A P B P A P B A P -+= …….2分由8.0)(,5.0)(==B A P A P ,得6.0)(=B P …….2分 2.0)()()(==B P A P B A P …….1分2、三人独立地去破译一份密码,他们译出的概率分别为41,31,51.求能将此密码译出的概率.解:53)411)(311)(511(1=----=P …….5分3、设随机变量X 的分布律为求12+=X Y 的分布律,并计算)31(<≤X P . 解:4、设随机变量X 服从参数为λ的泊松分布,且已知1)]2)(1[(=--X X E 求λ. 解:λ==)()(X D X E , …….2分12)(3)]([)( )23()]2)(1[(22=+-+=+-=--X E X E X D X X E X X E …….2分所以0122=+-λλ,得1=λ. …….1分 5、为检查某食用动物含某种重金属的水平,假设重金属的水平服从正态分布σμσμ,),,(~2N X 均未知,现抽取容量为25的一个样本,测得样本均值为186,样本标准差为10,求μ的置信度为0.95 的置信区间. 解:总体均值 m 的置信度为0.95 的置信区间为))1((025.0-±n t ns X ……….2分即 )0639.2510186(⨯± …….2分所求置信区间为(181.8722,190.1278) …….1分6、某车间用一台包装机包装葡萄糖.包得的袋装糖重量),,(~2σμN X 当机器正常时,其均值5.0=μ公斤,标准差015.0=σ公斤.某日开工后为检验包装机是否正常,随机地抽取它所包装的糖9袋,称得平均重量为0.511公斤,问这天包装机工作是否正常?(取显著水平05.0=α)解:由题意设 5.0:;5.0:10≠=μμH H ……….1分拒绝域为 025.0|5.0|z nX ≥-σ ……….1分由于2.2|9015.05.0511.0||5.0|=-=-n X σ ,,96.1025.0=z ……….2分即2.2>1.96,拒绝原假设,认为这天包装机工作不正常. ……….1分理统计B 班级 姓名 学号 第 2 页二、(共18分,每题6分)1、设随机变量X 和Y 相互独立,概率密度分别为⎩⎨⎧≤>=-.0 ,00 ,2)(2x x e x f x X , ⎩⎨⎧≤>=-.0 ,0,0 ,3)(3y y e y f y Y求: (1) ;)32(Y X E -(2) );32(Y X D -(3)XY ρ. 解:(1) 0;313-212)(3)(2)32(=⨯⨯=-=-Y E X E Y X E ….2分(2) ;2919414)(9)(4)32(=⨯+⨯=+=-Y D X D Y X D ....2分 (3)因为量X 和Y 相互独立,所以0=XY ρ. . (2)分2、已知随机变量)36,2(~),25,1(~N Y N X ,4.0=XY ρ, 求:Y X U 23+= 与Y X V 3-=的协方差. 解:)3,23(),(Y X Y X Cov V U Cov -+=)(6),(2),(9)(3Y D Y X Cov Y X Cov X D -+-=….3分)(6)()(7)(3Y D Y D X D X D XY --=ρ225366654.07253-=⨯-⨯⨯⨯-⨯= ….3分3、设1321,,,X X X 是来自正态总体)1,0(N 的一个样本,且已知随机变量∑∑==+=1352412)()(i i i i X b X a Y 服从自由度为2的2χ分布,求b a ,的值.解:因为)1,0(~N X i 且相互独立,13,,2,1 =i .所以,)4,0(~41N X i i ∑=,)9,0(~135N X i i ∑=, ….2分)1,0(~2141N X i i ∑=,)1,0(~31135N X i i ∑=,且相互独立. ….2分三、(共18分,每题6分)1、设总体),6,52(~2N X 现随机抽取容量为36的一个样本,求样本均值X 落入(50.8,53.8)之间的概率.解:)1,52(~N X , ……….2分}8.538.50{<<X P =)528.50()528.53(-Φ--Φ)2.1()8.1(-Φ-Φ==8849.019641.0+- ….3分849.0= ……….1分2、设随机变量X 的分布函数为 ⎪⎩⎪⎨⎧>-≤<≤=--.1 ,1,10 ,,0 ,)()1(x Ae x B x Ae x F x x求:(1)A , B 的值;(2)}31{>X P .解:(1)由连续型随机变量分布函数的连续性,得)0()(lim 0F x F x =-→,)1()(lim 1F x F x =-→,即⎩⎨⎧-==AB BA 1 解得5.0==B A ……….3分 (2)5.05.01)31(1}31{=-=-=>F X P ……….3分概率论与数理统计B 试题 班级 姓名 学号 第 3 页3、箱子中有一号袋1个,二号袋2个.一号袋中装1个红球,2个黄球,二号袋中装2个红球,1个黄球,今从箱子中任取一袋,从中任取一球,结果为红球,求这个红球是从一号袋中取得的概率. 解:设i A ={从箱子中取到i 号袋},2,1=iB ={抽出的是红球})|()()|()()(2211A B P A P A B P A P B P += ……….2分9532323131=⨯+⨯= ……….1分)|()()|()()|(21111i i i A B P A P A B P A P B A P ∑==51= ……….3分 四、(8分) 设随机变量X 具有密度函数 ⎩⎨⎧<<=.,010 , )(其它,x Ax x f求(1)常数A ;(2)X 的分布函数.(1)因为 1)(⎰+∞∞-=dx x f ……….2分所以 110=⎰xdx A 得 2=A ……….2分(2)⎪⎩⎪⎨⎧≥<≤<=⎰.1 ,1,10 ,2,0 ,0)(0x x xdx x x F x=⎪⎩⎪⎨⎧≥<≤<.1 ,1,10 ,,0 ,02x x x x ……….4分五、(8分)某箱装有100件产品,其中一、二、三等品分别为 60、30、10件,现从中随机抽取一件,记. ,0 ,1⎩⎨⎧=等品没有抽到等品若抽到i i X i ,求21X X ,的联合分布律.解:设321,,A A A 分别表示抽到一、二、三等品,1.0)()0,0(321====A P X X P ,6.0)()0,1(121====A P X X P 3.0)()1,0(221====A P X X P ,0)1,1(21===X X P 21X X ,的联合分布律为……….8分(每个2分)六、(10分)设随机变量X 和Y 的联合概率密度为⎩⎨⎧<<<=.,0,10 ,15),(2其它y x y x y x f(1) 求边缘概率密度;(2)判断随机变量X 和Y 是否独立. 解:(1)dy y x f x f X ),()(⎰+∞∞-= ……….1分⎪⎩⎪⎨⎧<<-=.,0,10 ),1(21522其它x x x ……….2分 dx y x f y f Y ),()(⎰+∞∞-= ……….1分⎩⎨⎧<<=.,0,10 ,54其它y y ……….2分(2) 因为)()(),(y f x f y x f Y X ≠,所以随机变量X 和Y 不独立.…..….4分七、(8分)设n X X X ,,,21 是总体X 的一个样本,n x x x ,,,21 为一相对应的样本观测值,总体X 的概率密度为⎩⎨⎧<<=.,0,10 ,)(1- 其它x x x f θθ求参数θ的矩估计和极大似然估计. 解:(1)矩估计 ⎰+==-1011)( θθθθdx x x X E , …….2分由11μ=A 得 XX X -=⇒=+11θθθ…….2分(2)似然函数1111)()(-==-∏∏==θθθθθni i nni ix x L对数似然函数i ni Lnx nLn LnL ∑=-+=1)1()(θθθ …….2分令0)(=θθd dLnL ,得 ini i ni Lnx nLnx n ∑∑==-=⇒=+110θθ参数θ的极大似然估计量为∑=-=ni iLnX n1θ…….2分,9861.0.0)2.2( , 9332.0)5.1( ,8849.0)2.1( , 9641.0)8.1( =Φ=Φ=Φ=Φ 附0595.2)25( , 0639.2)24(,645.1 ,96.1025.0025.005.0025.0====t t Z Z。