概率论与数理统计期末复习知识点

合集下载

概率论与数理统计知识要点

概率论与数理统计知识要点

知识要点一 概念:1随机事件:用,,A B C 等表示 互不相容: AB =Φ互逆: AB =Φ且A B ⋃=Ω ,此时,B A = 互逆⇒互不相容 ,反之不行相互独立: ()()P A B P A =或()()()P AB P A P B =2 随机事件的运算律:(1) 交换律: ,A B B A AB BA ⋃=⋃= (2) 结合律: ()(),()()A B C A B C AB C A BC ⋃⋃=⋃⋃=(3) 分配律: (),()()()A B C AB AC A BC A B A C ⋃=⋃⋃=⋃⋃(4 ) De Morgen 律(对偶律)B A B A =⋃ B A AB ⋃= 推广:11n ni i i i A A ===U I11nni i i i A A ===IU3 随机事件的概率:()P A 有界性 0()1P A ≤≤ 若A B ⊂ 则()()P A P B ≤ 条件概率 ()()()P AB P A B P B =4 随机变量: 用大写,,X Y Z 表示 .若X 与Y 相互独立的充分必要条件是)()(),(y F x F y x F Y X =若X 与Y 是离散随机变量且相互独立的充分必要条件是(,)()()X Y f x y f x f y = 若X 与Y 是连续随机变量且相互独立的充分必要条件是(,)()()X Y p x y p x p y =若X 与Y 不相关,则cov(,)0X Y = 或 (,)0R X Y = 独立⇒不相关 反之不成立当X 与Y 服从正态分布时 ,则相互独立 ⇔不相关二 两种概率模型古典概型 :()MP A N=:M A 所包含的基本事件的个数 ;:N 总的基本事件的个数 伯努利概型 : n 次独立试验序列中事件A 恰好发生m 次的概率 ()m m n mn n P m C p q -=n 次独立试验序列中事件A 发生的次数为1m 到2m 之间的概率2112()()m n m m P m m m P m =≤≤=∑n 次独立试验序列中事件A 至少发生r 次的概率1()()1()nr n n m rm P m r P m P m -==≥==-∑∑特别的 ,至少发生一次的概率 (1)1(1)nP m p ≥=--三 概率的计算公式:加法公式:()()()()P A B P A P B P AB ⋃=+-若B A ,互不相容 ,则)()()(B P A P B A P +=+推广:)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=⋃⋃若B A,,C 互不相容,则()()()()P A B C P A P B P C ++=++乘法公式:)()()(A B P A P AB P =或()()P B P A B = 若,A B 相互独立 ,()()()P AB P A P B =推广:)()()()()(12121312121-=n n n A A A A P A A A P A A P A P A A A P ΛΛΛΛΛΛ 若它们相互独立,则1212()()()()n n P A A A P A P A P A =L L L L全概率公式:若 A 为随机事件,n B B B ΛΛ21,互不相容的完备事件组,且 0)(>i B P 则 )()()()()()()(2211n n B A P B P B A P B P B A P B P A P +++=ΛΛ 注: 常用,B B 作为互不相容的完备事件组有诸多原因可以引发某种结果 ,而该结果有不能简单地看成这诸多事件的和 ,这样的概率问题属于全概问题. 用全概率公式解题的程序:(1) 判断所求解的问题 是否为全概率问题(2) 若是全概率类型,正确的假设事件A 及i B ,{}i B 要求是互斥的完备事件组 (3) 计算出(),()i i P B P A B(4) 代入公式计算结果四 一维随机变量:分布函数:)()(x X P x F ≤= 性质:(1) 1)(0≤≤x F(2) 若21x x < ,则)()(21x F x F ≤ (3) 右连续(4)1)(lim =+∞→x F x 即 1)(=+∞F0)(lim =-∞→x F x 即 0)(=-∞F ( 此性质常用来确定分布函数中的常数)利用分布函数计算概率:()()()P a X b F b F a <≤=- 一维离散随机变量:概率函数:()()1,2i i p x P X x i ===L (分布律)性质:()0i p x ≥()1iip x =∑ (此性质常用来确定概率函数中的常数)已知概率函数求分布函数 ()()()i i iix xx xF x P X x p x ≤≤===∑∑一维连续随机变量: 概率密度()f x性质:(1) 非负性()0f x ≥ (2)归一性:()1f x dx +∞-∞=⎰(常用此性质来确定概率密度中的常数)分布函数和概率密度的关系: ()()f x F x '= ()()xF x f x dx -∞=⎰(注意:当被导函数或被积函数是分段函数时,要分区间讨论,其结果也是分段函数) 利用概率密度求概率 ()()baP a X b f x dx <≤=⎰五 一维随机变量函数的分布:离散情形 : 列表 、整理、合并连续情形()Y g X =: 分布函数法. 先求Y 的分布函数 ,再求导 六 二维随机变量: 联合分布函数 :(,)(,)F xy P X x Y y =≤≤性质: (1) (,)0F -∞-∞= (2) (,)0F x -∞= (3) (,)0F y -∞= (4) (,)1F +∞+∞=(此极限性质常用来确定分布函数中的常数)边缘分布函数: ()(,)X F x F x =+∞ ()(,)Y F y F y =+∞ 二维离散随机变量:联合概率函数 (,)(,)i j i j p x y P X x Y y === 列表 边缘概率函数: ()(,)X i ijjp x p x y =∑ ()(,)Yi i j ipy p x y =∑二维连续随机变量: 联合概率密度 (,)f x y性质 (1)(,)0f x y ≥(2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰(常用此性质来确定概率密度中的常数)联合分布函数与联合概率密度的关系(,)(,)(,)(,)x yf x y F x y x yF x y f x y dxdy-∞-∞∂=∂∂=⎰⎰(注意:当被导函数或被积函数是分段函数时,要分区间讨论,其结果也是分段函数) 利用联合概率密度求概率((,))(,)RP x y R f x y dxdy ∈=⎰⎰已知联合概率密度求边缘概率密度()(,)X f x f x y dy +∞-∞=⎰()(,)Y f y f x y dx +∞-∞=⎰(注意:当被积函数是分段函数时,要分区间讨论,其结果也是分段函数)七 随机变量的数字特征: 若X 为离散随机变量:1()()niii E X x p x ==∑若X 为连续随机变量: ()()E X xf x dx +∞-∞=⎰二维情形 若(,)~(,)X Y f x y 为二维连续随机变量,则 ()()(,)X E X xf x dx xf x y dxdy +∞+∞+∞-∞-∞-∞==⎰⎰⎰()(,)E Y yf x y dxdy +∞+∞-∞-∞=⎰⎰若(,)~(,)i j X Y p x y 为二维离散随机变量,则()()(,)i X i i i j iijE X x p x x p x y ==∑∑∑()()(,)j Y j j i j jjiE Y y p y y p x y ==∑∑∑随机变量的函数的数学期望:若X 为离散随机变量:[]()()()iiiE g X g x p x =∑若X 为连续随机变量 []()()()E g X g x f x dx +∞-∞=⎰方差:定义 []{}2()()D X EX E X =-方差的计算公式:22()()()D X E X E X =- 注意这个公式的转化:22()()()E X D X E X =+关于期望的定理: 关于方差的定理 (1) ()E C C = (1) ()0D C =(2)()()E CX CE X = (2) 2()()D CX C D X =(3) ()()()E X Y E X E Y +=+ 相互独立: ()()()D X Y D X D Y +=+ ()()()E X Y E X E Y -=- ()()()D X Y D X D Y -=+ ()()()E X Y E X E Y λμλμ+=+ (注意:反之不成立) 相互独立()()()E XY E X E Y =(注意:反之不成立)八 要熟记的常用分布及其数字特征:01-分布 (1,)B p 1()0,1x xp x p q x -== ()()E X p D X pq == 二项分布(,)B n p ()0,1x x n xi n p x C p qx n -==L ()()E X np D X npq ==泊松分布()p λ ()0,1!xp x e x x λλ-==L ()()E X D X λλ==均匀分布:(,)U a b 1()0a x b f x b a ⎧<≤⎪=-⎨⎪⎩其他 ()01x aa xb b a F X x ax b -⎧≤<⎪-⎪=<⎨⎪≥⎪⎩2()()()212a bb a E X D X +-==指数分布:()e λ 0()00xe xf x x λλ-⎧>=⎨≤⎩ 10()00x e x F x x λ-⎧->=⎨≤⎩211()()E X D X λλ==正态分布:2~(,)X N μσ22()21()2x f x e μσπσ--=22()21()2x xF x edx μσπσ---∞=⎰2()()E X D X μσ==特别地(0,1)N 221()2x x e ϕπ-=221()2x xx edx π--∞Φ=⎰()(1)(x x Φ-=-Φ)()0()1E X D X ==2~(,)X N μσ 1212()()x x X P x X x P μμμσσσ---<<=<<21()()x x μμσσ--=Φ-Φ九 正态随机变量线性函数的分布十 统计部分:统计量 无偏性 有效性矩估计 最大似然估计 区间估计 假设检验例: 甲袋中有5只红球10只白球,乙袋中有8只红球6只白球,现先从甲袋中任取一球放入乙袋,然后又从乙袋中任取一球放入甲袋. 求这一个来回后甲袋中红球数不变的概率 . 解: 设A :从甲袋中取出放入乙袋的是红球,B :从乙袋中返还甲袋的是红球,C : 这一个来回后甲袋中红球数不变,则,B A AB C +=从而)()()()()()()(A B P A P A B P A P B A P B A P C P +=+=951581510159155=⋅+⋅=.例 高射炮向敌机发射三发炮弹(每弹击中与否相互独立),设每发炮弹击中敌机的概率均为3.0 ,又若敌机中一弹,其坠落的概率为2.0,若敌机中两弹,其坠落的概率为6.0,若敌机中三弹,则必然坠落。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计复习要点

概率论与数理统计复习要点

第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。

2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。

④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。

) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。

若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。

4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。

概率论与数理统计知识点总结

概率论与数理统计知识点总结

概率论与数理统计知识点一、概率论知识点1.1 概率基本概念概率是研究事物变化规律的一门学科。

在概率学中,我们需要掌握一些基本概念:•随机试验:一种在相同条件下重复的可以观察到不同结果的试验。

•样本空间:随机试验所有可能结果的集合。

•事件:样本空间的子集。

•频率和概率:在大量重复实验中,某个事件出现的频率称为频率,其极限称为概率。

1.2 概率计算公式•加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)•乘法公式:P(A∩B) = P(A|B)P(B) = P(B|A)P(A)•条件概率公式:P(A|B) = P(A∩B)/P(B)•全概率公式:P(B) = Σi=1nP(Ai)P(B|Ai)•贝叶斯公式:P(Ai|B) = P(Ai)P(B|Ai)/Σj=1nP(Aj)P(B|Aj)1.3 随机变量和分布随机变量是用来描述随机试验结果的数学量。

离散型随机变量和连续型随机变量是概率论中两个重要的概念。

•离散型随机变量:在一个范围内,只有有限个或无限个可能值的随机变量。

•连续型随机变量:在一个范围内,有无限个可能值的随机变量。

概率分布是反映随机变量取值情况的概率规律,可分为离散型概率分布和连续型概率分布。

•离散型概率分布:包括伯努利分布、二项分布、泊松分布等。

•连续型概率分布:包括正态分布、指数分布、卡方分布等。

1.4 常用概率分布概率论涉及到很多的分布,其中一些常用的分布如下:•二项分布•泊松分布•正态分布•均匀分布•指数分布1.5 统计推断在概率论中,统计推断是指根据样本数据来对总体进行参数估计和假设检验的方法。

统计推断主要涉及以下两个方面:•点估计:使用样本数据来推断总体参数的值。

•区间估计:使用样本数据来推断总体参数的一个区间。

二、数理统计知识点2.1 统计数据的描述为了更准确地描述数据,我们需要使用以下几个参数:•平均数:所有数据的和除以数据个数。

•中位数:将数据按大小排序,位于中间位置的数。

《概率论与数理统计》期末复习重点总结

《概率论与数理统计》期末复习重点总结

概率论与数理统计第一章:掌握概率的性质、条件概率公式、全概率公式和贝叶斯公式,会用全概率公式和贝叶斯公式计算问题。

第二章:一维随机变量包括离散型和连续型;离散型随机变量分布律的性质;连续性随机变量密度函数的性质;常见的三种离散型分布及连续型分布;会计算一维随机变量函数的分布(可以出大题);第三章:多维随机变量掌握离散型和连续型变量的边缘分布;条件分布及两个变量独立的定义;重点掌握两个随机变量函数的分布(掌握两个随机变量和、差的密度函数的求法;了解两个随机变量乘、除的分布;掌握多个随机变量最大、最小的分布的密度函数的求法);第四章:重点掌握期望、方差、协方差的计算公式、性质;了解协方差矩阵的构成;第六章:掌握统计量的定义、三大分布的定义和性质;教材142页的四个定理及式3.19、3.20务必记住;第七章:未知参数的矩估计法和最大似然估计法是考点,还要掌握估计量的无偏性、有效性的定义;教材的例题及习题:19页例5;26页19、23、24、36;43页例1;51页例2;53页例5;58页25、36;63页例2;66页例2;77页例1、例2;87页22;99页例12;114页6;147页4、6;151页例2、例3;153页例4、例5;173页5、11样题一、填空1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.3.已知B A ,两个事件满足条件()()B A P AB P =,且()p A P =,则()=B P _________.4.设随机变量X 的密度函数为()2,01,0,x x f x <<⎧=⎨⎩其他,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则()2P Y == . 5、设连续型随机变量X 的分布函数为 , ,则A=B= ;X 的密度函数为 。

概率论与数理统计(A)期末复习资料

概率论与数理统计(A)期末复习资料

《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象数量规律的学科,它在众多领域都有着广泛的应用,如统计学、物理学、工程学、经济学等。

以下是对概率论与数理统计知识点的超详细总结。

一、随机事件与概率(一)随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。

随机事件通常用大写字母 A、B、C 等来表示。

(二)样本空间样本空间是指随机试验的所有可能结果组成的集合,通常用Ω表示。

(三)事件的关系与运算1、包含关系:若事件 A 发生必然导致事件 B 发生,则称事件 B 包含事件 A,记作 A⊂B。

2、相等关系:若 A⊂B 且 B⊂A,则称事件 A 与事件 B 相等,记作A = B。

3、并事件:事件 A 与事件 B 至少有一个发生的事件称为 A 与 B的并事件,记作 A∪B。

4、交事件:事件 A 与事件 B 同时发生的事件称为 A 与 B 的交事件,记作A∩B 或 AB。

5、互斥事件:若事件 A 与事件 B 不能同时发生,则称 A 与 B 为互斥事件,即 AB =∅。

6、对立事件:若事件 A 与事件 B 满足 A∪B =Ω 且 AB =∅,则称 A 与 B 为对立事件,记作 B =A。

(四)概率的定义与性质1、概率的古典定义:若随机试验的样本空间Ω只包含有限个基本事件,且每个基本事件发生的可能性相等,则事件 A 的概率为 P(A) =n(A) /n(Ω) ,其中 n(A) 为事件 A 包含的基本事件个数,n(Ω) 为样本空间Ω包含的基本事件个数。

2、概率的统计定义:在大量重复试验中,事件 A 发生的频率稳定在某个常数 p 附近,则称 p 为事件 A 的概率,即 P(A) = p 。

3、概率的公理化定义:设随机试验的样本空间为Ω,对于Ω中的每一个事件 A,都赋予一个实数 P(A),如果满足以下三个条件:(1)非负性:0 ≤ P(A) ≤ 1 ;(2)规范性:P(Ω) = 1 ;(3)可列可加性:对于两两互斥的事件 A1,A2,,有P(A1∪A2∪)= P(A1) + P(A2) +,则称 P(A) 为事件 A 的概率。

概率论与数理统计期末复习

概率论与数理统计期末复习

概率论与数理统计期末复习《概率论与数理统计》总复习提纲第⼀块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,⼏何概率,条件概率,与条件概率有关的三个公式,事件的独⽴性,贝努⾥试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为.1)试验可在相同的条件下重复进⾏;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪⼀个结果会出现.(2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每⼀个可能结果,即Ω中的元素,称为样本点,记为.(3)随机事件:在⼀定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的⼦集,必然事件(记为)和不可能事件(记为). 2、事件的关系与运算(1)包含关系与相等:“事件发⽣必导致发⽣”,记为或;且.(2)互不相容性:;互为对⽴事件且.(3)独⽴性:(1)设为事件,若有,则称事件与相互独⽴. 等价于:若().(2)多个事件的独⽴:设是n个事件,如果对任意的,任意的,具有等式,称个事件相互独⽴.3、事件的运算(1)和事件(并):“事件与⾄少有⼀个发⽣”,记为.(2)积事件(交):“事件与同时发⽣”,记为或.(3)差事件、对⽴事件(余事件):“事件发⽣⽽不发⽣”,记为称为与的差事件;称为的对⽴事件;易知:.4、事件的运算法则1) 交换律:,;2) 结合律:,;3) 分配律:,;4) 对偶(De Morgan)律:,,可推⼴5、概率的概念(1)概率的公理化定义:(2)频率的定义:事件在次重复试验中出现次,则⽐值称为事件在次重复试验中出现的频率,记为,即.(3)统计概率:称为事件的(统计)概率.在实际问题中,当很⼤时,取(4)古典概率:若试验的基本结果数为有限个,且每个事件发⽣的可能性相等,则(试验对应古典概型)事件发⽣的概率为:.(5)⼏何概率:若试验基本结果数⽆限,随机点落在某区域g的概率与区域g的测度(长度、⾯积、体积等)成正⽐,⽽与其位置及形状⽆关,则(试验对应⼏何概型),“在区域中随机地取⼀点落在区域中”这⼀事件发⽣的概率为:.(6)主观概率:⼈们根据经验对该事件发⽣的可能性所给出的个⼈信念.6、概率的基本性质(1)不可能事件概率零:=0.(2)有限可加性:设是n个两两互不相容的事件,即=,(),则有=+.(3)单调不减性:若事件,且.(4)互逆性:且.(5)加法公式:对任意两事件,有-;此性质可推⼴到任意个事件的情形.(6)可分性:对任意两事件,有,且7、条件概率与乘法公式(1)条件概率:设是两个事件,即,则称为事件发⽣的条件下事件发⽣的条件概率.(2)乘法公式:设且则称为事件的概率乘法公式.8、全概率公式与贝叶斯(Bayes)公式(1)全概率公式:设是的⼀个划分,且,,则对任何事件,有称为全概率公式.(2)贝叶斯(Bayes)公式:设是的⼀个划分,且,则对任何事件,有称为贝叶斯公式或逆概率公式.9、贝努⾥(Bernoulli)概型(1)只有两个可能结果的试验称为贝努⾥试验,常记为.也叫做“成功—失败”试验,“成功”的概率常⽤表⽰,其中=“成功”.(2)把重复独⽴地进⾏次,所得的试验称为重贝努⾥试验,记为.(3)把重复独⽴地进⾏可列多次,所得的试验称为可列重贝努⾥试验,记为.以上三种贝努⾥试验统称为贝努⾥概型.(4)中成功次的概率是:其中.疑难分析1、必然事件与不可能事件必然事件是在⼀定条件下必然发⽣的事件,不可能事件指的是在⼀定条件下必然不发⽣的事件.它们都不具有随机性,是确定性的现象,但为研究的⽅便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件与必有⼀个事件发⽣,且⾄多有⼀个事件发⽣,则、为互逆事件;如果两个事件与不能同时发⽣,则、为互斥事件.因⽽,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,⽽互斥适⽤与多个事件的情形.作为互斥事件在⼀次试验中两者可以都不发⽣,⽽互逆事件必发⽣⼀个且只发⽣⼀个.3、两事件独⽴与两事件互斥两事件、独⽴,则与中任⼀个事件的发⽣与另⼀个事件的发⽣⽆关,这时;⽽两事件互斥,则其中任⼀个事件的发⽣必然导致另⼀个事件不发⽣,这两事件的发⽣是有影响的,这时.可以⽤图形作⼀直观解释.在图1.1左边的正⽅形中,图1.1,表⽰样本空间中两事件的独⽴关系,⽽在右边的正⽅形中,,表⽰样本空间中两事件的互斥关系.4、条件概率与积事件概率是在样本空间内,事件的概率,⽽是在试验增加了新条件发⽣后的缩减的样本空间中计算事件的概率.虽然、都发⽣,但两者是不同的,⼀般说来,当、同时发⽣时,常⽤,⽽在有包含关系或明确的主从关系时,⽤.如袋中有9个⽩球1个红球,作不放回抽样,每次任取⼀球,取2次,求:(1)第⼆次才取到⽩球的概率;(2)第⼀次取到的是⽩球的条件下,第⼆次取到⽩球的概率.问题(1)求的就是⼀个积事件概率的问题,⽽问题(2)求的就是⼀个条件概率的问题. 5、全概率公式与贝叶斯(Bayes)公式当所求的事件概率为许多因素引发的某种结果,⽽该结果⼜不能简单地看作这诸多事件之和时,可考虑⽤全概率公式,在对样本空间进⾏划分时,⼀定要注意它必须满⾜的两个条件.贝叶斯公式⽤于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第⼆块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设是随机试验的样本空间,如果对于试验的每⼀个可能结果,都有唯⼀的实数与之对应,则称为定义在上的随机变量,简记为.随机变量通常⽤⼤写字母等表⽰.2、离散型随机变量及其分布列如果随机变量只能取有限个或可列个可能值,则称为离散型随机变量.如果的⼀切可能值为,并且取的概率为,则称为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中.常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为,分布列为或(2)⼆项分布:记为,概率函数(3)泊松分布,记为,概率函数泊松定理设是⼀常数,是任意正整数,设,则对于任⼀固定的⾮负整数,有.当很⼤且很⼩时,⼆项分布可以⽤泊松分布近似代替,即,其中(4)超⼏何分布:记为,概率函数,其中为正整数,且.当很⼤,且较⼩时,有(5)⼏何分布:记为,概率函数.3、分布函数及其性质分布函数的定义:设为随机变量,为任意实数,函数称为随机变量的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下性质:(1)有界性;(2)单调性如果,则;(3)右连续,即;(4)极限性;(5)完美性.4、连续型随机变量及其分布分布如果对于随机变量的分布函数,存在⾮负函数,使对于任⼀实数,有,则称为连续型随机变量.函数称为的概率密度函数.概率密度函数具有以下性质:(1);(2);(3);(4);(5)如果在处连续,则.常⽤连续型随机变量的分布:(1)均匀分布:记为,概率密度为分布函数为(2)指数分布:记为,概率密度为分布函数为(3)正态分布:记为,概率密度为,相应的分布函数为当时,即时,称服从标准正态分布.这时分别⽤和表⽰的密度函数和分布函数,即具有性质:①.②⼀般正态分布的分布函数与标准正态分布的分布函数有关系:.5、随机变量函数的分布(1)离散型随机变量函数的分布设为离散型随机变量,其分布列为(表2-2):表2-2则任为离散型随机变量,其分布列为(表2-3):表2-3……有相同值时,要合并为⼀项,对应的概率相加.(2)连续型随机变量函数的分布设为离散型随机变量,概率密度为,则的概率密度有两种⽅法可求.1)定理法:若在的取值区间内有连续导数,且单调时,是连续型随机变量,其概率密度为.其中是的反函数.2)分布函数法:先求的分布函数然后求.疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间上,对试验的每⼀个可能结果,都有唯⼀的实数与之对应.从定义可知:普通函数的取值是按⼀定法则给定的,⽽随机变量的取值是由统计规律性给出的,具有随机性;⼜普通函数的定义域是⼀个区间,⽽随机变量的定义域是样本空间.2、分布函数的连续性定义左连续或右连续只是⼀种习惯.有的书籍定义分布函数左连续,但⼤多数书籍定义分布函数为右连续. 左连续与右连续的区别在于计算时,点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于,则定义左连续或右连续时值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数⼆维离散型随机变量的联合分布列,⼆维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独⽴性和不相关性,常⽤多维随机变量,随机向量函数的分布.1、⼆维随机变量及其联合分布函数为n维(n元)随机变量或随机向量.联合分布函数的定义设随机变量,为随机向量的联合分布函数⼆维联合分布函数具有以下基本性质:(1)单调性是变量或的⾮减函数;(2)有界性;(3)极限性(3)连续性关于右连续,关于也右连续;(4)⾮负性对任意点,若,则.上式表⽰随机点落在区域内的概率为:.2、⼆维离散型随机变量及其联合分布列如果⼆维随机变量所有可能取值是有限对或可列对,则称为⼆维离散型随机变量.设为⼆维离散型随机变量,它的所有可能取值为将或表3.1称为的联合分布列.………………联合分布列具有下列性质:(1);(2).3、⼆维连续型随机变量及其概率密度函数如果存在⼀个⾮负函数,使得⼆维随机变量的分布函数对任意实数有,则称是⼆维连续型随机变量,称为的联合密度函数(或概率密度函数).联合密度函数具有下列性质:(1)⾮负性对⼀切实数,有;(2)规范性;(3)在任意平⾯域上,取值的概率;(4)如果在处连续,则.4、⼆维随机变量的边缘分布设为⼆维随机变量,则称分别为关于和关于的边缘(边际)分布函数.当为离散型随机变量,则称分别为关于和关于的边缘分布列.当为连续型随机变量,则称分别为关于和关于的边缘密度函数.5、⼆维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为⼆维离散型随机变量,其联合分布律和边缘分布列分别为,则当固定,且时,称为条件下随机变量的条件分布律.同理,有(2)连续型随机变量的条件分布设为⼆维连续型随机变量,其联合密度函数和边缘密度函数分别为:.则当时,在和的连续点处,在条件下,的条件概率密度函数为.同理,.6、随机变量的独⽴性设及分别是的联合分布函数及边缘分布函数.如果对任何实数有则称随机变量与相互独⽴.设为⼆维离散型随机变量,与相互独⽴的充要条件是.设为⼆维连续型随机变量,与相互独⽴的充要条件是对⼏乎⼀切实数,有.7、两个随机变量函数的分布设⼆维随机变量的联合概率密度函数为,是的函数,则的分布函数为.(1)的分布若为离散型随机变量,联合分布列为,则的概率函数为:或.若为连续型随机变量,概率密度函数为,则的概率函数为:.(2)的分布若为连续型随机变量,概率密度函数为,则的概率函数为:.8.最⼤值与最⼩值的分布则9.数理统计中常⽤的分布(1)正态分布:(2):(3):(4):疑难分析1、事件表⽰事件与的积事件,为什么不⼀定等于?如同仅当事件相互独⽴时,才有⼀样,这⾥依乘法原理.只有事件与相互独⽴时,才有,因为.2、⼆维随机变量的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯⼀确定边缘分布,因⽽也唯⼀确定条件分布.反之,边缘分布与条件分布都不能唯⼀确定联合分布.但由知,⼀个条件分布和它对应的边缘分布,能唯⼀确定联合分布.但是,如果相互独⽴,则,即.说明当独⽴时,边缘分布也唯⼀确定联合分布,从⽽条件分布也唯⼀确定联合分布.3、两个随机变量相互独⽴的概念与两个事件相互独⽴是否相同?为什么?两个随机变量相互独⽴,是指组成⼆维随机变量的两个分量中⼀个分量的取值不受另⼀个分量取值的影响,满⾜.⽽两个事件的独⽴性,是指⼀个事件的发⽣不受另⼀个事件发⽣的影响,故有.两者可以说不是⼀个问题.但是,组成⼆维随机变量的两个分量是同⼀试验的样本空间上的两个⼀维随机变量,⽽也是⼀个试验的样本空间的两个事件.因此,若把“”、“”看作两个事件,那么两者的意义近乎⼀致,从⽽独⽴性的定义⼏乎是相同的.第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和⽅差、标准差及其性质,随机变量函数的数学期望,原点矩和中⼼矩,协⽅差和相关系数及其性质.1、随机变量的数学期望设离散型随机变量的分布列为,如果级数绝对收敛,则称级数的和为随机变量的数学期望.设连续型随机变量的密度函数为,如果⼴义积分绝对收敛,则称此积分值为随机变量的数学期望.数学期望有如下性质:(1)设是常数,则;(2)设是常数,则;(3)若是随机变量,则;对任意个随机变量,有;(4)若相互独⽴,则;对任意个相互独⽴的随机变量,有.2、随机变量函数的数学期望设离散型随机变量的分布律为,则的函数的数学期望为,式中级数绝对收敛.设连续型随机变量的密度函数为,则的函数的数学期望为,式中积分绝对收敛.3、随机变量的⽅差设是⼀个随机变量,则称为的⽅差.称为的标准差或均⽅差.。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

概率论与数理统计复习资料知识点总结

概率论与数理统计复习资料知识点总结

《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

概率论与数理统计期末复习资料

概率论与数理统计期末复习资料

概率统计、概率论与数理统计、随机数学课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考;1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质;5、理解随机变量的概念,能熟练写出0—1分布、二项分布、泊松分布的分布律;6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质;7、掌握指数分布参数λ、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度;9、会求分布中的待定参数;10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性;11、掌握连续型随机变量的条件概率密度的概念及计算;12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率;13、了解求二维随机变量函数的分布的一般方法;14、会熟练地求随机变量及其函数的数学期望和方差;会熟练地默写出几种重要随机变量的数学期望及方差;15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念;会用独立正态随机变量线性组合性质解题;17、了解大数定理结论,会用中心极限定理解题;18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握χ2分布及性质、t分布、F分布及其分位点概念;19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数;20、掌握极大似然估计法,无偏性与有效性的判断方法;21、会求单正态总体均值与方差的置信区间;会求双正态总体均值与方差的置信区间;23、明确假设检验的基本步骤,会U检验法、t检验、2χ检验法、F检验法解题;24、掌握正态总体均值与方差的检验法;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法;2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;3.准确地选择和运用全概率公式与贝叶斯公式;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;5.会用中心极限定理解题;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理;4.会求未知参数的矩估计、极大似然估计; 5.掌握无偏性与有效性的判断方法; 6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率; 例2:袋中有a 个白球,b个黑球,c 个红球,从中任意取出mm ≤a +b个球,求取出的m 个球中有k 1≤a 个白球、k 2≤b 个黑球、k 3≤c 个红球k 1+k 2+k 3=m 的概率. 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;如对于事件A ,B ,A 或B ,已知P A ,PB ,P AB ,P A B ,P A |B ,PB |A 以及换为A 或B 之中的几个,求另外几个; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 3.准确地选择和运用全概率公式与贝叶斯公式;若已知导致事件A 发生或者是能与事件A 同时发生的几个互斥的事件B i ,i =1,2,…,n ,…的概率PB i ,以及B i 发生的条件下事件A 发生的条件概率P A |B i ,求事件A 发生的概率P A 以及A 发生的条件下事件B i 发生的条件概率PB i | A ;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;1已知一维离散型随机变量X 的分布律PX =x i =p i ,i =1,2,…,n ,… 确定参数 求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的分布律及期望EgX 例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E2已知一维连续型随机变量X 的密度函数fx确定参数求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的密度函数及期望EgX例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k求概率}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数X Y =的密度及期望)(X E3已知二维离散型随机变量X ,Y 的联合分布律PX =x i ,Y =y j =p ij ,i =1,2,…,m ,…;j =1,2,…,n ,… 确定参数求概率P {X ,Y ∈G }求边缘分布律PX =x i =p i.,i =1,2,…,m ,…;PY =y j =, j =1,2,…,n ,… 求条件分布律PX =x i |Y =y j ,i =1,2,…,m ,…和PY =y j |X =x i , j =1,2,…,n ,… 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的分布律及期望EgX , Y 例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X =1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律4已知二维连续型随机变量X 的联合密度函数fx , y 确定参数求概率P {X ,Y ∈G }求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的密度函数及期望EgX , Y例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率.例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;对于来自总体X 的样本n X X X ,,,21 ,由样本构成的各种函数是否是统计量; 2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;对于来自总体X 的样本n X X X ,,,21 ,判断估计量是否无偏,比较哪个更有效; 例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;对于正态总体,由样本结合给出条件,导出参数的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤; 对于单、双正态总体根据给定条件,确定使用什么检验方法,明确基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤;1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;分析:本例的样本点就是从a +b中有次序地取出m 个球的不同取法;第m 次取出的球是白球意味着:第m次是从a 个白球中取出一球,再在a +b-1个球中取出m-1个球; 解:设B ={第m 次取出的球是白球}样本空间的样本点总数: mb a A n +=事件B 包含的样本点: 111--+=m b a a AC r ,则 b a a A aA n r B P mba mb a +===+--+11)( 注:本例实质上也是抽签问题,结论说明按上述规则抽签,每人抽中白球的机会相等,同抽签次序无关;例2:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: 915C n ==5005事件B 包含的样本点: 563514C C C r ==240,则 PB =120/1001=占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 解:样本点为n 个质点在N 个格子中的任一种分布,每个质点都有N 种不同分布,即n 个质点共有N n 种分布;故样本点总数为:N n1在n 个格子中放有n 个质点,且每格有一个质点,共有n 种不同放法;因此,事件A 包含的样本点数:n,则n Nn A P !)(=2先在N 个格子中任意指定n 个格子,共有nN C 种不同的方法;在n 个格子中放n 个质点,且每格一个质点,共有n 种不同方法;因此,事件B 包含的样本点数: n Nn NA C n =!,则n n NNA B P =)(3在指定的一个格子中放mm ≤n 个质点共有mn C 种不同方法;余下n-m 个质点任意放在余下的N-1个格子中,共有mn N --)1(种不同方法.因此,事件C 包含的样本点数:m n C mn N --)1(, 则mn m m n nm n m n N N N C NN C C P ---=-=)1()1()1()( 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数} ;若允许千位数为0,此时千位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个;其中,千位数为0的“四位偶数”有多少个 此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A种选法;从而共有428A=224个; 因此410283945)(A A A B P -==2296/5040= 2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B 解:P AB = P APB =,P A -B = P A -P AB =,P A B = P A +PB -P AB =例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 解:P A -B =,P A B =,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,)|(B A P =)(1)()()(B P B A P B P B A P -= =2/33.准确地选择和运用全概率公式与贝叶斯公式;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;解:设事件A 表示“顾客买下该箱”,i B 表示“箱中恰好有i 件次品”,2,1,0=i ;则8.0)(0=B P ,1.0)(1=B P ,1.0)(2=B P ,1)|(0=B A P ,54)|(4204191==C C B A P ,1912)|(4204182==C C B A P ;由全概率公式得 ∑==⨯+⨯+⨯==294.019121.0541.018.0)|()()(i i i B A P B P A P ; 由贝叶斯公式 85.094.018.0)()|()()|(000=⨯==A PB A P B P A B P ; 4.1例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,P 1<X <3 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E 解:由1=∑iip,有 k +2 k +3 k +4 k =1 得 k =P 0<X <3= PX =1+PX =2=,P 1<X <3= PX =2=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<=41436.0323.0211.010)(x x x x x x F∑=ii i p x X E )(=3,∑=i i p x X E 22)(=10,DX =22))(()(X E X E -=12)3(-X E =12例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k 求概率P 1<X <3 求分布函数Fx 求期望EX ,方差DX 求函数X Y =的密度函数及期望)(X E 解:由⎰+∞∞-dx x f )(=1,有⎰+∞∞-dx x f )(=k dx kx 38202=⎰=1,得 k =3/8P 1<X <3=⎰31)(dx x f =⎰21283dx x =7/8. ⎪⎩⎪⎨⎧≥<<≤=2120800)(3x x x x x F⎰+∞∞-=dx x xf X E )()(=⎰2383dx x =3/2,⎰+∞∞-=dx x f x X E )()(22=⎰20483dx x =12/5DX =22))(()(X E X E -=3/20⎪⎩⎪⎨⎧<<=其他02043)(5y y y f)(X E =⎰+∞∞-dx x f x )(=⎰202583dx x =726 3例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X=1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律 解:PX <Y =, PX =Y =YXY =iij ji p x X E )(=,=iij ji p x X E )(=,DX =))(()(X E X E -=∑∑=i ij j j p y Y E )(=2,∑∑=i ij jj p y Y E 22)(=5,DY =22))(()(Y E Y E -=1∑∑=iij jj i p y x XY E )(=,cov X ,Y =)()()(Y E X E XY E -=XY ρ=)()(),cov(Y D X D Y X = 相关V =min{X ,Y }4例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 解:由⎰⎰+∞∞-+∞∞-dxdy y x f ),(=1,有⎰⎰+∞∞-+∞∞-dxdy y x f ),(=⎰⎰-11212ydy x c dx x=1,得 c =21/4PX <Y =⎰⎰-12421ydx x dy y y = ⎪⎩⎪⎨⎧≤≤--==⎰其它011)1(821421)(42122x x x ydy x x f x X ⎪⎩⎪⎨⎧≤≤==⎰-其它1027421)(252y y ydx x y f yy Y X 与Y 不独立⎪⎩⎪⎨⎧≤≤-==-其它023)(),()|(232|yx y y x y f y x f y x f YY X⎪⎩⎪⎨⎧≤≤-==其它0118)(),()|(24|y x x y x f y x f x y f X X Y⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(=⎰⎰-11312421ydy x dx x =0⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(22=⎰⎰-11412421ydy x dx x =7/15DX =22))(()(X E X E -=7/15⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(=⎰⎰-112212421dy y x dx x =7/9⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(22=⎰⎰-113212421dy y x dx x =7/11DY =22))(()(Y E Y E -=28/891⎰⎰+∞∞-+∞∞-=dxdy y x f xy XY E ),()(=⎰⎰-112312421dy y x dx x =0cov X ,Y =0, XY ρ=0,X 与Y 不相关5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率. 解:例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率; 解:设这批种子发芽数为X ,则)9.0,1000(~B X ,由中心极限定理得所求概率为}880{≥X P 9826.0)108.2()108.2(1)90900880(1=Φ=-Φ-=-Φ-=;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤; 解: 1 1.提出假设 u u H u u H ≠=:,:12.选取统计量nS u X t /)(0-=3.对给定的显著性水平α,查表得)1(2-n t α4.计算 ns u x t /)(0-=5.判断 若),1(2->n t t α拒绝; H 反之,接受. H21.提出假设2021202:,:σσσσ>≤H H2.选取统计量2022)1(σχS n -=3.对给定的显著性水平α,查表得)1(2-n αχ4.计算.)1(2022σχs n -=5.判断 若),1(22-<n αχχ拒绝; H 反之,接受. H。

概率论与数理统计期末考试复习

概率论与数理统计期末考试复习

j 1
此公式即为贝叶斯公式;
P(Bi ) ,i 1,2 ,…,n ,通常叫先验概率; P(Bi / A) ,i 1,2 ,…,n ,通常 称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由
果朔因”的推断;
我们作了n 次试验,且满足
每次试验只有两种可能结果, A 发生或 A 不发生;
n 次试验是重复进行的,即 A 发生的概率每次均一样;
称事件 A 与事件 B 互不相容或者互斥;基本事件是互不相容的;
-A 称为事件A 的逆事件,或称A 的对立事件,记为 A ;它表示A 不发生 的事件;互斥未必对立;
②运算:
结合率:ABC=ABC A∪B∪C=A∪B∪C
分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC
7 概率 的公 理化 定义
2° PΩ =1
3° 对于两两互不相容的事件 A1, A2 ,…有 常称为可列完全可加性;
则称 PA 为事件 A 的概率;
1° 1,2 n ,

P(1 )
P( 2
)
P( n
)
1 n
;
设任一事件 A ,它是由1,2 m 组成的,则有
PA=(1) (2 ) (m ) = P(1) P(2 ) P(m )
则称 X 为连续型随机变量; f (x) 称为 X 的概率密度函数或密度函
数,简称概率密度;
密度函数具有下面 4 个性质:
1° f (x) 0 ;
2° f (x)dx 1;
3 离散与 积分元 f (x)dx 在连续型随机变量理论中所起的作用与
连续型 P(X xk) pk 在离散型随机变量理论中所起的作用相类似; 随机变
用;
Φ-x=1-Φx 且 Φ0= 1 ;

概率论与数理统计知识点总结(PDF)

概率论与数理统计知识点总结(PDF)

概率论与数理统计 知识点总结一、随机事件与概率1.随机事件(1)事件间的关系与运算● 事件的差:A B A AB AB -=-= ● 对立事件:,AA A A =∅⋃=Ω ● 完备事件组:设12,,,,n A A A 是有限或可数个事件,如果其满足:① ,,,1,2,i j A A i j i j =∅≠=; ②i iA =Ω,则称12,,,,n A A A 是一个完备事件组.(2)随机事件的运算律 ● 求和运算:①A B B A +=+(交换律)②()()A B C A B C A B C ++=++=++(结合律) ● 求交运算:①AB BA =(交换律)②()()AB C A BC ABC ==(结合律) ● 求和运算与求交运算的混合:①()()()A B C AB AC +=+(第一分配律) ②()()()A BC A B A C +=++(第二分配律) ● 求对立事件的运算:()A A =(自反律) ● 和及交事件的对立事件:①A B AB +=(第一对偶律) ②AB A B =+(第二对偶律)2.随机事件的概率(1)概率的公理化定义● 公理1:()1P Ω=;公理2:对任意事件A ,有()0P A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A P A ∞∞===∑.(2)概率测度的其他性质 ● 性质1:()0P ∅=性质2(有限可加性):12,,,n A A A 是两两互不相容的,则有11()()nni i i i P A P A ===∑性质3:()1()P A P A =-性质4:()()()P A B P A P AB -=-特别地,若A B ⊃,则①()()()P A B P A P B -=-;②()()P A P B ≥ 性质5:0()1P A ≤≤性质6:()()()()P A B P A P B P AB +=+-推论:()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+3.古典概型与几何概型(1)古典概型● 古典概型的概率测度:()==A A P A Ω中元素个数使发生的基本事件数中元素个数基本事件总数(2)几何概型● 几何概型的概率测度:()()()S A P A S =Ω 4.条件概率(1)条件概率的数学定义 ●()()(()0)()P AB P B A P A P A =>● ()1()P B A P B A =- ●()1()P B A P B A =-● 条件概率测度满足概率的三条公理:公理1:()1P A Ω=;公理2:对任意事件B ,有()0P B A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A A P A A ∞∞===∑.(2)乘法公式 ● ()()(),()0P AB P A P B A P A => ● ()()(),()0P AB P B P A B P B => ● ()()()()P ABC P A P B A P C AB = ●12121312121()()()()()n n n P A A A P A P A A P A A A P A A A A -=(3)全概率公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且i iA =Ω,则对任意事件B ,有()()()i i iP B P A P B A =∑.(4)贝叶斯公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且1i i A ∞==Ω,则对任意事件B , ()0P B >,有()()()()()()()i i i i j j jP A P B A P A B P A B P B P A P B A ==∑. 5.事件的独立性(1)两个事件的独立性 ●()()()P AB P A P B =(2)有限个事件的独立性● 两两独立:()()()i j i j P A A P A P A = ● 相互独立:1212()()()()k k i i i i i i P A A A P A P A P A =(3)相互独立性的性质 ● 性质1:如果n 个事件12,,,n A A A 相互独立,则将其中任何(1)m m n ≤≤个事件改为相应的对立事件,形成的新的n 个事件仍然相互独立. 性质2:如果n 个事件12,,,n A A A 相互独立,则有1111()1(1())n n ni i i i i i P A P A P A ===⎛⎫=-=-- ⎪⎝⎭∏∏(4)伯努利概型● 伯努利定理:在一次试验中,事件A 发生的概率为(01)p p <<,则在n 重伯努利试验中,事件A 恰好发生k 次的概率为:(;,)C k k n kn b k n p p q-=,其中1q p =-. ● 在伯努利试验序列中,设每次试验中事件A 发生的概率为p ,“事件A 在第k 次试验中才首次发生”(1)k ≥,这一事件的概率为1(,)k g k p q p -=.二、随机变量的分布与数字特征1.随机变量及其分布(1)离散型随机变量的概率分布● 离散型随机变量的概率分布满足性质:①()0,1,2,i p x i ≥=②()1iip x =∑● 一旦知道一个离散型随机变量X 的概率分布{}i p x (),便可求得X 所生成的任何事件的概率.特别地,对任意a b ≤,有{}({}){}()i i i i i i a x ba x ba x bP a X b P X x P X x p x ≤≤≤≤≤≤≤≤=====∑∑.一般地,若I 是一个区间,则{}=()i ix IP X I p x ∈∈∑.(2)分布函数● 随机变量的分布函数性质:①单调性,若12x x <,则12()()F x F x ≤; ②()lim ()0x F F x →-∞-∞==,()lim ()1x F F x →+∞+∞==;③右连续性,(0)()F x F x +=. (3)连续型随机变量及其概率密度 ●(){}()xF x P X x f t dt -∞=≤=⎰,()f x 为X 的概率密度函数.● 密度函数性质:①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.● {}()()()b aP a X b F b F a f x dx <≤=-=⎰● {}0P X x ==(连续型)●'()()F x f x =2.随机变量的数字特征(1)离散型随机变量的数学期望 ●1=i i i EX x p ∞=∑(2)连续型随机变量的数学期望 ●()EX xf x dx +∞-∞=⎰(3)随机变量函数的数学期望● 设X 是一个随机变量,()g x 是一个实函数.①若X 为离散型随机变量,概率分布为{},1,2,i i P X x p i ===.且1()iii g x p∞=<∞∑,则()Eg X 存在,且1()()i i i Eg X g x p ∞==∑.②若X 为连续型随机变量,()f x 是其密度函数,且()()g x f x dx +∞-∞<∞⎰,则()Eg X 存在,且()()()Eg X g x f x dx +∞-∞=⎰.(4)数学期望的性质● ①对任意常数a ,有Ea a =;②设12,αα为任意实数,12(),()g x g x 为任意实函数,如果12(),()Eg X Eg X 均存在,则11221122[()()]()()E g X g X Eg X Eg X αααα+=+;③如果EX 存在,则对任意实数a ,有()E X a EX a +=+. (5)随机变量的方差 ● 离差:X EX -● 方差:2()DX E X EX =-● ● ①若X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,则22()()i i iDX E X EX x EX p =-=-∑②若X 为连续型随机变量,()f x 为其密度函数,则22()()()DX E X EX x EX f x dx +∞-∞=-=-⎰③22()DX EX EX =-● 方差的基本性质:设X 的方差DX 存在,a 为任意常数,则 ①0Da =;②()D X a DX +=; ③2()D aX a DX =.(6)随机变量的矩与切比雪夫不等式● 矩定义:X 为一个随机变量,k 为正整数,如果kEX 存在(即kE X<∞),则称kEX 为X的k 阶原点矩,称kE X 为X 的k 阶绝对矩.定理:随机变量X 的t 阶矩存在,则其s 阶矩(s t <为正整数)也存在. 推论:设k 为正整数,C 为常数,如果kEX 存在,则()kE X C +存在,特别地,)k E X EX -(存在.● 中心矩定义:X 为一个随机变量,k 为正整数,如果k EX 存在,则称()kE X EX -为X 的k阶中心矩,称kE X EX -为X 的k 阶绝对中心矩.● 定理:设()h x 是x 的一个非负函数,X 是一个随机变量,且()Eh X 存在,则对任意0ε>,有(){()}Eh X P h X εε≥≤.推论1(马尔可夫不等式):设X 的k 阶矩存在(k 为正整数),即kE X <∞,则对任意0ε>有{}kkE XP X εε≥≤.推论2(切比雪夫不等式):设X 的方差存在,则对任意0ε>有2{}DXP X EX εε-≥≤.推论3:随机变量X 的方差为0当且仅当存在一个常数a ,使得{}=1P X a =.3.常用的离散型分布,n),n kp -,ndef(,),g k p k =几何分布的无记忆性:设{P X二项分布可作为超几何分布的近似,即1212C C Ck n kk n kN N k n nNN N C N N --⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭.这一近似关系的严格数学表述是:当N →∞时,1N →∞,2N →∞,且1N p N →,21Np N→-,则对任意给定的n 和k ,有()12C C lim1Ck n kn kN N k kn nN NC p p --→∞=-.泊松定理:在n 重伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关),如果n →∞时,n np λ→(0λ>为常数),则对任意给定的k ,有lim (;,)e !kn n b k n p k λλ-→∞=.当二项分布(,)b n p 的参数n 很大,而p 很小时,可以将它用参数为np λ=的泊松分布来近似,即有()(;,)e !k npnp b k n p k -≈.4.常用的连续型分布正态分布● 定理:设2~(,),,,X N Y aX b a b μσ=+为常数,且0a ≠,则22~(,)Y N a b aμσ+.推论1:如果2~(,)X N μσ,则~(0,1)X N μξσ-=.ξ通常称为X 的标准化.推论2:2~(,)X N μσ的充要条件是存在一个随机变量~(0,1)N ξ,使得X σξμ=+. 推论3:设2~(,),(),()X N x x μσϕΦ分别为其分布函数与密度函数,00(),()x x ϕΦ是标准正态分布的分布函数和密度函数,则有00()(),1()().x x x x μσμϕϕσσ-Φ=Φ-=● 一般正态分布的概率计算:【例】已知2~(,)X N μσ,求()a Φ. 解 0(){}{}{}()X a X a P X a P P b b μμμσσσ---Φ=≤=≤=≤=Φ5.随机变量函数的分布(1)离散型随机变量函数的分布● 离散型随机变量函数的概率分布的一般方法:先根据自变量X 的可能取值确定因变量Y 的所有可能取值,然后对Y 的每一个可能取值(1,2,)i y i =确定相应的{()}i j j i C x g x y ==,则有{}{()}{},{}{}{},j ii i i i i jx C Y y g X y X C P Y y P X C P X x ∈====∈==∈==∑从而求得Y 的概率分布. (2)连续型随机变量函数的分布● 连续型随机变量函数的概率分布的一般方法:一般地,已知X 的分布函数()X F x 或密度函数()X f x ,为求()Y g X =的分布函数,有()(){()}{},Y x F x P Y x P g X x P X C =≤=≤=∈其中{()}x C t g t x =≤.而{}x P X C ∈往往可由X 的分布函数()X F x 来表达或用其密度函数()X f x 的积分来表达:{}()xx X C P X C f t dt ∈=⎰.进而,Y 的密度函数,可直接从()Y F x 导出.三、随机向量1.随机向量的分布(1)随机向量及其分布函数 ●1212{,}P x X x y Y y <≤<≤22122111(,)(,)(,)(,)F x y F x y F x y F x y =--+● 由(联合)分布函数的定义得出性质:①0(,)1F x y ≤≤;②(,)F x y 关于x 和y 均单调非降、右连续; ③(,)lim (,)0,x F y F x y →-∞-∞==(,)lim (,)0,y F x F x y →-∞-∞==(,)(,)(,)lim (,)0,x y F F x y →-∞-∞-∞-∞== (,)(,)(+,+)lim(,) 1.x y F F x y →+∞+∞∞∞==●(,)F x y 的边缘分布函数:(){}{,}(,)X F x P X x P X x Y F x =≤=≤<+∞=+∞, (){}{,}(,)Y F y P Y y P X Y y F y =≤=<+∞≤=+∞.(2)离散型随机向量的概率分布● 离散型随机向量的概率分布{,},,1,2,i i ij P X x Y y p i j ====,ij p 满足性质:①0,,1,2,ij p i j ≥=;②1ijijp=∑∑.● 边缘概率分布:{},1,2,X i i ij jp P X x p i ====∑ {},1,2,Y j j ij ip P Y y p j ====∑(3)连续型随机向量的概率密度函数 ● 二维连续型随机向量(,)(,)x yF x y f s t dsdt -∞-∞=⎰⎰,(,)f x y 为(),X Y 的概率密度函数或X 与Y 的联合密度函数. (,)f x y 具有性质:①(,)0f x y ≥; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;③若D 是平面上的一个区域,则(){,}(,)DP X Y D f x y dxdy ∈=⎰⎰● 边缘密度函数:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰● 均匀分布的密度函数:1,(,)()(,)0,x y G S G f x y ⎧∈⎪=⎨⎪⎩其他,若(),X Y 服从G 上的均匀分布,则对任何平面区域D ,有()1(){,}(,)=()()DD GS D G P X Y D f x y dxdy dxdy S G S G ⋂⋂∈==⎰⎰⎰⎰. (4)二元正态分布 ● 密度函数:()2211222221212()()()()122(1),x x y y x y μμμμρσσρσσϕ⎡⎤------+⎢⎥-⎢⎥⎣⎦=,记作()221212,~(,;,;)X Y N μμσσρ.● 边缘密度函数分布:()2121()2()=,x X x x y dy μσϕϕ--+∞-∞⎰,()2222()2()=,y Y y x y dx μσϕϕ--+∞-∞⎰.注意:比较联合密度函数(),x y ϕ和边缘密度函数()X x ϕ,()Y y ϕ,当且仅当0ρ=时,对一切(),x y ,有(),()()X Y x y x y ϕϕϕ=.2.条件分布与随机变量的独立性(1)条件分布与独立性的一般概念● 随机变量X 和Y 相互独立:(,)()()X Y F x y F x F y =● 定理1:随机变量X 和Y 相互独立的充要条件是X 所生成的任何事件与Y 生成的任何事件独立,即对任意实数集A 和B ,有{,}{}{}P X A Y B P X A P Y B ∈∈=∈∈.定理2:如果随机变量X 和Y 相互独立,则对任意函数12(),()g x g y ,均有1()g X 与2()g Y 相互独立. ● 相互独立:12,,,n X X X 相互独立,()121122,,,()()()n n n F x x x F x F x F x =.(2)离散型随机变量的条件概率分布与独立性 ● 概率分布:{,},,1,2,i j ij P X x Y y p i j ====●i j p (当{}0i P Y y =>时):{,}{}{}iji i i j Y i jP P X x Y y P X x Y y P Y y P =======性质:①0i j p ≥;②1i jip=∑.● 已知j Y y =的条件下X 的条件概率分布:{},1,2,i i i j P X x Y y p i ====; 已知i X x =的条件下Y 的条件概率分布:{},1,2,i i j i P Y y X x p j ====.●X Y ij i j j i i j p p p p p =⋅=⋅● 定理:设,X Y 是离散型随机变量,其联合概率分布为{,}(,1,2,)i j ij P X x Y y p i j ====,边缘概率分布分别为X i p 和Yj p (,1,2,)i j =,则X 与Y 相互独立的充要条件是,,1,2,X Y ij i j p p p i j ==.(3)连续型随机变量的条件密度函数与独立性● 在Y y =的条件下X 的条件分布:0(,){,}{}lim {}()xy Y f u y du P X x y y Y y P X x Y y P y y Y y f y -∞∆→≤-∆<≤≤===-∆<≤⎰● 条件分布和条件密度函数● (,)()()()()X Y Y X X Y f x y f x f y x f y f x y ==● 定理:设连续型随机向量(),X Y 的密度函数为(,)f x y ,边缘密度函数分别为()X f x 和()Y f y ,则X 与Y 相互独立的充要条件是(,)()()X Y f x y f x f y =.3.随机向量的函数的分布与数学期望(1)离散型随机向量的函数分布 ●(,){}{(,)}{,},1,2,i j kk k i j g x y z P Z z P g X Y z P X x Y y k ========∑● 设,X Y 是两个相互独立的随机变量,分别服从参数为1λ和2λ的泊松分布,则X Y ξ=+的分布为()()1212e ,0,1,2,!kk k λλλλ-++=,可见X Y ξ=+服从参数为()12λλ+的泊松分布.结论:泊松分布具有独立可加性.2,(2)连续型随机向量的函数分布● 分布函数:(){}{(,)}{(,)}(,)zZ z D F z P Z z P g X Y z P X Y D f x y dxdy =≤=≤=∈=⎰⎰,其中z D ={(,)(,)}x y g x y z ≤. ● 密度函数:'()=()Z Z f z F z .● 随机变量的和:设(,)X Y 的联合密度函数为(,)f x y ,则X Y +的密度函数为()=(,)Z f z f z y y dy +∞-∞-⎰或 ()=(,)Z f z f x z x dx +∞-∞-⎰特别地,如果X 和Y 是相互独立的随机变量,则有(卷积公式)()=()()Z X Y f z f x f z x dx +∞-∞-⎰或 ()=()()Z X Y f z f z y f y dy +∞-∞-⎰即,()=*()*()Z X Y Y X f z f f z f f z =.● 独立正态随机变量之和:设随机变量221122~(,),~(,)X N Y N μσμσ,且X 与Y 独立,则221212~(,)X Y N μμσσ+++,即2122212()2()()z X Y f z μμσσ⎡⎤---⎢⎥+⎢⎥⎣⎦+=,结论:独立正态分布的和服从正态分布.推论:X 与Y 相互独立且分别服从正态分布211(,)N μσ和222(,)N μσ,则其任意非零线性组合仍服从正态分布,且22221212~(,)aX bY N a b a b μμσσ+++.进一步地,12,,n X X X 相互独立,2~(,)i i iX N μσ,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.● 随机变量的商:设二维随机向量(,)X Y 的密度函数为(,)f x y ,则XZ Y=的密度函数为'()=()(,)Z Z f z F z y f zy y dy +∞-∞=⎰.● 最大值与最小值:设,X Y 的分布函数分别为(),()F x G x ,密度函数分别为(),()f x g x ,且X与Y 相互独立,令max{,},min{,}M X Y N X Y ==,则有(3)随机向量函数的数学期望● 二维离散型随机向量的数学期望:,(,)(,)ijiji jEZ Eg X Y g x y p==∑.● 二维连续型随机向量的数学期望:(,)(,)(,)EZ Eg X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.●(,)g X Y XY =型:()(),,,(,),,i j ij i jx y p X Y EXY xyf x y dxdy X Y +∞+∞-∞-∞⎧⎪=⎨⎪⎩∑⎰⎰若为离散型若为连续型 (4)数学期望的进一步性质● (1)对任意两个随机变量,X Y ,如果其数学期望均存在,则()E X Y +存在,且()=E X Y EX EY ++(2)设,X Y 为任意两个相互独立的随机变量,数学期望均存在,则EXY 存在,且=EXY EXEY推广: (1)12,,,n X X X 是任意n 个随机变量,数学期望均存在,则()12n E X X X +++存在,且()1212n n E X X X EX EX EX +++=+++(2)设12,,,n X X X 是个相互独立的随机变量,且数学期望均存在,则()12n E X X X 存在,且()1212n n E X X X EX EX EX =.4.随机变量的数字特征(1)协方差● 协方差:()()()cov ,X Y E X EX Y EY =--⎡⎤⎣⎦1,2,)●()cov ,X Y EXY EXEY =-● 定理:(1)()cov ,X X DX = (2)()()cov ,cov ,X Y Y X =(3)()()cov ,cov ,,,aX bY ab X Y a b =为任意常数 (4)()cov ,0,C X C =为任意常数(5)()()()1212cov ,cov ,cov ,X X Y X Y X Y +=+ (6)如果X 与Y 相互独立,则()cov ,0X Y =推论:设,X Y 为任意两个随机变量,如果其方差均存在,则X Y +的方差也存在,且()()2cov ,D X Y DX DY X Y +=++.()()2cov ,D X Y DX DY X Y -=+-特别地,如果X 与Y 相互独立,则()D X Y DX DY +=+.● 定理:设()12,,,n X X X 是n 维随机向量,如果()1,2,,i X i n =的方差均存在,则对任意实向量()12,,,n λλλ,1ni i i X λ=∑的方差必存在,且()21112cov ,n n i i i i i j i j i i i j n D X DX X X λλλλ==≤<≤⎛⎫=+ ⎪⎝⎭∑∑∑.特别地,如果12,,,n X X X 两两独立,则211n n i i i i i i D X DX λλ==⎛⎫= ⎪⎝⎭∑∑. (2)协方差矩阵 ● 记()T 12,,,n X X X =X ,其协差阵通常记作D X .对任意实向量()T12,,,n λλλ=λ,有()T T D D =λX λX λ.对任意实向量()T12,,,n λλλ=λ,()T T 0D D =≥λX λλX .(3)相关系数 ●,cov ,X Y X Y ρ,,1X Y ρ≤● 定理:设(),X Y 是一个二维随机向量,,DX DY 均存在且为正,则,1X Y ρ=的充要条件是X 与Y 具有线性关系,即存在常数0a ≠及常数b ,使得{}1P Y ax b =+=.而且,当0a >时,,1X Y ρ=;当0a <时,,1X Y ρ=-.● 如果,DX DY 均存在且为正,那么X 与Y 不相关等价以下条件:①()cov ,0X Y =; ②EXY EXEY =;③()D X Y DX DY +=+; ④,0X Y ρ=.5.大数定律与中心极限定理(1)依概率收敛 ● 定义:设12,,,,,n X X X X 是一列随机变量,如果对任意0ε>,恒有{}lim 0n n P X X ε→∞->=,则称{}n X 依概率收敛到X ,记作Pn X X −−→或lim n n P X X →∞-=.(2)大数定律 ● 定理:①伯努利大数定律:设n μ是n 重伯努利试验中事件A 发生的次数,已知在每次试验中A 发生的概率为()01p p <<,则对任意0ε>,有lim 0n n P p n με→∞⎧⎫->=⎨⎬⎩⎭, 即Pnp nμ−−→或limnn P p nμ→∞-=.②切比雪夫大数定律:设12,,,n ξξξ是一列两两不相关的随机变量,它们的数学期望iE ξ和方差i D ξ均存在,且方差有界,即存在常数C ,使得()1,2,i D C i ξ≤=,则对任意0ε>,有1111lim 1n ni i n i i P E n n ξξε→∞==⎧⎫-<=⎨⎬⎩⎭∑∑. 推论:设12,,,nξξξ是一列独立同分布的随机变量,其数学期望和方差均存在,记=i E ξμ,则对任意0ε>,有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. 即11n Pi i n ξμ=−−→∑.③辛钦大数定律:设12,,,nξξξ是一列相互独立同分布的随机变量,且数学期望存在,记=i E ξμ,则有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. (3)中心极限定理● 定理:林德伯格-列维 设12,,,n ξξξ是一列相互独立同分布的随机变量,且=i E ξμ,2=0,1,2,,i D i ξσ>=则有22lim en t i xn n P x dt ξμ--∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑.● 定理:设()~,,01,n X b n p p <<则22lim et xn P x dt --∞→∞⎧⎫⎪≤=⎬⎪⎭.四、数理统计的基础知识1.总体与样本样本与样本分布● 总体X 的分布函数为()F x ,则样本()12,,,n X X X 的分布函数为:()()121,,,nn n i i F x x x F x ==∏,称之为样本分布.特别地,若总体X 为连续型随机变量,其密度函数为()f x ,则样本的密度函数为()()121,,,nn n i i f x x x f x ==∏.若总体X 为离散型随机变量,概率分布为(){}p x P X x ==,x 取遍X 所有可能取值,则样本的概率分布为()()()1211221,,,,,,nn n n n i i p x x x P X x X x X x p x ======∏.),n i x =∏为伯努利总体,如果它服从以}{,p P X =)12,,,n X X X 的概率分布为,n n X i =取1或0,而n i +,它恰等于样本中取值为服从参数为λ的泊松分布,)12,,,n X X 为其样本,则样本的概率分布为)21,,ee !!!!kinn n n k k k n i X i X i i i i i λλλλ--======∏,其中取非负整数,而n i ++.2.统计量常用的统计量)n X +2)X -1(ni i X X =-∑3.常用的统计分布(1)分位数● 上侧分位数:设随机变量X 的分布函数为()F x ,对给定的实数(01)αα<<,如果实数F α满足{}P X F αα>=,即()1F F αα-=或()1F F αα=-,则称F α为随机变量X 的分布的水平α上的上侧分位数. ● 有关等式:{}1P X F αα-≤= 1221P F X F ααα-⎧⎫<≤=-⎨⎬⎩⎭推论:()()122,,P X F m n X F m n ααα-⎛⎫⎧⎫⎧⎫<⋃>= ⎪⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭或()()122,,1P F m n X F m n ααα-⎧⎫<<-⎨⎬⎩⎭. ● 双侧分位数:设X 是对称分布的连续型随机变量,其分布函数为()F x ,对给定的实数(01)αα<<,如果正实数T α满足{}P X T αα>=,即()()1F T F T ααα--=-.则称T α为随机变量X 的分布的水平α的双侧分位数. 注意:由于对称性,上式可改写为:()12F T αα=-或{}()12P X T F T ααα>=-=.对于具有对称密度函数的分布函数的上侧分位数,恒有1F F αα-=-. (2)2χ分布 ● 命题:设()12,,,n X X X 是n 个相互独立的随机变量,且()~0,1,1,2,,i X N i n =,则22212n X X X X=+++的密度函数为()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭.● Γ函数:()()10e 0a x a x dx a +∞--Γ=>⎰.●2χ分布:一个随机变量X 称为服从以n 为自由度的2χ分布,如果其密度函数由()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭给出,记作()2~X n χ.● 命题:①若()()22~,~X m Y n χχ,且X 与Y 相互独立,则()2~X Y m n χ++. ②若()2~X n χ,则,2EX n DX n ==.(3)F 分布 ● 命题:设Z 由/=/X m n X Z Y n m Y=(设()()22~,~X m Y n χχ,且X 与Y 相互独立.)所定义,则Z 的密度函数为()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭.● B 函数:()()()1110,=10,0q p p q x x dx p q --B ->>⎰.●F 分布:如果一个随机变量X 的密度函数由()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭给出,则称其服从第一自由度为m ,第二自由度为n 的F 分布,记作()~,X F m n . ● 若()~,X F m n ,则()1~,XF n m -.● 当α接近1时,可利用()()11,=,F m n F n m αα-求出所需上侧分位数.(3)t 分布● 定义式:设()()2~0,1,~X N Y n χ,且X 与Y相互独立,记T =,则()2~1,/X T F n Y n=.● 命题:T 的密度函数为()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭.●t 分布:如果一个随机变量X 的密度函数由()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭给出,则称其为服从自由度为n 的t 分布,记作()~X t n .注意:当自由度n 很大时,t 分布接近于标准正态分布,因为2+11222lim 1=en x n x n --→∞⎛⎫+ ⎪⎝⎭.●当α接近1时,()()1t n t n αα-=-.4.抽样分布(1)正态总体的抽样分布● 定理:设总体()()212~,,,,,n X N X X X μσ是其容量为n 的一个样本,X 与2S 分别为此样本的样本均值与样本方差,则有①2~,X N n σμ⎛⎫⎪⎝⎭;②()2221~1n S n χσ--;③X 与2S 相互独立. ● 单正态总体的抽样分布定理:设()12,,,n X X X 为正态总体()2~,X N μσ的样本,X 与2S 分别为该样本的样本均值与样本方差,则有①()~0,1X U N =;②()2221~1n S n χσ--;③()~1X T t n =-.● 双正态总体的抽样分布定理:设()211~,X N μσ与()222~,Y N μσ是两个相互独立的正态总体.又设()112,,n X X X是总体X 的容量为1n 的样本,X 与21S 分别为该样本的样本均值与样本方差.再设()212,,n Y Y Y 是总体Y 的容量为2n 的样本,Y 与22S 分别为此样本的样本均值与样本方差.记2S 是21S 与22S 的加权平均:222121212121122n n S S S n n n n --=++-+-,则有 ①()()~0,1X Y U N μμ---=;②()222112212~1,1S F F n n S σσ⎛⎫=-- ⎪⎝⎭;③当22212==σσσ时,()12~2X Y T t n n μμ---=+-.(2)一般总体抽样分布的极限分布 ● 定理:设()12,,,n X X X 为总体X 的样本,并设总体X 的数学期望与方差均存在,分别记为2,EX DXμσ==.再记n n X X U T ==X 与S 分别表示上述样本的样本均值与样本方差,则有①()()0n dU F x x −−→Φ; ②()()0n dT F x x =−−→Φ.以上()n U F x ,n T F 与()0x Φ分别表示n U ,n T 及标准正态分布的分布函数.五、参数估计与假设检验1.点估计概述评价估计量的标准 ),n X 为参数的有偏估计量.若),n X 为未知参数}-<=θε),n X 为取自总体①样本均值X 是μ的无偏估计量;②样本方差2S 是σ③未修正的样本方差,即样本二阶中心矩),n X 是取自总体,n .则1n 的相合估计量,,n .(~,X N μ),n X 为其样本,则样本方差2S 是2σ的相合估计2.参数的最大似然估计与矩估计(1)最大似然估计 ● ),n x ,存在),n x ,使()*1,,n x x θ为θ的最大似然估计值,称相应的统),n X 为的最大似然估计量.它们统称为θ的最大似然估计,可MLE . 如果未知参数为12,,,r θθθ,那么似然函数是多元函数(,,)r L θθ.若对任意),n x 存在),,,1,2,=n x i r ,使1*1(,,),,)max (,,)∈Θ=r r r L θθθθθ,则称*i θ为i θ的,1,2,,=MLE i r .当似然函数关于未知参数可微时,一般可通过求导数得到MLE ,其主要步骤①写出似然函数1(,,)r L θθ;0∂=∂L θ或ln 0,1,,∂==∂L i r θ,从中求得驻点注意,函数L 与ln L有相同的最值点,而使用后者往往更方便;③判断驻点为最大值点; MLE .● 最大似然估计的不变性:如果ˆθ为θ的最大似然估计,()=u g θ是θ的函数且存在单值反函数()=h u θ.那么()ˆg θ是()g θ的最大似然估计. (2)矩估计 ● 1,2,,ˆ2,3,=k B β.这种求点估计的方用矩法确定的估计量称为矩估计量,相应的估计值为矩估计值,矩估计量. 表示为总体矩的函数,即)2,;,l s αββ; k B 分别替换g 中的k α,)()1212ˆˆˆˆ,,;,,;,,=l s l sg A A B B ααββ即为θ的3.置信区间(1)寻求置信区间的方法● ①选取θ的一个较优的点估计ˆθ; ②围绕ˆθ寻找一个依赖于样本与θ的函数()1,,;=n u u X X θ.u 的分布为已知分布.像u 这样的函数,称为枢轴量;③对给定的置信水平1-α,确定1λ与2λ,使{}121<<=-P u λλα,一般可选取满足{}{}122≤=≥=P u P u αλλ的1λ与2λ;④利用不等式变形导出套住θ的置信区间(),θθ. (2)正态总体参数的置信区间4.假设检验概述假设检验的一般步骤 ①建立零假设0H ;②构造一个含待检验参数θ(不含其他未知参数)且分布已知的枢轴量()12,,,;n u X X X θ,并确定其分布;③对给定的显著性水平α,由上述枢轴量及其分布,结合零假设0H ,确定拒绝域C ,使得(){}120,,,∈≤n P X X X C H α;④根据样本值()12,,,n x x x 是否落在C 中做出是否拒绝0H 的统计决断:如果()12,,,∈n x x x C ,则拒绝0H ,如果()12,,,∉n x x x C ,则不能拒绝0H .5.单正态总体的参数假设检验编辑:李雪伟 2013年5月25日。

概率论与数理统计复习知识概括

概率论与数理统计复习知识概括

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为:(1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--x t dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数X x 1 x 2 … x k … p k p 1 p 2 … p k … Y=g(X)g(x 1) g(x 2) … g(x k ) …若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法:(1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量. 对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= xi ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义,}{},{j ji j j i p p y Y P y Y x X P ∙=====,}{},{∙=====i ji i j i p p x X P y Y x X P随机变量X 离散型随机变量 连续型随机变量 分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)]i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i kik X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点.注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1,θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1))(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

《概率论与数理统计》复习-知识归纳整理

《概率论与数理统计》复习-知识归纳整理

《概率论与数理统计》复习大纲第一章 随机事件与概率基本概念随机试验E----指试验可在相同条件下重复举行,试验的结果具有多种可能性(每次试验有且仅有一个结果闪现,且事先知道试验可能闪现的一切结果,但不能预知每次试验确实切结果。

样本点ω ---随机试验E的每一具可能闪现的结果样本空间Ω----随机试验E的样本点的全体随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一具子集。

必然事件---每次试验中必然发生的事件。

不可能事件∅--每次试验中一定不发生的事件。

事件之间的关系包含A⊂B相等A=B对立事件,也称A的逆事件互斥事件AB=∅也称不相容事件A,B相互独立P(AB)=P(A)P(B)例1事件A,B互为对立事件等价于( D )A、A,B互不相容B、A,B相互独立C、A∪B=ΩD、A,B构成对样本空间的一具剖分例2设P(A)=0,B为任一事件,则(C )A、A=∅B、A⊂BC、A与B相互独立D、A与B互不相容事件之间的运算事件的交AB或A ∩B 例1设事件A、B满足A B¯=∅,由此推导不出(D)A、A⊂BB、A¯⊃B¯C、A B=BD、A B=B例2若事件B与A满足B – A=B,则一定有(B)A、A=∅B、AB=∅C、AB¯=∅D、B=A¯事件的并A∪B事件的差A-B 注意:A-B= A B= A-AB = (A∪B)-BA1,A2,…,An构成Ω的一具完备事件组(或分斥)−−指A1,A2,…,An两两互不相容,且∪i=1nAi=Ω运算法则交换律A∪B=B∪A A∩B=B∩A结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律A∪B=A∩B A∩B=A∪B文氏图事件与集合论的对应关系表记号概率论集合论Ω样本空间,必然事件全集∅不可能事件空集ω基本事件元素A 事件全集中的一具子集A A的对立事件A的补集A⊂B 事件A发生导致事件B发生A是B的子集A=B 事件A与事件B相等A与B相等A∪B 事件A与事件B至少有一具发生A与B的并集AB 事件A与事件B并且发生A与B的交集知识归纳整理A-B事件A 发生但事件B 不发生A 与B 的差集 AB=∅ 事件A 与事件B 互不相容(互斥) A 与B 没有相同的元素古典概型 古典概型的前提是Ω={ω1,ω2, ω3,…, ωn ,}, n 为有限正整数,且每个样本点ωi 出现的可能性相等。

概率论与数理统计期末总复习PPT

概率论与数理统计期末总复习PPT
A S - A.
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
(3) 事件的和与积的另一记法:A B A B, A B AB.
8. 完备事件组
设 A1, A2 ,, An , 是有限或可数个事件,若其
满足:
(1)Ai Aj , i j, i, j 1,2,;
y
y
f (x)
f (x)
P{a X b}
F( x)
Ox
x
Oa b
x
三、分布密度(概率密度)
离散型:P{ X xi } pi , i 1,2, 连续型: f ( x )
1、分布密度的性质
(1) 离散型: pi 0,i 1,2,; pi 1.
i
(2) 连续型:f ( x) 0;
f ( x)dx 1.
i 1
性质3 P( A) 1 - P( A).
性质4 P( A - B) P( A) - P( AB). 特别地,若 B A, 则
(1) P( A - B) P( A) - P(B); (2) P( A) P(B). 性质5 对任一事件A,P( A) 1.
例. 设 A、B 都出现的概率与 A、B 都不出现的概率 相等,且 P( A) p, 求 P(B).
3. 可列可加性: 对任意可数个两两互不相容的
事件 A1, A2 ,, An ,, 有 P(A1 A2 An ) P(A1) P(A2 )
P(An ) , 则称 P(A)为事件A的概率.
三、概率的性质
性质1 P() 0.
性质2
(有限可加性)设
n
A1 ,
A2 ,, An

概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理

概率论与数理统计期末复习重要知识点及公式整理概率论与数理统计期末复习重要知识点第二章知识点1离散型随机变量设X是一个随机变量如果它全部可能的取值只有有限个或可数无穷个则称X为一个离散随机变量2常用离散型分布1两点分布0-1分布若一个随机变量X只有两个可能取值且其分布为则称X服从处参数为p的两点分布两点分布的概率分布两点分布的期望两点分布的方差2二项分布若一个随机变量X的概率分布由式给出则称X服从参数为np的二项分布记为Xb np 或B np 两点分布的概率分布二项分布的期望二项分布的方差3泊松分布若一个随机变量X的概率分布为则称X服从参数为的泊松分布记为XP泊松分布的概率分布泊松分布的期望泊松分布的方差4连续型随机变量如果对随机变量X的分布函数F x 存在非负可积函数使得对于任意实数有则称X为连续型随机变量称为X的概率密度函数简称为概率密度函数5常用的连续型分布1均匀分布若连续型随机变量X的概率密度为则称X在区间ab上服从均匀分布记为XU ab均匀分布的概率密度均匀分布的期望均匀分布的方差2指数分布若连续型随机变量X的概率密度为则称X服从参数为的指数分布记为Xe指数分布的概率密度指数分布的期望指数分布的方差3正态分布若连续型随机变量X的概率密度为则称X服从参数为和的正态分布记为XN正态分布的概率密度正态分布的期望正态分布的方差4标准正态分布标准正态分布表的使用123故定理1 设XN 则6随机变量的分布函数设X是一个随机变量称为X的分布函数分布函数的重要性质7求离散型的随机变量函数连续型随机变量函数的分布1由X的概率分布导出Y的概率分布步骤①根据X写出Y的所有可能取值②对Y的每一个可能取值确定相应的概率取值③常用表格的形式把Y的概率分布写出2由X的概率密度函数分布函数求Y的概率密度函数分布函数的步骤①由X的概率密度函数随机变量函数Y g X 的分布函数②由求导可得Y的概率密度函数3对单调函数计算Y g X 的概率密度简单方法定理1 设随机变量X具有概率密度又设y g x 处处可导且恒有或恒有则Y g X 是一个连续型随机变量其概率密度为其中是y g x 的反函数且练习题24 第71314总习题第36910111314171819第三章重要知识点1离散型二维随机变量X与Y的联合概率分布表 YX1 1要会由X与Y的联合概率分布求出X与Y各自概率分布或反过来类似 P63 例22要会在X与Y独立的情况下根据联合概率分布表的部分数据求解其余数据类似 P71 例33要会根据联合概率分布表求形如的概率4要会根据联合概率分布律之类求出相应的期望方差协方差相关系数等2 二维连续型随机变量X与Y的联合概率密度设XY为二维随机变量F xy 为其分布函数若存在一个非负可积的二元函数f xy 使对任意实数xy有则称XY为二维连续型随机变量要会画出积分区域使得能正确确定二重积分的上下限要会根据联合概率密度求出相应的分布函数F xy 以及形如等联合概率值P64 例3要会根据联合概率密度求出的边缘密度类似 P64 例4要会根据联合概率密度求出相应的期望方差协方差相关系数等3联合概率分布以及联合密度函数的一些性质12要会根据这些性质解类似P68 第56题4常用的连续型二维随机变量分布二维均匀分布设G是平面上的有界区域其面积为A若二维随机变量XY具有概率密度函数则称XY在G上服从均匀分布5独立性的判断定义设随机变量XY的联合分布函数为F xy 边缘分布函数为若对任意实数xy有1离散型随机变量的独立性①由独立性的定义进行判断②所有可能取值有则X与Y相互独立2连续型随机变量的独立性①由独立性的定义进行判断②联合概率密度边缘密度有几乎处处成立则X 与Y相互独立3 注意与第四章知识的结合X与Y相互独立因此 X与Y不独立6.相互独立的两个重要定理定理1 随机变量X与Y相互独立的充要条件是X所生成的任何事件与Y生成的任何事件独立即对任意实数集AB有定理2 如果随机变量X与Y独立则对任意函数相互独立1要求会使用这两个定理解决计算问题练习题习题2-3 第34题习题2-4 第2题习题32 第578题总习题三第491-4 1213第四五章知识点设总体密度函数如下是样本试求未知参数的矩估计值最大似然估计值1由此可推出从而参数的矩估计值为2似然函数为其对数似然函数为由上式可以看出是的单调增函数要使其最大的取值应该尽可能的大由于限制这给出的最大似然估计值为将关于求导并令其为0得到关于的似然方程解得第四章重要知识点1随机变量X数学期望的求法1离散型 2连续型2随机变量函数g X 数学期望的求法1离散型 2连续型3二维随机向量期望的求法1离散型2连续型4随机变量X方差的求法1简明公式2离散型3连续型5 随机变量X协方差与相关系数的求法1简明公式2离散型3连续型46数学期望方差协方差重要的性质12 设X与Y相互独立则3若X与Y相互独立则456若X与Y相互独立则7 若XY服从二维正态分布则X与Y相互独立当且仅当7 n维正态分布的几个重要性质1n维正态变量的每个分量都是正态变量反之若都是正态变量且相互独立则是n维正态变量2n维随机向量服从n维正态分布的充分必要条件是的任意线性组合均服从一维正态分布均服从一维正态分布其中不全为零3若服从n维正态分布设是的线性函数则服从k维正态分布4设服从n维正态分布则相互独立等价于两两不相关练习题设XY的联合密度函数为求及解同理又因从而习题43第10题8中心极限定理1定理4棣莫佛拉普拉斯定理设随机变量相互独立并且都服从参数为的两点分布则对任意实数有2定理3独立同分布的中心极限定理设随机变量相互独立服从同一分布且则练习题习题4-4 11题 12题总习题四 242526题第五章重要知识点确定或求证统计量所服从的分布1三大分布1分布设是取自总体N 01 的样本称统计量服从自由度为n的分布2t分布设XN 01 且X与Y相互独立则称服从自由度为n的t分布3F分布设且X与Y相互独立则称服从自由度为mn的F分布2三大抽样分布1设总体是取自X的一个样本为该样本的样本均值则有2定理2设总体是取自X的一个样本与为该样本的样本均值与样本方差则有与相互独立3定理3 设总体是取自X的一个样本与为该样本的样本均值与样本方差则有练习题1设是来自正态总体的样本求统计量的分布解因为故由样本的独立性及分布的定义有再由样本的独立性以及t分布的定义有总习题五 14题3求样本函数相关的概率问题练习题习题5-3 2 总习题五 1617第六章重要知识点1矩估计的求法设总体X的分布函数中含有k个未知参数的函数则1求总体X的k阶矩它们一般都是是这k个未知参数的函数记为2从1中解得3再用的估计量分别代替上式中的即可得的估计量注求类似于上述步骤最后用代替求出矩估计2最大似然估计的求法求最大似然估计的一般方法写出似然函数令或求出驻点3判断并求出最大值点在最大值点的表达式中用样本值代入就得参数的最大似然估计值比如P154 例463 估计量的优良性准则1无偏性定义1 设是未知参数的估计量若则称为的无偏估计量2有效性定义2 设和都是参数的无偏估计量若则称较有效4 置信区间1双侧置信区间设为总体分布的未知参数是取自总体X的一个样本对给定的数若存在统计量使得则称随机区间为的双侧置信区间称为置信度又分别称与为的双侧置信下限与双侧置信上限2单侧置信区间设为总体分布的未知参数是取自总体X的一个样本对给定的数若存在统计量满足则称为的置信度为的单侧置信区间称为的单侧置信下限若存在统计量满足则称为的置信度为的单侧置信区间称为的单侧置信上限5寻求置信区间的方法一般步骤选取未知参数的某个较优估计量2围绕构造一个依赖于样本与参数的函数3对给定的置信水平确定与使通常可选取满足与的与在常用分布情况下这可由分位数表查得4对不等式作恒等变形后化为则就是的置信度为的双侧置信区间6置信区间的公式1 0-1分布参数的置信区间2 设总体其中已知而为未知参数是取自总体X的一个样本均值的置信区间为3 设总体其中未知是取自总体X的一个样本均值的置信区间为4 设总体其中未知是取自总体X的一个样本方差的置信区间为的置信区间为练习题习题6-2 第1256题习题6-3 第3456题习题6-4 第4题总习题六第789101617182021题第1章随机事件及其概率1排列组合公式从m个人中挑出n个人进行排列的可能数从m个人中挑出n个人进行组合的可能数2加法和乘法原理加法原理两种方法均能完成此事mn某件事由两种方法来完成第一种方法可由m种方法完成第二种方法可由n种方法来完成则这件事可由mn 种方法来完成乘法原理两个步骤分别不能完成这件事m×n某件事由两个步骤来完成第一个步骤可由m种方法完成第二个步骤可由n 种方法来完成则这件事可由m×n 种方法来完成3一些常见排列重复排列和非重复排列有序对立事件至少有一个顺序问题4随机试验和随机事件如果一个试验在相同条件下可以重复进行而每次试验的可能结果不止一个但在进行一次试验之前却不能断言它出现哪个结果则称这种试验为随机试验试验的可能结果称为随机事件5基本事件样本空间和事件在一个试验下不管事件有多少个总可以从其中找出这样一组事件它具有如下性质①每进行一次试验必须发生且只能发生这一组中的一个事件②任何事件都是由这一组中的部分事件组成的这样一组事件中的每一个事件称为基本事件用来表示基本事件的全体称为试验的样本空间用表示一个事件就是由中的部分点基本事件组成的集合通常用大写字母ABC表示事件它们是的子集为必然事件为不可能事件不可能事件的概率为零而概率为零的事件不一定是不可能事件同理必然事件Ω的概率为1而概率为1的事件也不一定是必然事件如果同时有则称事件A与事件B等价或称A等于BA BAB中至少有一个发生的事件AB或者AB属于A而不属于B的部分所构成的事件称为A与B的差记为A-B 也可表示为A-AB或者它表示A发生而B不发生的事件AB同时发生AB或者ABAB 则表示A与B不可能同时发生称事件A与事件B互不相容或者互斥基本事件是互不相容的-A称为事件A的逆事件或称A的对立事件记为它表示A不发生的事件互斥未必对立②运算结合率A BC AB C A∪ B∪C A∪B ∪C分配率 AB ∪C A∪C ∩ B∪C A∪B ∩C AC ∪ BC德摩根率7概率的公理化定义设为样本空间为事件对每一个事件都有一个实数P A 若满足下列三个条件1° 0≤P A ≤12° P 13°对于两两互不相容的事件有常称为可列完全可加性P A 为事件的概率8古典概型1°2°设任一事件它是由组成的则有P A9几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀同时样本空间中的每一个基本事件可以使用一个有界区域来描述则称此随机试验为几何概型对任一事件A其中L为几何度量长度面积体积10加法公式P AB P A P B -P AB当P AB =0时P AB P A P B 11减法公式P A-B P A -P AB当BA时P A-B P A -P B当A Ω时P 1- P B 12条件概率定义设AB是两个事件且P A 0则称为事件AB发生的条件概率记为条件概率是概率的一种所有概率的性质都适合于条件概率例如P ΩB 1P A 1-P BA 13乘法公式乘法公式更一般地对事件A1A2An若P A1A2An-1 0则有14独立性①两个事件的独立性设事件满足则称事件是相互独立的若事件相互独立且则有若事件相互独立则可得到与与与也都相互独立必然事件和不可能事件与任何事件都相互独立与任何事件都互斥②多个事件的独立性设ABC是三个事件如果满足两两独立的条件P AB P A P B P BC P B P C P CA P C P A并且同时满足P ABC P A P B P C那么ABC相互独立对于n个事件类似15全概公式设事件满足1°两两互不相容2°16贝叶斯公式设事件及满足1°两两互不相容 0122°i 12n此公式即为贝叶斯公式通常叫先验概率通常称为后验概率贝叶斯公式反映了因果的概率规律并作出了由果朔因的推断17伯努利概型我们作了次试验且满足每次试验只有两种可能结果发生或不发生次试验是重复进行的即发生的概率每次均一样每次试验是独立的即每次试验发生与否是互不影响的这种试验称为伯努利概型或称为重伯努利试验用表示每次试验发生的概率则发生的概率为用表示重伯努利试验中出现次的概率第二章随机变量及其分布1离散型随机变量的分布律设离散型随机变量的可能取值为Xk k 12 且取各个值的概率即事件 X Xk 的概率为P X xk pkk 12则称上式为离散型随机变量的概率分布或分布律有时也用分布列的形式给出显然分布律应满足下列条件1 2 2连续型随机变量的分布密度设是随机变量的分布函数若存在非负函数对任意实数有则称为连续型随机变量称为的概率密度函数或密度函数简称概率密度密度函数具有下面4个性质1°2°3离散与连续型随机变量的关系积分元在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似4分布函数设为随机变量是任意实数则函数称为随机变量X的分布函数本质上是一个累积函数可以得到X落入区间的概率分布函数表示随机变量落入区间–∞x]内的概率分布函数具有如下性质1°2°是单调不减的函数即时有3°4°即是右连续的5°对于离散型随机变量对于连续型随机变量5八大分布0-1分布P X 1 p P X 0 q二项分布在重贝努里试验中设事件发生的概率为事件发生的次数是随机变量设为则可能取值为其中则称随机变量服从参数为的二项分布记为当时这就是0-1分布所以0-1分布是二项分布的特例泊松分布设随机变量的分布律为则称随机变量服从参数为的泊松分布记为或者P泊松分布为二项分布的极限分布np λn→∞超几何分布随机变量X服从参数为nNM的超几何分布记为H nNM 几何分布其中p≥0q 1-p随机变量X服从参数为p的几何分布记为G p 均匀分布设随机变量的值只落在[ab]内其密度函数在[ab]上为常数即其他则称随机变量在[ab]上服从均匀分布记为XU ab分布函数为当a≤x1 x2≤b时X落在区间内的概率为指数分布其中则称随机变量X服从参数为的指数分布X的分布函数为记住积分公式正态分布设随机变量的密度函数为其中为常数则称随机变量服从参数为的正态分布或高斯Gauss 分布记为具有如下性质1°的图形是关于对称的2°当时为最大值若则的分布函数为参数时的正态分布称为标准正态分布记为其密度函数记为分布函数为是不可求积函数其函数值已编制成表可供查用Φ -x =1-Φ x 且Φ 0 =如果则6分位数下分位表上分位表7函数分布离散型已知的分布列为的分布列互不相等如下若有某些相等则应将对应的相加作为的概率连续型先利用X的概率密度fX x 写出Y的分布函数FY y =P g X ≤y 再利用变上下限积分的求导公式求出fY y 第三章二维随机变量及其分布1联合分布离散型如果二维随机向量XY的所有可能取值为至多可列个有序对xy则称为离散型随机量设 XY的所有可能取值为且事件的概率为pij称为 XY的分布律或称为X和Y的联合分布律联合分布有时也用下面的概率分布表来表示YXy1y2yjx1p11p12p1jx2p21p22p2jxipi1这里pij具有下面两个性质1pij≥0ij 122 连续型对于二维随机向量如果存在非负函数使对任意一个其邻边分别平行于坐标轴的矩形区域D即D XY a x bc y d 有则称为连续型随机向量并称f xy 为 XY的分布密度或称为X和Y的联合分布密度分布密度f xy 具有下面两个性质f xy ≥02 2二维随机变量的本质3联合分布函数设XY 为二维随机变量对于任意实数xy二元函数称为二维随机向量XY的分布函数或称为随机变量X和Y的联合分布函数分布函数是一个以全平面为其定义域以事件的概率为函数值的一个实值函数分布函数F xy 具有以下的基本性质12Fxyx和y是非减的即当x2 x1时有Fx2yF x1y 当y2 y1时有F xy2 ≥F xy13Fxyx和y是右连续的即45对于4离散型与连续型的关系5边缘分布离散型X的边缘分布为Y的边缘分布为连续型X的边缘分布密度为Y的边缘分布密度为6条件分布离散型在已知X xi的条件下Y取值的条件分布为在已知Y yj的条件下X取值的条件分布为连续型在已知Y y的条件下X的条件分布密度为在已知X x的条件下Y的条件分布密度为7独立性一般型 F XY FX x FY y 离散型有零不独立连续型 f xy fX x fY y直接判断充要条件①可分离变量②正概率密度区间为矩形二维正态分布=0 随机变量的函数若X1X2XmXm1Xn相互独立 hg为连续函数则hX1X2Xm和gXm1Xn相互独立特例若X与Y独立则hX和gY独立例如若X与Y独立则3X1和5Y-2独立8二维均匀分布设随机向量XY的分布密度函数为其中SD为区域D的面积则称XY服从D上的均匀分布记为XY~UD例如图31comy1D1O 1 x图31y1O 2 x图32ydcO a b x图339二维正态分布设随机向量XY的分布密度函数为其中是5个参数则称XY服从二维正态分布记为XY~N由边缘密度的计算公式可以推出二维正态分布的两个边缘分布仍为正态分布即X~N但是若X~N XY 未必是二维正态分布10函数分布Z XY 根据定义计算对于连续型fZ z =两个独立的正态分布的和仍为正态分布n个相互独立的正态分布的线性组合仍服从正态分布Z min X1X2Xn 若相互独立其分布函数分别为则Z min X1X2Xn 的分布函数为分布设n个随机变量相互独立且服从标准正态分布可以证明它们的平方和的分布密度为我们称随机变量W服从自由度为n的分布记为W~其中所谓自由度是指独立正态随机变量的个数它是随机变量分布中的一个重要参数分布满足可加性设则t分布设XY是两个相互独立的随机变量且可以证明函数的概率密度为我们称随机变量T服从自由度为n的t分布记为T~t nF分布设且X与Y独立可以证明的概率密度函数为我们称随机变量F服从第一个自由度为n1第二个自由度为n2的F分布记为F~f n1 n2第四章随机变量的数字特征1一维随机变量的数字特征离散型连续型期望期望就是平均值设X是离散型随机变量其分布律为P =pkk12n要求绝对收敛设X是连续型随机变量其概率密度为f x要求绝对收敛函数的期望Y g XY g X方差D X E[X-E X ]2标准差矩①对于正整数k称随机变量X的k次幂的数学期望为X的k阶原点矩记为vk即νk E Xk k 12②对于正整数k称随机变量X与EX差的k次幂的数学期望为X 的k阶中心矩记为即k 12 ①对于正整数k称随机变量X的k次幂的数学期望为X 的k阶原点矩记为vk即νk E Xkk 12②对于正整数k称随机变量X与EX差的k次幂的数学期望为X 的k阶中心矩记为即k 12 切比雪夫不等式设随机变量X具有数学期望EX μ方差DX σ2则对于任意正数ε有下列切比雪夫不等式切比雪夫不等式给出了在未知X的分布的情况下对概率的一种估计它在理论上有重要意义2期望的性质E C CE CX CE XE XY E X E YE XY E X E Y 充分条件X和Y独立充要条件X和Y不相关3方差的性质 D C 0E C CD aX a2D XE aX aE XD aXb a2D XE aXb aE X bD XE X2 -E2 XD X±Y D X D Y 充分条件X和Y独立充要条件X和Y不相关D X±Y D X D Y ±2E[ X-E X Y-E Y ]无条件成立而E XY E X E Y 无条件成立4常见分布的期望和方差期望方差0-1分布p 二项分布 np 泊松分布几何分布超几何分布均匀分布指数分布正态分布n 2n t分布0 n 2 5二维随机变量的数字特征期望函数的期望==方差协方差对于随机变量X与Y称它们的二阶混合中心矩为X与Y的协方差或相关矩记为即与记号相对应X与Y的方差DX与DY也可分别记为与相关系数对于随机变量X与Y如果DX 0 D Y 0则称为X与Y的相关系数记作有时可简记为≤1当 1时称X与Y完全相关完全相关而当时称X与Y不相关以下五个命题是等价的①②cov XY 0③E XY E X E Y④D XY D X D Y⑤D X-Y D X D Y 协方差矩阵混合矩对于随机变量X与Y如果有存在则称之为X与Y的kl阶混合原点矩记为kl阶混合中心矩记为6协方差的性质cov X Y cov Y Xcov aXbY ab cov XYcov X1X2 Y cov X1Y cov X2Ycov XY E XY -E X E Y 7独立和不相关若随机变量X与Y相互独立则反之不真若XY~N则X与Y相互独立的充要条件是X和Y不相关第五章大数定律和中心极限定理1大数定律切比雪夫大数定律设随机变量X1X2相互独立均具有有限方差且被同一常数C所界DXi C i 12 则特殊情形若X1X2具有相同的数学期望EXI μ则上式成为伯努利大数定律设μ是n次独立试验中事件A发生的次数p是事件A在每次试验中发生的概率则对于任意的正数ε有伯努利大数定律说明当试验次数n很大时事件A发生的频率与概率有较大判别的可能性很小即这就以严格的数学形式描述了频率的稳定性辛钦大数定律设X1X2Xn是相互独立同分布的随机变量序列且EXn μ则对于任意的正数ε有2中心极限定理列维-林德伯格定理设随机变量X1X2相互独立服从同一分布且具有相同的数学期望和方差则随机变量的分布函数Fn x 对任意的实数x有此定理也称为独立同分布的中心极限定理棣莫弗-拉普拉斯定理设随机变量为具有参数n p 0 p 1 的二项分布则对于任意实数x有3二项定理若当则超几何分布的极限分布为二项分布4泊松定理若当则其中k 012n二项分布的极限分布为泊松分布第六章样本及抽样分布1数理统计的基本概念总体在数理统计中常把被考察对象的某一个或多个指标的全体称为总体或母体我们总是把总体看成一个具有分布的随机变量或随机向量个体总体中的每一个单元称为样品或个体样本我们把从总体中抽取的部分样品称为样本样本中所含的样品数称为样本容量一般用n表示在一般情况下总是把样本看成是n个相互独立的且与总体有相同分布的随机变量这样的样本称为简单随机样本在泛指任一次抽取的结果时表示n 个随机变量样本在具体的一次抽取之后表示n个具体的数值样本值我们称之为样本的两重性样本函数和统计量设为总体的一个样本称为样本函数其中为一个连续函数如果中不包含任何未知参数则称为一个统计量常见统计量及其性质样本均值样本方差样本标准差样本k阶原点矩样本k阶中心矩。

《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习资料要点总结

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则(1)BAAB A B B A =⋃=⋃ (2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃(4)BA AB B A B A ⋃==⋃ 3.概率)(A P 满足的三条公理及性质:(1)1)(0≤≤A P (2)1)(=ΩP (3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()( (n 可以取∞)(4)0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤(7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃4.古典概型:基本事件有限且等可能5.几何概率6.条件概率(1)定义:若0)(>B P ,则)()()|(B P AB P B A P =(2)乘法公式:)|()()(B A P B P AB P =若n B B B ,,21为完备事件组,0)(>i B P ,则有(3)全概率公式:∑==ni iiB A P B P A P 1)|()()((4)Bayes 公式:∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性:B A ,独立)()()(B P A P AB P =⇔(注意独立性的应用)第二章随机变量与概率分布1.离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2.连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3.几个常用随机变量名称与记号分布列或密度数学期望方差两点分布),1(p B p X P ==)1(,pq X P -===1)0(p pq 二项式分布),(p n B n k q p C k X P kn k k n ,2,1,0,)(===-,npnpqPoisson 分布)(λP,2,1,0,!)(===-k k e k X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P k p 12p q 均匀分布),(b a U b x a a b x f ≤≤-= ,1)(,2b a +12)(2a b -指数分布)(λE 0,)(≥=-x e x f x λλλ121λ正态分布),(2σμN 222)(21)(σμσπ--=x ex f μ2σ4.分布函数)()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续;(4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>;(5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5.正态分布的概率计算以)(x Φ记标准正态分布)1,0(N 的分布函数,则有(1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==>6.随机变量的函数)(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

概率论与数理统计期末复习知识点

概率论与数理统计期末复习知识点

fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n

Ai Ai
Ai Ai
i 1

《概率论与数理统计》复习总结(已完成)

《概率论与数理统计》复习总结(已完成)

大学教案总结之《概率论与数理统计》期末复习目录第一章 (4)定义:一般的,称试验E 的样本空间Ω的子集为E 的随机事件。

.......................... 4 事件间的关系与运算 ....................................................................................................... 4 定义: ............................................................................................................................... 4 概率的性质: ................................................................................................................... 4 古典概率 ................................................................................................................................... 4 条件概率 .. (4)定义: (4)⑴条件概率的乘法公式:()()()A P A B P AB P |= (5)⑵全概率公式 ................................................................................................................... 5 ⑶贝叶斯公式 ................................................................................................................... 5 随机事件的独立性 ................................................................................................................... 5 第二章 一维随机变量及其分布 .. (6)定义:一维随机变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)
n
n
n
X i ~ N ( i , i2 )
i 1
i 1
i 1
(4)有限个相互独立的正态随机变量的线性组合仍然服从正态分布.
n
n
n
ai X i ~ N ( ai i , ai 2 i 2 )
i 1
i 1
i 1
两个随机变量的函数的分布
(1) Z=X+Y 的分布
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
连续型的二维随机变量
1.联合概率密度及性质
xy
F(x, y)
f (u,v)dudv

1 f ( x, y) 0,
2

f (x, y)dxdy 1,
3。F(x, y) x
4.贝叶斯公式
P( Bi A)
P( A Bi )P( Bi )
n
,
P(A Bj )P(Bj )
j1
i 1, 2,L , n
独立性
1. 事件A,B相互独立
P(AB)=P(A)P(B)
2. A1, A2 , ... , An两两相互独立 P(AiAj)=P(Ai)P(Aj) ,(1 i < j n)
3. A1, A2 , ... , An 相互独立
P
(1)
(
Ai1
Ai2
L
Aik ) P( Ai1 )P( Ai2 )L
P( Aik )
1≤i1<i2<...<ik≤n, (k≤n),
(2)P
n
Ak 1 P( A1A2
An ) 1
n
P( Ak )
k1
1. 交换律:A∪B=B∪A, A∩B=B∩A .
2. 结合律:A∪(B∪C)=(A∪B)∪C; A∩(B∩C)=(A∩B)∩C .
3. 分配律:A∪(B∩C)=(A∪B)∩(A∪C) ;
A∩(B∪C)=(A∩B)∪(A∩C) .
4. 德.摩根律(对偶原则) : 设事件Ai(i=1,2,…,n)
n
n
的概率. ⁂随机变量的分类:离散型/非离散型(连续型)
2.离散型随机变量及其概率分布
⁂定义: 取有限个或可数个值的随机变量;
⁂分布律:P{X=xk}= pk, k =1,2, …

其中 pk 满足:(1) pk 0, (2) pk 1.
⁂常见分布:
k 1
1)(0-1)分布:P{X=k}= pk(1-p)1-k, k=0,1 (0<p<1)
y
fY ( y)dy
3.独立性 f (x , y) fX (x) fY ( y) ( x, y) R2
正态分布随机变量的一些常用性质
(1)

(X,Y ) ~
N
(
1
,
2
,
2 1
,
2 2
,

)
,

X
~
N
(
1
,

2 1
),
Y
~
N
(2
,
2 2
)
(2) 若
( X ,Y
)
~
N
(
分布函数: FZ (z ) P{Z z} f ( x, y)dxdy
x yz


概率密度:
fZ(z)
f (z y, y)dy

f (x, z x)dx

当X 和Y 相互独立:卷积公式

fZ (z) f X ( x) fY (z x)dx
y

f (u,v)dudv

4 f ( x, y) 2F( x, y) ,在f ( x, y)的连续点. xy
5 P{(X, Y) G} f ( x, y)dxdy,G是一平面区域.
G
2.边缘概率密度
X 的边缘概率密度
fX (x)

f ( x, y)dy,
(2)F(x)是单调不减的,即若 x1 x2 ,则Fx1 Fx2
(3) F lim Fx 0 , F lim Fx 1
x
x
(4) F(x)是右连续的,即F(x+0)=F(x)
(1) 离散型随机变量X的分布函数计算公式
F(x) P{X x} P{X xk } xk x
第一章 随机事件及其概率
• 基本概念
1. 随机试验;2. 样本空间;3. 随机事件
• 事件间的关系
1.子事件:AB 2.和事件:A∪B 3.积事件: AB 4. 差事件: A-B=A-AB=AB 5. 互斥事件(互不相容事件):AB= 6. 互逆事件: AB= , 且A∪B=S
• 事件的运算法则
(2) 连续型随机变量的分布函数的定义
x
F( x) f (t)dt
f(x)的性质
1. f (x) 0

2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
这种试验称为等可能概型或古典概型.
2.古典概型中事件A的概率的计算公式
P( A)
k n

A包含的基本事 件数 S中基本事件的 总数
几个重要复杂事件概率计算公式
1.条件概率
P(B
A)
P( AB) ,
P( A) 0
P( A)
2.乘法公式 P( AB) P( A)P( A B)
n
3.全概率公式 P( A) P( A Bi )P(Bi ) i 1
x2
e2
2
x
x
(x)
1
t2
e 2 dt
2
X ~ N(, 2)
Z X ~ N(0,1)
F( x) ( x )
P{
x1

X

x2
}


x2





x1



4 随机变量的函数的分布
一、离散型随机变量函数的分布律 二、连续型随机变量函数的概率密度
2) 二项分布:X ∼ b(n, p)
pk

P{ X

k
}

C
k n
pk (1
p)nk ,
k 0,1,2,..., n
3) 泊松分布:X ~ ( ) ke
P{X k}
, k 0,1,2,...
k!
3.随机变量的分布函数
⁂定义:设X是一个随机变量,x是任意实数,函数
• 概率性质
(1) P(φ)=0 .
(2) (有限可加性) 若A1,A2,… An 两两不相容,
P(A1∪A2∪…∪An)=P(A1)+P(A2)+ … +P(An) (3) 若A B,则有 P(B– A)=P(B) – P(A) ;
一般有 P(B – A)=P(B) –P(AB) (4) 对于任一事件A,有P(A)≤1,
4. 随机变量独立性的定义 ( x, y) R2 F( x, y) FX ( x)FY ( y)
离散型的二维随机变量(X,Y)
1.联合分布律:
P{ X xi ,Y y j } ˆ pij ,( i, j 1,2, )
Y X
x1 x2 xi
p• j
y1 y2 y j pi•
F(x)=P{X x} ------ 称为X的分布函数
对任意实数x1x2 P{x1 X x2} F(x2 ) F(x1)
P{X x1} 1 F(x1)
⁂分布函数的性质 P{X x1} F(x1) F(x1 0)
(1)有界性 0 F(x) 1, x
n
n

Ai Ai
Ai Ai
i 1
i 1
i 1
i 1
5. 对必然事件的运算法则:A∪S=S, A∩S=A
6.对不可能事件的运算法则:A∪Φ=A,A∩Φ=Φ.
• 概率公理化定义
设E---随机试验,S---样本空间. 事件A P(A),
称为事件A的概率, 如果P(• )满足下列条件:
1
,
2
,
2 1
,

2 2
,
)
,
则 X与Y相互独立
0
(3)若
X
~
N
(1,
2 1
),
Y
~
N
(
2,
2 2
)
,
且X与Y相互独立,

X+Y 仍服从正态分布, 且
推广: 若
Xi
~
N
(
i
,
2 i
),
(i

X
Y
~
N (1,

2
,
2 1
1,2 , n), 且相互独立, 则


2 2
(5) 逆事件: P(A )=1 –P(A),
(6)(加法公式) P(A∪B)=P(A)+P(B)-P(AB)
P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)-P(A1A2)P(A1A3)-P(A2A3)+P(A1A2A3)
等可能概型(古典概型)
1.定义:设E是试验,S是E的样本空间,若 (1) 试验的样本空间的元素只有有限个; (2) 试验中每个基本事件发生的可能性相同.
相关文档
最新文档