2016高考数学二轮复习微专题强化练习题:13立体几何综合练习(文)
2016高考立体几何复习备考试题及详细解答
专题 立 体 几 何1.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行 (C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面 解由A ,若α,β垂直于同一平面,则α,β可以相交、平行,故A 不正确;由B ,若m ,n 平行于同一平面,则m ,n 可以平行、重合、相交、异面,故B 不正确;由C ,若α,β不平行,但α平面内会存在平行于β的直线,如α平面中平行于α,β交线的直线;由D 项,其逆否命题为“若m 与n 垂直于同一平面,则m ,n 平行”是真命题,故D 项正确.所以选D.2.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 解因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( )(A)14斛 (B)22斛 (C)36斛 (D)66斛4.一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+解由三视图知:该几何体是半个圆柱,其中底面圆的半径为1,母线长为2,所以该几何体的表面积是()1211222342ππ⨯⨯⨯++⨯=+,故选D . 5.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =( ) (A )1 (B )2 (C )4 (D )8解由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r =2,故选B. 6.某几何体的三视图如图所示,则该几何体的体积为A 、13π+ B 、23π+ C 123π+ D 、223π+ 解这是一个三棱锥与半个圆柱的组合体,2111112(12)12323V ππ=⨯⨯+⨯⨯⨯⨯⨯=+,选A .7.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2 B.4+ C.2+ D .5=,三棱锥表面积表2S =+.8.一个四面体的三视图如图所示,则该四面体的表面积是( ) (A)1B)2(C)1+ (D)解由题意,该四面体的直观图如下,,ABD BCD∆∆是等腰直角三角形,,ABC ACD∆∆是等边三角形,则111,6022BCD ABD ABC ACD S S S S ∆∆∆∆======,所以四面体的表正(主)视图11俯视图侧(左)视图21面积2122BCD ABD ABC ACD SS S S S ∆∆∆∆=+++=⨯+=+ B.9.已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π10.在梯形ABCD 中,2ABC π∠=,//,222AD BC BC AD AB === .将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )23π (B )43π (C )53π (D )2π解直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为:2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥11.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( ) A.A DB α'∠≤ B. A DB α'∠≥ C. A CB α'∠≤ D. A CB α'∠≤解设ADCθ∠=,设2AB =,则由题意1AD BD ==,在空间图形中,设A B t '=,在A CB '∆中,2222222112cos 22112A D DB AB t t A DB A D DB '+-+--'∠==='⨯⨯⨯,在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N,M ,BOAC过N作//NP MB ,连结A P ',∴NP DC ⊥,则A NP '∠就是二面角A CD B '--的平面角,∴A NP α'∠=,在Rt A ND'∆中,cos cos DN A D A DC θ''=∠=,sin sin A N A D A DC θ'''=∠=,同理,sin BM PN θ==,cos DM θ=,故2cos BP MN θ==,显然BP ⊥面A NP ',故BP A P '⊥,在Rt A BP '∆中,2222222(2cos )4cos A P A B BP t t θθ''=-=-=-,在A NP '∆中,222cos cos 2A N NP A P A NP A N NP α''+-'=∠='⨯2222sin sin (4cos )2sin sin t θθθθθ+--=⨯12某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89π B.169π解分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为x ,y,h ,长方体上底面截圆锥的截面半径为a ,则22224)2(a a y x ==+,如下图所示,圆锥的轴截面如图所示,则可知a h ha 22221-=⇒-=,而长方体的体积)22(2222222a a h a h y x xyh V -==+≤=322162()327a a a ++-≤⨯=,当且仅当y x =,3222=⇒-=a a a 时,等号成立,此时利用率为ππ98213127162=⨯⨯,故选A. 13.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A.38cm B.312cm C.3323cm D. 3403cm14.若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 解若l m ⊥,因为m 垂直于平面α,则//l α或l α⊂;若//l α,又m 垂直于平面α,则l m ⊥,所以“lm ⊥ ”是“//l α 的必要不充分条件,故选B .15.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A .81 B .71 C .61 D .51解由三视图得,在正方体1111ABCD A B C D -中,截去四面体111A A B D -,如图所示,,设正方体棱长为a ,则11133111326A AB DV a a -=⨯=,故剩余几何体体积为3331566a a a -=,所以截去部分体积与剩余部分体积的比值为51,故选D .16若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 . 解由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π 17若正三棱柱的所有棱长均为a,且其体积为,则a = .解23644a a a =⇒=⇒= 18.如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点。
2016年全国各地高考数学试题及解答分类汇编大全(13 立体几何 )
2016 年全国各地高考数学试题及解答分类汇编大全(13立体几何)一、选择题1.(2016北京理)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱锥P ABC-,其体积111111326V=⋅⋅⋅⋅=,故选A.考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅰ文、理)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A)17π(B)18π(C)20π(D)28π【答案】A【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R,则37428V R833ππ=⨯=,解得R2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以 三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.3.(2016全国Ⅰ文、理)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, ABCD m α=平面,11ABB A n α=平面,则m 、n 所成角的正弦值为 ( )(A)3 (B )2 (C)3 (D)13【答案】A【解析】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角. 延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm , 同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成 的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的 正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.(2016全国Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )(A )12π (B )323π(C )8π (D )4π 【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球面的表面积为24(3)12ππ⋅=,故选A. 考点: 正方体的性质,球的表面积.【名师点睛】棱长为a 的正方体中有三个球: 外接球、内切球和与各条棱都相切的球.其半径分别为3a 、2a 和22a .5.(2016全国Ⅱ文、理)如图是由圆柱与圆锥组合而成的几何体的三视图, 则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C考点: 三视图,空间几何体的体积.【名师点睛】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解. 【名师点睛】由三视图还原几何体的方法:6. (2016全国Ⅲ文、理)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.7.(2016全国Ⅲ文、理)在封闭的直三棱柱111ABCA B C-内有一个体积为V的球,若AB BC⊥,6AB=,8BC=,13AA=,则V的最大值是()(A)4π (B)92π(C)6π (D)323π【答案】B【解析】试题分析:要使球的体积V最大,必须球的半径R最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322Rπππ==,故选B.考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.8.(2016山东文、理)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)123+π(C)123+π(D)21+π【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.9.(2016上海文)如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1 (B)直线A1B1 (C)直线A1D1(D)直线B1C1【答案】D【解析】只有11B C与EF在同一平面内,是相交的,其他A,B,C中直线与EF都是异面直线,故选D.考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.10.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.(2016浙江文、理)已知互相垂直的平面αβ,交于直线l.若直线m,n满足,m nαβ∥⊥,则()A.m∥l B.m∥n C.n⊥l D.m⊥n【答案】C【解析】试题分析:由题意知,l lαββ=∴⊂,,n n lβ⊥∴⊥.故选C.考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.二、填空1.(2016北京文)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅱ理),αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.3、(2016上海理)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________. 【答案】22【解析】试题分析:由题意得111122tan 223332DD DBD DD BD ∠==⇒=⇒=.考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等.4. (2016四川文)已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.5.(2016四川理)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin120132V =⨯⨯⨯⨯︒⨯=.考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.6.(2016浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40. 【解析】试题分析:由三视图知该组合体是一个长方体上面放置了 一个小正方体, 22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 7.(2016浙江文)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______. 【答案】69【解析】试题分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得6AC =,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由6(0,,0)A ,30(,0,0)B ,6(0,,0)C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直, 2666CD CH CA ===,则63OH =,153066DH ⨯==,因此可设30630'(cos ,,sin )636D αα-, 则3030630'(cos ,,sin )BD αα=--, 与CA 平行的单位向量为(0,1,0)n =,所以cos cos ',BD n θ=<>''BD n BD n⋅==6395cos α-,HD'DCBA zyO所以cos1α=时,cos θ取最大值69. 考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.8.(2016天津理)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3. 【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形 的底为2,高为1,因此体积为1(21)323V =⨯⨯⨯=.故答案为2. 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.三、解答题1.(2016北京文)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析.(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA . 又因为PA ⊄平面C F E , 所以//PA 平面C F E .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2. (2016北京理)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2)33;(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=.因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.3.(2016江苏)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB , BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析考点:直线与直线、平面与平面位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.4. (2016江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. (1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)123PO =考点:函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点方面进行强化,注重培养将文字语言转化为数学语言能力,强化构建数学模型的几种方法.而江苏应用题,往往需结合导数知识解决相应数学最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.5.(2016全国Ⅰ文)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的 正投影F (说明作法及理由),并求四面体PDEF 的体积. 【答案】(I )见解析(II )作图见解析,体积为43试题解析:(I )因为P 在平面ABC 内的正投影为D , 所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.PABD CGE6.(2016全国Ⅰ理)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,90AFD∠=,且二面角D-AF-E与二面角C-BE-F都是60.(I)证明:平面ABEF⊥平面EFDC;(II)求二面角E-BC-A的余弦值.【答案】(I)见解析(II )219-试题解析:(I)由已知可得F DFA⊥,F FA⊥E,所以FA⊥平面FDCE.又FA⊂平面FABE,故平面FABE⊥平面FDCE.(II)过D作DG F⊥E,垂足为G,由(I)知DG⊥平面FABE.以G为坐标原点,GF的方向为x轴正方向,GF为单位长度,建立如图所示的空间直角坐标系G xyz-.由(I)知DF∠E为二面角D F-A-E的平面角,故DF60∠E=,则DF2=,DG3=,可得()1,4,0A,()3,4,0B-,()3,0,0E-,(D3.由已知,//FAB E,所以//AB平面FDCE.又平面CDAB平面FDC DCE=,故//CDAB,CD//FE .由//FBE A,可得BE⊥平面FDCE,所以C F∠E为二面角C F-BE-的平面角,C F60∠E=.从而可得(C3-.所以(C3E=,()0,4,0EB=,(C 3,3A=--,()4,0,0AB=-.设(),,n x y z=是平面CB E的法向量,则C0nn⎧⋅E=⎪⎨⋅EB=⎪⎩,即3040x zy⎧+=⎪⎨=⎪⎩,所以可取(3,0,3n=-.设m是平面CDAB的法向量,则C0mm⎧⋅A=⎪⎨⋅AB=⎪⎩,同理可取()0,3,4m=.则219cos,n mn mn m⋅==-.CBDEF故二面角C E-B -A 的余弦值为21919-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.7.(2016全国Ⅱ文) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D ABCEF '-体积.【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD .五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S 所以五棱锥'ABCEF D -体积16923222.34=⨯⨯=V 考点: 空间中的线面关系判断,几何体的体积.【名师点睛】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.8.(2016全国Ⅱ理)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H'⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)9525.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.ABDD'E H Oz xF(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -, 则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则0m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是75cos ,||||5010m n m n m n ⋅<>===⋅⨯, 295sin ,25m n <>=.因此二面角B D A C'--的正弦值是29525.考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a∥b,a⊥α⇒b⊥α;③α∥β,a⊥α⇒a⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.9.(2016全国Ⅲ文)如图,四棱锥P ABC-中,PA⊥平面ABCD,AD BC,3AB AD AC===,4PA BC==,M为线段AD上一点,2AM MD=,N为PC的中点.(I)证明MN平面PAB;(II)求四面体N BCM-的体积.【答案】(Ⅰ)见解析;(Ⅱ)453.试题解析:(Ⅰ)由已知得232==ADAM,取BP的中点T,连接TNAT,,由N为PC中点知BCTN//,221==BCTN. ......3分又BCAD//,故TN AM,四边形AMNT为平行四边形,于是ATMN//.因为⊂AT平面PAB,⊄MN平面PAB,所以//MN平面PAB. ........6分(Ⅱ)因为⊥PA平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA21. ....9分取BC的中点E,连结AE.由3==ACAB得BCAE⊥,522=-=BEABAE.由BCAM∥得M到BC的距离为5,故525421=⨯⨯=∆BCMS,所以四面体BCMN-的体积354231=⨯⨯=∆-PASVBCMBCMN. .....12分考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.10.(2016全国Ⅲ理)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)8525.【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,故TN AM,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos,|25||||n ANn ANn AN⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.11.(2016山东文)在如图所示的几何体中,D是AC的中点,EF∥DB.(I)已知AB=BC,AE=EC.求证:AC⊥FB;(II)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析.【解析】试题分析:(Ⅰ))根据BDEF//,知EF与BD确定一个平面,连接DE,得到ACDE⊥,ACBD⊥,从而⊥AC平面BDEF,证得FBAC⊥.(Ⅱ)设FC的中点为I,连HIGI,,在CEF∆,CFB∆中,由三角形中位线定理可得线线平行,证得平面//GHI平面ABC,进一步得到//GH平面ABC.试题解析:(Ⅰ))证明:因BDEF//,所以EF与BD确定一个平面,连接DE,因为EECAE,=为AC的中点,所以ACDE⊥;同理可得ACBD⊥,又因为DDEBD=,所以⊥AC平面BDEF,因为⊂FB平面BDEF,FBAC⊥。
2016年数学立体几何高考试题及答案
2016年数学立体几何高考试题及答案1.如图所示,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.2如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.解答证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.3如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.4如图,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2,E、F分别是AB、PD 的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;(3)求四面体PEFC的体积.解答:解:(1)证明:设G为PC的中点,连接FG,EG,∵F为PD的中点,E为AB的中点,∴FG CD,AE CD∴FG AE,∴AF∥GE∵GE⊂平面PEC,∴AF∥平面PCE;(2)证明:∵PA=AD=2,∴AF⊥PD又∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD,∵AD⊥CD,PA∩AD=A,∴CD⊥平面PAD,∵AF⊂平面PAD,∴AF⊥CD.∵PD∩CD=D,∴AF⊥平面PCD,∴GE⊥平面PCD,∵GE⊂平面PEC,∴平面PCE⊥平面PCD;(3)由(2)知,GE⊥平面PCD,所以EG为四面体PEFC的高,又GF∥CD,所以GF⊥PD,EG=AF=,GF=CD=,S△PCF=PD•GF=2.得四面体PEFC的体积V=S△PCF•EG=.5如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.解答:解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.6如图,三棱柱ABC﹣A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.(Ⅰ)证明:EF∥平面A1CD;(Ⅱ)证明:平面A1CD⊥平面A1ABB1;(Ⅲ)求直线BC与平面A1CD所成角的正弦值.解答:证明:(I)三棱柱ABC﹣A1B1C1中,AC∥A1C1,AC=A1C1,连接ED,可得DE∥AC,DE=AC,又F为棱A1C1的中点.∴A1F=DE,A1F∥DE,所以A1DEF是平行四边形,所以EF∥DA1,DA1⊂平面A1CD,EF⊄平面A1CD,∴EF∥平面A1CD(II)∵D是AB的中点,∴CD⊥AB,又AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD,又AA1∩AB=A,∴CD⊥面A1ABB1,又CD⊂面A1CD,∴平面A1CD⊥平面A1ABB1;(III)过B作BG⊥A1D交A1D于G,∵平面A1CD⊥平面A1ABB1,且平面A1CD∩平面A1ABB1=A1D,BG⊥A1D,∴BG⊥面A1CD,则∠BCG为所求的角,设棱长为a,可得A1D=,由△A1AD∽△BGD,得BG=,在直角△BGC中,sin∠BCG==,∴直线BC与平面A1CD所成角的正弦值.7如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D 不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.解答:解:(1)∵三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC,∵AD⊂平面ABC,∴AD⊥CC1又∵AD⊥DE,DE、CC1是平面BCC1B1内的相交直线∴AD⊥平面BCC1B1,∵AD⊂平面ADE∴平面ADE⊥平面BCC1B1;(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点∴A1F⊥B1C1,∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1又∵B1C1、CC1是平面BCC1B1内的相交直线∴A1F⊥平面BCC1B1又∵AD⊥平面BCC1B1,∴A1F∥AD∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.8如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O 为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.(Ⅰ)证明:PB∥平面ACM;(Ⅱ)证明:AD⊥平面PAC;(Ⅲ)求直线AM与平面ABCD所成角的正切值.解答:解:(I)证明:连接BD,MO在平行四边形ABCD中,因为O为AC的中点,所以O为BD的中点,又M为PD的中点,所以PB∥MO因为PB⊄平面ACM,MO⊂平面ACM所以PB∥平面ACM(II)证明:因为∠ADC=45°,且AD=AC=1,所以∠DAC=90°,即AD⊥AC又PO⊥平面ABCD,AD⊂平面ABCD,所以PO⊥AD,AC∩PO=O,AD⊥平面PAC (III)解:取DO中点N,连接MN,AN因为M为PD的中点,所以MN∥PO,且MN=PO=1,由PO⊥平面ABCD,得MN⊥平面ABCD所以∠MAN是直线AM与平面ABCD所成的角.在Rt△DAO中,,所以,∴,在Rt△ANM中,==即直线AM与平面ABCD所成的正切值为9三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.解答:(1)证明:∵PC⊥平面ABC,AB⊂平面ABC,∴PC⊥AB.∵CD⊥平面PAB,AB⊂平面PAB,∴CD⊥AB.又PC∩CD=C,∴AB⊥平面PCB.(2)解:取AP的中点O,连接CO、DO.∵PC=AC=2,∴C0⊥PA,CO=,∵CD⊥平面PAB,由三垂线定理的逆定理,得DO⊥PA.∴∠COD为二面角C﹣PA﹣B的平面角.由(1)AB⊥平面PCB,∴AB⊥BC,又∵AB=BC,AC=2,求得BC=PB=,CD=∴cos∠COD=.1111AD上一点,且AP=a3,过B1,D1,P的平面交底面ABCD于PQ,Q在直线CD上,则PQ=________.2.如图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,且AA1=AD=DC=2,M∈平面ABCD,当D1M⊥平面A1C1D时,DM=________.3.如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.(1)求证:平面PDC⊥平面PAD;(2)求点B 到平面PCD 的距离;4.如图,PO ⊥平面ABCD ,点O 在AB 上,EA ∥PO ,四边形ABCD 为直角梯形,BC ⊥AB ,BC =CD =BO =PO ,EA =AO =12CD .(1)求证:BC ⊥平面ABPE ;(2)直线PE 上是否存在点M ,使DM ∥平面PBC ,若存在,求出点M ; 若不存在,说明理由.5.如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1、DB 的中点.(1)求证:EF ∥平面ABC 1D 1; (2)求证:EF ⊥B 1C ;(3)求三棱锥B 1-EFC 的体积.6.如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°(1)求证:PC⊥BC(2)求点A到平面PBC的距离.1. 223a∵B1D1∥平面ABCD,平面B1D1P∩平面ABCD=PQ,∴B1D1∥PQ,又B1D1∥BD,∴BD∥PQ,设PQ∩AB=M,∵AB∥CD,∴△APM∽△DPQ,∴PQPM=PDAP=2,即PQ=2PM,又△APM∽△ADP,∴PMBD=APAD=13,∴PM=13BD,又BD =2a ,∴PQ =223a .2.[答案] 22 ∵DA =DC =DD 1且DA 、DC 、DD 1两两垂直,故当点M 使四边形ADCM为正方形时,D 1M ⊥平面A 1C 1D ,∴DM =2 2.(2)过A 作AF ⊥PD ,垂足为F .在Rt PAD 中,PA =2,AD =BC =4,PD =42+22=25,AF ·PD =PA ·AD ,∴AF =2×425=455,即点B 到平面PCD 的距离为455.4.[解析] (1)∵PO ⊥平面ABCD ,BC ⊂平面ABCD ,∴BC ⊥PO ,又BC ⊥AB ,AB ∩PO =O ,AB ⊂平面ABP ,PO ⊂平面ABP ,∴BC ⊥平面ABP , 又EA ∥PO ,AO ⊂平面ABP ,∴EA ⊂平面ABP ,∴BC ⊥平面ABPE . (2)点E 即为所求的点,即点M 与点E 重合.取PO 的中点N ,连结EN 并延长交PB 于F ,∵EA =1,PO =2,∴NO =1, 又EA 与PO 都与平面ABCD 垂直,∴EF ∥AB ,∴F 为PB 的中点,∴NF =12OB =1,∴EF =2,又CD =2,EF ∥AB ∥CD ,∴四边形DCFE 为平行四边形,∴DE ∥CF , ∵CF ⊂平面PBC ,DE ⊄平面PBC ,∴DE ∥平面PBC .∴当M 与E 重合时即可. 5. (1)证明:连结BD 1,在△DD 1B 中,E 、F 分别为D 1D ,DB 的中点,则EF ∥D 1B ,又EF ⊄平面ABC 1D 1,D 1B ⊂平面ABC 1D 1,∴EF ∥平面ABC 1D 1.(2)证明:∵B 1C ⊥AB ,B 1C ⊥BC 1,AB ∩BC 1=B , ∴B 1C ⊥平面ABC 1D 1,又BD 1⊂平面ABC 1D 1,∴B 1C ⊥BD 1, 又EF ∥BD 1,∴EF ⊥B 1C .(3)解:∵CF ⊥BD ,CF ⊥BB 1,∴CF ⊥平面BDD 1B 1, 即CF ⊥平面EFB 1,且CF =BF =2∵EF =12BD 1=3,B 1F =BF 2+BB 12=(2)2+22=6,B 1E =B 1D 12+D 1E 2=12+(22)2=3,∴EF 2+B 1F 2=B 1E 2,即∠EFB 1=90°, ∴VB 1-EFC =VC -B 1EF =13·S △B 1EF ·CF=13×12·EF ·B 1F ·CF =13×12×3×6×2=1.6.[解析] (1)∵PD ⊥平面ABCD ,BC ⊂平面ABCD ,∴PD ⊥BC .由∠BCD =90°知,BC ⊥DC ,∵PD ∩DC =D ,∴BC ⊥平面PDC ,∴BC ⊥PC . (2)设点A 到平面PBC 的距离为h , ∵AB ∥DC ,∠BCD =90°,∴∠ABC =90°, ∵AB =2,BC =1,∴S △ABC =12AB ·BC =1,∵PD ⊥平面ABCD ,PD =1,∴V P -ABC =13S △ABC ·PD =13,∵PD⊥平面ABCD,∴PD⊥DC,∵PD=DC=1,∴PC=2,∵PC⊥BC,BC=1,∴S△PBC=12PC·BC=22,∵V A-PBC=V P-ABC,∴13S△PBC·h=13,∴h=2,∴点A到平面PBC的距离为 2.。
2016高考数学二轮复习 专题5 立体几何 专题综合检测五 文
专题综合检测(五)(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·陕西卷)一个几何体的三视图如图所示,则该几何体的表面积为(D )A .3πB .4πC .2π+4D .3π+4解析:由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.该几何体的表面积为2×2+2×12×π×12+π×1×2=4+3π.2.利用斜二测画法得到如下结论:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.其中正确的是(A )A .①②B .①C .③④D .①②③④解析:由斜二测画法规则知,保持平行性、平行x 轴长度保持不变,平行y 轴的长度减半.故①②正确,选A .3.(2015·新课标Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为(D )A .18B .17C .16D .15解析:由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D.4.等体积的球与正方体,它们的表面积的大小关系是(C )A .S 球>S 正方体B .S 球=S 正方体C .S 球<S 正方体D .不能确定解析:设正方体与球的体积均为V ,可算出它们的表面积大小(用V 表示),知选C .5.下列命题正确的是(C )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行解析:若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面,两平面可以平行,也可以垂直,故D 错;故选项C 正确.6.(2015·浙江卷)某集合体的三视图如图所示(单位:cm ),则该几何体的体积是(C )A .8 cm 3B .12 cm 3C .323cm 3 D .403cm 3解析:由题意得,该几何体为一立方体与四棱锥的组合,故体积V =23+13×22×2=323,故选C .7. (2015·天津卷改编)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为(C )A .63π m 3B .85π m 3C .83π m 3 D .94π m 3解析:由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=83π(m 3).8.如图,三棱锥PABC 的高PO =8,AC =BC =3,∠ACB =30°,M ,N 分别在BC 和PO 上,且CM =x ,PN =2CM ,则下面四个图象中大致描绘了三棱锥NAMC 的体积V 与x 的变化关系(x∈(0,3])的是(A )9.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是(B)A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上10.如图,模块①~⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成,现从模块①~⑤中选出3个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体,下列方案中能完成任务的是(A)A.模块①②⑤ B.模块①③⑤C.模块②④⑤ D.模块③④⑤11.(2015·蚌埠模拟)设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是(B)A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析:对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,又l1与l2相交,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,符合题意,对于选项C,由于m,n 不一定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意.故选B.12.(2015·深圳调研)在四面体DABC中,若AB=CB,AD=CD,且是AC的中点,则下列正确的是(C)A.平面ABC⊥平面ABDB.平面ABD⊥平面BDCC.平面ABC⊥平面BDE且平面ADC⊥平面BDED.平面ABC⊥平面ADC且平面ADC⊥平面BDE解析:因为AB=CB且E是AC的中点,所以BE⊥AC.同理有DE⊥AC.于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC⊂平面ACD,所以平面ACD⊥平面BDE,所以选C.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.如图所示,在直三棱柱ABCA1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC =2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.解析:由直三棱柱及D是A1C1的中点,得B1D⊥平面AC1,而CF⊂平面AC1,∴B1D⊥CF.若CF⊥平面B1DF,则必有CF⊥DF,设AF=x(0<x<3a),则CF2=x2+4a2,DF2=a2+(3a-x)2.又CD2=a2+9a2=10a2,∴10a2=x2+4a2+a2+(3a-x)2.解得x=a或2a.答案:a或2a14.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是__________cm3.解析:该几何体是由两个长方体组成,下面长方体的体积为1×3×3=9 (cm3),上面的长方体体积为3×3×1=9 (cm3),因此该几何体的体积为18 cm3.答案:1815.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K 为垂足.设AK=t,则t的取值范围是____________.解析:此题可采用两个极端位置法,即对于F位于DC的中点时,t=1,随着点F到点C 时,因CB⊥AB,CB ⊥DK ,∴CB ⊥平面ADB ,即有CB⊥BD.对于CD =2,BC =1,∴BD = 3.又AD =1,AB =2,因此有AD⊥BD,则有t =12.因此t 的取值范围是⎝ ⎛⎭⎪⎫12,1 . 答案:⎝ ⎛⎭⎪⎫12,116.关于直线m ,n 和平面α,β有以下四个命题: ①当m∥α,n ∥β,α∥β时,m ∥n ; ②当m∥n,m ⊂α,n ⊥β时,α⊥β; ③当α∩β=m ,m ∥n 时,n ∥α且n∥β; ④当m⊥n,α∩β=m 时,n ⊥α或n⊥β. 其中假命题的序号是________. 答案:①③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,在直三棱柱ABC A 1B 1C 1中,AB =AC =13,BB 1=BC =6,E ,F 为侧棱AA 1上的两点,且EF =3,求几何体EFBB 1C 1C 的体积.解析:△ABC 的边BC 上的高等于(13)2-33=2,所以S △ABC =S △A 1B 1C 1=12×6×2=6.由于直三棱柱ABCA 1B 1C 1的体积V =6×6=36,而三棱锥EA 1B 1C 1的体积VE A 1B 1C 1=13·S△A 1B 1C 1·EA 1,三棱锥FABC 的体积V F ABC =13·S △ABC ·FA ,所以VE A 1B 1C 1+V F ABC =13·S △ABC ·(EA 1+FA)=13×6×(6-3)=6.于是几何体EFBB 1C 1C 的体积等于36-6=30.18.(12分)如图,四棱锥PABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC.(1)证明:PC⊥平面BED ;(2)设二面角APBC 为90°,求PD 与平面PBC 所成角的大小.解析:(1)因为底面ABCD 是菱形,所以BD⊥AC,又PA ⊥底面ABCD ,所以PA⊥BD,又AC∩PA=A ,AC 、PA ⊂面PAC ,所以BD⊥平面PAC ,所以PC⊥BD.设AC∩BD=F ,连接EF ,因为AC =22,PA =2,PE =2EC ,故PC =23,EC =233,FC= 2.从而PC FC =6,ACEC= 6.因为PC FC =AC EC ,∠FCE =∠PCA,所以△FCE∽△PCA,∠FEC =∠PAC=90°,由此知PC⊥EF.因为PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED.(2)在平面PAB 内过点A 作AG⊥PB,G 为垂足.因为二面角APBC 为90°,所以平面PAB⊥平面PBC.又平面PAB∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC.因为BC 与平面PAB 内两条相交直线PA ,AG 都垂直,故BC⊥平面PAB ,于是BC⊥AB,所以底面ABCD 为正方形,AD =2,PD =PA 2+AD 2=2 2.设D 到平面PBC 的距离为d.因为AD∥BC,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG = 2.设PD 与平面PBC 所成的角为α,则sin α=d PD =12.所以PD 与平面PBC 所成的角为30°.19.(12分)(2015·新课标Ⅰ卷)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD.(1)证明:平面AEC⊥平面BED ;(2)若∠ABC=120 °,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积.解析:(1)因为四边形ABCD 为菱形,所以AC⊥BD.因为BE⊥平面ABCD ,所以AC⊥BE.故AC⊥平面BED.又AC ⊂平面AEC ,所以平面AEC⊥平面BED.(2)设AB =x ,在菱形ABCD 中,由∠ABC=120°,可得AG =GC =32x ,GB =GD =x2,因为AE⊥EC,所以在Rt △AEC 中,可得EG =32x.由BE⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x. 由已知得,三棱锥EACD 的体积 V E ACD =AC·GD·BE=624x 3=63,故x =2. 从而可得AE =EC =ED =6,所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为5.故三棱锥EACD 的侧面积为3+2 5.20.(12分)(2015·福建卷)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证AC⊥平面PDO ;(2)求三棱锥PABC 体积的最大值;(3)若BC =2,点E 在线段PB 上,求CE +OE 的最小值.分析:(1)要证明AC⊥平面PDO ,只需证明AC 垂直于面PDO 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明PO⊥AC;又OA =OC ,D 为AC 的中点,可证明AC⊥OD,进而证明结论;(2)三棱锥PABC 中,高PO =1,要使得PABC 体积最大,则底面ABC 面积最大,又AB =2是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥PABC 体积;(3)将侧面BCP 绕PB 旋转至平面BC′P,使之与平面ABP 共面,此时线段OC′的长度即为CE +OE 的最小值.解析:解法一 (1)在△AOC 中,因为OA =OC ,D 为AC 的中点,所以AC⊥OD.又PO 垂直于圆O 所在的平面,所以PO⊥AC=O.因为DO∩PO=O ,所以AC⊥平面PDO.(2)因为点C 在圆O 上,所以当CO⊥AB 时,C 到AB 的距离最大,且最大值为1.又AB =2,所以△ABC 面积的最大值为12×2×1=1.又因为三棱锥PABC 的高PO =1,故三棱锥PABC体积的最大值为13×1×1=13.(3)在△POB 中,PO =BO =1,∠POB =90°, 所以PB =12+12= 2. 同理PC =2,所以PB =PC =BC.在三棱锥PABC 中,将侧面BCP 绕PB 旋转至平面BC′P,使之与平面ABP 共面,如图所示.当O ,E ,C ′共线时,CE +OE 取得最小值.又因为OP =OB ,C ′P =C′B,所以OC′垂直平分PB ,即E 为PB 中点.从而OC′=OE +EC′=22+62=2+62, 亦即CE +OE 的最小值为2+62. 解法二 (1)、(2)同解法一.(3)在△POB 中,PO =OB =1,∠POB =90°,所以∠OPB=45°,PB =12+12= 2.同理PC = 2.所以PB =PC =BC ,所以∠CPB=60°.在三棱锥PABC 中,将侧面BCP 绕PB 旋转至平面BC′P,使之与平面ABP 共面,如图所示.当O ,E ,C ′共线时,CE +OE 取得最小值.所以在△OC′P 中,由余弦定理得:OC ′2=1+2-2×1×2×cos (45°+60°)=1+2-22⎝⎛⎭⎪⎫22×12-22×32 =2+ 3.从而OC′=2+3=2+62. 所以CE +OE 的最小值为2+62.21.(12分)如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2.将△ADC 沿AC 折起,使平面ADC⊥平面ABC ,得到几何体DABC,如图2所示.(1)求证:BC⊥平面ACD ;(2)求几何体DABC 的体积.解析:(1)解法一 在图中,可得AC =BC =22,∴AC 2+BC 2=AB 2,故AC⊥BC.如右图,取AC 中点为O ,连接DO ,则DO ⊥AC ,又平面ADC⊥平面ABC ,平面ADC∩平面ABC =AC ,DO ⊂平面ADC ,∴OD ⊥平面ABC.∴OD⊥BC.又AC⊥BC,AC ∩OD =O ,∴BC ⊥平面ACD.解法二 在图中,可得AC =BC =22,∴AC 2+BC 2=AB 2.故AC⊥BC.又∵平面ADC⊥平面ABC ,平面ADC∩平面ABC =AC ,BC ⊂平面ABC ,从而BC⊥平面ACD.(2)由(1)可知BC 为三棱锥BACD 的高,BC =22,S △ACD =2.∴V B ACD =13·S △ACD ·BC =13×2×22=423. 由等积性可知几何体DABC 的体积为423.22.(12分)(2015·陕西卷)如图所示,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是OC 与BE 的交点,将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1BCDE.(1)证明:CD⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值.分析:(1)在图中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以四边形ABCE 是正方形,故BE ⊥AC ,又在图2中,BE ⊥A 1O ,BE ⊥OC ,从而BE⊥平面A 1OC ,又DE∥BC 且DE =BC ,所以CD∥BE,即可证明CD⊥平面A 1OC ;(2)由已知,平面A 1BE 平面BCDE ,且平面A 1BE ∩平面BCDE =BE ,又由(Ⅰ)知,A 1O ⊥BE ,所以AO⊥平面BCDE ,即A 1O 是四棱锥A 1BCDE 的高,易求得平行四边形BCDE 面积S =BC·AB=a 2,从而四棱锥A 1BCDE 的为V =13×S ×A 1O =26a 3,由26a 3=362,得a =6. 解析:(1)在图中,因为AB =BC =12AD =a ,E 是AD 的中点∠BAD=π2,所以BE⊥AC,即在图2中,BE ⊥A 1O ,BE ⊥OC.从而BE⊥平面A 1OC ,又CD∥BE,所以CD⊥平面A 1OC.(2)由已知,平面A 1BE ⊥平面BCDE且平面A 1BE ∩平面BCDE =BE又由(1)知,A 1O ⊥BE ,所以A 1O ⊥平面BCDE ,即A 1O 是四棱锥A 1BCDE 的高,由图1可知,A 1O =22AB =22a ,平行四边形BCDE 面积S =BC·AB=a 2,从而四棱锥A 1BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,得a =6.。
立体几何(练习题) 2016高考 数学
立体几何(备战2016高考)一:选择题1.如图是某几何体的三视图,则该多面体的各条棱中,最长的棱长度为() A.22 B.4 C.3 D.632.如图,已知正方体1111D C B A ABCD -的棱长为a ,以顶点A 为球心,a 332为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于() A.a 332 B.a 635 C.a 637 D.a 333.设c b ,表示两条直线,βα,表示两个平面,则下列命题是真命题的是( )A.若αα//,c b ⊂,则c b // B .若βαα⊥,//c ,则β⊥c C .若c b b //,α⊂,则α//c D .若α//c ,β⊥c ,则βα⊥4.一个结晶体的形状为平行六面体1111ABCD A B C D -,以顶点A 为端点的三条棱长都相等,且它们彼此的夹角都是60︒,则1AC AB=( ). A.3 B.2 C.5D.65.某几何体的三视图如图所示,则该几何体的体积为 ( )正视图 侧视图俯视图11111..6225..36A B C D6.某几何体的三视图如图所示,则该几何体的体积为 A.6 B.203 C.163 D.193二:填空题7.某几何体的三视图如图所示,则该几何体的表面积是.______8.正六棱锥的顶点都在同一个球上,若该棱锥的底面同时又内接球于某一大圆,则正六棱锥的表面积与球的表面积的之比是.______9.已知正三棱锥P ﹣ABC 的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为 .10.一个四棱锥的底面是正方形,其顶点在底面的射影为正方形的中心.已知该四棱锥的各 顶 点都在同一个球面上,且该四棱锥的高为3,体积为6,则这个球的表面积是_________. 11.三棱锥P ABC -中,PA ⊥平面ABC ,,1,3AC BC AC BC PA ⊥===,则该三棱 锥外接球的表面积为12.已知正方体1111D C B A ABCD - 中,E 为11D C 的中点,则异面直线BC AE 与所成角的余弦值为 .三:解答题13.如图,在四棱锥ABCD P -中,底面ABCD 是正方形,ABCD PA ⊥,且F AB PA ,2=是AB 的中点,点E 在点PC 上。
2016立体几何高考题及答案【最新资料】
2012年高考立体几何选作1、[2012·课标全国卷] 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26B.36C.23D.222、[2012·辽宁卷] 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上.若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.3、[2012·北京卷] 如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.4、[2012·湖北卷] 如图1所示,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连结AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图2).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大?(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.5、[2012·全国卷] 如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,AC =22,PA =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ; (2)设二面角A -PB -C 为90°,求PD 与平面PBC 所成角的大小.A BCDA DBCME图1 图2 ACB DEACBE DM 图1 图26、[2012·辽宁卷] 如图,直三棱柱ABC -A ′B ′C ′,∠BAC =90°,AB =AC =λAA ′,点M ,N 分别为A ′B 和B ′C ′的中点.(1)证明:MN ∥平面A ′ACC ′;(2)若二面角A ′-MN -C 为直二面角,求λ的值.7、[2012·天津卷] 如图所示,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 与棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.8、[2012·福建卷] 如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若二面角A -B 1E -A 1的大小为30°,求AB 的长.AB CC/A /B /MN PABED P AB C9、[2012·湖南卷] 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.A A 1B 1C 1D 1 D C EB BCEDPA2012立体几何高考题答案1、A2、333、解:(1)证明:因为AC ⊥BC ,DE ∥BC , 所以DE ⊥AC ,所以DE ⊥A 1D ,DE ⊥CD , 所以DE ⊥平面A 1DC , 所以DE ⊥A 1C . 又因为A 1C ⊥CD , 所以A 1C ⊥平面BCDE .(2)如右图,以C 为坐标原点,建立空间直角坐标系C -xyz , 则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0). 设平面A 1BE 的法向量为n =(x ,y ,z ),则 n ·A 1B →=0,n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0), 所以⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3, 所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ,因为CM →=(0,1,3),所以sin θ=|cos(n ,CM →)|=⎪⎪⎪⎪⎪⎪n ·CM →|n ||CM |=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4.(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ,y ,z ),则 m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),所以⎩⎨⎧2y -23z =0,px -2y =0.令x =2,则y =p ,z =p3.所以m =⎝⎛⎭⎫2,p ,p 3.平面A 1DP ⊥平面A 1BE ,当且仅当m·n =0, 即4+p +p =0.解得p=-2,与p∈[0,3]矛盾.所以线段BC上不存在点P,使平面A1DP与平面A1BE垂直.4、解:(1)方法1:在题图所示的△ABC中,设BD=x(0<x<3),则CD=3-x.由AD⊥BC,∠ACB=45°知,△ADC为等腰直角三角形,所以AD=CD=3-x.由折起前AD⊥BC知,折起后,AD⊥DC,AD⊥BD,且BD∩DC=D,所以AD⊥平面BCD.又∠BDC=90°,所以S△BCD =12BD·CD=12x(3-x).于是V A-BCD =13AD·S△BCD=13(3-x)·12x(3-x)=112·2x(3-x)(3-x)≤112⎣⎡2x+(3-x)+(3-x)33=23.当且仅当2x=3-x,即x=1时,等号成立,故当x=1,即BD=1时,三棱锥A-BCD的体积最大.方法2:同方法1,得V A-BCD=13AD·S△BCD=13(3-x)·12x(3-x)=16x3-6x2+9x).令f(x)=16(x3-6x2+9x),由f′(x)=12(x-1)(x-3)=0,且0<x<3,解得x=1.当x∈(0,1)时,f′(x)>0,当x∈(1,3)时,f′(x)<0,所以当x=1时,f(x)取得最大值.故当BD=1时,三棱锥A-BCD的体积最大.(2)方法1:以点D为原点,建立如图(a)所示的空间直角坐标系D-xyz.由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=DC=2.于是可得D(0,0,0),B(1,0,0),C(0,2,0),A(0,0,2),M(0,1,1),E⎝⎛⎭⎫12,1,0,且BM→=(-1,1,1).设N(0,λ,0),则EN→=⎝⎛⎭⎫-12,λ-1,0.因为EN⊥BM等价于EN→·BM→=0,即⎝⎛⎭⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12N⎝⎛⎭⎫0,12,0.所以当DN=12(即N是CD的靠近点D的一个四等分点)时,EN⊥BM.设平面BMN的一个法向量为n=(x,y,z),由⎩⎪⎨⎪⎧n⊥BN→,n⊥BM→,及BN→=⎝⎛⎭⎫-1,12,0,得⎩⎪⎨⎪⎧y=2x,z=-x.可取n=(1,2,-1).设EN与平面BMN所成角的大小为θ,则由EN→=⎝⎛⎭⎫-12,-12,0,n=(1,2,-1),可得sinθ=cos(90°-θ)=⎪⎪⎪⎪⎪⎪n·EN→|n|·|EN→|=⎪⎪⎪⎪-12-16×22=32,即θ=60°.故EN与平面BMN所成角的大小为60°.方法2:由(1)知,当三棱锥A-BCD的体积最大时,BD=1,AD=CD=2.如图(b),取CD的中点F,连结MF,BF,EF,则MF∥AD.由(1)知AD⊥平面BCD,所以MF⊥平面BCD.如图(c),延长FE至P点使得FP=DB,连BP,DP,则四边形DBPF为正方形,所以DP⊥BF.取DF的中点N,连结EN,又E为FP的中点,则EN∥DP,所以EN⊥BF,因为MF⊥平面BCD,又EN⊂平面BCD,所以MF⊥EN.又MF∩BF=F,所以EN⊥面BMF,又BM⊂面BMF,所以EN⊥BM.因为EN⊥BM当且仅当EN⊥BF,而点F是唯一的,所以点N是唯一的.即当DN=12(即N是CD的靠近点D的一个四等分点),EN⊥BM.连结MN,ME,由计算得NB=NM=EB=EM=5 2,所以△NMB与△EMB是两个共底边的全等的等腰三角形.如图(d)所示,取BM的中点G.连结EG,NG,则BM⊥平面EGN,在平面EGN中,过点E作EH⊥GN于H,则EH⊥平面BMN.故∠ENH是EN与平面BMN所成的角.在△EGN中,易得EG=GN=NE=22,所以△EGN是正三角形,故∠ENH=60°,即EN与平面BMN所成角的大小为60°.5、解:方法一:(1)因为底面ABCD为菱形,所以BD⊥AC,又PA⊥底面ABCD,所以PC⊥BD.设AC∩BD=F,连结EF.因为AC=22,PA=2,PE=2EC,故PC=23,EC=233,FC=2,从而PCFC=6,ACEC= 6.因为PCFC=ACEC,∠FCE=∠PCA,所以△FCE∽△PCA,∠FEC=∠PAC=90°,由此知PC⊥EF.PC与平面BED内两条相交直线BD,EF都垂直,所以PC⊥平面BED.(2)在平面P AB内过点A作AG⊥PB,G为垂足.因为二面角A-PB-C为90°,所以平面PAB⊥平面PBC.又平面PAB∩平面PBC=PB,故AG⊥平面PBC,AG⊥BC.BC与平面PAB内两条相交直线P A,AG都垂直,故BC⊥平面P AB,于是BC⊥AB,所以底面ABCD为正方形,AD=2,PD=PA2+AD2=2 2.设D到平面PBC的距离为d.因为AD∥BC,且AD⊄平面PBC,BC⊂平面PBC,故AD∥平面PBC,A、D两点到平面PBC的距离相等,即d=AG= 2.设PD与平面PBC所成的角为α,则sinα=dPD=12.所以PD与平面PBC所成的角为30°.方法二:(1)以A为坐标原点,射线AC为x轴的正半轴,建立如图所示的空间直角坐标系A-xyz.设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝⎛⎭⎫423,0,23,B (2,-b,0). 于是PC →=(22,0,-2), BE →=⎝⎛⎭⎫23,b ,23,DE →=⎝⎛⎭⎫23,-b ,23,从而PC →·BE →=0,PC →·DE →=0, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP →=(0,0,2),AB →=(2,-b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP →=0,m ·AB →=0, 即2z =0,且2x -by =0,令x =b ,则m =(b ,2,0).设n =(p ,q ,r )为平面PBC 的法向量,则 n ·PC →=0,n ·BE →=0,即22p -2r =0且2p 3+bq +23r =0,令p =1,则r =2,q =-2b ,n =⎝⎛⎭⎫1,-2b,2.因为面PAB ⊥面PBC ,故m·n =0,即b -2b=0,故b =2,于是n =(1,-1,2),DP →=(-2,-2,2),cos 〈n ,DP →〉=n ·DP →|n ||DP →|=12,〈n ,DP →〉=60°.因为PD 与平面PBC 所成角和〈n ,DP →〉互余,故PD 与平面PBC 所成的角为30°. 6、解:(1)(证法一)连结AB ′,AC ′,由已知∠BAC =90°,AB =AC ,三棱柱ABC -A ′B ′C ′为直三棱柱. 所以M 为AB ′中点.又因为N 为B ′C ′的中点. 所以MN ∥AC ′.又MN ⊄平面A ′ACC ′, AC ′⊂平面A ′ACC ′, 因此MN ∥平面A ′ACC ′. (证法二)取A ′B ′中点P ,连结MP ,NP ,M ,N 分别为AB ′与B ′C ′的中点,所以MP ∥AA ′,PN ∥A ′C ′, 所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′,又MP ∩NP =P , 因此平面MPN ∥平面A ′ACC ′,而MN ⊂平面MPN , 因此MN ∥平面A ′ACC ′.(2)以A 为坐标原点,分别以直线AB ,AC ,AA ′为x 轴,y 轴,z 轴建立直角坐标系O -xyz ,如图1-5所示.设AA ′=1,则AB =AC =λ,于是A (0,0,0),B (λ,0,0),C (0,λ,0),A ′(0,0,1),B ′(λ,0,1),C ′(0,λ,1).所以M ⎝⎛⎭⎫λ2,0,12,N ⎝⎛⎭⎫λ2,λ2,1. 设m =(x 1,y 1,z 1)是平面A ′MN 的法向量,由⎩⎪⎨⎪⎧m ·A ′M →=0,m ·MN →=0得⎩⎨⎧λ2x 1-12z 1=0,λ2y 1+12z 1=0,可取m =(1,-1,λ).设n =(x 2,y 2,z 2)是平面MNC 的法向量,由⎩⎪⎨⎪⎧n ·NC →=0,n ·MN →=0得⎩⎨⎧-λ22+λ2y 2-z 2=0,λ2y 2+12z 2=0.可取n =(-3,-1,λ).因为A ′-MN -C 为直二面角,所以m ·n =0.即-3+(-1)×(-1)+λ2=0,解得λ= 2. 7、解:方法一:如图所示,以点A 为原点建立空间直角坐标系,依题意得A (0,0,0),D (2,0,0),C (0,1,0),B ⎝⎛⎭⎫-12,12,0,P (0,0,2).(1)易得PC →=(0,1,-2),AD →=(2,0,0),于是PC →·AD →=0,所以PC ⊥AD . (2)PC →=(0,1,-2),CD →=(2,-1,0).设平面PCD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧y -2z =0,2x -y =0.不妨令z =1, 可得n =(1,2,1).可取平面PAC 的法向量m =(1,0,0).于是cos 〈m ,n 〉=m·n |m|·|n |=16=66,从而sin 〈m ,n 〉=306.所以二面角A -PC -D 的正弦值为306. (3)设点E 的坐标为(0,0,h ),其中h ∈[0,2].由此得BE →=⎝⎛⎭⎫12,-12,h ,由CD →=(2,-1,0),故cos 〈BE →,CD →〉=BE →·CD →|BE →||CD →|=3212+h 2×5=310+20 h2,所以,310+20 h 2=cos30°=32,解得h =1010, 即AE =1010.方法二:(1)由P A ⊥平面ABCD ,可得P A ⊥AD . 又由AD ⊥AC ,P A ∩AC =A ,故AD ⊥平面PAC , 又PC ⊂平面P AC ,所以PC ⊥AD .(2)如图所示,作AH ⊥PC 于点H ,连接DH .由PC ⊥AD ,PC ⊥AH ,可得PC ⊥平面ADH ,因此DH ⊥PC ,从而∠AHD 为二面角A -PC -D 的平面角.在Rt △PAC 中,P A =2,AC =1,由此得AH =25.由(1)知AD ⊥AH .故在Rt △DAH 中,DH =AD 2+AH 2=2305.因此sin ∠AHD =AD DH =306.所以二面角A -PC -D 的正弦值为306.(3)如图所示,因为∠ADC <45°,故过点B 作CD 的平行线必与线段AD 相交,设交点为F ,连接BE ,EF .故∠EBF 或其补角为异面直线BE 与CD 所成的角.由BF ∥CD ,故∠AFB =∠ADC .在Rt △DAC 中,CD =5,sin ∠ADC =15,故sin ∠AFB =15.在△AFB 中,由BF sin ∠FAB =AB sin ∠AFB ,AB =12,sin ∠FAB =sin135°=22,可得BF =52. 由余弦定理,BF 2=AB 2+AF 2-2AB ·AF ·cos ∠FAB ,可得AF =12.设AE =h .在Rt △EAF 中,EF =AE 2+AF 2=h 2+14.在Rt △BAE 中,BE =AE 2+AB 2=h 2+12.在△EBF 中,因为EF <BE ,从而∠EBF =30°,由余弦定理得cos30°=BE 2+BF 2-EF22BE ·BF,可解得h =1010.所以AE =10108、解:(1)以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1),故AD 1=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0.∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE .此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.(3)连接A 1D ,B 1C ,由长方体ABCD -A 1B 1C 1D 1及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C .又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,∴AD 1⊥平面DCB 1A 1.∴AD 1→是平面A 1B 1E 的一个法向量,此时AD 1→=(0,1,1). 设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n ||AD 1→|=-a2-a 21+a 24+a 2. ∵二面角A -B 1E -A 1的大小为30°,∴|cos θ|=cos30°,即3a 221+5a24=32, 解得a =2,即AB 的长为2.9、解:解法1:(1)如下图(1),连结AC .由AB =4,BC =3,∠ABC =90°得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA ⊥CD .而PA ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE .(2)过点B 作BG ∥CD ,分别与AE 、AD 相交于点F ,G ,连结PF .由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由PA ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角.由题意∠PBA =∠BPF ,因为sin ∠PBA =PA PB ,sin ∠BPF =BFPBPA =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD , 所以四边形BCDG 是平行四边形.故GD =BC =3.11于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855. 于是PA =BF =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13S ×PA =13×16×855=128515.解法2:如上图(2),以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设PA =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面PAE内的两条相交直线,所以CD ⊥平面PAE .(2)由题设和(1)知,CD →,PA →分别是平面PAE ,平面ABCD 的法向量.而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos 〈PA →,PB →〉|,即⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪PA →·PB →|PA →|·|PB →|. 由(1)知,CD →=(-4,2,0),PA →=(0,0,-h ),又PB →=(4,0,-h ), 故⎪⎪⎪⎪⎪⎪-16+0+025·16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ·16+h 2. 解得h =855. 又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×PA =13×16×855=128515.以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。
2016年浙江省数学高考模拟精彩题选立体几何含答案
2016年浙江省数学⾼考模拟精彩题选⽴体⼏何含答案2016浙江精彩题选——⽴体⼏何【⼀、轨迹问题】1.如图,平⾯ABC ⊥平⾯α,D 为线段AB 的中点,22=AB ,=∠45CDB ,点P 为⾯α内的动点,且P 到直线CD 的距离为2,则APB ∠的最⼤值为.解:以AB 为直径的圆与椭圆A ‘B ’相切【⼆、动态问题】1.(2016台州期末8)如图,在三棱锥P-ABC 中,AB=AC=PB=PC=10,PA=8,BC=12,点M 在平⾯PBC 内,且AM=7,设异⾯直线AM 与BC 所成⾓为α,则cos α的最⼤值为17分析:点A 到平⾯PBC 的距离为d=AM=7即为绕d 旋转所成的圆锥的母线长,最⼤⾓为BC 与圆锥底直径平⾏时,母线与直径所成的⾓2.(2016⾦华⼗校期末)在四⾯体ABCD 中,已知AD ⊥BC ,AD=6,BC=2,且AB ACBD CD==2,则ABCD V 四⾯体的最⼤值为( C )A.6B.C.D.8 分析:由AB ACBD CD==2得B 、C 点的轨迹为阿波罗尼斯圆,由阿波罗尼斯圆的性质,则B ,C 离AD 的最远距离为4,可求3.(2016台州⼀模 8)如图,在长⽅体D C B A ABCD ''''-中,点Q P ,分别是棱BC ,CD 上的动点,4,BC =, 3,CD=CC '=直线C C '与平⾯C PQ '所成的⾓为30,则△C PQ '的⾯积的最⼩值是( B )AB .8 CD .104(2016宁波⼗校15)如图,正四⾯体ABCD 的棱CD 在平⾯α上,E 为棱BC 的中点.当正四⾯体ABCD 绕CD 旋转时,直线AE 与平⾯α所成最⼤⾓的正弦值为 .分析:CD ⊥平⾯ABF ,则平⾯ABF ⊥平⾯α。
设,平⾯ABF ⊥平⾯α=a ,四⾯体不动,转动平⾯α,则AO ⊥α于O 交BF 于M ,AO 为平⾯α的法向量。
2016届高考数学(理)二轮周测卷(4)立体几何(含答案)
衡水万卷周测(四)理科数学立体几何考试时间:120分钟姓名:__________班级:__________考号:__________一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2015浙江高考真题)如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤ 2.如图正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E .F ,且EF=则下列结论中错误的是( ).A.AC BE ⊥B.EF ∥平面ABCDC.三棱锥A BEF -的体积为定值D.异面直线,AE BF 所成的角为一定值3.长方体的过一个顶点的三条棱长的比是1:2:3,对角线长为142,则这个长方体的体积为( )A.6B.12C.24D.484.已知球的直径4SC =,A,B 是该球面上的两点,2AB =,45ASC BSC ∠=∠=︒,则棱锥S ABC -的体积为( )5.已知三棱锥S-ABC 的底面ABC 为正三角形,点A 在侧面SBC 上的射影H 是三角形SBC 的垂心,二面角H-AB-C 为30°,且SA=2,则此三棱锥的体积为( )(A)12 (B) 2 (C) 4(D) 34 6.向高为H 水瓶中注水,注满为止.如果注水体积V 与水深h 的函数关系如图,那么水瓶的形状是图中的( )7.如图,正方体1111D C B A ABCD -的棱长为3,以顶点A 为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于( )A .65π B . 32π C . π D . 67π 8.在右图四面体ABCD 中,1,3,2,,2AB AD BC CD ABC DCB π====∠=∠=则二面角A BC D --的大小为( )A.6πB.3πC.23π D.56π 9.已知菱形ABCD 的边长是1,60DAB ∠=,将这个菱形沿AC 折成120的二面角,则BD 两点间的距离是( )A.12 B . C.32 D.3410.( )D.2311.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF的长.则当点P 运动时, 2HP最小值是( )(A )21 (B )22 (C )23 (D )2512.如图,体积为V 的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.1V 为小球相交部分(图中阴影部分)的体积,2V 为大球内.小球外的图中黑色部分的体积,则下列关系中正确的是()A.12V V =B.22VV=C.12V V >D.12V V <二、填空题(本大题共4小题,每小题5分,共20分)13.表面积为60π的球面上有四点S 、A 、B 、C ,且A B C ∆是等边三角形,球心O 到平面ABC 若平面⊥SAB 平面ABC ,则棱锥ABC S -体积的最大值为 .15.已知菱形ABCD 的边长为2,60BAD ∠=︒.将三角形ABD 沿对角线BD 折到A BD ',使得二面角A BD C '--的大小为60︒,则A D '与平面BCD 所成角的正弦值是 _______________ ;四面体A BDC '的体积为 ______________ .16.正四面体ABCD 的外接球的体积为34π,则正四面体ABCD 的体积是_____.三、解答题(本大题共6小题,第1题10分,后5题12分,共70分) 17.四棱锥P ABCD -中,PA ABCD ⊥底面,//AB CD ,1AD CD ==,12090.BAD PA ACB ∠=︒=∠=︒,(Ⅰ)求证:BC PAC ⊥平面;(Ⅱ)求二面角D PC A --的平面角的余弦值;18.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,45ADC ∠=︒,1AD AC ==,O 为AC 的中点, PO ⊥平面ABCD ,2PO =,M 为PD 的中点 (1)证明 :PB ∥平面ACM ; (2)证明:AD ⊥平面PAC ;(3)求直线AM 与平面ABCD 所成角的正切值.19.(2015新课标1高考真题)如图,,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC 。
2016届高考数学(理)二轮复习专项强化训练19立体几何(含解析)
限时规范训练十九[单独成册](建议用时45分钟)1.(2016·长春市高三模拟)如图,在四棱锥PABCD 中,PA ⊥平面ABCD ,PA =AB =AD =2,四边形ABCD 满足AB ⊥AD ,BC ∥AD 且BC =4,点M 为PC 的中点,点E 为BC 边上的动点,且BE EC=λ.(1)求证:平面ADM ⊥平面PBC ;(2)是否存在实数λ,使得二面角PDEB 的余弦值为23?若存在,试求出实数λ的值;若不存在,说明理由.解析:(1)证明:如图取PB 的中点N ,连接MN 、AN.∵M 是PC 的中点,N 是PB 的中点,∴MN ∥BC ,MN =12BC =2, 又∵BC ∥AD ,∴MN ∥AD ,MN =AD ,∴四边形ADMN 为平行四边形.∵AP ⊥AD ,AB ⊥AD ,且AP∩AB=A ,∴AD ⊥平面PAB ,∴AD ⊥AN ,∴AN ⊥MN.∵AP =AB ,∴AN ⊥PB ,∴AN ⊥平面PBC ,∵AN ⊂平面ADM ,∴平面ADM ⊥平面PBC.(2)解:存在符合条件的λ.以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系Axyz,则P(0,0,2),D(0,2,0),B(2,0,0),设E(2,t,0),从而PD →=(0,2,-2),DE →=(2,t -2,0),则平面PDE 的一个法向量为n 1=(2-t,2,2),又平面DEB 即为平面xAy ,其一个法向量为n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=2-2+4+4=23, 解得t =3或t =1,故λ=3或λ=13. 2.(2015·南宁市高中毕业测试)如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP 上一点,∠CDP =120°,AD =3,AP =5,PC =27.(1)试确定点F 的位置,使得EF ∥平面PDC ;(2)若BF =13BP ,求直线AF 与平面PBC 所成的角的正弦值. 解:(1)取线段BP 的中点F ,取PC 的中点O ,连接FO ,DO ,∵F ,O 分别为BP ,PC 的中点,∴FO 綊12BC.∵四边形ABCD 为平行四边形,ED ∥BC ,且DE =12BC , ∴FO ∥ED 且ED =FO ,∴四边形EFOD 是平行四边形,∴EF ∥DO.∵EF ⊄平面PDC ,DO ⊂平面PDC ,∴EF ∥平面PDC.(2)以DC 为x 轴,过D 点作DC 的垂线为y 轴,DA 为z 轴建立空间直角坐标系.在△PDC 中,由PD =4,PC =27,∠CDP =120°,及余弦定理,得CD =2,则D(0,0,0),C(2,0,0),B(2,0,3),P(-2,23,0),A(0,0,3),设F(x ,y ,z),则BF →=(x -2,y ,z -3)=13BP →=⎝ ⎛⎭⎪⎫-43,233,-1,∴F ⎝ ⎛⎭⎪⎫23,233,2. AF →=⎝ ⎛⎭⎪⎫23,233,-1.设平面PBC 的法向量n 1=(a ,b ,c), CB →=(0,0,3),PC →=(4,-23,0),由⎩⎪⎨⎪⎧ n 1·CB →=0,n 1·PC →=0,得⎩⎨⎧ 3z =0,4x -23y =0,令y =1,可得n 1=⎝ ⎛⎭⎪⎫32,1,0. cos 〈AF →,n 1〉=AF →·n 1|AF →||n 1|=62135, ∴直线AF 与平面PBC 所成的角的正弦值为62135. 3.(2016·山西省高三质检)如图,四棱锥PABCD 中,底面ABCD 为梯形,PD ⊥底面ABCD ,AB ∥CD ,AD ⊥CD ,AD =AB =1,BC =2,CD =2.(1)求证:平面PBD ⊥平面PBC ;(2)设H 为CD 上一点,满足CH →=2 HD →,若直线PC 与平面PBD 所成的角的正切值为63,求二面角HPBC 的余弦值.解析:(1)证明:由AD ⊥CD ,AB ∥CD ,AD =AB =1,可得BD = 2.又BC =2,CD =2,∴BC ⊥BD.∵PD ⊥底面ABCD ,∴PD ⊥BC ,又PD∩B D =D ,∴BC ⊥平面PBD ,又BC ⊂平面PBC ,∴平面PBD ⊥平面PBC.(2)解:由(1)可知∠BPC 为PC 与平面PBD 所成的角,∴tan ∠BPC =63, ∴PB =3,PD =1.由CH →=2 HD →及CD =2,可得CH =43,DH =23. 以点D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立空间直角坐标系.则B(1,1,0),P(0,0,1),C(0,2,0),H ⎝ ⎛⎭⎪⎫0,23,0. 设平面HPB 的法向量为n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ HP →·n=0,HB →·n=0,即⎩⎪⎨⎪⎧ -23y 1+z 1=0,x 1+13y 1=0,取y 1=-3,则n =(1,-3,-2).设平面PBC 的法向量为m =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ PB →·m=0,BC →·m=0,即⎩⎪⎨⎪⎧ x 2+y 2-z 2=0,-x 2+y 2=0,取x 2=1,则m =(1,1,2).又cos 〈m ,n 〉=m·n |m||n|=-217. 故二面角HPBC 的余弦值为217. 4.已知四棱锥PABCD 中,PA ⊥平面ABCD ,底面ABCD 是边长为a 的菱形,∠BAD =120°,PA =b.(1)求证:平面PBD ⊥平面PAC ;(2)设AC 与BD 交于点O ,M 为OC 中点,若二面角OPMD 的正切值为26,求a ∶b 的值.(1)证明:因为PA ⊥平面ABCD ,所以PA ⊥BD.又底面ABCD 为菱形,所以AC ⊥BD ,所以BD ⊥平面PAC ,从而平面PBD ⊥平面PAC.(6分)(2)解法一:过O 作OH ⊥PM 交PM 于H ,连接HD.因为DO ⊥平面PAC ,可以推出DH ⊥PM ,所以∠OHD 为OPMD 的平面角.(8分)又OD =32a ,OM =a 4,AM =3a 4,且OH OM =AP PM, 从而OH =b b 2+916a 2·a 4=ab 16b 2+9a 2, tan ∠OHD =OD OH =2+9a22b =26,所以9a 2=16b 2,即a b =43. 解法二:如图,以A 为原点,AD ,AP 所在直线为y 轴,z 轴建立空间直角坐标系,则P(0,0,b),D(0,a,0),M ⎝ ⎛⎭⎪⎫338a ,38a ,0,O ⎝ ⎛⎭⎪⎫34a ,14a ,0.(8分) 从而PD →=(0,a ,-b),PM →=⎝ ⎛⎭⎪⎫338a ,38a ,-b ,OD →=⎝ ⎛⎭⎪⎫-34a ,34a ,0. 因为BD ⊥平面PAC ,所以平面PMO 的一个法向量为OD →=⎝ ⎛⎭⎪⎫-34a ,34a ,0. 设平面PMD 的法向量为n =(x ,y ,z),由PD →⊥n ,PM →⊥n 得PD →·n=ay -bz =0,PM →·n=338ax +38ay -bz =0, 取x =533b ,y =b ,z =a ,即n =⎝ ⎛⎭⎪⎫533b ,b ,a . 设OD →与n 的夹角为θ,则二面角OPMD 大小与θ相等,从而tan θ=26,得cos θ=15, cos θ=OD →·n |OD →|·|n|=-512ab +34ab a 412 5227b 2+a 2=15, 从而4b =3a ,即a ∶b =4∶3.。
高考数学二轮复习第一部分微专题强化练习题:等差数列与等比数列含解析
第一部分 一 9一、选择题1.(文)(2014·东北三省三校联考)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6 =12,则S 7的值是( )A .21B .24C .28D .7[答案] C[解析] ∵a 2+a 4+a 6=3a 4=12,∴a 4=4, ∴2a 4=a 1+a 7=8,∴S 7=7(a 1+a 7)2=7×82=28.[方法点拨] 1.熟记等差、等比数列的求和公式. 2.形如a n +1=a n +f (n )的递推关系用累加法可求出通项; 3.形如a n +1=a n f (n )的递推关系可考虑用累乘法求通项a n ;4.形如a n +1=ka n +b (k 、b 为常数)可通过变形,设b n =a n +bk -1构造等比数列求通项a n .(理)在等比数列{a n }中,a 1=a ,前n 项和为S n ,若数列{a n +1}成等差数列,则S n 等于( ) A .a n +1-a B .n (a +1) C .na D .(a +1)n -1[答案] C[解析] 利用常数列a ,a ,a ,…判断,则存在等差数列a +1,a +1,a +1,…或通过下列运算得到:2(aq +1)=(a +1)+(aq 2+1),∴q =1,S n =na .2.(文)已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53 D .4[答案] A[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.(理)(2014·全国大纲文,8)设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .64[答案] C[解析] 解法1:由条件知:a n >0,且⎩⎪⎨⎪⎧a 1+a 2=3,a 1+a 2+a 3+a 4=15, ∴⎩⎪⎨⎪⎧a 1(1+q )=3,a 1(1+q +q 2+q 3)=15,∴q =2. ∴a 1=1,∴S 6=1-261-2=63.解法2:由题意知,S 2,S 4-S 2,S 6-S 4成等比数列,即(S 4-S 2)2=S 2(S 6-S 4),即122=3(S 6-15),∴S 6=63.[方法点拨] 下标成等差的等差、等比数列的项或前n 项和的问题,常考虑应用等差、等比数列的性质求解.3.(2015·浙江理,3)已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0 [答案] B[解析] 考查等差数列的通项公式及其前n 项和;等比数列的概念. ∵{a n }为等差数列,且a 3,a 4,a 8成等比数列, ∴(a 1+3d )2=(a 1+2d )(a 1+7d )⇒ a 1=-53d ,∴S 4=2(a 1+a 4)=2(a 1+a 1+3d )=-23d ,∴a 1d =-53d 2<0,dS 4=-23d 2<0,故选B.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13C.19 D .-19[答案] C[解析] ∵S 3=a 2+10a 1,∴a 1+a 2+a 3=a 2+10a 1,a 3=9a 1=a 1q 2,∴q 2=9, 又∵a 5=9,∴9=a 3·q 2=9a 3,∴a 3=1, 又a 3=9a 1,故a 1=19.[方法点拨] 求基本量的问题,熟记等差、等比数列的定义、通项及前n 项和公式,利用公式、结合条件,建立方程求解.5.(2015·江西省质检)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n (n ∈N *),则数列{a n }的前2015项的和S 2015等于( )A .31008-2B .31008-3C .32015-2D .32015-3[答案] A[解析] 因为a 1=1,a 2=3,a n +2a n=3, 所以S 2015=(a 1+a 3+…+a 2015)+(a 2+a 4+…+a 2014)=1-310081-3+3(1-31007)1-3=31008-2.6.(文)(2014·新乡、许昌、平顶山调研)设{a n }是等比数列,S n 是{a n }的前n 项和,对任意正整数n ,有a n +2a n +1+a n +2=0,又a 1=2,则S 101的值为( )A .2B .200C .-2D .0[答案] A[解析] 设公比为q ,∵a n +2a n +1+a n +2=0,∴a 1+2a 2+a 3=0,∴a 1+2a 1q +a 1q 2=0,∴q 2+2q +1=0,∴q =-1,又∵a 1=2,∴S 101=a 1(1-q 101)1-q =2[1-(-1)101]1+1=2.(理)(2014·哈三中二模)等比数列{a n },满足a 1+a 2+a 3+a 4+a 5=3,a 21+a 22+a 23+a 24+a 25=15,则a 1-a 2+a 3-a 4+a 5的值是( )A .3 B. 5 C .- 5 D .5[答案] D[解析] 由条件知⎩⎪⎨⎪⎧a 1(1-q 5)1-q=3a 21(1-q10)1-q2=15,∴a 1(1+q 5)1+q=5,∴a 1-a 2+a 3-a 4+a 5=a 1[1-(-q )5]1-(-q )=a 1(1+q 5)1+q=5.7.(文)在等差数列{a n }中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600[答案] B[解析] 由a 1+a 2+a 3=3,a 18+a 19+a 20=87得, a 1+a 20=30,∴S 20=20×(a 1+a 20)2=300.(理)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( )A .1+ 2B .1- 2C .3+2 2D .3-2 2 [答案] C[解析] 由条件知a 3=a 1+2a 2, ∴a 1q 2=a 1+2a 1q , ∵a 1≠0,∴q 2-2q -1=0, ∵q >0,∴q =1+2, ∴a 8+a 9a 6+a 7=q 2=3+2 2. 8.(2015·福建理,8)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .9[答案] D[解析] 由韦达定理得a +b =p ,a ·b =q ,因为p >0,q >0,则a >0,b >0,当a ,b ,-2适当排序后成等比数列时,-2必为等比中项,故a ·b =(-2)2=4,故q =4,b =4a .当适当排序后成等差数列时,-2必不是等差中项,当a 是等差中项时,2a =4a -2,解得a =1,b =4,;当b 是等差中项时,8a =a -2,解得a =4,b =1,综上所述,a +b =p =5,所以p +q =9,选D.9.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=2,n ∈N +,则数列{ba n }的前10项的和为( )A.43(49-1) B.43(410-1) C.13(49-1) D.13(410-1) [答案] D[解析] 由a 1=1,a n +1-a n =2得,a n =2n -1, 由b n +1b n=2,b 1=1得b n =2n -1, ∴ba n =2a n -1=22(n -1)=4n -1,∴数列{ba n }前10项和为1×(410-1)4-1=13(410-1).10.(文)若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1等于( )A .1-14nB.23(1-14n ) C .1-12nD.23(1-12n ) [答案] B[解析] 因为a n =1×2n -1=2n -1,所以a n ·a n +1=2n -1·2n =2×4n -1, 所以1a n a n +1=12×(14)n -1,所以{1a n a n +1}也是等比数列,所以T n =1a 1a 2+1a 2a 3+…+1a n a n +1=12×1×(1-14n )1-14=23(1-14n ),故选B.(理)(2014·唐山市一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n( )A .4n -1B .4n -1 C .2n -1 D .2n -1[答案] C[解析] 设公比为q ,则a 1(1+q 2)=52,a 2(1+q 2)=54,∴q =12,∴a 1+14a 1=52,∴a 1=2.∴a n =a 1q n -1=2×(12)n -1,S n =2[1-(12)n ]1-12=4[1-(12)n ],∴S n a n =4[1-(12)n ]2×(12)n -1=2(2n -1-12)=2n -1.[点评] 用一般解法解出a 1、q ,计算量大,若注意到等比数列的性质及求S na n,可简明解答如下:∵a 2+a 4=q (a 1+a 3),∴q =12,∴S na n =a 1(1-q n )1-q a 1q n -1=1-q n (1-q )·qn -1=1-12n 12·12n -1=2n -1. 11.给出数列11,12,21,13,22,31,…,1k ,2k -1,…,k1,…,在这个数列中,第50个值等于1的项的序号..是( ) A .4900 B .4901 C .5000 D .5001[答案] B[解析] 根据条件找规律,第1个1是分子、分母的和为2,第2个1是分子、分母的和为4,第3个1是分子、分母的和为6,…,第50个1是分子、分母的和为100,而分子、分母的和为2的有1项,分子、分母的和为3的有2项,分子、分母的和为4的有3项,…,分子、分母的和为99的有98项,分子、分母的和为100的项依次是:199,298,397,…,5050,5149,…,991,第50个1是其中第50项,在数列中的序号为1+2+3+…+98+50=98(1+98)2+50=4901.[点评] 本题考查归纳能力,由已知项找到规律,“1”所在项的特点以及项数与分子、分母的和之间的关系,再利用等差数列求和公式即可.二、填空题12.(文)(2015·广东理,10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.[答案] 10[解析] 本题考查等差数列的性质及简单运算,属于容易题.因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25 即a 5=5,a 2+a 8=2a 5=10.(理)(2015·湖南理,14)设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.[答案] 3n -1[解析] 考查等差数列与等比数列的性质.∵3S 1,2S 2,S 3成等差数列,∴4S 2=3S 1+S 3,∴4(a 1+a 2)=3a 1+a 1+a 2+a 3⇒a 3=3a 2⇒q =3.又∵{a n }为等比数列,∴a n =a 1q n -1=3n -1.[方法点拨] 条件或结论中涉及等差或等比数列中的两项或多项的关系时,先观察分析下标之间的关系,再考虑能否应用性质解决,要特别注意等差、等比数列性质的区别.13.(文)(2015·安徽理,14)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.[答案] 2n -1[解析] 考查1.等比数列的性质;2.等比数列的前n 项和公式.由题意,⎩⎪⎨⎪⎧ a 1+a 4=9,a 2·a 3=8.∴⎩⎪⎨⎪⎧a 1+a 4=9,a 1·a 4=8,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3=a 4a 1=8,所以q =2,因而数列{a n }的前n 项和S n =a 1(1-q n )1-q =1-2n 1-2=2n -1.(理)(2015·江苏,11)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.[答案]2011[解析] 考查数列通项,裂项求和.由题意得:a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n +(n -1)+…+2+1=n (n +1)2,所以1a n =2(1n -1n +1),S n =2(1-12)+2(12-13)+…+2(1n -1n +1)=2(1-1n +1)=2nn +1,S 10=2011.三、解答题14.(文)设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数. (1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式. [解析] (1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p3.所以{a n }是首项为p 3,公比为43的等比数列.(2)因为a 1=1,则a n =(43)n -1,由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1,当n ≥2时,由累加法得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =2+1-(43)n -11-43=3(43)n -1-1,当n =1时,上式也成立.∴b n =3·(43)n -1-1.[方法点拨] 证明数列是等差(等比)数列时,应用定义分析条件,结合性质进行等价转化. (理)(2015·河南高考适应性测试)已知数列{a n }的各项均为正数,且a 1=2,a n =a 2n +1+4a n +1+2.(1)令b n =log 2(a n +2),证明:数列{b n }是等比数列. (2)设c n =nb n ,求数列{c n }的前n 项和S n .[解析] (1)由a n =a 2n +1+4a n +1+2,得a n +2=a 2n +1+4a n +1+4=(a n +1+2)2.因为a n >0,所以a n +2=a n +1+2. 因为b n +1b n =log 2(a n +1+2)log 2(a n +2)=log 2a n +2log 2(a n +2)=12,又b 1=log 2(a 1+2)=2,所以数列{b n }是首项为2,公比为12的等比数列.(2)由(1)知,b n =2·⎝⎛⎭⎫12n -1,则c n =2n ⎝⎛⎭⎫12n -1. S n =2×⎝⎛⎭⎫120+4×⎝⎛⎭⎫121+…+2(n -1)⎝⎛⎭⎫12n -2+2n ⎝⎛⎭⎫12n -1,① 12S n =2×⎝⎛⎭⎫121+4×⎝⎛⎭⎫122+…+2(n -1)⎝⎛⎭⎫12n -1+2n ⎝⎛⎭⎫12n .② ①-②得:12S n =2×⎝⎛⎭⎫120+2×⎝⎛⎭⎫121+2×⎝⎛⎭⎫122+…+2×⎝⎛⎭⎫12n -1-2n ·⎝⎛⎭⎫12n =21-⎝⎛⎭⎫12n1-12-2n ·⎝⎛⎭⎫12n =4-(4+2n )⎝⎛⎭⎫12n . 所以S n =8-(n +2)⎝⎛⎭⎫12n -2.15.(2015·南昌市一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围.[解析] (1)等差数列{a n },a 1=1,S 3=6,∴d =1,故a n =n⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n (1)b 1·b 2·b 3·…·b n -1=2S n -1 (2),(1)÷(2)得b n =2S n -S n -1=2a n =2n (n ≥2), b 1=2S 1=21=2,满足通项公式,故b n =2n(2) 设λb n >a n 恒成立⇒λ>n 2n 恒成立,设c n =n 2n ⇒c n +1c n =n +12n当n ≥2时,c n <1,{c n }单调递减, ∴(c n )max =c 1=12,故λ>12.16.(文)(2014·湖北理,18)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.[分析] (1)设数列{a n }的公差为d ,利用等比数列的性质得到a 22=a 1·a 5,并用a 1、d 表示a 2、a 5,列等式求解公差d ,进而求出通项,注意对公差d 分类讨论;(2)利用(1)的结论,对数列{a n }的通项分类讨论,分别利用通项公式及等差数列的前n 项和公式求解S n ,然后根据S n >60n +800列不等式求解.[解析] (1)设数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ).化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立, 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2,令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去).此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.[方法点拨] 存在型探索性问题解答时先假设存在,依据相关知识(概念、定理、公式、法则、性质等),结合所给条件进行推理或运算,直到得出结果或一个明显成立或错误的结论,从而断定存在与否.(理)(2014·新课标Ⅰ理,17)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.[分析](1)利用a n+1=S n+1-S n用配凑法可获证;(2)假设存在λ,则a1,a2,a3应成等差数列求出λ的值,然后依据a n+2-a n=λ推证{a n}为等差数列.[解析](1)由题设:a n a n+1=λS n-1,a n+1a n+2=λS n+1-1,两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1,令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.。
2016年全国各地高考数学试题及解答分类大全(立体几何 )
2016 年全国各地高考数学试题及解答分类大全(立体几何 )一、选择题1.(2016北京理)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16 B.13 C.12D.1 【答案】A【解析】试题分析:分析三视图可知,该几何体为一三棱 锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 考点:1.三视图;2.空间几何体体积计算.【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅰ文、理)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】试题分析:该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以 三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.3.(2016全国Ⅰ文、理)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1, ABCD m α=平面,11ABB A n α=平面,则m 、n 所成角的正弦值为 ( )(A)3 (B )2 (C)3 (D)13【答案】A【解析】试题分析:如图,设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为//α平面11CB D ,所以//',//'m m n n ,则,m n 所成的角等于','m n 所成的角. 延长AD ,过1D 作11//D E B C ,连接11,CE B D ,则CE 为'm , 同理11B F 为'n ,而111//,//BD CE B F A B ,则','m n 所成 的角即为1,A B BD 所成的角,即为60︒,故,m n 所成角的 正弦值为32,选A. 考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补.4.(2016全国Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )(A )12π (B )323π(C )8π (D )4π 【答案】A【解析】试题分析:因为正方体的体积为8,所以棱长为2,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球面的表面积为24(3)12ππ⋅=,故选A. 考点: 正方体的性质,球的表面积.【名师点睛】棱长为a 的正方体中有三个球: 外接球、内切球和与各条棱都相切的球.其半径分别为3a 、2a 和22a .5.(2016全国Ⅱ文、理)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C考点:三视图,空间几何体的体积.【名师点睛】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【名师点睛】由三视图还原几何体的方法:6.(2016全国Ⅲ文、理)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18365+(B )54185+(C)90 (D)81【答案】B考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.7. (2016全国Ⅲ文、理) 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .考点:1、三棱柱的内切球;2、球的体积.【思维拓展】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.8.(2016山东文、理)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )123+π (C )123+π (D )21+π 【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.9.(2016上海文)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )(A)直线AA 1 (B)直线A 1B 1 (C)直线A 1D 1 (D)直线B 1C 1【答案】D【解析】只有11B C 与EF 在同一平面内,是相交的,其他A ,B ,C 中直线与EF 都是异面直线,故选D . 考点:1.正方体的几何特征;2.直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.10.(2016天津文)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.(2016浙江文、理) 已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C【解析】试题分析:由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .考点:空间点、线、面的位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.二、填空1. (2016北京文)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3.2考点:三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.2.(2016全国Ⅱ理),αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④考点: 空间中的线面关系.【名师点睛】求解本题应注意在空间中考虑线、面关系.3、(2016上海理)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________. 【答案】22【解析】试题分析:由题意得111122tan 223332DD DBD DD BD ∠==⇒=⇒=.考点:1.正四棱柱的几何特征;2.直线与平面所成的角.【名师点睛】涉及立体几何中的角的问题,往往要将空间问题转化成平面问题,做出角,构建三角形,在三角形中解决问题;也可以通过建立空间直角坐标系,利用空间向量方法求解,应根据具体情况选择不同方法,本题难度不大,能较好地考查考生的空间想象能力、基本计算能力等.4. (2016四川文)已知某三菱锥的三视图如图所示,则该三菱锥的体积.侧视图俯视图【答案】3【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为112S =⨯=1,所以该几何体的体积为11133V Sh ===考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.5.(2016四川理)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【答案】3【解析】试题分析:由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,则底面等腰三角形的顶角为120︒,所以三棱锥的体积为1122sin1201323V =⨯⨯⨯⨯︒⨯=.考点:三视图,几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.6.(2016浙江文、理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】80;40. 【解析】试题分析:由三视图知该组合体是一个长方体上面放置了 一个小正方体, 22262244242280S =⨯+⨯+⨯⨯-⨯=表,3244240V =+⨯⨯=.考点:三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积. 7.(2016浙江文)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°.沿直线AC 将△ACD 翻折成△CD 'A ,直线AC 与D 'B 所成角的余弦的最大值是______. 【答案】69【解析】试题分析:设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得6AC =,如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,由6(0,,0)A ,30(,0,0)B ,6(0,,0)C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直, 2666CD CH CA ===,则63OH =,153066DH ⨯==,因此可设30630'(cos ,,sin )636D αα-, 则3030630'(cos ,,sin )BD αα=--, 与CA 平行的单位向量为(0,1,0)n =,所以cos cos ',BD n θ=<>''BD n BD n⋅==6395cos α-,HD'DCBA zyO所以cos 1α=时,cos θ取最大值69. 考点:异面直线所成角.【思路点睛】先建立空间直角坐标系,再计算与C A 平行的单位向量n 和D 'B ,进而可得直线C A 与D 'B 所成角的余弦值,最后利用三角函数的性质可得直线C A 与D 'B 所成角的余弦值的最大值.8.(2016天津理)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3. 【答案】2【解析】试题分析:由三视图知四棱锥高为3,底面平行四边形 的底为2,高为1,因此体积为1(21)323V =⨯⨯⨯=.故答案为2. 考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.三、解答题1.(2016北京文)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(III )存在.理由见解析.(III )棱PB 上存在点F ,使得//PA 平面C F E .证明如下: 取PB 中点F ,连结F E ,C E ,CF . 又因为E 为AB 的中点, 所以F//E PA . 又因为PA ⊄平面C F E , 所以//PA 平面C F E .考点:空间垂直判定与性质;空间想象能力,推理论证能力【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.2. (2016北京理)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,5AC CD ==.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由. 【答案】(1)见解析;(2)33;(3)存在,14AM AP =(3)设M 是棱PA 上一点,则存在]1,0[∈λ使得AP AM λ=.因此点),,1(),,1,0(λλλλ--=-BM M .因为⊄BM 平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅n BM , 即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM . 考点:1.空间垂直判定与性质;2.异面直线所成角的计算;3.空间向量的运用.【名师点睛】平面与平面垂直的性质的应用:当两个平面垂直时,常作的辅助线是在其中一个面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.3.(2016江苏)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB , BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析考点:直线与直线、平面与平面位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.4. (2016江苏)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. (1)若16,PO 2,AB m m ==则仓库的容积是多少?(2)若正四棱柱的侧棱长为6m,则当1PO 为多少时,仓库的容积最大?【答案】(1)312(2)123PO =考点:函数的概念、导数的应用、棱柱和棱锥的体积【名师点睛】对应用题的训练,一般从读题、审题、剖析题目、寻找切入点方面进行强化,注重培养将文字语言转化为数学语言能力,强化构建数学模型的几种方法.而江苏应用题,往往需结合导数知识解决相应数学最值问题,因此掌握利用导数求最值方法是一项基本要求,需熟练掌握.5.(2016全国Ⅰ文)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点E ,连接PE 并延长交AB 于点G . (I )证明G 是AB 的中点;(II )在答题卡第(18)题图中作出点E 在平面P AC 内的 正投影F (说明作法及理由),并求四面体PDEF 的体积. 【答案】(I )见解析(II )作图见解析,体积为43试题解析:(I )因为P 在平面ABC 内的正投影为D , 所以.AB PD ⊥因为D 在平面PAB 内的正投影为E ,所以.AB DE ⊥ 所以AB ⊥平面PED ,故.AB PG ⊥又由已知可得,PA PB =,从而G 是AB 的中点.(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以EF PC ⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2.3=CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此21,.33==PE PG DE PC 由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,2 2.==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114222.323=⨯⨯⨯⨯=V 考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.PABD CGE6.(2016全国Ⅰ理)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值.【答案】(I )见解析(II )219-试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D 3.由已知,//F AB E ,所以//AB 平面FDC E . 又平面CDAB 平面FDC DC E =,故//CD AB ,CD//F E .由//F BE A ,可得BE ⊥平面FDC E ,所以C F ∠E 为二面角C F -BE-的平面角,C F 60∠E =.从而可得(C 3-.所以(C 3E =,()0,4,0EB =,(C 3,3A =--,()4,0,0AB =-. 设(),,n x y z =是平面C B E 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即3040x z y ⎧+=⎪⎨=⎪⎩, 所以可取(3,0,3n =-.设m 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩,同理可取()0,3,4m =.则219cos ,n m n m n m ⋅==-.CBDEF故二面角C E-B -A 的余弦值为21919-.考点:垂直问题的证明及空间向量的应用【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度不大,以中档题为主.第二问一般考查角度问题,多用空间向量解决.7.(2016全国Ⅱ文) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF交BD 于点H ,将DEF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥; (Ⅱ)若55,6,,'224AB AC AE OD ====,求五棱锥D ABCEF '-体积.【答案】(Ⅰ)详见解析;(Ⅱ)694. 【解析】试题分析:(Ⅰ)证//.AC EF 再证//.'AC HD (Ⅱ)根据勾股定理证明OD H '∆是直角三角形,从而得到.'⊥OD OH 进而有⊥AC 平面BHD ',证明'⊥OD 平面.ABC 根据菱形的面积减去三角形DEF 的面积求得五边形ABCFE 的面积,最后由椎体的体积公式求五棱锥D ABCEF '-体积. 试题解析:(I )由已知得,,.⊥=AC BD AD CD又由=AE CF 得=AE CFAD CD,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD .五边形ABCFE 的面积11969683.2224=⨯⨯-⨯⨯=S 所以五棱锥'ABCEF D -体积16923222.34=⨯⨯=V 考点: 空间中的线面关系判断,几何体的体积.【名师点睛】立体几何中的折叠问题,应注意折叠前后线段的长度、角哪些变了,哪些没变.8.(2016全国Ⅱ理)如图,菱形ABCD 的对角线AC 与BD 交于点O , 5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H'⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)9525.又D H EF '⊥,而OH EF H ⋂=, 所以D H ABCD '⊥平面.ABDD'E H Oz xyF(II )如图,以H 为坐标原点,HF 的方向为x 轴的正方向,建立空间直角坐标系H xyz -, 则()0,0,0H ,()3,2,0A --,()0,5,0B -,()3,1,0C -,()0,0,3D ',(3,4,0)AB =-,()6,0,0AC =,()3,1,3AD '=.设()111,,m x y z =是平面ABD '的法向量,则0m AB m AD ⎧⋅=⎪⎨'⋅=⎪⎩,即11111340330x y x y z -=⎧⎨++=⎩, 所以可以取()4,3,5m =-.设()222,,n x y z =是平面'ACD 的法向量,则0n AC n AD ⎧⋅=⎪⎨'⋅=⎪⎩,即222260330x x y z =⎧⎨++=⎩,所以可以取()0,3,1n =-.于是75cos ,||||5010m n m n m n ⋅<>===⋅⨯, 295sin ,25m n <>=.因此二面角B D A C '--的正弦值是29525. 考点:线面垂直的判定、二面角.【名师点睛】证明直线和平面垂直的常用方法有:①判定定理;②a ∥b ,a ⊥α⇒b ⊥α;③α∥β,a ⊥α⇒a ⊥β;④面面垂直的性质.线面垂直的性质,常用来证明线线垂直.求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.9.(2016全国Ⅲ文)如图,四棱锥P ABC -中,PA ⊥平面ABCD ,ADBC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(I )证明MN平面PAB ;(II )求四面体N BCM -的体积. 【答案】(Ⅰ)见解析;(Ⅱ)453. 试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN . ......3分 又BC AD //,故TN AM ,四边形AMNT 为平行四边形,于是AT MN //. 因为⊂AT 平面PAB ,⊄MN 平面PAB , 所以//MN 平面PAB . ........6分(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为PA 21. ....9分 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .由BC AM ∥得M 到BC 的距离为5,故525421=⨯⨯=∆BCM S , 所以四面体BCM N -的体积354231=⨯⨯=∆-PA S V BCM BCM N . .....12分考点:1、直线与平面间的平行与垂直关系;2、三棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求三棱锥的体积关键是确定其高,而高的确定关键又推出顶点在底面上的射影位置,当然有时也采取割补法、体积转换法求解.10.(2016全国Ⅲ理)如图,四棱锥P ABC -中,PA ⊥地面ABCD ,AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(I )证明MN平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值.【答案】(Ⅰ)见解析;(Ⅱ)8525.【解析】试题分析:(Ⅰ)取PB 的中点T ,然后结合条件中的数据证明四边形AMNT 为平行四边形,从而得到MNAT ,由此结合线面平行的判断定理可证;(Ⅱ)以A 为坐标原点,以,AD AP 所在直线分别为,y z 轴建立空间直角坐标系,然后通过求直线AN 的方向向量与平面PMN 法向量的夹角来处理AN 与平面PMN 所成角.试题解析:(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,,由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,故TN AM,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos ,|25||||n AN n AN n AN ⋅<>==.考点:1、空间直线与平面间的平行与垂直关系;2、棱锥的体积.【技巧点拨】(1)证明立体几何中的平行关系,常常是通过线线平行来实现,而线线平行常常利用三角形的中位线、平行四边形与梯形的平行关系来推证;(2)求解空间中的角和距离常常可通过建立空间直角坐标系,利用空间向量中的夹角与距离来处理.11.(2016山东文)在如图所示的几何体中,D 是AC 的中点,EF ∥DB . (I )已知AB =BC ,AE =EC .求证:AC ⊥FB ;(II )已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC . 【答案】(Ⅰ))证明:见解析;(Ⅱ)见解析. 【解析】试题分析:(Ⅰ))根据BD EF //,知EF 与BD 确定一个平面, 连接DE ,得到AC DE ⊥,AC BD ⊥,从而⊥AC 平面BDEF , 证得FB AC ⊥.(Ⅱ)设FC 的中点为I ,连HI GI ,,在CEF ∆,CFB ∆中,由三角形中位线定理可得线线平行,证得平面//GHI 平面ABC ,进一步得到//GH 平面ABC . 试题解析:(Ⅰ))证明:因BD EF //,所以EF 与BD 确定一个平面,连接DE ,因为E EC AE ,=为AC 的中点,所以AC DE ⊥;同理可得AC BD ⊥,又因为D DE BD = ,所以⊥AC 平面BDEF ,因为⊂FB 平面BDEF ,FB AC ⊥。
北京市2016届高三数学专题突破训练立体几何文
北京市2016届高三数学文专题突破训练立体几何一、填空、选择题1、(2015年北京高考)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .1 BC.22、(2014年北京高考)某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为 .俯视图侧(左)视图正(主)视图111223、(2013年北京高考)某四棱锥的三视图如图1-3所示,该四棱锥的体积为________.图1-3 4、(昌平区2015届高三上期末)某四棱锥的三视图如图所示,其中正(主)视图是等腰直角三角形,侧(左)视图是等腰三角形,俯视图是正方形,则该四棱锥的体积是A .8B .83 C .4D .43俯视图侧(左)视图正(主)视图5、(朝阳区2015届高三一模)一个四棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是,四棱锥侧面中最大侧面的面积是.6、(东城区2015届高三二模)若一个底面是正三角形的三棱柱的正(主)视图如图所示,则其侧面积等于(A)3(B)4(C)5(D)67、(房山区2015届高三一模)一个空间几何体的三视图如图所示,则这个几何体的体积为()A.43B.83C.4D.88、(丰台区2015届高三一模)某几何体的三视图如图所示(右上),则该几何体的体积(A) 48 (B) 32 (C) 16 (D)3239、(丰台区2015届高三二模)如图所示,某三棱锥的正视图、俯视图均为边长为2的正三角形,则其左视图面积为第(12)题图正视图侧视图俯视图(A) 2(B) 3(C)23 (D)23 俯视图正视图10、(海淀区2015届高三一模)某三棱锥的正视图如图所示,则在下列图①②③④中,所有可能成为这个三棱锥的俯视图的是( )正视图①②③ ④(A )①②③ (B )①②④(C )②③④(D )①②③④11、(石景山区2015届高三一模)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中, 最长的棱的长度为( )A C .3 D12、(西城区2015届高三二模)一个几何体的三视图中,正(主)视图和 侧(左)视图如图所示,则俯视图可以为( )(A ) (B ) (C ) (D ) 13、设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( )A .若//,,m n m n αβ⊥⊥,则αβ⊥B .若//,,m n m n αβ⊥⊥,则//αβC .若//,,//m n m n αβ⊥,则α⊥βD .若//,,//m n m n αβ⊥,则//αβ 14、某三棱锥的三视图如图所示,该三棱锥的体积是( ) A .38B .4 C .2 D .3415、已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积为( ) A .4B .8C .12D .24二、解答题 1、(2015年北京高考)如图,在三棱锥V C -AB 中,平面V AB ⊥平面C AB ,V ∆AB 为等边三角形,C C A ⊥B且C C A =B =,O ,M 分别为AB ,V A 的中点.(Ⅰ)求证:V //B 平面C MO ; (Ⅱ)求证:平面C MO ⊥平面V AB ; (Ⅲ)求三棱锥V C -AB 的体积.2、(2014年北京高考)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,E 、F 分别为11A C 、BC 的中点.(Ⅰ)求证:平面ABE ⊥平面11B BCC ; (Ⅱ)求证:1//C F 平面ABE ; (Ⅲ)求三棱锥E ABC -的体积.C 1B 1A 1FE CBA3、(2013年北京高考)如图1-5,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面PAD ⊥底面ABCD ,PA ⊥AD ,E 和F 分别是CD 和PC 的中点.求证:(1)PA ⊥底面ABCD ; (2)BE ∥平面PAD ;(3)平面BEF ⊥平面PCD.图1-54、(昌平区2015届高三上期末)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,=90DAC ∠,O 为AC 的中点,PO ⊥底面ABCD .(I )求证:AD ⊥平面PAC ;(II )在线段PB 上是否存在一点M ,使得//OM 平面PAD ?若存在,写出证明过程;若不存在,请说明理由.5、(朝阳区2015届高三一模)如图,在三棱柱111C B A ABC -中,各个侧面均是边长为2的正方形,D 为线段AC 的中点. (Ⅰ)求证:BD ⊥平面11A ACC ; (Ⅱ)求证:直线1AB ∥平面D BC 1;ABCDA 1B 1C 1ADE(Ⅲ)设M 为线段1BC 上任意一点,在DD BC 1内的平面区域(包括边界)是否存在点E ,使CE ⊥DM ,并说明理由.6、(东城区2015届高三二模)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,E 为AD 上一点,四边形BCDE 为矩形,60PAD ∠= ,PB =,22PA ED AE ===.(Ⅰ)若()PF PC λλ=∈R ,且PA ∥平面BEF ,求λ的值; (Ⅱ)求证:CB ⊥平面PEB .7、(房山区2015届高三一模)如图,四棱锥E ABCD -中,侧面EAB ⊥底面ABCD ,底面ABCD 是直角梯形,AD ∥BC ,2AB BC AD ==,90DAB ︒∠=,△EAB 是正三角形,F 为EC 的中点.(Ⅰ)求证:DF ∥平面EAB ; (Ⅱ)求证:DF ⊥平面EBC .AB C C 1A 1B 1M8、(丰台区2015届高三一模)如图,在三棱柱111C B A ABC -中,侧棱1AA ⊥底面ABC ,M 为棱AC 中点. AB BC =,2AC =,1AA =.(Ⅰ)求证:1B C //平面1A BM ; (Ⅱ)求证:1AC ⊥平面1A BM ;(Ⅲ)在棱1BB 的上是否存在点N ,使得平面1AC N ⊥平面C C AA 11?如果存在,求此时1BNBB 的值;如果不存在,说明理由.9、(丰台区2015届高三二模)如图所示,四棱锥P ABCD -的底面ABCD 是直角梯形,AD BC //,AB AD ⊥,AD BC AB 21==,PA ⊥底面ABCD ,过BC 的平面交PD 于M ,交PA 于N (M 与D 不重合).(Ⅰ)求证:BC MN //; (Ⅱ)求证:CD PC ⊥;(Ⅲ)如果BM AC ⊥,求此时PMPD的值.CNMPDBA10、(海淀区2015届高三一模)如图1,在梯形ABCD 中,AD BC ,AD DC ⊥,2BC AD =,四边形ABEF 是矩形. 将矩形ABEF 沿AB 折起到四边形11ABE F 的位置,使平面11ABE F ⊥平面ABCD ,M 为1AF 的中点,如图2.(Ⅰ)求证:1BE DC ⊥; (Ⅱ)求证:DM //平面1BCE ;(Ⅲ)判断直线CD 与1ME 的位置关系,并说明理由.11、(海淀区2015届高三二模)如图所示,在四棱锥P ABCD -中,PD ⊥平面ABCD ,又//AD BC ,AD DC ⊥, 且33PD BC AD ===. (Ⅰ)画出四棱准P ABCD -的正视图; (Ⅱ)求证:平面PAD ⊥平面PCD ;(Ⅲ)求证:棱PB 上存在一点E ,使得//AE 平面PCD ,并求PEEB的值.12、(石景山区2015届高三一模)如图,已知AF ⊥平面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,∠DAB 90=,AB //CD ,AD =AF =CD =2,AB =4.(Ⅰ)求证:AC ⊥平面BCE ; (Ⅱ)求三棱锥A -CDE 的体积;(Ⅲ)线段EF 上是否存在一点M ,使得BM ⊥CE ? 若存在,确定M 点的位置;若不存在,请说明理由.13、(西城区2015届高三二模)如图,在四棱锥E ABCD -中,AE DE ⊥,CD ⊥平面ADE ,AB ⊥平面ADE ,6CD DA ==,2AB =,3DE =.(Ⅰ)求棱锥C ADE -的体积; (Ⅱ)求证:平面ACE ⊥平面CDE ;(Ⅲ)在线段DE 上是否存在一点F ,使//AF 平面BCE ?若存在,求出EF ED的值;若不存在,说明理由.ACDEFB14、如图,四棱锥P -ABCD 中, BC ∥AD ,BC =1,AD =3,AC ⊥CD ,且平面PCD ⊥平面ABCD .(Ⅰ)求证:AC ⊥PD ;(Ⅱ)在线段PA 上,是否存在点E ,使BE∥平面PCD?若存在,求PEPA的值;若不存在,请说明理由.15、在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又30CAD ∠=,4PA AB ==,点N 在线段PB 上,且13PN NB =. (Ⅰ)求证:BD PC ⊥;(Ⅱ)求证://MN 平面PDC ;(Ⅲ)设平面PAB 平面PCD =l ,试问直线l 是否与直线CD 平行,请说明理由.参考答案一、填空、选择题 1、【答案】C【解析】试题分析:四棱锥的直观图如图所示:由三视图可知,SC ⊥平面ABCD ,SA 是四棱锥最长的棱,SA ===.2、【答案】22【解析】由三视图可知:该几何体为一条侧棱垂直底面的三棱锥,底面为边长为2的等边三角形,棱锥的高为2,所以最长的棱长为222222=+.3、3[解析] 正视图的长为3,侧视图的长为3,因此,该四棱锥底面是边长为3的正方形,且高为1,因此V =13×(3×3)×1=3.4、D 5 6、D 7、C 8、B 9、C 10、D11、C 12、C 13、【答案】C解:C 中,当//,//m m n α,所以,//,n α或,n α⊂当n β⊥,所以α⊥β,所以正确。
2016高考数学二轮复习微专题强化练习题:13立体几何综合练习(文)
第一部分一13(文)一、选择题1.(2015·东北三校二模)设l,m是两条不同的直线,α是一个平面,则下列说法正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m[答案] B[解析]当l、m是平面α内的两条互相垂直的直线时,满足A的条件,故A错误;对于C,过l作平面与平面α相交于直线l1,则l∥l1,在α内作直线m与l1相交,满足C的条件,但l与m不平行,故C错误;对于D,设平面α∥β,在β内取两条相交的直线l、m,满足D的条件,故D错误;对于B,由线面垂直的性质定理知B正确.2.已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A.0个B.1个C.2个D.3个[答案] C[解析]若α、β换成直线a、b,则命题化为“a∥b,且a⊥γ⇒b⊥γ”,此命题为真命题;若α、γ换为直线a、b,则命题化为“a∥β,且a⊥b⇒b⊥β”,此命题为假命题;若β、γ换为直线a、b,则命题化为“a∥α,且b⊥α⇒a⊥b”,此命题为真命题,故选C。
3.(2015·重庆文,5)某几何体的三视图如图所示,则该几何体的体积为()A.错误!+2πB.错误!C.错误!D。
错误![答案] B[解析]由三视图可知该几何体是由一个圆柱和一个半圆锥组成,圆柱的底面半径为1,高为2;半圆锥的底面半径为1,高也为1,故其体积为π×12×2+错误!×π×12×1=错误!;故选B。
4.如图,在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下列四个结论不成立的是()A.BC∥平面PDFB.DF⊥平面P AEC.平面PDF⊥平面P AED.平面PDE⊥平面ABC[答案] D[解析]∵D、F分别为AB、AC的中点,∴BC∥DF,∵BC⊄平面PDF,∴BC∥平面PDF,故A正确;在正四面体中,∵E为BC中点,易知BC ⊥PE,BC⊥AE,∴BC⊥平面P AE,∵DF∥BC,∴DF⊥平面P AE,故B正确;∵DF⊥平面P AE,DF ⊂平面PDF,∴平面PDF⊥平面P AE,∴C正确,故选D.5.若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于()A.10 cm3B.20 cm3C.30 cm3D.40 cm3[答案] B[解析]由三视图知该几何体是四棱锥,可视作直三棱柱ABC-A1B1C1沿平面AB1C1截去一个三棱锥A-A1B1C1余下的部分.∴VA-BCC1B1=VABC-A1B1C1-VA-A1B1C1=错误!×4×3×5-错误!×(错误!×4×3)×5=20cm3.6.如图,在棱长为5的正方体ABCD-A1B1C1D1中,EF是棱AB上的一条线段,且EF=2,Q是A1D1的中点,点P是棱C1D1上的动点,则四面体P-QEF的体积()A.是变量且有最大值B.是变量且有最小值C.是变量且有最大值和最小值D.是常量[答案] D[解析]因为EF=2,点Q到AB的距离为定值,所以△QEF的面积为定值,设为S,又因为D1C1∥AB,所以D1C1∥平面QEF;点P到平面QEF的距离也为定值,设为d,从而四面体P-QEF的体积为定值错误!Sd。
2016届高考数学二轮复习专题能力训练12 空间几何体 含解析
专题能力训练12空间几何体一、选择题1。
如图,一个简单组合体的正视图和侧视图相同,是由一个正方形与一个正三角形构成,俯视图中,圆的半径为√3,则该组合体的表面积为()A.15πB.18πC。
21πD。
24π答案:C解析:由三视图可知,该几何体是圆锥与等底面的圆柱组合而成的组合体,所以该几何体的表面积是圆锥的侧面积、圆柱的侧面积和底面圆的面积的和,所以该几何体的表面积为S=π×√3×2√3+2π×√3×2√3+π×(√3)2=21π.2.(2014四川凉山州三诊)一个几何体的正视图、侧视图、俯视图如图所示,则该几何体的体积为()A.4π3B。
π C.2π3D.8π3答案:A3.已知正三棱柱(底面为等边三角形,且侧棱垂直于底面)ABC-A1B1C1的底面边长为2,侧棱长为√3,D为BC的中点,则三棱锥A—B1DC1的体积为( )A。
3B。
32C.1D。
√32答案:C解析:因为D是等边△ABC的边BC的中点,所以AD⊥BC。
又ABC—A1B1C1为正三棱柱,所以AD⊥平面BB1C1C.又四边形BB1C1C为矩形,所以S△DB1C1=12S四边形BB1C1C=12×2×√3=√3.又AD=2×√32=√3,所以VA-B1DC1=13S△B1DC1·AD=13×√3×√3=1。
故选C.4。
如图,在半径为3的球面上有A,B,C三点,∠ABC=90°,BA=BC,球心O到平面ABC的距离是3√22,则B,C两点的球面距离是()A.π3B。
πC.4π3D.2π答案:B解析:因为AC是小圆的直径,所以过球心O作小圆的垂线,垂足O'是AC的中点。
O’C=√32-(3√22)2=3√22,AC=3√2,所以BC=3,即BC=OB=OC。
所以∠BOC=π3,则B,C两点的球面距离为π3×3=π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分 一 13(文)一、选择题1.(2015·东北三校二模)设l ,m 是两条不同的直线,α是一个平面,则下列说法正确的是( )A .若l ⊥m ,m ⊂α,则l ⊥αB .若l ⊥α,l ∥m ,则m ⊥αC .若l ∥α,m ⊂α,则l ∥mD .若l ∥α,m ∥α,则l ∥m [答案] B[解析] 当l 、m 是平面α内的两条互相垂直的直线时,满足A 的条件,故A 错误;对于C ,过l 作平面与平面α相交于直线l 1,则l ∥l 1,在α内作直线m 与l 1相交,满足C 的条件,但l 与m 不平行,故C 错误;对于D ,设平面α∥β,在β内取两条相交的直线l 、m ,满足D 的条件,故D 错误;对于B ,由线面垂直的性质定理知B 正确.2.已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有( )A .0个B .1个C .2个D .3个[答案] C[解析] 若α、β换成直线a 、b ,则命题化为“a ∥b ,且a ⊥γ⇒b ⊥γ”,此命题为真命题;若α、γ换为直线a 、b ,则命题化为“a ∥β,且a ⊥b ⇒b ⊥β”,此命题为假命题;若β、γ换为直线a 、b ,则命题化为“a ∥α,且b ⊥α⇒a ⊥b ”,此命题为真命题,故选C.3.(2015·重庆文,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3 D.5π2[答案] B[解析] 由三视图可知该几何体是由一个圆柱和一个半圆锥组成,圆柱的底面半径为1,高为2;半圆锥的底面半径为1,高也为1,故其体积为π×12×2+16×π×12×1=13π6;故选B.4.如图,在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下列四个结论不成立的是( )A .BC ∥平面PDFB .DF ⊥平面P AEC .平面PDF ⊥平面P AED .平面PDE ⊥平面ABC [答案] D[解析] ∵D 、F 分别为AB 、AC 的中点,∴BC ∥DF ,∵BC ⊄平面PDF ,∴BC ∥平面PDF ,故A 正确;在正四面体中,∵E 为BC 中点,易知BC ⊥PE ,BC ⊥AE ,∴BC ⊥平面P AE ,∵DF ∥BC ,∴DF ⊥平面P AE ,故B 正确;∵DF ⊥平面P AE ,DF ⊂平面PDF ,∴平面PDF ⊥平面P AE ,∴C 正确,故选D.5.若某棱锥的三视图(单位:cm)如图所示,则该棱锥的体积等于( )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3[答案] B[解析] 由三视图知该几何体是四棱锥,可视作直三棱柱ABC -A 1B 1C 1沿平面AB 1C 1截去一个三棱锥A -A 1B 1C 1余下的部分.∴VA -BCC 1B 1=VABC -A 1B 1C 1-VA -A 1B 1C 1=12×4×3×5-13×(12×4×3)×5=20cm 3.6.如图,在棱长为5的正方体ABCD -A 1B 1C 1D 1中,EF 是棱AB 上的一条线段,且EF =2,Q 是A 1D 1的中点,点P 是棱C 1D 1上的动点,则四面体P -QEF 的体积( )A .是变量且有最大值B .是变量且有最小值C .是变量且有最大值和最小值D .是常量 [答案] D[解析] 因为EF =2,点Q 到AB 的距离为定值,所以△QEF 的面积为定值,设为S ,又因为D 1C 1∥AB ,所以D 1C 1∥平面QEF ;点P 到平面QEF 的距离也为定值,设为d ,从而四面体P -QEF 的体积为定值13Sd .7.(2015·湖北文,5)l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线,q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 [答案] A[解析] 若p :l 1,l 2是异面直线,由异面直线的定义知,l 1,l 2不相交,所以命题q :l 1,l 2不相交成立,即p 是q 的充分条件;反过来,若q :l 1,l 2不相交,则l 1,l 2可能平行,也可能异面,所以不能推出l 1,l 2是异面直线,即p 不是q 的必要条件,故应选A.8.已知正方形ABCD 的边长为22,将△ABC 沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如右图所示的三棱锥B -ACD .若O 为AC 边的中点,M 、N 分别为线段DC 、BO 上的动点(不包括端点),且BN =CM .设BN =x ,则三棱锥N -AMC 的体积y =f (x )的函数图象大致是( )[答案] B[解析] 由条件知,AC =4,BO =2,S △AMC =12CM ·AD =2x ,NO =2-x ,∴V N -AMC =13S △AMC ·NO =23x (2-x ),即f (x )=23x (2-x ),故选B. 二、填空题9.(2015·天津文,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.[答案]8π3[解析] 考查1.三视图;2.几何体的体积.该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,圆柱与圆锥的底面半径都是1,所以该几何体的体积为2×13×π×1+π×2=8π3(m 3).三、解答题10.如图,已知AD ⊥平面ABC ,CE ⊥平面ABC ,F 为BC 的中点,若AB =AC =AD =12CE .(1)求证:AF ∥平面BDE ; (2)求证:平面BDE ⊥平面BCE .[证明] (1)取BE 的中点G ,连接GF 、GD . 因为F 是BC 的中点,则GF 为△BCE 的中位线. 所以GF ∥EC ,GF =12CE .因为AD ⊥平面ABC ,CE ⊥平面ABC , 所以GF ∥EC ∥AD .又因为AD =12CE ,所以GF =AD .所以四边形GF AD 为平行四边形.所以AF ∥DG . 因为DG ⊂平面BDE ,AF ⊄平面BDE , 所以AF ∥平面BDE .(2)因为AB=AC,F为BC的中点,所以AF⊥BC.因为EC∥GF,EC⊥平面ABC,所以GF⊥平面ABC.又AF⊂平面ABC,所以GF⊥AF.因为GF∩BC=F,所以AF⊥平面BCE.因为AF∥DG,所以DG⊥平面BCE.又DG⊂平面BDE,所以平面BDE⊥平面BCE.11.底面为正多边形的直棱柱称为正棱柱.如图,在正三棱柱ABC-A1B1C1中,AA1=AB=a,F、F1分别是AC、A1C1的中点.(1)求证:平面AB1F1∥平面C1BF;(2)求证:平面AB1F1⊥平面ACC1A1.[分析](1)在正三棱柱中,由F、F1分别为AC、A1C1的中点,不难想到四边形AFC1F1与四边形BFF1B1都为平行四边形,于是要证平面AB1F1∥平面C1BF,可证明平面AB1F1与平面C1BF中有两条相交直线分别平行,即BF∥B1F1,FC1∥AF1.(2)要证两平面垂直,只要在一个平面内能够找到一条直线与另一个平面垂直,考虑到侧面ACC1A1与底面垂直,F1为A1C1的中点,则不难想到B1F1⊥平面ACC1A1,而平面AB1F1经过B1F1,因此可知结论成立.[解析](1)在正三棱柱ABC-A1B1C1中,连FF1,∵F、F1分别是AC、A1C1的中点,∴B1B綊A1A綊FF1,∴B1BFF1为平行四边形.∴B1F1∥BF,又AF綊C1F1,∴AF1C1F为平行四边形,∴AF1∥C1F,又∵B1F1与AF1是两相交直线,∴平面AB1F1∥平面C1BF.(2)在正三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1,又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而平面AB1F1经过B1F1,∴平面AB1F1⊥平面ACC1A1.12.在正方体ABCD-A1B1C1D1中,点F、H分别为A1D、A1C的中点.(1)证明:A1B∥平面AFC;(2)证明:B1H⊥平面AFC.[分析]分别利用线面平行的判定定理和线面垂直的判定定理证明.[解析](1)连BD交AC于点E,则E为BD的中点,连EF,又F为A1D的中点,所以EF∥A1B.又EF⊂平面AFC,A1B⊄平面AFC,∴A1B∥平面AFC.(2)连接B1C,在正方体中四边形A1B1CD为长方形,∵H为A1C的中点,∴H也是B1D的中点,∴只要证B1D⊥平面ACF即可.由正方体性质得AC⊥BD,AC⊥B1B,∴AC⊥平面B1BD,∴AC⊥B1D.又F为A1D的中点,∴AF⊥A1D,又AF⊥A1B1,∴AF⊥平面A1B1D.∴AF⊥B1D,又AF、AC为平面ACF内的相交直线.∴B1D⊥平面ACF.即B1H⊥平面ACF.13.如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°,且边长为a的菱形,侧面P AD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面P AD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD,并证明你的结论.[解析](1)证明:∵在菱形ABCD中,∠DAB=60°,G为AD的中点,得BG⊥AD.又平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,∴BG⊥平面P AD.(2)证明:连接PG,因为△P AD为正三角形,G为AD的中点,得PG⊥AD.由(1)知BG⊥AD,∵PG∩BG=G,PG⊂平面PGB,BG⊂平面PGB,∴AD⊥平面PGB.∵PB⊂平面PGB,∴AD⊥PB.(3)解:当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF,则在△PBC中,FE∥PB,在菱形ABCD 中,GB∥DE,∴AD⊥EF,AD⊥DE.∴AD⊥平面DEF,又AD⊂平面ABCD,∴平面DEF⊥平面ABCD.14.(2014·河北名校名师俱乐部模拟)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC⊥BC,E在线段B1C1上,B1E=3EC1,AC=BC=CC1=4.(1)求证:BC⊥AC1;(2)试探究:在AC上是否存在点F,满足EF∥平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.[分析](1)执果索因:要证BC⊥AC1,已知BC⊥AC,故只需证BC⊥平面ACC1A1,从而BC⊥AA1,这由已知三棱柱中AA1⊥平面ABC可证.(2)假定存在,执果索因找思路:假定AC上存在点F,使EF∥平面A1ABB1,考虑矩形C1CBB1中,E在B1C1上,且B1E =3EC1,因此取BC上点G,使BG=3GC,则EG=B1B,从而EG∥平面A1ABB1,因此平面EFG∥平面A1ABB1,由面面平行的性质定理知FG∥AB,从而AFFC=BGGC=3,则只需过G作AB的平行线交AC于F,F即所探求的点.[解析](1) ∵AA1⊥平面ABC, BC⊂平面ABC,∴BC⊥AA1.又∵BC⊥AC,AA1,AC⊂平面AA1C1C,AA1∩AC=A,∴BC⊥平面AA1C1C,又AC1⊂平面AA1C1C,∴BC⊥AC1.(2)解法一:当AF=3FC时,FE∥平面A1ABB1.理由如下:在平面A1B1C1内过E作EG∥A1C1交A1B1于G,连接AG.∵B 1E =3EC 1,∴EG =34A 1C 1,又AF ∥A 1C 1且AF =34A 1C 1,∴AF ∥EG 且AF =EG ,∴四边形AFEG 为平行四边形,∴EF ∥AG , 又EF ⊄平面A 1ABB 1,AG ⊂平面A 1ABB 1, ∴EF ∥平面A 1ABB 1.解法二:当AF =3FC 时,FE ∥平面A 1ABB 1.理由如下: 在平面BCC 1B 1内过E 作EG ∥BB 1交BC 于G ,连接FG .∵EG ∥BB 1,EG ⊄平面A 1ABB 1,BB 1⊂平面A 1ABB 1, ∴EG ∥平面A 1ABB 1. ∵B 1E =3EC 1,∴BG =3GC ,∴FG ∥AB ,又AB ⊂平面A 1ABB 1,FG ⊄平面A 1ABB 1, ∴FG ∥平面A 1ABB 1.又EG ⊂平面EFG ,FG ⊂平面EFG ,EG ∩FG =G , ∴平面EFG ∥平面A 1ABB 1.∵EF ⊂平面EFG ,∴EF ∥平面A 1ABB 1.15.已知四棱锥P -ABCD 的直观图和三视图如图所示,E 是PB 的中点. (1)求三棱锥C -PBD 的体积;(2)若F 是BC 上任一点,求证:AE ⊥PF ;(3)边PC上是否存在一点M,使DM∥平面EAC,并说明理由.[解析](1)由该四棱锥的三视图可知,四棱锥P-ABCD的底面是边长为2和1的矩形,侧棱P A⊥平面ABCD,且P A=2,∴V C-PBD=V P-BCD=13×12×1×2×2=23.(2)证明:∵BC⊥AB,BC⊥P A,AB∩P A=A.∴BC⊥平面P AB,∴BC⊥AE,又在△P AB中,∵P A=AB,E是PB的中点,∴AE⊥PB.又∵BC∩PB=B,∴AE⊥平面PBC,且PF⊂平面PBC,∴AE⊥PF.(3)存在点M,可以使DM∥平面EAC.连接BD,设AC∩BD=O,连接EO.在△PBD中,EO是中位线.∴PD∥EO,又∵EO⊂平面EAC,PD⊄平面EAC,∴PD∥平面EAC,∴当点M与点P重合时,可以使DM∥平面EAC.。