相似三角形的判定与性质综合运用经典题型(供参考)

合集下载

相似三角形判定经典题型

相似三角形判定经典题型

相似三角形判定经典题型题型一、相似三角形判定的灵活运用例、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD·AB。

其中单独能够判定△ABC∽△ACD的个数为[ ] A.1 B.2 C.3 D.4题型二、相似三角形判定的开放性问题例、如图,已知△ABC和△DEF,∠A=∠D=90°,且△ABC与△DEF不相似,问是否存在某种直线分割,使△ABC所分割成的两个三角形与△DEF所分割成的两个三角形分别对应相似?(1)如果存在,请你设计出分割方案,并给出证明;如果不存在,请简要说明理由;(2)这样的分割是唯一的吗?若还有,请再设计出一种.321点拨:本题主要考察对全等三角形和相似三角形的理解与应用,根据条件注意到的一个条件式,进而得到y与x的一)小题中,则要从果溯源,要使△BEH∽△BAE题型四、相似三角形的判定与性质综合运用例、如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE 。

(1)试说明BE·AD=CD·AE(2)根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想(只须写出有线段的一组即可)。

题型五、相似在实际中的应用例、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3 米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.(1)求路灯A的高度;(2)当王华再向前走2米,到达F处时,他的影长是多少?例2、已知零件的外径为25cm,要求它的厚度x,需先求出它的内孔直径AB,现用一个交叉卡钳(AC和BD的长相等)去量(如图),若OA:OC=OB:OD=3,CD=7cm.求此零件的厚度x.题型六、相似方案的设计如图,已知Rt△ABC与△DEF不相似,其中∠C、∠F为直角,能否分别将这两个三角形各分割成两个三角形,使△ABC所分成的每个三角形与△DEF所分成的每个三角形分别对应相似?如果能,请设计出一种分割方案,并说明理由。

自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)

自学初中数学资料-相似三角形的性质和判定综合-(资料附答案)

自学资料一、相似三角形的性质和判定综合【知识探索】1.(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。

(2)直角三角形相似的判定方法①以上各种判定方法均适用②垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

【错题精练】例1.如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训定有()A. △ADE∽△ECFB. △ECF∽△AEFC. △ADE∽△AEFD. △AEF∽△ABF【解答】解:在矩形ABCD中,∵∠D=∠C=90°,∠AEF=90°,∴∠DEA+∠CEF=90°,∠DEA+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF.故选:A.【答案】A例2.如图,已知AB、CD分别是半圆O的直径和弦,AD和BC相交于点E,若∠AEC=α,则S△CDE:S△ABE等于()A. sinαB. cosαC. sin2αD. cos2α【答案】D例3.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F 处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=______.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,第2页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,∴AH=AE-HE=x-1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x-1)2=(x+2)2,整理得x2-6x-3=0,解得x1=3+2√3,x2=3-2√3(舍去),即AD的长为3+2√3.故答案为3+2√3.【答案】3+2√3例4.如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于______.【解答】解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴D′HPA′=PD′EA′,∴ax =x4a,∴x2=4a2,∴x=2a或-2a(舍弃),∴PA′=PD′=2a,∵12•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE=√22+42=2√5,PH=√12+22=√5,第3页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴AD=4+2√5+√5+1=5+3√5,∴矩形ABCD的面积=2(5+3√5)=10+6√5.故答案为10+6√5【答案】10+6√5例5.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=______.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE=√22+12=√5,∵AO⊥DE,∴12×DE×AO=12×AE×AD,∴AO=2√55.故答案为2√55.【答案】2√55例6.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于BC的中点处.①如图甲,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;②如图乙,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N.求证:△ECN∽△MEN.第4页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训【答案】证明:(1)∵△ABC是等腰直角三角形,∴∠B=45°,∴∠1+∠2=135°又∵△DEF是等腰直角三角形,∴∠3=45°∴∠1+∠4=135°∴∠2=∠4,∵∠B=∠C=45°,∴△BEM∽△CNE;(2)与(1)同理△BEM∽△CNE,∴BECN =EMNE,又∵BE=EC,∴ECCN =EMNE,∴ECEM =CNNE,又∵∠ECN=∠MEN=45°,∴△ECN∽△MEN.例7.如图,△ABC内接于⊙O,AD是边BC上的高,AE是⊙O的直径,连BE.(1)求证:△ABE与△ADC相似;(2)若AB=2BE=4DC=8,求△ADC的面积.【答案】第5页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例8.如图,AB是⊙O的直径,BE⊥CD于E.(1)求证:AB•BE=BC•BD;(2)若AB=26,CD=24,求sin∠CBD.【答案】(1)证明:连接AD,∵AB是直径,∴∠ADB=90°,∵BE⊥CD∴∠ADB=∠CEB∵∠A=∠C∴△CBE∽△ABD∴ABBC =BD BE∴AB•BE=BC•BD;(2)解:连接DO并延长交⊙O于点F,∵DF是直径,∴∠FCD=90°∴∠F=∠CBD AB=DF=26∴CD=24∴sin∠CBD=sin∠F=CDDF =2426=1213【举一反三】第6页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训第7页 共23页 自学七招之智慧树神拳:知识内容体系化,思维导图来助力 非学科培训1.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF ,则S △ABE :S △ECF 等于( )A. 1:2B. 4:1C. 2:1D. 1:4【答案】B2.矩形ABCD 中,AD=2AB=2√2,E 是AD 的中点,Rt ∠FEG 顶点与点E 重合,将∠FEG 绕点E 旋转,角的两边分别交AB ,BC (或它们的延长线)于点M ,N ,设∠AME=α(0°<α<90°),有下列结论:①BM=CN ;②AM+CN=√2;③S △EMN =1sin 2α,其中正确的是( )A. ①B. ②③C. ①③D. ①②③【解答】解:在矩形ABCD 中,AD=2AB ,E 是AD 的中点, 作EF ⊥BC 于点F ,则有AB=AE=EF=FC ,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,∴∠AEM=∠FEN ,在Rt △AME 和Rt △FNE 中,{∠AEM =∠FENAE =EF ∠MAE =∠NFE,∴Rt △AME ≌Rt △FNE ,∴AM=FN ,∴MB=CN ,故①正确;∴CF=AM+CN=12BC=√2,当点M 在AB 的延长线上时,AM-CN=√2,故②错误;∵Rt△AME≌Rt△FNE,∴EM=EN,∴△EMN是等腰直角三角形,∵∠AME=α,∴sinα=AEEM,∴EM=√2sinα,∴S△EMN=12EM2=1sin2α,故③正确,故选:C.【答案】C3.如图,AB是⊙的直径,CD是∠ACB的平分线交⊙O于点D,过D作⊙O的切线交CB的延长线于点E.若AB=4,∠E=75°,则CD的长为.【答案】2√34.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2√2,求⊙O的半径.【答案】(1)证明:∵DC2=CE•CA,∴DCCE =CADC,而∠ACD=∠DCE,第8页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴CD̂=CB̂,∴∠BOC=∠BAD,∴OC∥AD,∴PCCD =POOA=2rr=2,∴PC=2CD=4√2,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴PCPA =PBPD,即4√23r=r6√2,∴r=4,即⊙O的半径为4.5.如图,AB⊥BC,DC⊥BC,E是BC上一点,使得AE⊥DE;(1)求证:△ABE∽△ECD;(2)若AB=4,AE=BC=5,求CD的长;(3)当△AED∽△ECD时,请写出线段AD、AB、CD之间数量关系,并说明理由.第9页共23页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】(1)证明:∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°,∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠DEC=90°,∴∠DEC=∠BAE,∴△ABE∽△ECD;(2)解:Rt△ABE中,∵AB=4,AE=5,∴BE=3,∵BC=5,∴EC=5-3=2,由(1)得:△ABE∽△ECD,∴ABBE =ECCD,∴43=2CD,∴CD=32;(3)解:线段AD、AB、CD之间数量关系:AD=AB+CD;理由是:过E作EF⊥AD于F,∵△AED∽△ECD,∴∠EAD=∠DEC,∵∠AED=∠C,∴∠ADE=∠EDC,∵DC⊥BC,∴EF=EC,∵DE=DE,∴Rt△DFE≌Rt△DCE(HL),∴DF=DC,同理可得:△ABE≌△AFE,∴AF=AB,∴AD=AF+DF=AB+CD.6.已知,正方形DEFG内接于△ABC中,且点E、F在BC上,点D,G分别在AB,AC上.第10页共23页自学七招之提前完卷飞刀:考场控时莫紧张,跳跃答卷心不慌非学科培训(1)如图①,若△ABC是直角三角形,∠A=90°,AB=4,AC=3,求正方形的边长;(2)如图②,若S△ADG=1,S△BDE=3,S△FCG=1,求正方形的边长.【答案】解:(1)设正方形DEFG的边长是x,∵△ABC是直角三角形,∠A=90°,AB=4,AC=3,∴由勾股定理得:BC=5,过A作AM⊥BC于M,交DG于N,由三角形面积公式得:12AB×AC=12BC×AM,∵AB=4,AC=3,BC=5,∴AM=2.4,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DG∥BC,∴△ADG∽△ABC,∴DGBC =AN AM,∴x5=2.4−x2.4,x=6037,即正方形DEFG的边长是6037;(2)过A作AM⊥BC于M,交DG于N,设正方形DEFG的边长是a,AN=b,∵四边形DEFG是正方形,∴DG=GF=EF=DE=MN=a,DG∥BC,∵S△ADG=1,S△BDE=3,S△FCG=1,∴12ab=1,12BE•a=3,12CF•a=1,∴BE=3b,CF=b,∴S△ADG+S△BED+S CFG=12ab+32ab+12ab=1+3+1=5,∴ab=2,∴b=2a①,=1(BE+EF+CF)×(AN+MN)-(S△ADG+S△BDE+S△CFG)2(a+4b)(a+b)-5=a2,=12∴a=2b②,由①②得:a=2,即正方形的边长是2.7.如图,在长方形ABCD中,点E,F分别是BC,DC上的动点.沿EF折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,求CF的取值范围.【答案】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=5,CD=AB=3,当点D与F重合时,CF最大值为3,如图1所示:当B与E重合时,CF最小,如图2所示:在Rt△ABG中,∵BG=BC=5,AB=3,∴AG=√BG2−AB2=4,∴DG=AD-AG=1,设CF=FG=x,在Rt△DFG中,∵DF2+DG2=FG2,∴(3-x)2+12=x2,,∴x=53∴5≤CF≤3.≤CF≤3.故答案为:538.如图,在⊙O中,直径AB垂直于弦CD,垂足为点E,点F在AC上从A点向C点运动(点A、C 除外),AF与DC的延长线相交于点M.(1)求证:△AFD∽△CFM;(2)点F在运动中是否存在一个位置使△FMD为等腰三角形?若存在,给予证明;若不存在,请说明理由.【答案】1.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A. ∠1>∠2B. ∠1<∠2C. ∠1=∠2D. 无法确定【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【答案】C2.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交CD于点F,交AD的延长线于点E,若AB=4,BM=2,则△DEF的面积为()A. 9B. 8C. 15D. 14.5【答案】A3.如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()A. S1=S2B. S1>S2C. S1<S2D. 3S1=2S2S矩形AEFC,即S1=S2,【解答】解:矩形ABCD的面积S=2S△ABC,而S△ABC=12故选:A.【答案】A4.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,且E为AD的中点,FC=3DF,连接EF并延长交BC的延长线于点G(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求△BEG的面积.=FCDF=3,∴CG=6,∴BG=BC+CG=10,∴△BEG的面积=12×BG×AB=20.5.如图,在正方形ABCD中,AB=4,点P、Q分别在直线CB与射线DC上(点P不与点C、点B重合),且保持∠APQ=90°,CQ=1,则线段BP的长为______.【解答】解:分三种情况:设BP=x,①当P在线段BC上时,如图1,∵四边形ABCD是正方形,∴∠B=∠C=90°,∴∠BAP+∠APB=90°,∵∠APQ=90°,∴∠APB+∠CPQ=90°,∴∠BAP=∠CPQ,∴△ABP∽△PCQ,∴ABBP=PCCQ,∴4x=4-x1,∴x1=x2=2,∴BP=2;②当P在CB的延长线上时,如图2,同瑆得:△ABP∽△PCQ,6.已知,如图,在圆O中,AB=CD。

相似三角形经典题型

相似三角形经典题型

相似三角形经典题型一、相似三角形的判定定理相关题型1. 题目已知在△ABC和△A'B'C'中,∠A = 50°,AB = 3cm,AC = 4cm,∠A'= 50°,A'B'= 6cm,A'C' = 8cm。

判断这两个三角形是否相似。

解析根据相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

在△ABC和△A'B'C'中,(AB)/(A'B')=(3)/(6)=(1)/(2),(AC)/(A'C')=(4)/(8)=(1)/(2),且∠A = ∠A' = 50°。

所以△ABC∽△A'B'C'。

2. 题目如图,在四边形ABCD中,∠B = ∠ACD,AB = 6,BC = 4,AC = 5,CD=(7)/(2),求AD的长。

解析因为∠B = ∠ACD,且(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),(AC)/(AD)未知。

又因为(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),不满足三边对应成比例。

但是由∠B = ∠ACD,(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),可以尝试证明△ABC和△ACD相似。

因为∠B = ∠ACD,(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),这里我们重新计算(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)是错误的,应该是(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7),(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)(AB)/(AC)=(6)/(5),(BC)/(CD)=(4)/(frac{7){2}}=(8)/(7)(AB)/(AC)=(BC)/(CD)所以△ABC∽△DCA。

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)

人教九下数学 第27章 相似三角形的判定及有关性质综合测试(含答案)一、选择题(每小题6分,共48分)1.在△ABC 中,D 、F 是AB 上的点,E 、H 是AC 上的点,直线DE//FH//BC ,且DE 、FH 将△ABC 分成面积相等的三部分,若线段FH=65,则BC 的长为( ) A .15 B .10 C.6215 D .15322.在△ABC 中,DE//BC ,DE 交AB 于D ,交AC 于E ,且S △ADE :S 四边形DBCE=1:2,则梯形的高与三角形的边BC 上的高的比为( )A .1:2B .1:)12(-C .1:)13(-D .)13(-:33.在Rt △ABC 中,∠C=90°,CD 是斜边AB 上的高,AC=5,BC=8,则S △ACD :S △CBD 为( ) A .85B .6425 C .3925 D .8925 4.如图1—5—1,D 、E 、F 是△ABC 的三边中点,设△DEF 的面积为4,△ABC 的周长为9,则△DEF 的周长与△ABC 的面积分别是( )A.29,16 B. 9,4 C. 29,8 D. 49,165.如图1—5—2,在△ABC 中,AD ⊥BC 于D ,下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC ; (3)ABAC AD CD =;(4)AB 2=BD ·BC 。

其中一定能够判定△ABC 是直角三角形的共有( ) A .3个B .2个C .1个D .0个6.如图1—5—3,在正三角形ABC 中,D ,E 分别在AC ,AB 上,且31AC AD =,AE=BE ,则有( )A. △AED ∽△BED B .△AED ∽△CBD C. △AED ∽△ABD D .△BAD ∽△BCD7.如图1—5—4,PQ//RS//AC ,RS=6,PQ=9,SC 31QC =,则AB 等于( ) A. 415B. 436C. 217D. 58.如图1—5—5,平行四边形ABCD 中,O 1、O 2、O 3是BD 的四等分点,连接AO 1,并延长交BC 于E ,连接EO 2,并延长交AD 于F ,则FDAD等于( )A .3:1B .3:1C .3:2 D. 7:39.如果一个三角形的一条高分这个三角形为两个相似三角形,那么这个三角形必是( ) A .等腰三角形 B. 任意三角形C .直角三角形D .直角三角形或等腰三角形10.在△ABC 和△A'B'C'中,AB : AC=A'B':A'C',∠B=∠B',则这两个三角形( ) A .相似,但不全等 B .全等C .一定相似D .无法判断是否相似11.如图1—6—1,正方形ABCD 中,E 是AB 上的任一点,作EF ⊥BD 于F ,则BEEF为( )A .22B .21C .36D .2图1—6—112.如图1—6—2,把△ABC 沿边AB 平移到△A'B'C'的位置,它们的重叠部分(图中阴影部分)的面积是△ABC 的面积的一半,若2AB =,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21 图1—6—213.如图1—6—3,在四边形ABCD 中,∠A=135°,∠B=∠D=90°,BC=32,AD=2,则四边形ABCD 的面积是( )A .24B .34C .4D .6 图1—6—314.如图1—6—4,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似三角形共有( )A .3对B .4对C .5对D .6对15.在直角三角形中,斜边上的高为6cm ,且把斜边分成3:2两段,则斜边上的中线的长为( )A.265cm B .64cm C .65cmD .325cm16.AD 为Rt △ABC 斜边BC 上的高,作DE ⊥AC 于E ,45AC AB =,则EACE=( ) A .2516 B .54C .45D .162517.如图1—6—5,△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,已知AB=m ,BC=n ,求CD 的长。

非学科数学学培训 相似三角形判定与性质综合(资料附答案)

非学科数学学培训 相似三角形判定与性质综合(资料附答案)

自学资料一、相似三角形判定与性质综合【知识探索】1.A字型、反A字型(斜A字型)8字型、反8字型第1页共22页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训2.共享性:【错题精练】例1.如图,△ABC中,D边BC上一点,E是CD的中点,且∠ACD=∠ABE,已知AC=2,设AB=x,AD=y,则y与x满足的关系式为()A. xy=4;B. 2xy−y2=4;C. xy−y2=4;D. x2+xy−2y2=4.【答案】B例2.如右图,AD//CB,AB与CD相交于点E,过点B的直线交CD于点F,交AD于点G,若BEAE =23,BF GF =85,EF=2,则DF的长为()第2页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训A. 72; B. 257;C. 185; D. 4.【答案】B例3.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A. 4;B. 6;C. 4√2;D. 4√3.【答案】C例4.如图,在△ABC中,点D在边AB上,过点D作DE∥BC交AC于点E,DF∥AC交BC于点F,若AE:DF=2:3,则BF:BC的值是()A. 23; B. 35;C. 12; D. 25.【答案】B例5.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则SΔDEF:SΔBAF:S四边形BCEF= .第3页共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】9:25:48例6.如图,在△ABC中,D,E分别是AB,AC上的点,AF平分∠BAC,交DE于点G,交BC 于点F.若∠AED=∠B,且AG:GF=3:2,则DE:BC=.【答案】3:5例7.如图,在△ABC中,点D,E分别在边AB,AC上,∠ACD=∠B,DE∥BC.(1)求证:△ADE∽△ACD;(2)若DE=6,BC=10,求线段CD的长.【解答】(1)证明:∵∠ACD=∠B,又∵∠DAC=∠CAB,∴△ACD∽△ABC,∵DE∥BC,∴△ABC∽△ADE,∴△ADE∽△ACD;(2)解:∵DE∥BC,∴∠EDC=∠DCB,∵∠ACD=∠B,即∠ECD=∠B,∴△EDC∽△DCB,∴CDBC =DECD,即CD2=BC⋅DE,∵DE=6,BC=10,第4页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训∴CD2=BC⋅DE=60,解得:CD=2√15.【答案】(1)略;(2)2√15.例8.如图,在△ABC中,AD、BE是中线,它们相交于点F,EG∥BC,交AD于点G.(1)求证:△FGE∽△FDB;(2)求AGDF的值.【解答】(1)解:由题意知:∵EG∥BC,∴∠GEF=∠FBD,∵∠BFD=∠GFE,∠GEF=∠FBD,∴△FGE∽△FDB;(2)解:∵AD、BE分别是三角形的中线,∴BD=CD,AE=EC,∵EG∥BC,∴EG是△ADC的中位线,∴EG=12CD,∵△EFG∽△BDF,∴EGBD =FGFD=12,∴DF=23DG,∵EG是△ADC的中位线,∴AG=DG,∴DF=23AG,∴AG:DF=3:2=32.【答案】(1)略;(2)32.第5页共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训例9.如图,等边△ABC中,点D是BC上任意点,以AD为边作∠ADE=∠ADF=60∘,分别交AC,AB于点E,F.(1)求证:AD2=AE×AC;(2)已知BC=2,设BD的长为x,AF的长为y,求y关于x的函数表达式;(3)若四边形AFDE的外接圆直径为13√312,求y与x的值.【解答】(1)解:在等边△ABC中∠B=∠C=60∘∵∠ADE=60∘∴∠ADE=∠ACD,∠DAE=∠CAD,∴△ADE=△ACD∴ADAE =ACAD∴AD2=AE×AC;(2)解:∵∠B=∠ADF,∠DAF∠BAD∴△DAF∽△BAD∴DABA =AFAD∴AD2=AF×AB∴△DAF∽△BAD由(1)知AD2=AE×AC,且AB=AC∴AE=AF∵∠B=∠C=∠ADE且∠BAD+∠B=∠ADE+∠CDE ∴∠BAD=∠CDE∴△ABD∽△DCE∴ABBD =DCCE∵BC=2,BD=x,AF=y∴AB=2,CD=2−x,CE=2−y∴2x =2−x2−y∴y=12x2−x+2(0≤x≤2);第6页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训第7页 共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训(3)解:连接EF ,AF =AE ,∠EAF =60∘∠EDF =120∘则△AEF 为等边三角形 ∴四边形AFDE 的外接圆即为等边三角形△AEF 的外接圆 ∵四边形AFDE 的外接圆直径为13√312∴AF =EF =138∴当y =138时,x 1=12,x2=32.【答案】(1)略;(2)y =12x 2−x +2(0≤x ≤2);(3)当y =138时,x 1=12,x 2=32.例10.已知:如图,点D 是等腰直角△ABC 的重心,其中∠ACB =90∘,将线段CD 绕点C 逆时针旋转90°得到线段CE ,连结DE ,若△ABC 的周长为6,则△DCE 的周长为( )A. 2√2;B. 2√3;C. 4;D. 3√2.【答案】A例11.如图,△ABC 是等边三角形,D ,E 在BC 边所在的直线上,且BC 2=BD ⋅CE . (1)求∠DAE 的度数.(2)求证:AD 2=DB ⋅DE .【解答】(1)解: ∵△ABC 是等边三角形,∴∠ABC =∠ACB =60∘,AB =AC =BC , ∴∠ABD =∠ACE , ∵BC 2=BD ⋅CE , ∴AB ⋅AC =BD ⋅CE ,即ABBD =CEAC,∴△ABD∽△ECA;∴∠DAB=∠E,∴∠DAE=∠DAB+∠BAC+∠EAC=120∘(2)证明:∵∠DAE=∠ADB=120∘,∠D=∠D,∴△ABD∽△EAD∴ADDE =BDAD,∴AD2=DB⋅DE.【答案】(1)∠DAE=120∘;(2)略.例12.如图使用卡钳测量容器内径的示意图,现量得卡钳上A、D两端点的距离为6cm,AOBO =DOCO=47,求容器的内径BC.【解答】解:∵AOBO =DOCO又∵∠AOD=∠BOC ∴△AOD∽△BOC∴ADBC =AOBO=DOCO=47∵AD=6cm∴BC=212cm【答案】BC=212cm.例13.如图,在△ABC中,∠A=36∘,AC=AB=2,将△ABC绕点B逆时针方向旋转得到△DBE,使点E在边AC上,DE交AB于点F,则△AFE与△DBF的面积之比等于()第8页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训A. √5−1;2;B. √5−14C. 3−√5;2D. 3−√5.4【答案】C例14.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=k(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的x解析式为.【答案】y=2x例15.如图:在⊙O中,经过⊙O内一点P有一条弦AB,且AP=4,PB=3,过P点另有一动弦CD,连接AC,DB.设CP=x,PD=y.(1)求证:△ACP∽△DBP;(2)写出y关于x的函数解析式;(3)若CD=8时,求S△ACP:S△DBP的值.第9页共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【解答】(1)证明:∵∠C=∠B,∠A=∠D,∴△ACP∽△DBP.(2)解:由(1)可得:CP⋅PD=AP⋅PB,即xy=12.∴y=12x.(3)解:由题意得{xy=12x+y=8.由②得y=8−x.代入①得x(8−x)=12.得x1=2,x2=6.∴CP=2,PD=6或CP=6,PD=2.S△ACP:S△DBP=CP2:BP2=22:32=4:9或S△ACP:S△DBP=CP2:BP2=62:32=4:1.【答案】(1)略;(2)y=12x;(3)4:1.【举一反三】1.如图,在直角△ABC中,∠ACB=90∘,AC=3,BC=4,且点D,D分别在BC,AB上,连结AD和CE交于点H,若BDCD =2,AHDH=1,则BE的长为.【答案】154.第10页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训2.在平行四边形ABCD中,E为AB上的一点,连结CE,P为CE的中点,过P作直线MN分别交边AD,BC于点M,N,若EA:EB=5:4,则且PM:PN=.【答案】723.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.【解答】(1)∵AB=2,BC=4,BD=1,∴ABBC =24=12,BD AB =12,∴ABBC =BDAB,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)∵DE∥AB,∴△CDE∽△CBA,∴△ABD∽△CDE,∴DE=1.5.【答案】(1)见解答;(2)DE=1.5.4.如图,在平行四边形ABCD中,∠BCD和∠ABC的平分线分别交AD于E,G两点,CE,BG相交于点O.(1)求证:AG=DE;(2)已知AB=4,AD=5,求OEOC的值;(3)求四边形ABOE的面积与△BOC的面积之比.【解答】(1)证明:BG平分∠ABC,CE平分∠BCD∴∠ABG=∠CBG,∠BCE∠DCE∵AD∥BC∴∠CBG=∠AGB,∠BCE=∠CED∴AB=AG,CD=DE∵AB=CD∴AG=DE;(2)解:∵AB=4,AD=5∴AG=DG=4,AE=AD−DE=1,GD=AD−AG=1∴EG=AD−AE−DG=3∵AD∥BC∴OEOC =EGBC=35;(3)解:连接AO,设SΔOEG=9a∵AD∥BC,∴△OEG∽△OCB∴SΔOEG:SΔOBC=9:25∴SΔOBC=25a∵AE:EG=1:3∴SΔOAE:SΔOEG=1:3∴SΔOAE=3a∴SΔOAG=12a∵SΔOAB:SΔOAG=OB:OG=5:3∴SΔOAB=20a∴S四边形ABOE=SΔOAB+SΔOAE=23a∴S四边形ABOE:SΔOBC=23a:25a=23:25.【答案】(1)略;(2)35;(3)23∶25.5.如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC,若AD=2,DB=1,△ADE、△ABC的面积分别为S1、S2,则S1的值为()S2;A. 23B. 1;2;C. 49D. 2.【答案】C6.如图,在△ABC中,AC=4,BC=2,点D是边AB上一点,CD将△ABC分成△ACD和△BCD,若△ACD是以AC为底的等腰三角形,且△BCD与△BAC相似,则CD的长为..【答案】4√337.如图,在△ABC中,EF∥CD,DE∥BC.(1)求证:AF:FD=AD:DB;(2)若AB=15,AD:BD=2:1,求DF的长.【解答】(1)证明:∵EF∥CD,∴AFFD =AEEC,∵DE∥BC,∴ADBD =AEEC,∴AF:FD=AD:DB;(2)解:∵AD:BD=2:1,∴BD=12AD,∴AD+12AD=15,∴AD=10,∵AF:FD=AD:DB,∴AF:FD=2:1,∴AF=2DF,∵AF+DF=10,∴2DF+DF=10,∴DF=103.【答案】(1)略;(2)DF=103.8.在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么AB的长为.【答案】3.9.如图,ABCD中,AC,BD交于点O,BC=6,OE=2,BO=4.(1)求证△DEF∽△BEC;(2)求AF的长.【解答】(1)证明:∵∠FDE=∠CBE,∠DFE=∠BCE,∠DEF=∠BEC,∴△DEF∽△BEC;(2)解:∴OB=OD=4,AD∥BC,AD=BC=18,∵OE=2,∴DE=4−2=2,∵AD∥BC,∴△DFE∽△BCE,∴DF+BC=DE+BE,∴DF+18=24+2,∴DF=6,∴AF=18−6=12.【答案】(1)略;(2)12.10.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90∘,E为AB的中点,连接CE、DE.AC 与DE相交于点F.(1)求证:△ADF∽△CEF;的值.(2)若AD=4,AB=6,求ACAF【解答】(1)证明:∵∠ACB=90∘,E为AB的中点,∴AE=CE,∴∠EAC=∠ACE,∵AC平分∠DAB,∴∠DAC=∠CAB,∴∠DAC=∠ACE,∴AD∥CE,∴△ADF∽△CEF;(2)解:∵E为AB的中点,∴CE=12AB=AE,∴∠EAC=∠ECA;∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;∴△AFD∽△CFE,∴AD:CE=AF:CF;∵CE=12AB=3,AD=4,∴AFCF =ADCE=43,∴ACAF =74.【答案】(1)略;(2)ACAF =74.11.如图,矩形ABCD中,AB=4,BC=3,将△ABC沿AC折叠,点B落到E点,此时AE交CD于F,则AF:EF=()A. 24:7;B. 25:7;C. 2:1;D. 3:1.【答案】B12.如图,B、C、D在同一直线上,△ABC和△DCE都是等边三角形,且在直线BD的同侧,BE交AD于F,BE交AC于M,AD交CE于N.(1)求证:AD=BE;(2)求证:△ABF∽△ADB.【解答】(1)证明:∵△ABC与△DCE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60∘.∴∠ACB+∠ACE=∠ACE+∠DCE,即∠BCE=∠ACD.在△BCE和△ACD中,{BC=AC∠BCE=∠ACDCD=CE,∴△BCE≌△ACD(SAS),∴AD=BE;(2)证明:由(1)知:△BCE≌△ACD,∴∠CBE=∠CAD,又∵∠BMC=∠AMF,∴∠AFB=∠ACB=60∘=∠ABC,又∵∠BAF=∠BAD,∴△ABF∽△ADB.【答案】(1)略;(2)略.13.在梯形ABCD中,AB∥CD,点E在线段DA上,直线CE与BA的延长线交于点G.(1)求证:△CDE∽△GAE;(2)当DE:EA=1:2时,过点E作EF∥CD交BC于点F且CD=4,EF=6,求AB的长.【解答】(1)证明:∵梯形ABCD,AB∥CD,∴∠CDE=∠GAE,∠DCE=∠EAG.∴△CDE∽△GAE.(2)证明:由(1)△CDE∽△GAE,∴DE:EA=DC:GA.∵DE:EA=1:2,CD=4,∴GA=8,CE:CG=1:3.又∵EF∥CD,AB∥CD,∴EF∥GB.∴△CEF∽△CGB.∴CE:CG=EF:GB.∵EF=6,∴GB=18.∴AB=GB−GA=18−8=10.【答案】(1)略;(2)10.14.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D.求证:(1)D是BC的中点;(2)△BEC∽△ADC.【解答】(1)证明:∵AB为⊙O的直径,∴∠BDA=90∘∴AD⊥BC,∵AB=AC,∴BD=CD,∴D是BC的中点;(2)证明:AB=AC,∴∠C=∠ABD,∵AB为⊙O的直径,∴∠ADB=∠BEC=90∘,∴△BEC∽△ADC.【答案】(1)略;(2)略.1.如图,在△ABC中,AB=8,AC=6,点D在边AB上,AD=4.5,△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)求AFAE的值.【解答】(1)证明:ADAC =ACAB,∵∠BAC=∠CAD,∴△ACD∽△ABC (2)解:∵△ACD∽△ABC,AE是∠BAC的角平分线,∴AFAE =ACAB=34.【答案】(1)略;(2)AFAE =ACAB=34.2.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40∘,∠B=60∘,求证:CD为△ABC的完美分割线;(2)在△ABC中,∠A=48∘,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数;(3)如图2,△ABC中,AC=2,BC=√2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【解答】(1)证明:如图1中,∵∠A=40∘,∠B=60∘,∴∠ACB=80∘,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=12∠ACB=40∘,∴∠ACD=∠A=40∘,∴△ACD为等腰三角形,∵∠DCB=∠A=40∘,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD为△ABC的完美分割线;(2)解:①当AD=CD时,如图2,∠ACD=∠A=48∘,∵△BDC∽△BCA,∴∠BCD=∠A=48∘,∴∠ACB=∠ACD+∠BCD=96∘;②当AD=AC时,如图3中,∠ACD=∠ADC=180∘−48∘2=66∘,∵△BDC∽△BCA,∴∠BCD=∠A=48∘,∴∠ACB=∠ACD+∠BCD=114∘;③当AC=CD时,如图4中,∠ADC=∠A=48∘,∵△BDC∽△BCA,∴∠BCD=∠A=48∘,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96∘或114°;(3)解:由已知AC=AD=2,∵△BCD∽△BAC,∴BCBA =BDBC,设BD=x,∴(√2)2=x(x+2),∵x>0,∴x=√3−1,∵△BCD∽△BAC,∴,∴CD=√3−1√2×2=√6−√2.【答案】(1)略;(2)略;(3)√6−√2.3.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.【解答】(1)证明:∵AB=2,BC=4,BD=1,∴ABBC =24=12,BDAB=12,∴ABBC =BDAB,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△CBA,∴△ABD∽△CDE,∴DE=1.5.【答案】(1)略;(2)1.5.4.如图,正方形ABCD的对角线AC、BD相交于点O,E是BC中点,DE交AC于F,若DE=12,则EF等于()第21页共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训A. 8;B. 6;C. 4;D. 3.【答案】C第22页共22页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。

证明:=。

当GC⊥BC时,证明:∠BAC=90°。

2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。

证明:AC^2=AF•AD。

联结EF,证明:AE•DB=AD•EF。

3.在三角形ABC中,PC平分∠ACB,PB=PC。

证明:△APC∽△ACB。

若AP=2,PC=6,求AC的长。

4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。

证明:△ABF∽△EAD。

若AB=4,∠BAE=30°,求AE的长。

5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。

证明:AB•BC=AC•CD。

6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。

说明AF•BE=2S的理由。

7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。

若AE=CF,证明:AF=BE,并求∠APB的度数。

若AE=2,试求AP•AF的值。

若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。

8.在钝角三角形ABC中,AD,BE是边BC上的高。

证明。

9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。

证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。

10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。

12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。

相似三角形的判定与性质练习题(附答案)

相似三角形的判定与性质练习题(附答案)

相似三角形的判定与性质练习题一、单选题1.如果两个相似三角形的相似比是1:2, 那么这两个相似三角形的面积比是( ) A.2:1 B. 1:2C.1:2D.1:42.如图,点D 是△ABC 的边AB 上的一点,过点D 作BC 的平行线交AC 于点E,连接BE,过点D 作BE 的平行线交AC 于点F,则下列结论错误的是( )A. AD AE BD EC= B. AF DF AE BE= C. AE AF EC FE= D. DE AF BC FE = 3.下列四条线段中,不能组成比例线段的是( )A.3,6,2,4a b c d ====B.1,2,3,6a b c d ====C.4,6,5,10a b c d ====D.2,5,23,15a b c d ====4.如图,在ABC ∆中,点D 、E 分别在边AB 、AC 上,下列条件中不能判断ABC AED ~△△ ( )A. AED B ∠=∠B. ADE C ∠=∠C. AD AC AE AB =D. AD AE AB AC= 5.如图27-4-4,在四边形ABCD 中,BD 平分,90,ABC BAD BDC E ∠∠=∠=°为BC 的中点,AE 与BD 相交于点F.若4,30BC CBD =∠=°,则DF 的长为( )A.235B.233C.334D.4356.如图,在中,E是边AD的中点,EC交对角线BD于点F,则:EF FC等于( )A.3:2B.3:1C.1:1D.1:27.如图,点A,B,C,D的坐标分别是(1,7),(11),,(41),,(61),,以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(60),B.(63),C.(65),D.(42),8.如图,在正方形网格上,若使△ABC∽△PBD,则点P应在处( )A.P1B.P2C.P3D.P49.如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=( )A.1:3B.1:4C.2:3D.1:210.如图,在等边三角形ABC 中,D 、E 分别在AC 、AB 上,且AD ︰AC=1︰3,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD11.如图所示,四边形ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P 是BC 的中点;④BP:BC=2:3.其中能推出△ABP∽△ECP 的有( )A.4个B.3个C.2个D.1个12.如图,在ABC △中,CB CA =,90ACB ∠︒=,点D 在边BC 上(与,B C 不重合),四边形ADEF 为正方形,过点F 作FG CA ⊥,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:AC FG =;四边形1:2FAB 四边形CBFG S :S =△③ABC ABF ∠=∠;④2AD FQ AC =,其中正确结论有( ) A.1个 B.2个C.3个D.4个13.如图,点A 在线段BD 上.在BD 的同侧作等腰Rt ABC △和等腰Rt ADE △,CD 与BE ,AE 分别交于点,P M .对于下列结论:① BAE CAD △△;②MP MD MA ME ⋅=⋅;③22CB CP CM =⋅.其中正确的是( )A.①②③B.①C.①②D.②③14.如图,在平行四边形ABCD 中, E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,:4:25DEF ABF S S ∆∆=,则:?DE EC = ( ) A. 2:3B. 2:5C. 3:5D. 3?:?2二、证明题15.如图,已知,,B C E 三点在同一条直线上,ABC △与DCE △都是等边三角形.其中线段BD 交AC 于点G ,线段AE 交CD 于点F ,连接GF .求证:(1)ACE BCD ≅△△;(2)AG AF GC FE=. 16.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交,AB AC 于点,M N .求证:BP CP BM CN ⋅=⋅.17.如图,D BC 已知是边上的中点,且AD AC =,DE BC ⊥,DE BA E 与相交于点,EC AD F 与相交于点.(1)求证:ABC FCD △△;(2)若5FCD S =△,10BC =,求DE 的长18.如图,已知AD 平分BAC ∠, AD 的垂直平分线EP 交BC 的延长线于点P .求证:2.PD PB PC =⋅19.如图,//AB FC ,D 是AB 上一点,DF 交AC 于点E ,DE FE =,分别延长FD 和CB 交于点G(1)求证:ADE CFE ≅△△;(2)若2GB =,4BC =,1BD =,求AB 的长.20.如图,在ABCD 中,,AM BC AN CD ⊥⊥,垂足分别为,M N .求证:(1)AMB AND △△;(2)AM MN AB AC=. 三、解答题21.如图,在4x3的正方形方格中,ABC △和DEC △的顶点都在边长为1的小正方形的顶点上.(1) 填空:ABC ∠= ,BC = ;(2) 判断ABC △和DEC △是否相似,并证明你的结论.22.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P,Q 同时出发,用t(秒)表示移动的时间(0≤t≤6),那么1.设△POQ 的面积为y,求y 关于t 的函数关系式;2.当t 为何值时,△POQ 与△AOB 相似.23.如图,已知矩形ABCD 的一条边8AD =,将矩形ABCD 折叠,使得顶点B 落在CD 边上的P 点处.已知折痕与边BC 交于点O ,连接,,.AP OP OA(1)求证:OCP PDA △△;(2)若OCP △与PDA △的面积比为1:4,求边AB 的长.24.如图,在平面直角坐标系xOy 中,直线3y x =-+与x 轴交于点C ,与直线AD 交于点45(,)33A ,点D 的坐标为(0)1,.(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当BOD △与BCE △相似时,求点E 的坐标. 25.如图,在矩形ABCD 中,12AB = cm ,6BC = cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P ,Q 同时出发,用()t s 表示移动的时间(06t ≤≤),那么:(1)当t 为何值时,QAP △为等腰直角三角形?(2)对四边形QAPC 的面积,提出一个与计算结果有关的结论(3)当t 为何值时,以点Q ,A ,P 为顶点的三角形与ABC △相似?四、填空题26.如图,在直角梯形ABCD 中, 90ABC ∠=,//AD BC ,4AD =,5AB =,6BC =,点P 是AB 上一个动点,当PC PD +的和最小时, PB 的长为__________.27.如图,若AB∥CD,则△__________∽△__________,__________=__________=AO CO.28.如图,在等边三角形ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且90ADF BED CFE ∠=∠=∠=︒,则DEF ∆与ABC ∆的面积之比为__________ 29.已知578a b c ==,且329a b c -+=,则243a b c +-的值为 . 30.如图,已知在Rt ABC △中,5,3AB BC ==,在线段AB 上取一点D ,作DE AB ⊥交AC 于E ,将ADE △沿DE 析叠,设点A 落在线段BD 上的对应点为11,A DA 的中点为,F 若1FEA FBE △△,则AD= .31.已知:如图,在△ABC 中,点A 1,B 1,C 1分别是BC 、AC 、AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点,依此类推….若△ABC 的周长为1,则△A n B n C n 的周长为__________.32.如图,正三角形ABC 的边长为2,以BC 边上的高1AB 为边作正三角形11AB C ,ABC △与1ABC △公共部分的面积记为1S ,再以正三角形11AB C 的边1C 上的高2AB 为边作正三角形22AB C ,11AB C △与22AB C △公共部分的面积记为2S ,……,以此类推,则n S = .(用含n 的式子表示,n 为正整数)33.如图,在正方形ABCD 中,点E 是BC 边上一点,且 : 2:1,BE EC AE =与BD 交于点F ,则AFD △与四边形DFEC 的面积之比是 .34.如图,在△ABC 中,∠C=90°,BC=16cm,AC=12cm,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动,点Q 从点C 出发,以1cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts,当t=__________时,△CPQ 与△CBA 相似.35.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且1,4CF CD =下列结论: ①30BAE ∠=°; ②;ABE ECF △△③AE EF ⊥; ④ADF ECF △△.其中正确结论是 .(填序号)36.如图27-4-9,在ABC △中,90,8m 10m,C BC AB ∠===,°点 P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.若P Q 、同时分别从B C 、出发,经过____________s,CPQ CBA △△~.37.如图24-4-10,ABC △的两条中线AD 和BE 相交于点G ,过点E 作//EF BC 交AD 于点F ,则FG AG=________.参考答案1.答案:C解析:2.答案:D解析:3.答案:C解析:A 选项,因为3:62:4=,所以,,,a b c d 四条线段成比例B 选项,因为1232,2226==,所以,,,a b c d 四条线段成比例C 选项,因为4:56:10≠,所以,,,a b c d 四条线段不成比例D 选项,因为2252325,55515==,所以,,,a b c d 四条线段成比例故选C 4.答案:D解析:∵DAE CAB ∠=∠,∴当AED B ∠=∠或ADE C ∠=∠时,由两角分别相等的两个三角形相似,可以得出ABC AED ~△△;当AD AC AE AB=时,由两边成比例且夹角相等的两个三角形相似,可得ABC AED ~△△. 只有选项D 中条件不能判断ABC AED ~△△,故选D.5.答案:D解析:如图,在Rt BDC △中,4,30,BC CBD =∠=°2,2 3.CD BD ∴=∴=连接,90,DE BDC ∠=°,点E 是BC 中点,1 2.2DE BE CE C ∴====30,30,CBD BDE DBC ∠=∴∠=∠=°°,30,BD CBC ABD DBC ∠∴∠=∠=°,//,,ABD BDE DE AB DEF BAF ∴∠=∠∴∴△△~.DF DE BF AB ∴=在Rt ABD △中,230,23,3,,3DF ABD BD AD BF ∠==∴=∴=°22243,23,5555DF DF BD BD ∴=∴==⨯=故选D.6.答案:D解析:在中, //AD BC ,∴DEF BCF ∆~∆,∴DE EF BC CF=. ∴点E 是边AD 的中点, ∴12AE DE AD ==, ∴12EF CF =. 7.答案:B解析:ABC ∆中, 90,6,3,:2ABCAB BC AB BC ∠====. A 、当点E 的坐标为()6,0时, 90,2,1CDE CD DE ∠===,则::,AB BC CD DE CDE ABC =∆~∆,故本选项不符合题意; B 、当点E 的坐标为()6,3时, 90,2,2CDE CD DE ∠===,则::,AB BC CD DE CDE ≠∆与ABC ∆不相似,故本选项符合题意; C 、当点E 的坐标为()6,5时, 90,2,4CDE CD DE ∠===,则::,AB BC DE CD EDC ABC =∆~∆,故本选项不符合题意; D 、当点E 的坐标为()4,2时, 90,2,1ECD CD CE ∠===,则::,?AB BC CD CE DCE ABC =∆~∆,故本选项不符合题意; 故选:B.8.答案:C解析:从图中可知,要使△ABC 与△PBD相似,根据勾股定理,得BC =BD =12BC AB BD BP ===,因为AB=2,那么BP=4,故选择P 3处 . 考点:相似三角形点评:该题主要考查学生对相似三角形概念的理解,以及对其性质的应用。

相似三角形的判定十大题型

相似三角形的判定十大题型

在△BPG 中,∵∠B=45°,
∴∠AGB=∠CPF,
∴∠BPG+∠BGP=135°,
∵∠B=∠C,
∴∠BGP=∠CPF,
∴△PBG∽△FCP.
∵∠B=∠C,
∴△PBG∽△FCP;
【题型4 利用相似三角形的判定探究线段之间的关系】
【例 4】四边形 ABCD 中,点 E 在边 AB 上,连接 DE,CE. (1)若∠A=∠B=∠DEC=50°,找出图中的相似三角形,并说明理由; (2)若四边形 ABCD 为矩形,AB=5,BC=2,且图中的三个三角形都相似,求 AE 的 长. (3)若∠A=∠B=90°,AD<BC,图中的三个三角形都相似,请判断 AE 和 BE 的数 量关系并说明理由.
解:(1)∵D、E 分别是 AC、BC 的中点, ∴DE∥AB,DE= 12AB=5, ∵DE∥AB, ∴∠DEC=∠B,而∠F=∠B, ∴∠DEC=∠F, ∴DF=DE=5; (2)∵AC=BC, ∴∠A=∠B, ∵∠CDE=∠A,∠CED=∠B, ∴∠CDE=∠B, ∵∠B=∠F, ∴∠CDE=∠F, ∵∠CED=∠DEF, ∴△CDE∽△DFE.
出发,问在运动 5 秒钟内,以点 D,A,E 为顶点的三角形何时与△OCD 相似?(只考
虑以点 A、O 为对应顶点的情况)
解:(1)C(3,4),D(9,4);
(2)易知:OB=AB=10;
∵C 点坐标为(3,4),
∴点 C 到 x 轴的距离为 4
①当点 D 在线段 OA 上,即 0<t≤6 时,OD=2t;
则:S=
12OD×4=
1 2
×2t×4=4t;
②当 D 在线段 AB 上,即 6≤t<11 时,BD=OA+AB﹣2t=22﹣2t;

相似三角形的判定+性质+经典例题分析

相似三角形的判定+性质+经典例题分析

相似形一一、比例性质1.基本性质:bc ad dcb a =⇔=两外项的积等于两内项积 2.反比性质:cda b d c b a =⇔= 把比的前项、后项交换3.合比性质:ddc b b ad c b a ±=±⇒=分子加减分母;分母不变 .4.等比性质:分子分母分别相加;比值不变.如果)0(≠++++====n f d b nmf e d c b a ;那么b a n f d b m ec a =++++++++ . 谈重点:1此性质的证明运用了“设k 法” ;这种方法是有关比例计算;变形中一种常用方法.2应用等比性质时;要考虑到分母是否为零.3可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数;再利用等比性质也成立.5.黄金分割:错误!内容 错误!尺规作图作一条线段的黄金分割点经典例题回顾:例题1.已知a 、b 、c 是非零实数;且k cb a dd a b c d c a b d c b a =++=++=++=++;求k 的值.例题2.已知111x y x y+=+;求y x x y +的值..板块二、新课讲解知识点一、相似形的概念概念:具有相同形状的图形叫相似图形. 谈重点:⑴相似图形强调图形形状相同;与它们的位置、颜色、大小无关. ⑵相似图形不仅仅指平面图形;也包括立体图形相似的情况.⑶我们可以这样理解相似形:两个图形相似;其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同;这时是相似图形的一种特例——全等形.知识点二、平行线分线段成比例定理①定理:三条平行线截两条直线;所得的对应线段成比例;如图:l 1∥l 2∥l 3..则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边或两边的延长线所得的对应线段成比例..③定理:如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例;那么这条直线平行于三角形的第三边..错误!推论:如果一条直线平行于三角形的一条边;截其它两边或其延长线;那么所截得的三角形与原三角形相似.推论错误!的基本图形有三种情况;如图其符号语言:∵DE ∥BC;∴△ABC ∽△ADE ;知识点三、相似三角形的判定判定定理1:两角对应相等;两三角形相似. 符号语言:拓展延伸:1有一组锐角对应相等的两个直角三角形相似.. 2顶角或底角对应相等的两个等腰三角形相似..重难点高效突破例题1.如图;直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E;由ED ∥BC 可以推出AD AEBD CE=吗 请说明理由..用两种方法说明例题2.射影定理已知:如图;在△ABC 中;∠BAC=90°;AD ⊥BC 于D.求证:12AB BD BC =⋅;22AD BD CD =⋅;3CB CD AC ⋅=2例题3.如图;AD 是Rt ΔABC 斜边BC 上的高;DE ⊥DF;且DE 和DF 分别交AB 、AC 于E 、F.则BDBEAD AF =吗 说说你的理由.例题精讲AEDBCAB CD例题4.如图;在平行四边形ABCD 中;已知过点B 作BE ⊥CD 于E;连接AE;F 为AE 上一点;且∠BFE=∠C(1) 求证:△ABF ∽△EAD ;(2) 若AB=4;∠BAE=30°;求AE 的长; (3) 在12条件下;若AD=3;求BF 的长..即时训练 一、选择题1.如图;△ABC 经平移得到△DEF;AC 、DE 交于点G;则图中共有相似三角形 A . 3对 B . 4对 C . 5对 D . 6对2.如图;已知DE ∥BC;EF ∥AB;则下列比例式中错误的是 A .AC AE AB AD = B . FB EA CF CE = C . BD AD BC DE = D . CB CF AB EF =.3.在矩形ABCD 中;E 、F 分别是CD 、BC 上的点;若∠AEF=90°;则一定有 A .ΔADE ∽ΔAEF B.ΔECF ∽ΔAEF C.ΔADE ∽ΔECF D.ΔAEF ∽ΔABF4、如图;直线l 1∥l 2;AF ∶FB=2∶3;BC ∶CD=2∶1;则AE ∶EC 是 A.5∶2 B.4∶1 C.2∶1 D.3∶2ADCBEF GFEDCBA1题图 2题图 3题图 4题图5.如图;E 是平行四边形ABCD 的边BC 的延长线上的一点;连结AE 交CD 于F;则图中共有相似三角形 A.1对 B.2对 C.3对 D.4对5题图 6题图 7题图 8题图6.ΔABC 中;DE ∥BC;且AD ∶DB=2∶1;那么DE ∶BC 等于 A.2∶1 B.1∶2 C.2∶3 D.3∶27.如图;P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点;过点P 做直线截ΔABC;使截得的三角形与ΔABC 相似;满足这样条件的直线共有 A.1条 B.2条 C.3条 D.4条8.如图;已知DE ∥BC;EF ∥AB;则下列比例式中错误的是 A.AC AE AB AD = B.FB EA CF CE = C.BDAD BC DE = D.CB CFAB EF =9.下列说法:其中正确的是①所有的等腰三角形都相似;②所有的等边三角形都相似; ③所有等腰直角三角形都相似;④所有的直角三角形都相似. A.①② B.③④ C.①④ D.②③ 二、解答题1、如图;ΔABC 中;BD 是角平分线;过D 作DE ∥AB 交BC 于点E;AB=5cm;BE=3cm;求EC 的长.2.如图;在梯形ABCD 中;AD ⊥BC;∠BAD=90°;对角线BD ⊥DC. 1ΔABC 与ΔDCB 相似吗 请说明理由. 2如果AD=4;BC=9;求BD 的长.3.已知:如图;在正方形ABCD 中;P 是BC 上的点;且BP=3PC; Q 是CD 的中点.ΔADQ 与ΔQCP 是否相似 为什么4.如图;已知AD 为△ABC 的角平分线;AD 的垂直平分线交BC 的延长线于点E;交AB 与F;试判定△BAE 与△ACE 是否相似;并说明理由..5.如图;在矩形ABCD 中;AB=5cm;BC=10cm;动点P 在AB 边上由A 向B 作匀速运动;1分钟可到达B 点;动点Q 在BC 边上由B 向C 作匀速运动;1分钟可到达C 点;若P 、Q 两点同时出发;问经过多长时间;恰好有PQ ⊥BDA BEFQ P DC B AABC DDABCDABCEA BCD E6.已知:如图所示;D 是AC 上一点;BE ∥AC;AE 分别交BD 、BC 于点F 、G;∠1=∠2.则BF 是FG 、EF 的比例中项吗 请说明理由.7.如图;CD 是Rt ΔABC 的斜边AB 上的高;∠BAC 的平分线分别交BC 、CD 于点E 、F. AC •AE=AF •AB 吗 说明理由.相似形二板块二、新课讲解知识点1.相似三角形的判定判定定理2:两边对应成比例且夹角相等;两三角形相似.判定定理3:三边对应成比例;两三角形相似.知识点2.直角三角形相似的判定 在直角三角形中;斜边和一条直角边对应成比例;两直角三角形相似.知识点3. 相似三角形中的基本图形AB C D EA 型;X 型 交错型 旋转型 母子形重难点高效突破例题1.如图在4×4的正方形方格中;△ABC 和△DEF 的顶点都在长为1的小正方形顶点上.1填空:∠ABC=______;BC=_______. 2判定△ABC 与△DEF 是否相似 并说明理由..例题2. 如图;在△ABC 中;已知BD 、CE 是△ABC 的高;求证:△ADE ∽△ABC..例题3.如图;已知AB ⊥BD;CD ⊥BD;AB=6cm;CD=4cm;BD=14cm;点P 在BD 上由B 点向D 点移动;当BP 等于多少时;△ABP 与△CPD 相似例题4.已知:如图;在△ABC 中;∠C =90°;P 是AB 上一点;且点P 不与点A 重合;过点P 作PE ⊥AB 交AC 于E ;点E 不与点C 重合;若AB =10;AC =8;设AP =x ;四边形PECB 的周长为y ;求y 与x 的函数关系式.例题精讲A BCD EABDCP例题5.在三角形ABC 中;AB=AC;AD ⊥BC 于点D;DE ⊥AC 于点E;M 为DE 的中点;AM 与BE 相交于点N;延长AM 交BC 于点G;AD 与BE 相交于点F; 求证:1DE AD =CECD;(2)△BCE ∽△ADM ; 3AM ⊥BE.随堂演练 A 组1.下列命题中正确的是①三边对应成比例的两个三角形相似 ②二边对应成比例且一个角对应相等的两个三角形相似 ③一个锐角对应相等的两个直角三角形相似 ④一个角对应相等的两个等腰三角形相似 A 、①③ B 、①④ C 、①②④ D 、①③④2.如图;D 、E 分别是AB 、AC 上两点;CD 与BE 相交于点O;下列条件中不能使ΔABE 和ΔACD 相似的是A. ∠B=∠CB. ∠ADC=∠AEBC. BE=CD;AB=ACD. AD ∶AC=AE ∶AB3.如图;在正方形网格上有6个斜三角形:①ΔABC;②ΔBCD;③ΔBDE;④ΔBFG;⑤ΔFGH;⑥ΔEFK.其中②~⑥中;与三角形①相似的是A ②③④B ③④⑤C ④⑤⑥D ②③⑥ 4.如图;DE 与BC 不平行;当ACAB= 时;ΔABC 与ΔADE 相似.. 5.如图;平行四边形 ABCD 中;AB=10;AD=6;E 是AD 的中点;在AB 上取一点F;使△CBF•∽△CDE;则BF 的长是 .A .5B .8.2C .6.4D .1.8M N F ABCDEG3题图 4题图 5题图5.如图;四边形ABCD 是平行四边形;AE ⊥BC 于E;AF ⊥CD 于F.1ΔABE 与ΔADF 相似吗 说明理由. 2ΔAEF 与ΔABC 相似吗 说说你的理由.6.已知:如图;在正方形ABCD 中;P 是BC 上的点;且BP=3PC;Q 是CD 的中点.ΔADQ 与ΔQCP 是否相似 为什么7.如图;在正方形ABCD 中;E 为AD 的中点;EF ⊥EC 交AB 于F;连接FC (),AE AB >△AEF ∽△EFC 吗若相似;请证明;若不相似;请说明理由..若ABCD 为矩形呢板块三、课后作业1.如图;正方形ABCD 中;点E;F 分别为AB;BC 的中点;AF 与DE 相交于点O;则AODO等于 . A .13 B .255C .23D .122.如图;直线EF 交AB 、AC 于点F 、E;交BC 的延长线于点D;AC ⊥BC;已知AB CD=DE AC ⋅⋅;求证:AE CE=DE EF ⋅⋅6.已知D 是BC 边延长线上的一点;BC =3CD ;DF 交AC 边于E 点;且AE =2EC .试求AF 与FB 的比.7.已知:如图;在△ABC 中;∠BAC =90°;AH ⊥BC 于H ;以AB 和AC 为边在Rt △ABC 外作等边△ABD 和△ACE ;试判断△BDH 与△AEH 是否相似;并说明理由.相似三角形的性质及其应用板块二、新课讲解知识要点:相似三角形的性质①相似三角形的对应角相等;对应边成比例.②相似三角形对应高的比;对应中线的比和对应角平分线的比都等于相似比. ③相似三角形周长的比等于相似比.④相似三角形面积的比等于相似比的平方.FABCDE重难点高效突破 例题1.1两个相似三角形的面积比为21:s s ;与它们对应高之比21:h h 之间的关系为_______ 2如图;已知D E ∥BC;CD 和BE 相交于O;若16:9:=∆∆COB ABC S S ;则AD:DB=_________3如图;已知AB ∥CD;BO:OC=1:4;点E 、F 分别是OC;OD 的中点;则EF:AB 的值为 4如图;已知DE ∥FG ∥BC;且AD:FD:FB=1:2:3;则) (S ::FBCG DFGE =∆四边形四边形S S ABCA.1:9:36B.1:4:9C.1:8:27D.1:8:36(5)梯形ABCD 中;AD ∥BC;AD<BC;AC 、BD 交于点O;若ABCD OAB S S ∆∆=256;则△AOD 与△BOC 的周长之比为__________..例题2.如图;在△ABC 中;DE ∥BC;且S △ADE :S 四边形BCED =1:2;BC =26..求DE 的长..例题3. 如图所示;已知DE ∥BC;且与△ABC 的边CA 、BA 的延长线分别相交于点D 、E;F 、G 分别在边AB 、AC 上;且AF :FB=AG :GC;求证:△AFG ∽△AED..A BCD E BC D E A O 2题图3题图 C E FOBA D 4题图B G FE D A C 5题图 CA ’ DD ’ C ’B ’ B A OBC DA例题4. 如图;矩形EFGH 内接于△ABC;AD ⊥BC 于点D;交EH 于点M;BC =20㎝;AM =8㎝; S △ABC =100㎝2..求矩形EFGH 的面积..例题5.△ABC 中;D 为AB 上一点;若∠ABC=∠ACD;AD=8㎝;DB=6㎝;求AC 的长..例题6.已知;如图△ABC 中;∠BAC=900;AB=AC=1;D 为BC 上一动点不与B;C 重合;∠ADE=45°(1)求证△ABD ∽△DCE(2)设BD=x;AE=y;求y 与x 的函数关系式 3若△ADE 为等腰直角三角形时;求AE 的长例题7、如图;在等腰梯形ABCD 中;AD ∥BC;AD=3㎝;BC=7㎝;∠B=60°;P 为下底BC 上一点不与B 、C 重合;连结AP;过P 点作PE 交DC 于E;使得∠APE=∠B.ABCD EF MH GPABCD1求证:△ABP ∽△PCE ; 2求等腰梯形的腰AB 的长;3在底边BC 上是否存在一点P;使得DE ∶EC=5∶3;如果存在;求出BP 的长;如果不存在;请说明理由.随堂演练A 组1.两个相似三角形的面积比为4:9;那么它们周长的比为__________.2.若x :y :z=3:5:7;3x +2y -4z =9则x +y +z 的值为____________. 3.如图;∠APD =90°;AP =PB =BC =CD;则下列结论成立的是 A .ΔPAB ∽ΔPCA B.ΔPAB ∽ΔPDA C .ΔABC ∽ΔDBA D.ΔABC ∽ΔDCA第3题4.如图;D 、E 分别是△ABC 的边AB 、AC 上的点;∠1=∠B;AE =EC =4;BC =10;AB =12;则△ADE 的周长为_______5.某学生利用树影测松树的高度;他在某一时刻测得1.5米长的竹竿影长0.9米;但当他马上测松树高度时;因松树靠近一幢高楼;影子不是全部在地面上;有一部分影子落在墙上;他测得留在地面部分的影长是2.4米;留在墙上部分的影高是1.5米;则松树的高度为________米6.如图;C 为线段AB 上的一点;△ACM 、△CBN 都是等边三角形;若AC =3;BC =2;则△MCD 与60°AE第7题图PD CBABCDMN 第6题 ADE 1BC第4题△BND 的面积比为 ..7.如图;在梯形ABCD 中;AD ∥BC;AC 、BD 交于O 点;S △AOD :S △COB =1:9;则S △DOC :S △BOC =板块三、课后作业1.已知:如图;△ABC 中;∠A =36°;AB =AC ;BD 是角平分线. 1求证:AD 2=CD ·AC ; 2若AC =a ;求AD .2.已知:如图;□ABCD 中;E 是BC 边上一点;且AE BD EC BE ,,21相交于F 点. 1求△BEF 的周长与△AFD 的周长之比;2若△BEF 的面积S △BEF =6cm 2;求△AFD 的面积S △AFD .3.已知:如图;Rt △ABC 中;AC =4;BC =3;DE ∥AB .1当△CDE 的面积与四边形DABE 的面积相等时;求CD 的长; 2当△CDE 的周长与四边形DABE 的周长相等时;求CD 的长.。

相似三角形的判定与性质(六大类型)(题型专练)(原卷版)

相似三角形的判定与性质(六大类型)(题型专练)(原卷版)

专题02 相似三角形的判定与性质(六大类型)【题型1 相似三角形的概念】【题型2 三边对应成比例,两三角形相似】【题型3两边对应成比例且夹角相等,两三角形相似】【题型4 两角对应相等,两三角形相似】【题型5 相似三角形的性质】【题型6相似三角形的性质与判定综合应用】【题型1 相似三角形的概念】1.(2023春•阳信县月考)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则在网格图中的三角形与△ABC相似的是()A.B.C.D.2.(2022秋•道外区期末)下列三角形一定相似的是()A.两个等腰三角形B.两个等边三角形C.两个直角三角形D.有一角为70°的两个等腰三角形3.(2022秋•武城县期末)下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组4.(2022秋•承德县期末)如图所示,网格中相似的两个三角形是()A.①与②B.①与③C.③与④D.②与③5.(2022秋•襄都区校级期末)下列判断中,不正确的有()A.三边对应成比例的两个三角形相似B.两边对应成比例,且有一个角相等的两个三角形相似C.斜边与一条直角边对应成比例的两个直角三角形相似D.有一个角是100°的两个等腰三角形相似【题型2 三边对应成比例,两三角形相似】6.(2022秋•常州期末)如图,△ABC∽△DEF,则DF的长是()A.B.C.2D.3 7.(2023•陇南模拟)两个相似三角形的相似比是4:9,则其面积之比是()A.2:3B.4:9C.9:4D.16:81 8.(2023•沙坪坝区校级模拟)如图,△ABO∽△CDO,若BO=6,DO=3,AB=4,则CD的长是()A.1B.2C.3D.49.(2022秋•鼓楼区期末)已知△ABC∽△DEF,若△ABC的三边分别长为6,8,10,△DEF的面积为96,则△DEF的周长为.10.(2023•惠城区校级一模)若△ABC∽△DEF,△ABC的面积为81cm2,△DEF的面积为36cm2,且AB=12cm,则DE=cm.11.(2022秋•于洪区期末)两个相似三角形的周长比是3:4,其中较小三角形的面积为18cm2,则较大三角形的面积为cm2.12.(2022秋•鸡西期末)如果两个相似三角形的周长比为1:6,那么这两个三角形的面积比为.13.(2023•长宁区一模)如果两个相似三角形的面积比是1:9,那么它们的周长比是.14.(2022秋•内乡县期末)如图,已知△ABC∽△ADE,AD=6,BD=3,DE =4,则BC=.15.(2022秋•零陵区期末)若△ABC∽△A′B′C′,且,△ABC 的面积为12cm2,则△A′B′C′的面积为cm2.【题型3两边对应成比例且夹角相等,两三角形相似】16.(2022秋•仓山区校级月考)如图,D、E分别是△ABC的边AB、AC上的点,AB=8,BD=5,AC=6,CE=2,求证:△ADE∽△ACB.17.(2021秋•武陵区期末)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.18.(2022秋•丰泽区校级期中)如图,E是△ABC的边BC上的点,已知∠BAE =∠CAD,,AB=18,AE=15.求证:△ABC∽△AED.19.(2022春•丰城市校级期末)如图,已知∠B=∠E=90°,AB=6,BF=3,CF=5,DE=15,DF=25.求证:△ABC∽△DEF.【题型4 两角对应相等,两三角形相似】20.(2022秋•蚌山区月考)已知:如图D、E分别是△ABC的边AB、AC上的点,∠A=40°,∠C=80°,∠AED=60°,求证:△ADE∽△ACB.21.(2022秋•龙胜县期中)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高.求证:△ABC∽△CBD.22.(2022•江夏区模拟)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.求证:△ABC∽△DEC.23.(2021秋•晋江市校级期末)如图,在△ABC中,点D在BC边上,点E在AC边上,且AD=AB,∠DEC=∠B.求证:△AED∽△ADC.24.(2022•南昌模拟)如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC 的平分线.求证:△ABC∽△BDC.【题型5 相似三角形的性质】25.(2020秋•思南县校级月考)判断图中的两个三角形是否相似,并说明理由.26.(大观区校级期中)如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF的顶点都在格点上,请判断△ABC和△DEF是否相似,并说明理由.【题型6相似三角形的性质与判定综合应用】27.(2022秋•历城区校级月考)如图,AB∥CD,AC与BD交于点E,且AB=4,AE=2,AC=8.(1)求CD的长;(2)求证:△ABE∽△ACB.28.(2023•殷都区一模)如图,O是直线MN上一点,∠AOB=90°,过点A 作AC⊥MN于点C,过点B作BD⊥MN于点D.(1)求证:△AOC∽△OBD;(2)若OA=5,OC=OD=3,求BD的长.29.(2023•西湖区校级二模)如图,在菱形ABCD中,点M为对角线BD上一点,连接AM并延长交BC于点E,连接CM.(1)求证:CM=AM.(2)若∠ABC=60°,∠EMC=30°,求的值.30.(2023•港南区四模)如图,在△ABC中,D在AC上,DE∥BC,DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC,求的值.31.(2023春•鼓楼区校级期末)如图,点C是△ABD边AD上一点,且满足∠CBD=∠A.(1)证明:△BCD∽△ABD;(2)若BC:AB=3:5,AC=16,求BD的长.32.(2022秋•顺平县期末)矩形ABCD中,E为DC上的一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=4,AD=8,求CE的长.33.(2022秋•南京期末)如图,在矩形ABCD中,点E,F分别在边BC,CD 上,AE,BF交于点G.(1)若=,求证AE⊥BF;(2)若E,F分别是BC,CD的中点,则的值为.34.(2023•桐乡市校级开学)如图,已知△ABC和△AED,边AB,DE交于点F,AD平分∠BAC,AF平分∠EAD,.(1)求证:△AED∽△ABC;(2)若BD=3,BF=2,求AB的长.35.(2022秋•海陵区校级期末)如图,矩形DEFG的四个顶点分别在等腰三角形ABC的边上.已知△ABC的AB=AC=10,BC=16,记矩形DEFG的面积为S,线段BE为x.(1)求S关于x的函数表达式;(2)当S=24时,求x的值.36.(2022秋•平城区校级期末)如图,已知在△ABC中,边BC=6,高AD=3,正方形EFGH的顶点F,G在边BC上,顶点E,H分别在边AB和AC上,求这个正方形的边长.。

相似三角形性质与判定的综合运用专题及答案

相似三角形性质与判定的综合运用专题及答案

相似三角形性质与判定的综合运用一、解答题1.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边上的点C1处,点D落在点D1处,C1D1交线段AE于点G.(1)求证:△BC1F∽△AGC1;(2)若C1是AB的中点,AB=6,BC=9,求AG的长.2.已知:如图,在正方形ABCD中,P是边BC上一点,BE⊥AP,DF⊥AP,垂足分别是点E、F.(1)求证:EF=AE−BE.(2)连接BF,如果AFBF =DFAD,求证:EF=EP.3.如图,四边形ABCD、CDEF、EFGH都是正方形.(1)△ACF与△ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.4.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√3,AF=4√3,求AE的长.5.如图,花丛中一根灯杆AB上有一盏路灯A,灯光下,小明在D点处的影长DE=3米,沿BD方向走到点G,DG=5米,这时小明的影长GH=4米,如果小明的身高为1.7米,求路灯A离地面的高度.6.已知:如图,△ABC为等腰直角三角形,∠ACB=90°,点E、F是AB边所在直线上的两点,且∠ECF=135°.(1)求证:△ECA∽△CFB;(2)若AE=3,设AB=x,BF=y,求y与x之间的函数关系式,并写出x的取值范围.7.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB⋅AD;(2)求证:△AFD∽△CFE.8.如图,在四边形ABCD中,AB//DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).(1)求证:△ACD∽△BAC;(2)求DC的长;(3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.9.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE//AC,EF//AB.(1)求证:△BDE∽△EFC.(2)设AFFC =12,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.10.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?.答案和解析1.【答案】解:(1)证明:由题意可知∠A=∠B=∠GC1F=90∘,∴∠BFC1+∠BC1F=90∘,∠AC1G+∠BC1F=90∘,∴∠BFC1=∠AC1G,∴△BC1F∽△AGC1.(2)∵C1是AB的中点,AB=6,∴AC1=BC1=3,∵CF=C1F,∴C1F=BC−BF=9−BF,∵∠B=90∘,∴BF2+BC12=C1F2,即BF2+32=(9−BF)2,解得BF=4,由(1)得△AGC1∽△BC1F,∴AGBC1=AC1BF,∴AG3=34,解得AG=94.【解析】本题考查相似三角形的判定与性质、矩形的性质、翻折变化,解答本题的关键是明确题意,找出所求问题需要的条件,利用三角形的相似和勾股定理解答.(1)根据题意和图形可以找出△BC1F∽△AGC1的条件,从而可以解答本题;(2)根据勾股定理和(1)中的结论可以求得AG的长.2.【答案】证明:(1)∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°.∵BE⊥AP,DF⊥AP,∴∠BEA=∠AFD=90°.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.在△ABE和△DAF中,∵{∠BEA=∠AFD,∠1=∠3,AB=DA,∴△ABE≌△DAF,∴BE=AF,∴EF=AE−AF=AE−BE.(2)如图,∵AFBF =DFAD,而AF=BE.∴BEBF =DFAD,∴BEDF =BFAD,∴Rt△BEF∽Rt△DFA,∴∠4=∠3.∵∠1=∠3,∴∠4=∠1.∵∠5=∠1,∴∠4=∠5.即BE平分∠FBP,而BE⊥EP,∴EF=EP.【解析】本题主要考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.也考查了全等三角形的判定与性质和正方形的性质.(1)利用正方形的性质得AB=AD,∠BAD=90°,根据等角的余角相等得到∠1=∠3,则可判断△ABE≌△DAF,则BE=AF,然后利用等线段代换可得到结论;(2)利用AFBF =DFAD和AF=BE得到BEDF=BFAD,则可判定Rt△BEF∽Rt△DFA,所以∠4=∠3,再证明∠4=∠5,然后根据等腰三角形的性质可判断EF=EP.3.【答案】解:(1)相似.理由:设正方形的边长为a,AC=√a2+a2=√2a,∵ACCF =√2aa=√2,CGAC=√2a=√2,∴ACCF =CGAC,∵∠ACF=∠ACF,∴△ACF∽△GCA;(2)∵△ACF∽△GCA,∴∠1=∠CAF,∵∠CAF+∠2=45°,∴∠1+∠2=45°.【解析】(1)设正方形的边长为a,求出AC的长为√2a,再求出△ACF与△GCA中夹∠ACF 的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定△ACF 与△GCA相似;(2)根据相似三角形的对应角相等可得∠1=∠CAF,再根据三角形的一个外角等于和它不相邻的两个内角的和,∠2+∠CAF=∠ACB=45°,所以∠1+∠2=45°.本题主要利用两边对应成比例,夹角相等两三角形相似的判定和相似三角形对应角相等的性质以及三角形的外角性质,求出两三角形的对应边的比值相等是解本题的关键.4.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB//CD,AD//BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴ADDE =AFCD,∴DE=AD⋅CDAF =√3×84√3=12.在Rt△ADE中,由勾股定理得:AE=√DE2−AD2=6.【解析】(1)根据四边形ABCD为平行四边形,利用平行四边形的对边平行且相等,得到一对同旁内角互补,一对内错角相等,根据已知角相等,利用等角的补角相等得到两组对应角相等,从而推知:△ADF∽△DEC;(2)由△ADF∽△DEC,得比例,求出DE的长.利用勾股定理求出AE的长.此题考查了相似三角形的判定与性质,以及平行四边形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.5.【答案】解:∵CD//AB,∴△EAB∽△ECD,∴CDAB =DEBE,即1.7AB=33+BD①,∵FG//AB,∴△HFG∽△HAB,∴FGAB =HGHB,即1.7AB=4BD+5+4②,由①②得33+BD =4BD+5+4,解得BD=15,∴1.7AB =315+3,解得AB=10.2.答:路灯A离地面的高度为10.2m.【解析】根据相似三角形的判定,由CD//AB 得△EAB∽△ECD ,利用相似比有1.7AB =33+BD ,同理可得1.7AB =4BD+5+4,然后解关于AB 和BD 的方程组求出AB 即可.本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决. 6.【答案】(1)证明:∵△ABC 为等腰直角三角形,∠ACB =90°,∴AC =BC ,∴∠CAB =∠CBA =45°,∴∠CAE =180°−45°=135°,同理∠CBF =135°,∴∠CAE =∠CBF ,∵∠ECF =135°,∠ACB =90°,∴∠ECA +∠BCF =45°,∵∠ECA +∠E =∠CAB =45°,∴∠E =∠BCF ,∵∠CAE =∠CBF ,∴△ECA∽△CFB ;(2)解:∵AB =x ,∠CAB =45°,∠ACB =90°,AC =BC ,∴sin45°=CB x , ∴CB =√22x =AC ,∵由(1)知△ECA∽△CFB ,∴AE CB =AC BF ,∴3√22x =√22x y ,∴y =16x 2,x 的取值范围是x >0,即y 与x 之间的函数关系式是y =16x 2,x 的取值范围是x >0.【解析】(1)根据等腰直角三角形性质求出∠CAE =∠CBF =135°,求出∠ECA +∠BCF =45°,∠E +∠ACE =45°,推出∠E =∠BCF ,即可推出两三角形相似;(2)根据等腰直角三角形性质和锐角三角函数定义求出AC和BC长,根据两时间相似得出比例式,代入即可求出答案.本题考查了相似三角形的性质和判定,等腰直角三角形性质,锐角三角函数的定义等知识点,通过做此题培养了学生的分析问题和解决问题的能力.7.【答案】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB⋅AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE//AD,∴△AFD∽△CFE.【解析】(1)根据两组对角对应相等的两个三角形相似证明即可;(2)根据直角三角形的性质得到CE=BE=AE,根据等腰三角形的性质得到∠EAC=∠ECA,推出AD//CE即可解决问题;本题考查的是相似三角形的判定和性质、平行线的判定,掌握相似三角形的判定定理和性质定理是解题的关键.8.【答案】(1)证明:∵CD//AB,∴∠BAC=∠DCA又AC⊥BC,∠ACB=90°,∴∠D=∠ACB=90°,∴△ACD∽△BAC;(2)解:在Rt△ABC中,AC=√AB2−BC2=8,由(1)知,△ACD∽△BAC,∴DCAC =ACBA,即 DC 8=810 解得:DC =6.4; (3)能.由运动知,BF =2t ,BE =t ,△EFB 若为等腰三角形,可分如下三种情况:①当 BF =BE 时,10−2t =t ,解得t =103秒.②当EF =EB 时,如图,过点E 作AB 的垂线,垂足为G ,则BG =12BF =12(10−2t).此时△BEG∽△BAC∴BEAB =BGBC ,即t 10=12(10−2t)6, 解得:t =258;③当FB =FE 时,如图2,过点F 作AB 的垂线,垂足为H则BH =12BE =12t.此时△BFH∽△BAC∴BFAB =BHBC ,即10−2t 10=12t 6, 解得:t =6017综上所述:当△EFB 为等腰三角形时,t 的值为103秒或258秒或6017秒.【解析】(1)利用平行线判断出∠BAC =∠DCA ,即可得出结论;(2)先根据勾股定理求出AC =8,由(1)知,△ACD∽△BAC ,得出DC AC =ACBA ,即可得出结论;(3)分三种情况,利用等腰三角形的性质构造出相似三角形,得出比例式建立方程求解即可得出结论.此题是相似形综合题,主要考查了平行线的性质,相似三角形的判定和性质,等腰三角形的性质,构造出相似三角形得出比例式是解本题的关键. 9.【答案】(1)证明:∵DE//AC ,∴∠DEB =∠FCE ,∵EF//AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF//AB,∴BEEC =AFFC=12,∵EC=BC−BE=12−BE,∴BE12−BE =12,解得:BE=4;②∵AFFC =12,∴FCAC =23,∵EF//AB,∴△EFC∽△BAC,∴S△EFCS△ABC =(FCAC)2=(23)2=49,∴S△ABC=94S△EFC=94×20=45.【解析】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;(2)①由平行线的性质得出BEEC =AFFC=12,即可得出结果;②先求出FCAC =23,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.本题考查了相似三角形的判定与性质、平行线的性质等知识;熟练掌握相似三角形的判定与性质是解题的关键.10.【答案】解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,∴△ABE∽△CDE,∴ABCD =AECE,∴AB1.6=212.5,∴AB=13.44(米).答:教学大楼的高度AB是13.44米.【解析】根据反射定律,∠1=∠2,又因为FE⊥EC,所以∠3=∠4,再根据垂直定义得到∠BAE=∠DCE,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.。

完整版相似三角形性质与判定专项练习30题有答案

完整版相似三角形性质与判定专项练习30题有答案

相似三角形性质和判定专项练习30题(有答案) 1 已知:如图,在△ ABC中,点D在边BC上,且/ BAC= / DAG , / CDG= / BAD2.如图,已知在△ ABC中,/ ACB=90 °点D在边BC上,CE丄AB , CF丄AD , E、 (1)求证:AC2=AF?AD;F分别是垂足.(1)求证:丄丄厶;AB AC(2)当GC丄BC 时,求证:/ BAC=90 °4. 如图,在平行四边形ABCD中,过B作BE丄CD,垂足为点E,连接AE , F为AE上一点,且 / BFE= / C.(1)求证:△ ABF EAD ;(2)若AB=4 , / BAE=30 ° 求AE 的长.E5. 已知:如图,△ ABC 中,/ ABC=2 / C, BD 平分/ABC . 求证:AB?BC=AC?CD .6. 已知△ ABC , / ACB=90 ° AC=BC,点E、F 在AB 上,/ ECF=45 ° 设厶ABC 的面积为S,说明AF?BE=2S7 •等边三角形 ABC 的边长为6,在AC , BC 边上各取一点 E , F ,连接AF ,BE 相交于点P . (1) 若 AE=CF ;① 求证:AF=BE ,并求/ APB 的度数; ② 若AE=2,试求 AP?AF 的值;(2) 若AF=BE ,当点E 从点A 运动到点C 时,试求点P 经过的路径长.9. 已知:如图,在 △ ABC 中,AB=AC , DE // BC ,点F 在边AC 上, DF 与BE 相交于点 G ,且/ EDF= / ABE . 求证:(1) △ DEFBDE ; (2) DG?DF=DB?EF .&如图所示,AD , BE 是钝角△ ABC 的边BC , AC 上的高,求证:AD =AC BE =BC3 C10. 如图,△ ABC 、△ DEF 都是等边三角形,点 D 为AB 的中点,E 在BC 上运动,DF 和EF 分别交AC 于G 、H 两点,BC=2,问E 在何处时CH 的长度最大?12 .如图,已知等边三角形 △ AEC ,以AC 为对角线做正方形 ABCD (点B 在厶AEC 内,点D 在厶AEC 夕卜).连接 EB ,过E 作EF 丄AB ,交AB 的延长线为 F .(1) 猜测直线BE 和直线AC 的位置关系,并证明你的猜想. (2) 证明:△ BEF ABC ,并求出相似比.OA?OB=OC?OD .13. 已知:如图, △ ABC 中,点D 、E 是边AB 上的点,(1)求证:△ CEDACD ; 2CD 平分 / ECB ,且 BC =BD ?BA .O ,当/ A= / C 时,求证: A D14. 如图,△ ABC中,点D、E分别在BC和AC边上,点G是BE边上一点,且 / BAD= / BGD= / C,联结AG .(1)求证:BD?BC=BG ?BE ;(2)求证:/ BGA= / BAC .15. 已知:如图,在△ ABC中,点D是BC中点,点E是AC中点,且AD丄BC, BE丄AC , BE, AD相交于点G , 过点B 作BF // AC交AD的延长线于点F, DF=6 .(1)求AE的长;(2)求邑匹的值.^AFBG16 .如图,△ ABC 中,/ ACB=90 ° D 是AB 上一点,M 是CD 中点,且/ AMD= / BMD , AP // CD 交BC 延长线于P 点,延长BM交PA于N点,且PN=AN .(1)求证:MN=MA ;(2)求证:/ CDA=2 / ACD .连接AE ,若AB=6 , AE=5时,求线段 AG 的长.17. 已知:如图,在 △ ABC 中,已知点 D 在BC 上,联结 AD ,使得/ CAD= / B , DC=3且S A ACD : S A ADB = 1 : 2. (1)求AC 的值;(2) 若将△ ADC 沿着直线AD 翻折,使点 C 落点E 处,AE 交边BC 于点F ,且AB // DE ,求18. 在△ ABC 中,D 是BC 的中点,且 AD=AC , DE 丄BC ,与AB 相交于点E , EC 与AD 相交于点F . (1)求证:△ ABC FCD ;(2) 若 DE=3 , BC=8,求△ FCD 的面积.19 .如图,△ ABC 为等边三角形, D 为BC 边上一点,以 AD 为边作/ ADE=60 ° DE 与厶ABC 的外角平分线 交于点E . (1)求证:/ BAD= / FDE ;CE的20. 如图所示,△ ABC 中,/ B=90 °点P 从点A 开始沿AB 边向B 以1cm/s 的速度移动,点 Q 从B 点开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果P , Q 分别从A , B 同时出发,经几秒,使 △ PBQ 的面积等于8cm 2?21. 已知:如图,△ ABC 是等边三角形,D 是AB 边上的点,将 DB 绕点D 顺时针旋转60。

相似三角形经典例题

相似三角形经典例题

相似三角形经典例题一、相似三角形概念相似三角形指的是有着相同形状但大小不同的三角形,即它们的对应角度相等而对应边长成比例。

根据这个概念,我们可以得出相似三角形的性质:1.对应角相等。

2.对应边成比例。

3.对应边比例相等的两个三角形面积成比例。

二、相似三角形的判定方法1.判定法一:AA判定法如果两个三角形的两个对应角分别相等,那么这两个三角形是相似的。

例如:在三角形ABC和三角形XYZ中,∠A=∠X,∠B=∠Y,那么这两个三角形相似。

2.判定法二:SAS判定法如果两个三角形的一个角相等,另外两边分别成比例,那么这两个三角形是相似的。

例如:在三角形ABC和三角形XYZ中,∠A=∠X,AB/XY=BC/YZ,那么这两个三角形相似。

3.判定法三:SSS判定法如果两个三角形的三边分别成比例,那么这两个三角形是相似的。

例如:在三角形ABC和三角形XYZ中,AB/XY=BC/YZ=AC/XZ,那么这两个三角形相似。

三、相似三角形的性质1.相似三角形的对应角相等。

2.相似三角形的对应边成比例。

3.相似三角形的对应边比例相等的两个三角形面积成比例。

4.在一个三角形中,如果一条直线平行于一个边,将这个三角形分成两个相似的三角形。

5.在一个平面内,如果两条平行线分别与这个平面中的两个交点连接,得到的四边形中,两个三角形相似。

四、相似三角形的应用1.求解三角形的面积。

如果知道两个相似三角形的对应边比例以及其中一个三角形的面积,就可以求解另一个三角形的面积。

2.在建模中使用。

例如:建造模型时,如果需要制作大小不同的三角形,可以使用相似三角形的性质来实现。

3.解决实际问题。

例如:在实际应用中,通过测量相似三角形的一组对应边长及其面积,可以推断出另一组对应边长和面积,从而实现解决实际问题的目的。

五、相似三角形经典例题1.已知三角形ABC中,∠A=40°,∠C=70°,AD是BC的中线,求BD。

解:首先可以用角度求出∠B=70°,所以∆ABD和∆ACD相似。

相似三角形的判定与性质综合运用经典题型

相似三角形的判定与性质综合运用经典题型

1 / 41 / 41 / 4相似三角形的判定与性质综合运用经典题型考点一:相似三角形的判定与性质:例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2=AC ·BD.例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45°(1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值范围,并求出当x 为何值时AE 取得最小值? (3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由?例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B :1)求证:△ADF ∽△DEC ; 2)若AB=4,33=AD ,AE=3,求AF 的长。

考点二:射影定理:例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。

例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=14AD ,EG ⊥CF 于点G ,(1)求证:△AEF ∽△BCE ; (2)试说明:EG 2=CG ·FG.例6、已知:如图所示的一张矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE .(1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2,求△ABF 的周长;(3)在线段AC 上是否存在一点P ,使得2AE 2=AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.考点三:相似之共线线段的比例问题:例7、已知如图,P 为平行四边形ABCD 的对角线AC 上一点,过P 的直线与AD 、BC 、CD 的延长线、AB 的延长线分别相交于点E 、F 、G 、H.求证:PGPHPF PE =例8、如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:PC 2=PE •PF ;(2)若菱形边长为8,PE=2,EF=6,求FB 的长.ABCDFABC DE FG例9、如图,CD是Rt△ABC斜边上的高,E为AC的中点,ED交CB的延长线于F.求证:BD•CF=CD•DF.例10、如图:已知在等边三角形ABC中,点D、E分别是AB、BC延长线上的点,且BD=CE,直线CD与AE相交于点F.(1)求证:DC=AE;(2)求证:AD2=DC•DF.例11、如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为G,BG交AE于点H.(1)找出与△ABH相似的三角形,并证明;(2)若E是BC中点,BC=2AB,AB=2,求EM的长.例12、如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=CN•MN.例13、如图,在Rt△ABC中,CD是斜边AB上的高,点M在CD上,DH⊥BM且与AC的延长线交于点E.求证:(1)△AED∽△CBM;(2)AE•CM=AC•CD.例14、如图,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中点,ED的延长线与CB的延长线交于点F.(1)求证:FD2=FB•FC;(2)若G是BC的中点,连接GD,GD与EF垂直吗?并说明理由.例15、如图,四边形ABCD、CDEF、EFGH都是正方形.(1)⊿ACF与⊿ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.考点四:相似三角形的实际应用:例16、如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)若这个矩形是正方形,那么边长是多少?(2)若这个矩形的长PQ是宽PN的2倍,则边长是多少?例17、已知左,右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m。

相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。

它们的对应角度相等,对应边长成比例。

以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。

2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。

b. 对应边成比例:两个相似三角形的对应边的比值相等。

3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。

b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。

二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。

如果两个三角形是相似的,则对应边的比值相等。

以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。

则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。

例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。

解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。

例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。

若AB= 10cm,BC = 15cm,求AD的长度。

解析:由于ABCD是平行四边形,所以∠B = ∠D。

根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。

相似三角形的性质及判定知识点总结+经典题型总结

相似三角形的性质及判定知识点总结+经典题型总结

一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质知识点睛 中考要求 相似三角形的性质及判定1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比).图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H====''''''''(k 为相似比).图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D====''''''''(k 为相似比).图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C++====''''''''''''++. 图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法 欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△. 2.纵向定型法 欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。

相似三角形的性质与判定典型题(30道题之后是分析、解答、点评)

相似三角形的性质与判定典型题(30道题之后是分析、解答、点评)

相似三角形的判定与性质练习同学们:这份试题难度较大,希望能够通过大家的研究掌握相似三角形的一些基本图形及应用,并从中总结一些解题规律和方法。

一.选择题(共14小题)1.(2011•义乌市)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有()A.1个B.2个C.3个D.4个2.(2011•遵义)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为()A.5 B.6 C.7 D.123.(2011•乌鲁木齐)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为()A.B.C.D.14.(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:55.(2011•潼南县)如图,在平行四边形ABCD中(AB≠BC),直线EF经过其对角线的交点O,且分别交AD、BC 于点M、N,交BA、DC的延长线于点E、F,下列结论:①AO=BO;②OE=OF;③△EAM∽△EBN;④△EAO≌△CNO,其中正确的是()A.①②B.②③C.②④D.③④6.(2011•铜仁地区)已知:如图,在△ABC中,∠AED=∠B,则下列等式成立的是()A.B.C.D.7.(2011•台湾)如图为一△ABC,其中D、E两点分别在AB、AC上,且AD=31,DB=29,AE=30,EC=32.若∠A=50°,则图中∠1、∠2、∠3、∠4的大小关系,下列何者正确?()A.∠1>∠3 B.∠2=∠4 C.∠1>∠4 D.∠2=∠38.(2011•台湾)如图为梯形纸片ABCD,E点在BC上,且∠AEC=∠C=∠D=90°,AD=3,BC=9,CD=8.若以AE为折线,将C折至BE上,使得CD与AB交于F点,则BF长度为何()A.4.5 B.5 C.5.5 D.69.(2011•遂宁)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,下列说法中正确的个数是()①AC•BC=AB•CD②AC2=AD•DB③BC2=BD•BA④CD2=AD•DB.A.1个B.2个C.3个D.4个10.(2011•锦州)如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为()A.3 B.4 C.5 D.611.(2011•河北)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2 C.3 D.412.(2011•大连)如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF等于()A.B.1 C.D.213.(2011•北京)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A.B.C.D.14.(2010•湘西州)如图,△ABC中,DE∥BC,=,DE=2cm,则BC=()A.6cm B.4cm C.8cm D.7cm二.填空题(共12小题)15.(2011•牡丹江)在△ABC中,AB=6,AC=9,点D在边AB所在的直线上,且AD=2,过点D作DE∥BC交边AC所在直线于点E,则CE的长为_________.16.(2010•梧州)如图,在平行四边形ABCD中,E是对角线BD上的点,且EF∥AB,DE:EB=2:3,EF=4,则CD的长为_________.17.(2009•烟台)如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DE=CF;③△ADE∽△FDB;④∠BFD=∠CAF其中正确的结论是_________.18.(2009•黄石)在平行四边形ABCD中,E在DC上,若DE:EC=1:2,则BF:BE=_________.19.(2008•衢州)如图,点D、E分别在△ABC的边上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,则AE的长为_________.20.(2008•南宁)如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB= _________.21.(2007•厦门)如图,在平行四边形ABCD中,AF交DC于E,交BC的延长线于F,∠DAE=20°,∠AED=90°,则∠B=_________度;若=,AD=4厘米,则CF=_________厘米.22.(2007•乌鲁木齐)如图,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=_________.23.(2006•绵阳)如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为_________.24.(2006•鄂州)如图,D为△ABC边AB上一点,要使AC2=AD•AB成立则需添加一个条件,这个条件可以是_________.25.(2006•长春)图中x=_________.26.(2004•芜湖)如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_________ cm.三.解答题(共4小题)27.(2011•佛山)如图,D是△ABC的边AB上一点,连接CD,若AD=2,BD=4,∠ACD=∠B,求AC的长.28.(2011•眉山)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.29.(2011•济南)如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.(1)求证:△ACE≌△DCB;(2)请你判断△AMC与△DMP的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.30.(2011•岳阳)如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG=_________.请予证明.答案与评分标准一.选择题(共14小题)1.(2011•义乌市)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有()A.1个B.2个C.3个D.4个考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1文档来源为:从网络收集整理.word 版本可编辑.
相似三角形的判定与性质综合运用经典题型
考点一:相似三角形的判定与性质:
例1、如图,△PCD 是等边三角形,A 、C 、D 、B 在同一直线上,且∠APB=120°. 求证:⑴△PAC ∽△BPD ;⑵ CD 2
=AC ·BD.
例2、如图,在等腰△ABC 中, ∠BAC=90°,AB=AC=1,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=45°(1)求证:△ABD ∽△DCE ;
(2)设BD=x ,AE=y ,求y 关于x 函数关系式及自变量x 值范围,并求出当x 为何值时AE 取得最小值? (3)在AC 上是否存在点E ,使得△ADE 为等腰三角形?若存在,求AE 的长;若不存在,请说明理由? 例3、如图所示,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B :1)求证:△ADF ∽△DEC ; 2)若AB=4,
3
3=AD ,AE=3
,求AF 的长。

考点二:射影定理:
例4、如图,在Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,CD=4cm,AD=8cm,求AC 、BC 及BD 的长。

例5、如图,已知正方形ABCD ,E 是AB 的中点,F 是AD 上的一点,且AF=1
4 AD ,EG ⊥CF 于点G ,
(1)求证:△AEF ∽△BCE ; (2)试说明:EG 2
=CG ·FG.
例6、已知:如图所示的一张矩形纸片ABCD (AD>AB ),将纸片折叠一次,使点A 与点C 重合,再展开,折痕EF 交AD 边于E ,交BC 边于F ,分别连结AF 和CE .
(1)求证:四边形AFCE 是菱形;(2)若AE=10cm ,△ABF 的面积为24cm 2
,求△ABF 的周长;
(3)在线段AC 上是否存在一点P ,使得2AE 2
=AC ·AP ?若存在,请说明点P 的位置,并予以证明;若不存在,请说明理由.
考点三:相似之共线线段的比例问题:
例7、已知如图,P 为平行四边形ABCD 的对角线AC 上一点,过P 的直线与AD 、BC 、CD 的延长线、AB
的延长线分别相交于点E 、F 、G 、H. 求证:PG
PH
PF PE =
例8、如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于点E ,交BA 的延长线于点F .(1)求证:PC 2
=PE •PF ;(2)若菱形边长为8,PE=2,EF=6,求FB 的长. 例9、如图,CD 是Rt △ABC 斜边上的高,E 为AC 的中点,ED 交CB 的延长线于F . 求证:BD •CF=CD •DF .
例10、如图:已知在等边三角形ABC 中,点D 、E 分别是AB 、BC 延长线上的
点,且BD=CE ,直线CD 与AE 相交于点F .(1)求证:DC=AE ;(2)求证:AD 2
=DC •DF .
例11、如图,E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC ,CD 于点M ,F ,BG ⊥AC ,垂足为G ,BG 交AE 于点H .(1)找出与△ABH 相似的三角形,并证明;(2)若E 是BC 中点,BC=2AB ,AB=2,求EM 的长. 例12、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1)AE=CG ;(2)AN •DN=CN •MN . 例13、如图,在Rt △ABC 中,CD 是斜边AB 上的高,点M 在CD 上,DH ⊥
BM 且与AC 的延长线交于点E .求证:(1)△AED ∽△CBM ; (2)AE •CM=AC •CD .
例14、如图,△ABC 是直角三角形,∠ACB=90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F .(1)求证:FD 2
=FB •FC ; (2)若G 是BC 的中点,连接GD ,GD 与EF 垂直吗?并说明理由. 例15、如图,四边形ABCD 、CDEF 、EFGH 都是正方形.
(1)⊿ACF 与⊿ACG 相似吗?说说你的理由.(2)求∠1+∠2的度数. 考点四:相似三角形的实际应用:
例16、如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上. (1)若这个矩形是正方形,那么边长是多少?
(2)若这个矩形的长PQ 是宽PN 的2倍,则边长是多少?
例17、已知左,右并排的两棵大树的高分别是AB=8m 和CD=12m ,两树的

A
B
C
D
F
部的距离BD=5m。

一个身高1.6m的人沿着正对着两棵树的一条水平直路从左向右前进,当他与左边较低的树的距离小于多少时,就不能看见右边较高的树的顶端点C?
例18、两颗树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?
例19、小亮想利用太阳光下的影子测量校园内一棵大树
的高,小亮发现因大树靠近学校围墙,大树的影子不全
落在地面上,如图所示,经测量,墙上影高CD=1.5m,地
面影长BC=10m.
若此时1米高的标杆的影长恰好为2m.请你求出这棵大
树AB的高度.
例20、如图,九年级的数学活动课上,小明发现电线杆AB的影子落在土
坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,
且此时测得1米杆的影长为2米,求电线杆的高度.
例21、如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明
在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长
FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.
考点五:相似三角形中的动点问题:
例22、在矩形ABCD中,AB=12cm,AD=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,△APQ与△ABD相似?说明理由.
例23、如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动
点P以2米/秒的速度从A点出发,沿AC向点C移动.同时,
动点Q以1米/秒的速度从C点出发,沿CB向点B移动.当其
中有一点到达终点时,它们都停止移动.设移动的时间为t秒.
(1)①当t=2.5秒时,求△CPQ的面积;②求△CPQ的面积S
(平方米)关于时间t(秒)的函数解析式;(2)在P,Q移动的过程中,当△CPQ为等腰三角形时,写出t的值。

例24、如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.(1)当x为何值时,PQ∥BC;(2)当S△BCQ:S△ABC=1:3 ,求S△BPQ:S△ABC的值;(3)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.
例25、如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标为(6,0),(6,8).动点M、N分别从O、B同时出发,都以每秒1个单位的速度运动,其中,点M沿OA向终点A运动,点N沿BC 向终点C运动,过点N作NP⊥BC,交AC于点P,连接MP,已知动点运动了x秒.
(1)用含x的代数式表示P的坐标(直接写出答案);(2)设y=S四边形OMPC,
求y的最小值,并求此时x的值;(3)是否存在x的值,使以P、A、M为顶
点的三角形与△AOC相似?若存在,请求出x的值;若不存在,请说明理由.
例26、如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,
过P作PF⊥AE于F.
(1)求证:△PFA∽△ABE;
(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P、F、E
为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由.
例27、如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.
(1)求A、B两点的坐标;(2)求当t为何值时,△APQ与△AOB相似;(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,求出M点的坐标;若不存在,请说明理由.
2文档来源为:从网络收集整理.word版本可编辑.。

相关文档
最新文档