(word完整版)初中数学相似三角形经典练习难题易错题(附详解)

合集下载

相似三角形难题集锦(含问题详解)

相似三角形难题集锦(含问题详解)

一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.〔1〕当t为何值时,AD=AB,并求出此时DE的长度;〔2〕当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.〔1〕①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S〔平方米〕关于时间t〔秒〕的函数解析式;〔2〕在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.〔1〕当AD=CD时,求证:DE∥AC;〔2〕探究:AD为何值时,△BME与△E相似?4.如下列图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C 〔1〕当x为何值时,PQ∥BC?〔2〕△APQ与△CQB能否相似?假如能,求出AP的长;假如不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t〔s〕表示移动的时间〔0<t <6〕。

〔1〕当t为何值时,△QAP为等腰直角三角形?〔2〕当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为〔1,3〕,将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为〔〕A. B.C. D.10..,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。

初中数学相似三角形经典练习难题易错题附详解电子教案

初中数学相似三角形经典练习难题易错题附详解电子教案

初中数学相似三角形经典练习难题易错题 )解详附(相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.于BC,连接OE交OABCD的对角线相交于点,在AB的延长线上任取一点E2.如图,?._________,AD=cBE=b,则BF=点F.若AB=a,小题)二.解答题(共17.求证:BC于DBACBAC=120°,AD平分∠交中,3.如图所示.在△ABC∠.,交FCD于OEADEOBDACABCD.如图所示,4?中,与交于点,为延长线上一点,..求证:G于AB延长线交EO..求证:F、E、、BC、CAAB(或它们的延长线)于点D5.一条直线截△ABC的边.和ABHI分别平行于,BCPP为△ABC内一点,过点作线段DE,FG,6.如图所示..求d.AB=510,且DE=FG=HI=d,,BC=450,CA=425CA,ABOACBC∥,BD,交于O点,过的直线分别交ADABCD7.如图所示.梯形中,.EF厘米.求BC=20厘米,AD=12.BC∥EF,且F,E于CD.8.已知:P为?ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:..若OMN与对角线BD交于,ABCD中,AD∥BCMN∥BC,且9.如图所示,梯形.BC=BO=b,求MNAD=DO=a,(如图所示).BCIH,分别平行于AB,,CAFGDEPABC为.10P△内一点,过点作,.求证:11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.F,.并延长分别交对边于D,EBP.已知12P为△ABC内任意一点,连AP,,CP三者中,至少有一个不大于(2)求证:(1),也至少有一个不少于2.2的延长线AE,AE是BC边上的中线,平分∠BACBD⊥AMABC.如图所示.在13△中,ABEFFAMD于,且交延长线于.求证:∥.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH..求QM⊥AC上,且PM的中点,P、Q分别在AB、是15.已知MRt△ABC中斜边BC222 +QC 证:PQ.=PB平分CF平分∠CAB,DACB=90°,CD⊥AB于,AE∠.如图所示.在16△ABC中,.EF∥BC ∠BCD.求证:,∠CB=CPA∠BPC=∠.若2∠∠A+APB=,满足内有一点△17.如图所示.在ABCP∠2 =PA?PC.求证:PB .)PBC△∽PAB△(提示:设法证明18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.边上的中线,连接ACBE是N是边BC的三等分点,19.如图所示,△ABC中,M、GE的值.BF:FG:AN,分别交BE于F、G,求AM、111=+4.求证B20.在△ABC中,∠A∶∠∶∠C=1∶2∶BCABACb1a+b1a+b11===+,提示:要证明如几何题的常用方法:①比例法:将原等式变为或caababccc+所在三角形相似的三角形。

初三数学相似三角形经典题(含答案)

初三数学相似三角形经典题(含答案)

相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。

(word完整版)初中数学相似三角形经典练习难题易错题(附详解)

(word完整版)初中数学相似三角形经典练习难题易错题(附详解)

相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证1AB +1AC=1BC提示:要证明如1a +1b=1c几何题的常用方法:①比例法:将原等式变为a+bab=1c或a+ba=bc,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。

(完整word版)初三数学相似三角形典例和练习[含解析],文档

(完整word版)初三数学相似三角形典例和练习[含解析],文档

WORD 圆满格式初三数学相似三角形〔一〕相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是:1.理解线段的比、成比率线段的看法,会依照比率线段的有关看法和性质求线段的长或两线段的比,认识黄金切割。

2.会用平行线分线段成比率定理进行有关的计算、证明,会分线段成比。

3.能熟练应用相似三角形的判断和性质解答有关的计算与证明题。

4.能熟练运用相似三角形的有关看法解决实责问题本节的重点内容是相似三角形的判判定理和性质定理以及平行线分线段成比率定理。

本节的难点内容是利用判判定理证明两个三角形相似以及相似三角形性质的应用。

相似三角形是平面几何的主要内容之一,在中考试题中经常与四边形、圆的知识相结合组成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在 10%左右,有时也单独成题,形成创新与研究型试题;有利于培养学生的综合素质。

〔二〕重要知识点介绍:WORD 圆满格式1.比率线段的有关看法:在比率式a c (a:b c:d)中,a、d叫外项,b、c叫内项,a、c叫前项,b db、 d 叫后项, d 叫第四比率项,若是b=c,那么 b 叫做 a、 d 的比率中项。

2把线段 AB分成两条线段 AC和 BC,使 AC=AB·BC,叫做把线段 AB黄金切割, C 叫做线段 AB的黄金切割点。

2.比任性质:①根本性质:a cb ad bcdac ±b±②合比性质:a c db d b d③等比性质:a c m(b dn≠ 0)a c m ab d n b d n b3.平行线分线段成比率定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图: l 1∥ l 2∥ l 3。

那么AB DE,AB DE,BC EF ,BC EFAC DFAC DF专业知识编写整理的延长线〕所得的对应线段成比率。

③定理:若是一条直线截三角形的两边〔或两边的延长线〕所得的对应线段成比率,那么这条直线平行于三角形的第三边。

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)

经典演习题类似三角形【1 】一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延伸线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试解释:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,衔接BE,CD,M,N分离为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基本上,将△ADE绕点A按顺时针偏向扭转180°,其他前提不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的前提下,请你在图②中延伸ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延伸线上一点,衔接EC,交AD于点F.在不添加帮助线的情形下,请你写出图中所有的类似三角形,并任选一对类似三角形赐与证实.7.如图,在4×3的正方形方格中,△ABC和△DEF的极点都在边长为1的小正方形的极点上.(1)填空:∠ABC=_________°,BC=_________;(2)断定△ABC与△DEC是否类似,并证实你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点动身沿AB偏向以1cm/s的速度向B点匀速活动;同时,动点N从D点动身沿DA偏向以2cm/s的速度向A点匀速活动,问:(1)经由若干时光,△AMN的面积等于矩形ABCD面积的?(2)是否消失时刻t,使以A,M,N为极点的三角形与△ACD类似?若消失,求t的值;若不消失,请解释来由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD.AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情形,并求出拔取到的两个三角形是类似三角形的概率是若干;(留意:全等算作类似的特例)(2)请你任选一组类似三角形,并给出证实.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,衔接AE.(1)写出图中所有相等的线段,并加以证实;(2)图中有无类似三角形?如有,请写出一对;若没有,请解释来由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的随意率性一点,过点M分离作AB.AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对类似三角形(不需证实);(3)M位于BC的什么地位时,四边形AQMP为菱形并证实你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试解释:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B动身,以1cm/s的速度,沿B⇒A⇒D⇒C偏向,向点C活动;动点Q从点C动身,以1cm/s的速度,沿C⇒D⇒A偏向,向点A活动,过点Q作QE⊥BC于点E.若P.Q两点同时动身,当个中一点到达目标地时全部活动随之停止,设活动时光为t秒.问:①当点P在B⇒A上活动时,是否消失如许的t,使得直线PQ将梯形ABCD的周长等分?若消失,请求出t的值;若不消失,请解释来由;②在活动进程中,是否消失如许的t,使得以P.A.D为极点的三角形与△CQE类似?若消失,请求出所有相符前提的t的值;若不消失,请解释来由;③在活动进程中,是否消失如许的t,使得以P.D.Q为极点的三角形正好是以DQ为一腰的等腰三角形?若消失,请求出所有相符前提的t的值;若不消失,请解释来由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P.Q分离是AB.BC上活动的两点.若P自点A动身,以1cm/s 的速度沿AB偏向活动,同时,Q自点B动身以2cm/s的速度沿BC偏向活动,问经由几秒,以P.B.Q为极点的三角形与△BDC类似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开端沿AB边向B点以2cm/s的速度移动,点Q从点B 开端沿BC边向点C以4cm/s的速度移动,假如P.Q分离从A.B同时动身,问经由几秒钟,△PBQ与△ABC类似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为若干时,这两个直角三角形类似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,可否在边AB上找一点N(不含A.B),使得△CDM 与△MAN类似?若能,请给出证实,若不克不及,请解释来由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B动身,沿BC偏向以2cm/s的速度移动,点P从C动身,沿CA偏向以1cm/s的速度移动.若Q.P分离同时从B.C动身,试探讨经由若干秒后,以点C.P.Q为极点的三角形与△CBA类似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上肯定点P的地位,使得以P,A,D 为极点的三角形与以P,B,C为极点的三角形类似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的极点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E扭转,使得DE与BA的延伸线交于点M,EF与AC交于点N,于是,除(1)中的一对类似三角形外,可否再找出一对类似三角形并证实你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开端向B以2cm/s的速度移动;点Q沿DA边从点D开端向点A以1cm/s的速度移动.假如P.Q同时动身,用t(秒)暗示移动的时光,那么当t为何值时,以点Q.A.P为极点的三角形与△ABC类似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA地点的直线行走14米到B点时,身影的长度是变长了照样变短了?变长或变短了若干米?23.阳光亮媚的一天,数学兴致小组的同窗们去测量一棵树的高度(这棵树底部可以到达,顶部不轻易到达),他们带了以下测量对象:皮尺,标杆,一副三角尺,小平面镜.请你在他们供给的测量对象中选出所需对象,设计一种测量计划.(1)所需的测量对象是:_________;(2)请鄙人图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母暗示)求出x.24.问题布景在某次活动课中,甲.乙.丙三个进修小组于统一时刻在阳光下对校园中一些物体进行了测量.下面是他们经由过程测量得到的一些信息:甲组:如图1,测得一根竖立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得黉舍旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细疏忽不计)的高度为200cm,影长为156cm.义务请求:(1)请依据甲.乙两组得到的信息盘算出黉舍旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请依据甲.丙两组得到的信息,求景灯灯罩的半径.(友谊提醒:如图3,景灯的影长等于线段NG的影长;须要时可采取等式1562+2082=2602)25.阳光经由过程窗口照耀到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下漫步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的程度距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请解释来由;(3)若李华在点A朝着影子(如图箭头)的偏向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分离以直角三角形ABC三边为直径向外作三个半圆,其面积分离用S1,S2,S3暗示,则不难证实S1=S2+S3.(1)如图②,分离以直角三角形ABC三边为边向外作三个正方形,其面积分离用S1,S2,S3暗示,那么S1,S2,S3之间有什么关系;(不必证实)(2)如图③,分离以直角三角形ABC三边为边向外作三个正三角形,其面积分离用S1.S2.S3暗示,请你肯定S1,S2,S3之间的关系并加以证实;(3)若分离以直角三角形ABC三边为边向外作三个一般三角形,其面积分离用S1,S2,S3暗示,为使S1,S2,S3之间仍具有与(2)雷同的关系,所作三角形应知足什么前提证实你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD.CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两类似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:类似三角形的剖断;平行线的性质.菁优网版权所有专题:证实题.剖析:依据平行线的性质可知∠AED=∠C,∠A=∠FEC,依据类似三角形的剖断定理可知△ADE∽△EFC.解答:证实:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考核的是平行线的性质及类似三角形的剖断定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延伸线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.考点:类似三角形的剖断;三角形中位线定理;梯形.菁优网版权所有专题:几何分解题.剖析:(1)应用平行线的性质可证实△CDF∽△BGF.(2)依据点F是BC的中点这一已知前提,可得△CDF≌△BGF,则CD=BG,只请求出BG的长即可解题.解答:(1)证实:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)点评:本题重要考核了类似三角形的剖断定理及性质,全等三角形的剖断及线段的等量代换,比较庞杂.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.考点:类似三角形的剖断.菁优网版权所有专题:证实题.剖析:由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,依据三角形类似的剖断定理可知:△ABC∽△FDE.解答:证实:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.点评:本题很简略,考核的是类似三角形的剖断定理:(1)假如两个三角形的两个角对应相等,那么这两个三角形类似;(2)假如一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形类似;(3)假如一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形类似.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试解释:△ABF∽△EAD.考点:类似三角形的剖断;矩形的性质.菁优网版权所有专题:证实题.剖析:依据两角对应相等的两个三角形类似可解.解答:证实:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考核类似三角形的剖断定理,症结是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,衔接BE,CD,M,N分离为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基本上,将△ADE绕点A按顺时针偏向扭转180°,其他前提不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的前提下,请你在图②中延伸ED交线段BC于点P.求证:△PBD∽△AMN.考点:类似三角形的剖断;全等三角形的剖断;等腰三角形的剖断;扭转的性质.菁优网版权所有专题:几何分解题.剖析:(1)因为∠BAC=∠DAE,所以∠BAE=∠CAD,又因为AB=AC,AD=AE,应用SAS可证出△BAE≌△CAD,可知BE.CD是对应边,依据全等三角形对应边上的中线相等,可证△AMN是等腰三角形.(2)应用(1)中的证实办法仍然可以得出(1)中的结论,思绪不变.(3)先证出△ABM≌△ACN(SAS),可得出∠CAN=∠BAM,所以∠BAC=∠MAN(等角加等角和相等),又∵∠BAC=∠DAE,所以∠MAN=∠DAE=∠BAC,所以△AMN,△ADE和△ABC都是顶角相等的等腰三角形,所以∠PBD=∠AMN,所以△PBD∽△AMN(两个角对应相等,两三角形类似).6.如图,E是▱ABCD的边BA延伸线上一点,衔接EC,交AD于点F.在不添加帮助线的情形下,请你写出图中所有的类似三角形,并任选一对类似三角形赐与证实.考点:类似三角形的剖断;平行四边形的性质.菁优网版权所有专题:凋谢型.剖析:依据平行线的性质和两角对应相等的两个三角形类似这一剖断定理可证实图中类似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:类似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)点评:考核了平行线的性质及类似三角形的剖断定理.7.如图,在4×3的正方形方格中,△ABC和△DEF的极点都在边长为1的小正方形的极点上.(1)填空:∠ABC=135°°,BC=;(2)断定△ABC与△DEC是否类似,并证实你的结论.考点:类似三角形的剖断;正方形的性质.菁优网版权所有专题:证实题;网格型.剖析:(1)不雅察可得:BF=FC=2,故∠FBC=45°;则∠ABC=135°,BC==2;(2)不雅察可得:BC.EC的长为2.,可得,再依据其夹角相等;故△ABC∽△DEC.解答:解:(1)∠ABC=135°,BC=;(2)类似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.点评:解答本题要充分应用正方形的特别性质.留意在正方形中的特别三角形的应用,搞清晰矩形.菱形.正方形中的三角形的三边关系,可有助于进步解题速度和精确率.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点动身沿AB偏向以1cm/s的速度向B点匀速活动;同时,动点N从D点动身沿DA偏向以2cm/s的速度向A点匀速活动,问:(1)经由若干时光,△AMN的面积等于矩形ABCD面积的?(2)是否消失时刻t,使以A,M,N为极点的三角形与△ACD类似?若消失,求t的值;若不消失,请解释来由.考点:类似三角形的剖断;一元二次方程的应用;分式方程的应用;正方形的性质.菁优网版权所有专题:动点型.剖析:(1)关于动点问题,可设时光为x,依据速度暗示出所涉及到的线段的长度,找到相等关系,列方程求解即可,如本题中应用,△AMN的面积等于矩形ABCD面积的作为相等关系;(2)先假设类似,应用类似中的比例线段列出方程,有解的且相符题意的t值即可解释消失,反之则不消失.解答:解:(1)设经由x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经磨练,可知x1=1,x2=2相符题意,所以经由1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经由t秒时,以A,M,N为极点的三角形与△ACD类似,由矩形ABCD,可得∠CDA=∠MAN=90°,是以有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经磨练,t=或t=都相符题意,所以动点M,N同时动身后,经由秒或秒时,以A,M,N为极点的三角形与△ACD类似.(8分)点评:重要考核了类似三角形的剖断,正方形的性质和一元二次方程的应用以及解分式方程.要控制正方形和类似三角形的性质,才会灵巧的应用.留意:一般关于动点问题,可设时光为x,依据速度暗示出所涉及到的线段的长度,找到相等关系,列方程求解即可.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD.AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情形,并求出拔取到的两个三角形是类似三角形的概率是若干;(留意:全等算作类似的特例)(2)请你任选一组类似三角形,并给出证实.考点:类似三角形的剖断;概率公式.菁优网版权所有专题:凋谢型.剖析:(1)采取列举法,列举出所有可能消失的情形,再找出类似三角形即可求得;①与③,②与④类似;(2)应用类似三角形的剖断定理即可证得.解答:解:(1)任选两个三角形的所有可能情形如下六种情形:①②,①③,①④,②③,②④,③④(2分)个中有两组(①③,②④)是类似的.∴拔取到的二个三角形是类似三角形的概率是P=(4分)证实:(2)选择①.③证实.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)选择②.④证实.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).点评:此题考核概率的求法:假如一个事宜有n种可能,并且这些事宜的可能性雷同,个中事宜A消失m种成果,那么事宜A的概率P(A)=,即类似三角形的证实.还考核了类似三角形的剖断.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,衔接AE.(1)写出图中所有相等的线段,并加以证实;(2)图中有无类似三角形?如有,请写出一对;若没有,请解释来由;(3)求△BEC与△BEA的面积之比.考点:类似三角形的剖断;三角形的面积;含30度角的直角三角形.菁优网版权所有专题:分解题.剖析:(1)依据直角三角形中30度角所对的直角边是斜边的一半,可知CD=2ED,则可写出相等的线段;(2)两角对应相等的两个三角形类似则可断定△ADE∽△AEC;(3)请求△BEC与△BEA的面积之比,从图中可看出两三角形有一公共边可作为底边,若求得高之比可知面积之比,由此需作△BEA的边BE边上的高即可求解.解答:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形类似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延伸线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:本题重要考核了直角三角形的性质,类似三角形的剖断及三角形面积的求法等,规模较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的随意率性一点,过点M分离作AB.AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对类似三角形(不需证实);(3)M位于BC的什么地位时,四边形AQMP为菱形并证实你的结论.考点:类似三角形的剖断;菱形的剖断.菁优网版权所有专题:分解题.剖析:(1)依据平行四边形的性质可得到对应角相等对应边相等,从而不难求得其周长;(2)因为∠B=∠C=∠PMC=∠QMB,所以△PMC∽△QMB∽△ABC;(3)依据中位线的性质及菱形的剖断不难求得四边形AQMP为菱形.解答:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.点评:此题重要考核了平行四边形的剖断和性质,中位线的性质,菱形的剖断等常识点的分解应用.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试解释:△ADM∽△MCP.考点:类似三角形的剖断;正方形的性质.菁优网版权所有专题:证实题.剖析:欲证△ADM∽△MCP,经由过程不雅察发明两个三角形已经具备一组角对应相等,即∠D=∠C,此时,再求夹此对应角的双方对应成比例即可.解答:证实:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.点评:本题考核类似三角形的剖断.辨认两三角形类似,除了要控制界说外,还要留意精确找出两三角形的对应边.对应角,可应用数形联合思惟依据图形供给的数据盘算对应角的度数.对应边的比.本题中把若干线段的长度用统一线段来暗示是求线段是否成比例时经常应用的办法.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B动身,以1cm/s的速度,沿B⇒A⇒D⇒C偏向,向点C活动;动点Q从点C动身,以1cm/s的速度,沿C⇒D⇒A偏向,向点A活动,过点Q作QE⊥BC于点E.若P.Q两点同时动身,当个中一点到达目标地时全部活动随之停止,设活动时光为t秒.问:①当点P在B⇒A上活动时,是否消失如许的t,使得直线PQ将梯形ABCD的周长等分?若消失,请求出t的值;若不消失,请解释来由;②在活动进程中,是否消失如许的t,使得以P.A.D为极点的三角形与△CQE类似?若消失,请求出所有相符前提的t的值;若不消失,请解释来由;③在活动进程中,是否消失如许的t,使得以P.D.Q为极点的三角形正好是以DQ为一腰的等腰三角形?若消失,请求出所有相符前提的t的值;若不消失,请解释来由.考点:类似三角形的剖断;三角形三边关系;等腰三角形的剖断;勾股定理;直角梯形.菁优网版权所有专题:动点型;凋谢型.剖析:(1)求面积要先求梯形的高,可依据两底的差和CD的长,在直角三角形顶用勾股定理进行求解,得出高后即可求出梯形的面积.(2)①PQ等分梯形的周长,那么AD+DQ+AP=BC+CQ+BP,已知了AD,BC的长,可以用t来暗示出AP,BP,CQ,QD的长,那么可依据上面的等量关系求出t的值.②本题要分三种情形进行评论辩论:一,当P在AB上时,即0<t≤8,假如两三角形类似,那么∠C=∠ADP,或∠C=∠APD,那么在△ADP中依据∠C的正切值,求出t的值.二,当P在AD上时,即8<t≤10,因为P,A,D在一条直线上,是以构不成三角形.三,当P在CD上时,即10<t≤12,因为∠ADC是个钝角,是以△ADP是个钝角三角形是以不成能和直角△CQE类似.分解三种情形即可得出相符前提的t的值.(3)和(2)雷同也要分三种情形进行评论辩论:一,当P在AB上时,即0<t≤8,等腰△PDQ以DQ为腰,是以DQ=DP或DQ=PQ,可以经由过程构建直角三角形来暗示出DP,PQ的长,然后依据得出的等量关系来求t的值.二,当P在AD上时,即8<t≤10,因为BA+AD=CD=10,是以DP=DQ=10﹣t,是以DP,DQ恒相等.三,当P在CD上时,即10<t≤12,情形同二.分解三种情形可得出等腰三角形以DQ为腰时,t的取值.点评:本题重要考核了梯形的性质以及类似三角形的剖断和性质等常识点,要留意(2)中要依据P,Q的不合地位,进行分类评论辩论,不要漏解.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P.Q分离是AB.BC上活动的两点.若P自点A动身,以1cm/s 的速度沿AB偏向活动,同时,Q自点B动身以2cm/s的速度沿BC偏向活动,问经由几秒,以P.B.Q为极点的三角形与△BDC类似?考点:类似三角形的剖断;矩形的性质.菁优网版权所有专题:几何动点问题;分类评论辩论.剖析:要使以P.B.Q为极点的三角形与△BDC类似,则要分两两种情形进行剖析.分离是△PBQ∽△BDC或△QBP∽△BDC,从而解得所需的时光.解答:解:设经x秒后,△PBQ∽△BCD,因为∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经由秒或2秒,△PBQ∽△BCD.点评:此题考核了类似三角形的剖断及矩形的性质等常识点的分解应用.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开端沿AB边向B点以2cm/s的速度移动,点Q从点B 开端沿BC边向点C以4cm/s的速度移动,假如P.Q分离从A.B同时动身,问经由几秒钟,△PBQ与△ABC类似.考点:类似三角形的剖断;一元一次方程的应用.菁优网版权所有专题:动点型.剖析:设经由t秒后,△PBQ与△ABC类似,依据旅程公式可得AP=2t,BQ=4t,BP=10﹣2t,然后应用类似三角形的性质对应边的比相等列出方程求解即可.解答:解:设经由秒后t秒后,△PBQ与△ABC类似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经由2.5s或1s时,△PBQ与△ABC类似(10分).解法二:设ts后,△PBQ与△ABC类似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情形:(1)当BP与AB对应时,有=,即=(2)当BP与BC对应时,有=,即=,解得t=1s所以经由1s或2.5s时,以P.B.Q三点为极点的三角形与△ABC类似.点评:本题分解了旅程问题和三角形的问题,所以学生日常平凡学过的常识要会融会起来.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为若干时,这两个直角三角形类似.考点:类似三角形的剖断.菁优网版权所有专题:分类评论辩论.剖析:假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形类似.在Rt△ABC和Rt△ACD,直角边的对应需分情形评论辩论.解答:解:∵AC=,AD=2,∴CD==.要使这两个直角三角形类似,有两种情形:(1)当Rt△ABC∽Rt△ACD时,有=,∴AB==3;(2)当Rt△ACB∽Rt△CDA时,有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形类似.点评:本题考核类似三角形的剖断.辨认两三角形类似,除了要控制界说外,还要留意精确找出两三角形的对应边.对应角,可应用数形联合思惟依据图形供给的数据盘算对应角的度数.对应边的比.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,可否在边AB上找一点N(不含A.B),使得△CDM 与△MAN类似?若能,请给出证实,若不克不及,请解释来由.考点:类似三角形的剖断;正方形的性质.菁优网版权所有专题:探讨型;分类评论辩论.剖析:两个三角形都是直角三角形,还只需知足一对角对应相等或夹直角的双方对应成比例即可解释两个三角形类似.若DM与AM对应,则△CDM与△MAN全等,N与B重合,不合题意;若DM与AN对应,则CD:AM=DM:AN,得AN=a,从而肯定N的地位.解答:证实:分两种情形评论辩论:①若△CDM∽△MAN,则=.∵边长为a,M是AD的中点,∴AN=a.②若△CDM∽△NAM,则.∵边长为a,M是AD的中点,∴AN=a,即N点与B重合,不合题意.所以,能在边AB上找一点N(不含A.B),使得△CDM与△MAN类似.当AN=a时,N点的地位知足前提.点评:此题考核类似三角形的剖断.因不明白对应关系,所以需分类评论辩论.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B动身,沿BC偏向以2cm/s的速度移动,点P从C动身,沿CA偏向以1cm/s的速度移动.若Q.P分离同时从B.C动身,试探讨经由若干秒后,以点C.P.Q为极点的三角形与△CBA类似?考点:类似三角形的剖断.菁优网版权所有专题:分解题;动点型.。

初三数学相似三角形经典题(含答案)

初三数学相似三角形经典题(含答案)

相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。

初三数学相似三角形经典题(含答案)

初三数学相似三角形经典题(含答案)

相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,若是2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个极点组成的小三角形与ABC ∆相似.尽可能多地画出知足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地址,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,假设5.1=AC m ,小明的眼睛离地面的高度为,请你帮忙小明计算一下楼房的高度(精准到).例8 格点图中的两个三角形是不是是相似三角形,说明理由.例9 依照以下各组条件,判定ABC ∆和C B A '''∆是不是相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每一个图形中,存不存在相似的三角形,若是存在,把它们用字母表示出来,并简要说明识别的依照.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长别离为五、1二、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,教师让同窗们到操场上测量旗杆的高度,然后回来交流各自的测量方式.小芳的测量方式是:拿一根高米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为米,如此即可明白旗杆的高.你以为这种测量方式是不是可行?请说明理由.例14.如图,为了估算河的宽度,咱们能够在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确信BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)若是有一个正方形的边在AB 上,另外两个极点别离在AC ,BC 上,求那个正方形的面积.。

初中数学经典相似三角形练习题附参考答案

初中数学经典相似三角形练习题附参考答案

经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△中,∥,∥,求证:△∽△.2.如图,梯形中,∥,点F在上,连与的延长线交于点G.(1)求证:△∽△;(2)当点F是的中点时,过F作∥交于点E,若6,4,求的长.3.如图,点D,E在上,且∥,∥.求证:△∽△.4.如图,已知E是矩形的边上一点,⊥于F,试说明:△∽△.5.已知:如图①所示,在△和△中,,,∠∠,且点B,A,D在一条直线上,连接,,M,N分别为,的中点.(1)求证:①;②△是等腰三角形;(2)在图①的基础上,将△绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长交线段于点P.求证:△∽△.6.如图,E是▱的边延长线上一点,连接,交于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△和△的顶点都在边长为1的小正方形的顶点上.(1)填空:∠°,;(2)判断△与△是否相似,并证明你的结论.8.如图,已知矩形的边长3,6.某一时刻,动点M从A点出发沿方向以1的速度向B点匀速运动;同时,动点N从D点出发沿方向以2的速度向A点匀速运动,问:(1)经过多少时间,△的面积等于矩形面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形中,若∥,,对角线、把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△中,D为上一点,2,∠45°,∠60°,⊥于E,连接.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△与△的面积之比.11.如图,在△中,,M为底边上的任意一点,过点M分别作、的平行线交于P,交于Q.(1)求四边形的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于的什么位置时,四边形为菱形并证明你的结论.12.已知:P是正方形的边上的点,且3,M是的中点,试说明:△∽△.13.如图,已知梯形中,∥,2,8,10.(1)求梯形的面积S;(2)动点P从点B出发,以1的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1的速度,沿C⇒D⇒A方向,向点A运动,过点Q作⊥于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线将梯形的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形,长12,宽8,P、Q分别是、上运动的两点.若P自点A 出发,以1的速度沿方向运动,同时,Q自点B出发以2的速度沿方向运动,问经过几秒,以P、B、Q为顶点的三角形与△相似?15.如图,在△中,10,20,点P从点A开始沿边向B点以2的速度移动,点Q从点B开始沿边向点C以4的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△与△相似.16.如图,∠∠90°,,2.问当的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形中,M是的中点,能否在边上找一点N(不含A、B),使得△与△相似?若能,请给出证明,若不能,请说明理由.18.如图在△中,∠90°,8,6,点Q从B出发,沿方向以2的速度移动,点P从C出发,沿方向以1的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△相似?19.如图所示,梯形中,∥,∠90°,7,2,3,试在腰上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△和△是两个等腰直角三角形,∠∠90°,△的顶点E位于边的中点上.(1)如图1,设与交于点M,与交于点N,求证:△∽△;(2)如图2,将△绕点E旋转,使得与的延长线交于点M,与交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形中,15,10,点P沿边从点A开始向B以2的速度移动;点Q沿边从点D开始向点A以1的速度移动.如果P、Q同时出发,用t (秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A点,沿所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80的竹竿的影长为60.乙组:如图2,测得学校旗杆的影长为900.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200,影长为156.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离8.7m,窗口高1.8m,求窗口底边离地面的高.26.如图,李华晚上在路灯下散步.已知李华的身高,灯柱的高′P′,两灯柱之间的距离′.(1)若李华距灯柱的水平距离,求他影子的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和()是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S123.(1)如图②,分别以直角三角形三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△∽△,15,9,5.求.29.已知:如图△∽△,若3,4.(1)求、的长;(2)过B作⊥于E,求的长.30.(1)已知,且34z﹣240,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△中,∥,∥,求证:△∽△.考点:相似三角形的判定;平行线的性质。

初中数学相似三角形经典练习难题易错题

初中数学相似三角形经典练习难题易错题

相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF= _________ .二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是R t△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。

(word完整版)初中数学经典相似三角形练习题(附参考答案)

(word完整版)初中数学经典相似三角形练习题(附参考答案)

康桥国际天虹教育谢相似三角形.解答题(共30小题)1.如图,在△A中, DE// BC, EF // AB,求证:△ ADE EFC .2 .如图,梯形ABCD中,AB // CD,点F在BC上,连DF与AB的延长线交于点G.(1 )求证:△ CDFBGF ;(2)当点F是BC的中点时,过F作EF // CD交AD于点E,若AB=6cm , EF=4cm,求CD的长.3 .如图,点D , E在BC 上,且FD // AB, FE // AC.4.如图,已知矩形ABCD的边长AB=3cm , BC=6cm .某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMIN积等于矩形ABCD面积的〒?(2)是否存在时刻t,使以A , M , N为顶点的三角形与△相似D若存在,求t的值;若不存在,请说明理由.ADM s^ MCP.相DC5 .已知:P是正方形ABCD的边BC上的点,且BP=3PC , M是CD的中点,试说明:△6 .已知矩形ABCD,长BC=12cm,宽AB=8cm , P、Q分别是AB、BC上运动的两点.若P自点A出发, 以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、7 .如图,/ ACB= / ADC=90AC=^彳,AD=2 .问当AB的长为多少时,这两个直角三角形相似.8 .如图在厶C=90 °BC=8cm , AC=6cm ,点Q从B出发,沿BC方向以2cm/s的速度移动, 点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同以点C、P、Q为顶点的三角形与△相似A9 .如图所示,梯形ABCD中,AD// BC,/ A=90AB=7 , AD=2 , BC=3,试在腰AB上确定点P的位置,P, B,C为顶点的三角形相似.10 .如图,在矩形ABCD中,AB=15cm , BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t (秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△相ABC11 .如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(0点)20米的A点,沿0A所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?12 •阳光通过窗口照射到室内,在地面上留下 2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.E厶/1 1,8mAc 13 .如图,李华晚上在路灯下散步.(1) 若李华距灯柱 0P 的水平距离0A=a ,求他影子 AC 的长; (2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC )是否是定值请说明理由;(3)若李华在点 A 朝着影子(如图箭头)的方向以 v i 匀速行走,试求他影子的顶端在地面上移动的速度ABCAADE5, , AC=9 , BD=5 .求 AE .15 .已知:如图 Rt △ ABC s Rt △ BDC A B=3 , AC=4 . (1 )求BD 、CD 的长;已知李华的身高 AB=h ,灯柱的高0P=0' P '两灯柱之间的距离 00'=m.V 2.△(2)过B作BE丄DC于E,求BE的长.相似三角形.解答题(共30小题)1.如图,在△A中C DE// BC, EF // AB,求证:△ ADE EFC .2 .如图,梯形ABCD中,AB // CD,点F在BC上,连DF与AB的延长线交于点G.(1 )求证:△ CDFBGF ;(1)利用平行线的性质可证明△CDFBGF.(2)根据点F是BC的中点这一已知条件,可得△CDF也△CD=BG,次只要求出BG的长即可(2)当点F是BC的中点时,过F作EF // CD交AD于点E,若AB=6cm , EF=4cm,求CD的长.解题.3 .如图,点D , E在BC 上,且FD // AB, FE // AC.分析:点评:本题很简单,考查的是相似三角形的判定定理:(1 )如果两个三角形的两个角对应相等,那么这两个三角形相似;52(2) 如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三 角形相似; (3) 如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.4.如图,已知矩形ABCD 的边长AB=3cm , BC=6cm .某一时刻,动点M 从A 点出发沿AB 方向以1cm/s 的速度向B 点匀速运动;同时,动点 N 从D 点出发沿DA 方向以2cm/s 的速度向A 点匀速运动,问:(1)经过多少时间,△ AMIN 积等于矩形 ABCD 面积的二?9(2)是否存在时刻t ,使以A , M , N 为顶点的三角形与△ 相似D 若存在,求t 的值;若不存在,请说詁兀在①,或并韦分析:(1)关于动点问题,可设时间为 x ,根据速度表示出所涉及到的线段的长度,找到相等关系,列方 程求解即可,如本题中利用,△ 的面积等于矩(2)先假设相t 值即可说明存在,反之解答: 则不存在.(1)设经过x 秒后,-;(6 - 2x ) x= X 3 X 6,得 1 =1 , X 2=2 , (2)假设经过t 秒时,以A , M , N 为顶点的三角形与△相似D由矩形 ABCD ,可得/ CDA= / MAN=90 ° ,因此有缆兰或蝕卑 AN DAAN DC5212 .已知:P 是正方形ABCD 的边BC 上的点,且 BP=3PC , M 是CD 的中点,试说明:△月-经检验,t=—或t=解①,得t= ;解②,得t= — ―都符合题意ADM s^ MCP.分析:欲证△ ADM s^ MC 通过观察发现两个三角形已经具备一组角对应相等,即/D= / C ,此时,再此对应角的两边对应成比例即可.6 .已知矩形 ABCD ,长BC=12cm ,宽AB=8cm , P 、Q 分别是AB 、BC 上运动的两点.若 P 自点A 出发,以1cm/s 的速度沿AB 方向运动,同时,Q 自点B 出发以2cm/s 的速度沿BC 方向运动,问经过几秒,以P 、或厶QBP s^ BDC ,从而解得所需的时间.由于/ PBQ= 4 BCD=90 ° ,7 .如图,4ACB= 4 ADC=90AC= . ■, AD=2 .问当AB 的长为多少时,这两个直角三角形相似.相BDC分析: 要使以P 、B 、Q 为顶点的三角形与△ 相似C 则要分两两种情况进行分析•分别是厶PBQ s^ E解答:解:设经x 秒后,△ PBQ s^ BCD ,(1)当/ 1= J 时,有:8- x_2i …_248 17,即DC LCPB BQ 旳,即BCD .(2)当/ 1= 43 有:解答:解:••• AC ^i , AD=2 ,••• CD=甘门上.- 要使这两个直角三角形相似,有两种情况:8 .如图在厶 ABC /C=90 °BP =8cm , AC=6cm ,点Q 从B 出发,沿 BC 方向以2cm/s 的速度移动,点P 从C 出发,沿CA 方向以1cm/s 的速度移动.若 Q 、P 分别同时从B 、C 出发,试探究经过多少秒后,解:设经过x 秒后,两三角形相似,则 CQ= (8 - 2x ) cm , CP=xcm ,19 .如图所示,梯形 ABCD 中, AD // BC ,Z A=90 AB=7 , AD=2 , BC=3,试在腰 AB 上确定点 P 的位°)当 Rt ABC S Rt ACD 有養=AC 2 (2 )当 Rt △ ACB sAD AC 2=3 ;以点C 、P 、Q 为顶点的三角形与△ 相似A解答:(1) (2)Jr :,或」:_ >■ :-"■■ ■, :_ >■ ~^,12 —;32x=—.D 为顶点的三角形与以 P , B , C 为顶点的三角形相似.Rt △ CDA 有 C>0OC= / C=90,两三角形相似.解:(1)若点A , P , D 分别与点B , C , P 对应,即△APDBCP ,: -—,AP 2 - 7AP+6=0 , AP=1 或 AP=6 ,7-AP 3检测:当 AP=1 时,由 BC=3 , AD=2 , BP=6 ,二=二,又•••/ A= / B=90 ° , APD s^APBCP 时当由 BC=3 , AD=2 , BP=1 ,又•••/ A= / B=90 ° ,△ APDBCP .(2)若点A , P , D 分别与点B , P , C 对应,即△•••△ APDBPC .此尸点的位置有三处,即在线段10 .如图,在矩形ABCD 中,AB=15cm , BC=10cm ,点P 沿AB 边从点A 开始向B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果 P 、Q 同时出发,用t (秒)表示移动的时间,①厶 APQ s^ BAC,此时AQ :BC=AP : A B ; ②厶 APQ S ABCA ,此时AQ : AB=AP : B C ; ③厶AQP S ABAC ,此时AQ : BA=AP : B C ; ④厶AQP S ABCA ,此时AQ :BC=AP : B A .可根据上述四种情况所得到的不同的对应成比例线段求出t 的值.11 .如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A 点,沿OA 所 在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?解答:APDBPC ..AP _ AD •APA~.需疇,丄 A= / B=90 °,AB 距离点A 的1、•、6处.5•型=世•丽 0C ,检验:当AP= pi ,由 BP=^, AD=2 , BC=3 ,5那么当t 为何值时,以点 Q 、A 、P 为顶点的三角形与△ 相ABC 分析:若以点Q 、A 、P 为顶点的三角形与△ 相似C 有四种情况:分析:如图,由于 AC // BD // OP ,故有△ MAC s^ MOP,^ NBD s 即可NO 相似三角形的性质求解. 12 •阳光通过窗口照射到室内,在地面上留下 2.7m 宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m ,窗口高 AB=1.8m ,求窗口底边离地面的高BC .长.(BC=4 米)13.如图,李华晚上在路灯下散步.已知李华的身高 AB=h ,灯柱的高OP=O ' P '两灯柱之间的距离 OO' =m . 若李华距灯柱 0P 的水平距离OA=a ,求他影子 AC 的长;因为光线 AE 、BD 是一组平行光线,即 AE // BD ,所以△ ECADCB ,(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和( DA+AC )是否是定值请说明理由;(1) 0分析:,从而算出BC 的(3)若李华在点A朝着影子(如图箭头)的方向以V1匀速行走,试求他影子的顶端在地面上移动的速度解答:解:(1 )由已知:AB // OP,°心产,「OP = A B=h ,OA =a ,^ …,•解得:气上1 _ h(2 )T AB // OP ,「.A ABC s\AC hhr 即AC _ h '1 -hOC 1OC-AC耐__1_ A,a+AC 1,即.•盘亍亍阳同理可得:是定值.由(1 )可知越」世,即h AC • ■__ OA_OC - ACOC OP1 OC OC OC同理可得:叫丄乜, ・OA 0” |时 1OC OC''由等比性质得:卅°A. -0A _ 1 -h— ,(3)根据题意设李华由 A 到A',身高为A'B' , A'C'代表其影长(如图) 当李华从A 走到A'的时候,他的影子也从 C 移到C',因此速度与路程成正比CC r-0C 1.i加』n_hCC ,兄二]所以人影顶端在地面上移动的速度为ABCABDE5, , AC=9 , BD=5 .求 AE . △ 解答: 解:•••△ ABCADE ,-ACAED : AB . v AE:AC= (AB+BD ) : AB , • AE :9= (15+5 ): 15 . AE=12 . 15 .已知:如图 Rt △ ABC s Rt △ BDC ,B=3 , (1 )求BD 、CD 的长; (2)过B 作BE 丄DC 于E ,求BE 的长.。

初中数学相似三角形经典练习难题易错题

初中数学相似三角形经典练习难题易错题

相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF= _________ .二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:Q H⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证提示:要证明如几何题的常用方法:①比例法:将原等式变为,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)

经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的形方格中,△ABC和△DEF的顶点都在边长为1的小形的顶点上.(1)填空:∠ABC= _________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q 从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ 与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P 从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.通过窗口照射到室,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,26.如图,华晚上在路灯下散步.已知华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)

初中数学经典相似三角形练习题(附参考答案)初中数学经典相似三角形练习题(附参考答案)一、题目描述在初中数学中,相似三角形是一个非常重要的概念。

本文为您提供一些经典的相似三角形练习题,通过解答这些练习题可以提高学生的解题能力和对相似三角形的理解。

本文附有详细的参考答案,供学生进行自我检测和复习。

二、练习题1. 已知△ABC和△DEF相似,AB = 6cm,BC = 8cm,AC = 10cm,DE = 9cm,计算EF的长度。

2. △ABC与△DEF相似,AB = 2cm,BC =3.5cm,AC = 4cm,EF= 7cm,求DE的长度。

3. 在△ABC中,角A的度数为50°,角B的度数为70°,BC = 8cm。

若与△ABC相似的三角形的边长分别为10cm和12cm,求与△ABC相似的三角形的第三边的长度。

4. 在△ABC中,∠B = 90°,AC = 10cm,BC = 12cm。

若与△ABC相似的三角形的第二边为16cm,求与△ABC相似的三角形的第三边的长度。

5. 已知△ABC与△DEF相似,AB = 6cm,AC = 8cm,DE = 12cm,若EF = 18cm,求BC的长度。

6. 高度为5cm的小树和高度为12cm的大树的影子长度之比为2:3。

如果小树的影子长度为10cm,求大树的影子长度。

7. 一个航拍无人机垂直飞行,发现自己离地面的垂直距离与航拍无人机的长度(包括机身和旋翼)的比例为3:2。

如果航拍无人机的长度为120cm,求离地面的垂直距离。

8. 在一个旅游小组中,由5名成年人和7名儿童组成,其平均年龄为30岁。

如果另一个旅游小组由2名成年人和3名儿童组成,其平均年龄为24岁。

求这两个旅游小组的总年龄之比。

三、参考答案1. 根据相似三角形的性质可知,EF与AC的比例应与DE与BC的比例相等。

即 EF/AC = DE/BC。

代入已知值,得 EF/10 = 9/8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形难题易错题一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=_________.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.19.如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证1AB +1AC=1BC提示:要证明如1a +1b=1c几何题的常用方法:①比例法:将原等式变为a+bab=1c或a+ba=bc,故构造成以a+b、b为边且与a、c所在三角形相似的三角形。

②通分法:将原等式变为ca +cb=1,利用相关定理将两个个比通分即:ca =md,cb=nb,且m+n=d,则原式成立。

2013初中相似三角形难题易错题参考答案与解析一.填空题(共2小题)1.如图所示,已知AB∥EF∥CD,若AB=6厘米,CD=9厘米.求EF.考点:平行线分线段成比例.专题:计算题.分析:由于BC是△ABC与△DBC的公共边,且AB∥EF∥CD,利用平行线分线段成比例的定理,可求EF.解答:解:在△ABC中,因为EF∥AB,所以EF:AB=CF:CB①,同样,在△DBC中有EF:CD=BF:CB②,①+②得EF:AB+EF:CD=CF:CB+BF:CB=1③.设EF=x厘米,又已知AB=6厘米,CD=9厘米,代入③得x:6+x:9=1,解得x=.故EF=厘米.点评:考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.2.如图,▱ABCD的对角线相交于点O,在AB的延长线上任取一点E,连接OE交BC于点F.若AB=a,AD=c,BE=b,则BF=.考点:相似三角形的判定与性质;平行四边形的性质.专题:计算题.分析:首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.解答:解:取AB的中点M,连接OM,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=c,∴△EFB∽△EOM,∴,∵AB=a,AD=c,BE=b,∴ME=MB+BE=AB+BE=a+b,∴,∴BF=.故答案为:.点评:此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.二.解答题(共17小题)3.如图所示.在△ABC中,∠BAC=120°,AD平分∠BAC交BC于D.求证:.考点:相似三角形的判定与性质;等边三角形的判定.专题:证明题.分析:过D引DE∥AB,交AC于E,因为AD平分∠BAC(=120°),所以∠BAD=∠EAD=60°.若引DE∥AB,交AC于E,则△ADE为正三角形,从而AE=DE=AD,利用△CED∽△CAB,可实现求证的目标.解答:证明:过D引DE∥AB,交AC于E.∵AD是∠BAC的平分线,∠BAC=120°,∴∠BAD=∠CAD=60°.又∠BAD=∠EDA=60°,所以∴△ADE是正三角形,∴EA=ED=AD.①由于DE∥AB,所以△CED∽△CAB,∴===1﹣.②由①,②得=1﹣,从而+=.点评:本题考查了相似三角形对应边比值相等的性质,考查了相似三角形的判定,考查了等边三角形的判定,考查了角平分线的性质,本题中求证△CED∽△CAB是解题的关键.4.如图所示,▱ABCD中,AC与BD交于O点,E为AD延长线上一点,OE交CD于F,EO延长线交AB于G.求证:.考点:相似三角形的判定与性质;平行四边形的性质.专题:证明题.分析:应利用平行四边形的性质,通过添加辅助线使各线段“集中”到一个三角形中来求证.解答:证明:延长CB与EG,其延长线交于H,如虚线所示,构造平行四边形AIHB.在△EIH中,由于DF∥IH,∴=.∵IH=AB,∴=,从而,﹣=﹣===1+.①在△OED与△OBH中,∠DOE=∠BOH,∠OED=∠OHB,OD=OB,∴△OED≌△OBH(AAS).从而DE=BH=AI,∴=1.②由①,②得﹣=2.点评:此题考查学生对相似三角形的判定与性质和平行四边形的性质的理解和掌握,此题的关键是延长CB与EG,其延长线交于H,如虚线所示,构造平行四边形AIHB.这是此题的突破点,也是一个难点,因此属于一道难题.5.一条直线截△ABC的边BC、CA、AB(或它们的延长线)于点D、E、F.求证:.考点:三角形的面积.专题:证明题.分析:连接BE、AD,并把线段之比转化为两三角形面积之比,然后约分即可求证.解答:证明:如图,连接BE、AD,∵△BDE与△DCE等高,∴=,∵△DCE与△ADE等高,∴=,∵△ADF与△BDF等高,∴=,∵△AEF与△BEF等高,∴=,∴=,∴••=••=1.点评:此题考查学生对三角形面积的理解和掌握,解答此题的关键是连接BE、AD,并把线段之比转化为两三角形面积之比.6.如图所示.P为△ABC内一点,过P点作线段DE,FG,HI分别平行于AB,BC和CA,且DE=FG=HI=d,AB=510,BC=450,CA=425.求d.考点:相似三角形的判定与性质;平行四边形的判定与性质.专题:计算题.分析:由FG∥BC,HI∥CA,ED∥AB,易证四边形AIPE、四边形BDPF、四边形CGPH 均是平行四边形,利用平行线分线段成比例定理的推论可得△IHB∽△AFG∽△ABC,于是=,=,再结合=,先计算式子右边的和,易求++==2,从而有++=2,再把DE=FG=HI=d,AB=510,BC=450,CA=425代入此式,解即可.解答:解:∵FG∥BC,HI∥CA,ED∥AB,∴四边形AIPE、四边形BDPF、四边形CGPH均是平行四边形,∴△IHB∽△AFG∽△ABC,∴=,=,∴++=,又∵DE=PE+PD=AI+FB,AF=AI+FI,BI=IF+FB,∴DE+AF+BI=2×(AI+IF+FB)=2AB,∴++==2,∵DE=FG=HI=d,AB=510,BC=450,CA=425,∴++=++=2,∴++=2,解得d=306.点评:本题考查了相似三角形的判定和性质、平行线分线段成比例定理的推论、平行四边形的判定和性质.7.如图所示.梯形ABCD中,AD∥BC,BD,AC交于O点,过O的直线分别交AB,CD 于E,F,且EF∥BC.AD=12厘米,BC=20厘米.求EF.考点:平行线分线段成比例.分析:由平行线的性质可得===,得出OE与BC,OF与AD的关系,进而即可求解EF的长.解答:解:∵AD∥BC,EF∥BC,∴===,又==,==,∴OE=BC=,OF=AD=,∴EF=OE+OF=15.点评:本题主要考查了平行线的性质问题,能够利用其性质求解一些简单的计算问题.8.已知:P为▱ABCD边BC上任意一点,DP交AB的延长线于Q点,求证:.考点:相似三角形的判定与性质.专题:证明题.分析:由于AB=CD,所以将转化为,再由平行线的性质可得=,进而求解即可.解答:证明:在平行四边形ABCD中,则AD∥BC,AB∥CD,∴==∴﹣=﹣==1.点评:本题主要考查了平行四边形的性质以及相似三角形的判定及性质问题,能够熟练掌握.9.如图所示,梯形ABCD中,AD∥BC,MN∥BC,且MN与对角线BD交于O.若AD=DO=a,BC=BO=b,求MN.考点:相似三角形的判定与性质;梯形.专题:计算题.分析:由平行线分线段成比例可得对应线段的比,再由题中已知条件即可求解线段MN的长.解答:解:∵MN∥BC,∴在△ABD中,=,即OM==,同理ON==,∴MN=OM+ON=.点评:本题主要考查了平行线分线段成比例的性质问题,能够熟练掌握.10.P为△ABC内一点,过P点作DE,FG,IH分别平行于AB,BC,CA(如图所示).求证:.考点:平行线分线段成比例.专题:证明题.分析:(1)由平行线可得△PIF∽△CAB,得出对应线段成比例,即==,同理得出==,即可证明结论;(2)证明方法与(1)相同.解答:证明:(1)∵DE∥AB,IH∥AC,FG∥BC,∴可得△PIF∽△CAB,∴==,同理==,++=++=1.(2)仿(1)可得==,===,∴++=++=1.点评:本题主要考查了平行线的性质问题,能够利用其性质通过线段之间的转化,证明一些简单的结论.11.如图所示.在梯形ABCD中,AB∥CD,AB<CD.一条直线交BA延长线于E,交DC 延长线于J,交AD于F,交BD于G,交AC于H,交BC于I.已知EF=FG=GH=HI=IJ,求DC:AB.考点:相似三角形的判定与性质;梯形.专题:计算题.分析:由平行线可得对应线段成比例,又由已知EF=FG=CH=HI=IJ,可分别求出线段AB、CD与AE、CJ的关系,进而可求解结论.解答:解:∵AB∥CD,EF=FG=CH=HI=IJ,∴==,∴==,==,∴DJ=4AE,又=,解得AB=AE,又AE=CJ,∴AB=CJ,EB=4CJ,==,CD=5CJ,∴AB:CD=:5=1:2.点评:本题主要考查了相似三角形对应边成比例或平行线分线段成比例的性质问题,应熟练掌握.12.已知P为△ABC内任意一点,连AP,BP,CP并延长分别交对边于D,E,F.求证:(1)(2)三者中,至少有一个不大于2,也至少有一个不少于2.考点:平行线分线段成比例.专题:证明题.分析:(1)第一问可由三角形的面积入手,即△PBC+△PAC+△PAB=△ABC,通过化简可得面积与线段之间的关系,进而即可求解.(2)由(1)中得出,则其中至少有一个不大于,可设≤,即3AD≤PD,而AD=AP+PD,进而通过证明即可得出结论.解答:解:(1)由面积概念得:S△PBC+S△PAC+S△PAB=S△ABC①整理等式得:++=1,②由面积概念得:=,=,∴=,即=③同理得:=④=⑤把式③、④、⑤、代入式②得:;(2)由,知,,中至少有一个不大于,不妨设≤即3AD≤PD.而AD=AP+PD,∴AP≥2PD,∴≥2,即不小于2,同理可证三式中至少有一个不大于2.点评:本题主要考查了三角形的面积比与对应边的比值之间的关系,能够熟练掌握其内在联系,并能求解一些比较复杂的问题.13.如图所示.在△ABC中,AM是BC边上的中线,AE平分∠BAC,BD⊥AE的延长线于D,且交AM延长线于F.求证:EF∥AB.考点:相似三角形的判定与性质;角平分线的性质.专题:证明题.分析:利用角平分线分三角形中线段成比例的性质,构造三角形,设法证明△MEF∽△MAB,从而EF∥AB解答:证明:过B作BG∥AC交AE的延长线于G,交AM的延长线于H.∵AE是∠BAC的平分线,∴∠BAE=∠CAE.∵BG∥AC,∴∠CAE=∠G,∴∠BAE=∠G,∴BA=BG.又BD⊥AG,∴△ABG是等腰三角形,∠ABF=∠HBF,∴F到AB与BH的距离相等,∴S△ABF:S△HBF=AB:BH,∵S△ABF:S△HBF=AF:FH,∴AB:BH=AF:FH.又M是BC边的中点,且BH∥AC,易知ABHC是平行四边形,从而BH=AC,∴AB:AC=AF:FH.∵AE是△ABC中∠BAC的平分线,∴AB:AC=BE:EC,AF:FH=BE:EC,即(AM+MF):(AM﹣MF)=(BM+ME):(BM﹣ME)(这是因为ABHC是平行四边形,所以AM=MH及BM=MC).由合分比定理,上式变为AM:MB=FM:ME.在△MEF与△MAB中,∠EMF=∠AMB,∴△MEF∽△MAB∴∠ABM=∠FEM,所以EF∥AB.点评:此题考查学生对相似三角形的判定与性质和角平分线的理解和掌握,证明此题的关键是过B引BG∥AC交AE的延长线于G,交AM的延长线于H.和利用合分比定理.14.如图所示.P,Q分别是正方形ABCD的边AB,BC上的点,且BP=BQ,BH⊥PC于H.求证:QH⊥DH.考点:相似三角形的判定与性质;直角三角形的性质;正方形的性质.专题:证明题.分析:要证QH⊥DH,只要证明∠BHQ=∠CHD.由于△PBC是直角三角形,且BH⊥PC,熟知∠PBH=∠PCB,从而∠HBQ=∠HCD,因而△BHQ与△DHC相似.解答:证明:在Rt△PBC中,∵BH⊥PC,∴∠PBC=∠PHB=90°,∴∠PBH=∠PCB.显然,Rt△PBC∽Rt△BHC,∴=,由已知,BP=BQ,BC=DC,∴=,∴=.∵∠ABC=∠BCD=90°,∠PBH=∠PCB,∴∠HBQ=∠HCD.在△HBQ与△HCD中,∵=,∠HBQ=∠HCD,∴△HBQ∽△HCD,∴∠BHQ=∠DHC,∠BHQ+∠QHC=∠DHC+∠QHC.又∵∠BHQ+∠QHC=90°,∴∠QHD=∠QHC+DHC=90°,即DH⊥HQ.点评:本题考查了相似三角形的判定与性质及正方形的性质,难度适中,关键是掌握相似三角形的判定方法.15.已知M是Rt△ABC中斜边BC的中点,P、Q分别在AB、AC上,且PM⊥QM.求证:PQ2=PB2+QC2.考点:直角三角形斜边上的中线;勾股定理.专题:证明题.分析:以M点为中心,△MCQ顺时针旋转180°至△MBN,根据旋转的旋转可得△MCQ与△MBN全等,根据全等三角形对应边相等可得BN=QC,MN=MQ,全等三角形对应角相等可得,∠MBN=∠C,再连接PN,可以证明PM垂直平分NQ,所以PN=PQ,然后证明△PBN为直角三角形,根据勾股定理即可证明.解答:证明:如图,以M点为中心,△MCQ顺时针旋转180°至△MBN,∴△MCQ≌△MBN,∴BN=QC,MN=MQ,∠MBN=∠C,连接PN,∵PM⊥QM,∴PM垂直平分NQ,∴PN=PQ,∵△ABC是直角三角形,BC是斜边,∴∠ABC+∠C=90°,∴∠ABC+∠MBN=90°,即△PBN是直角三角形,根据勾股定理可得,PN2=PB2+BN2,∴PQ2=PB2+QC2.点评:本题考查了直角三角形的旋转,旋转变换的旋转,勾股定理的应用,利用旋转变换把构造出以PQ、PB、QC转化为同一个直角三角形的三边是证明的关键.16.如图所示.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠CAB,CF平分∠BCD.求证:EF∥BC.考点:相似三角形的判定与性质;平行线的判定.专题:证明题.分析:由题中条件可得AC=AF,即△ACF是等腰三角形,所以EC=EF,进而得出∠ECF=∠EFC,结论得证.解答:证明:∵∠ACB=90°,CD⊥AB,∴∠CAD=∠BCD,又AE平分∠CAB,CF平分∠BCD,∴∠BCF=∠CAE,∠B=∠ACD,∴∠B+∠ECF=∠B+∠BCF,即∠ACF=∠AFC,又AE平分∠CAB,∴AC=AF,∴CE=EF,即∠ECF=∠EFC,∴∠EFC=∠BCF,即EF∥BC.点评:本题主要考查了等腰三角形的性质以及平行线的判定问题,应熟练掌握.17.如图所示.在△ABC内有一点P,满足∠APB=∠BPC=∠CPA.若2∠B=∠A+∠C,求证:PB2=PA•PC.(提示:设法证明△PAB∽△PBC.)考点:相似三角形的判定与性质.专题:证明题.分析:用∠APB=∠APC=120°,∠CBP=∠BAP两个对应角相等证明△PAB∽△PBC,根据相似比可证到结论.解答:证明:∵∠APB=120°,∴∠ABP+∠BAP=60°,又∵∠ABC=60°,∴∠ABP+∠CBP=60°,∴∠CBP=∠BAP,又∵∠APB=∠APC=120°,∴△ABP∽△BCP,∴=,∴BP2=PA•PC.点评:本题考查相似三角形的判定和性质定理,先用判定定理证明相似,然后根据相似对应边成比例证明结论.18.已知:如图,△ABC为等腰直角三角形,D是直角边BC的中点,E在AB上,且AE:EB=2:1.求证:CE⊥AD.考点:相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.专题:证明题.分析:过B作BC的垂线交CE的延长线于点F,从而可推出AC∥BF,根据平行线的性质可得到两组对应角相等从而可判定△ACE∽△BFE,根据相似三角形的对应边对应成比例可得到AC=2BF,进而得到CD=BF,再利用HL判定△ACD≌△CBF,由全等三角形的性质得其对应角相等,再根据等角的性质不难证得结论.解答:证明:过B作BC的垂线交CE的延长线于点F,(1分)∴∠FBC=∠ACB=90°.∴AC∥BF.∴△ACE∽△BFE.(3分)∴.∴AC=2BF.(4分)∵AC=BC,∴CD=BF.(5分)在△ACD和△CBF中,∴△ACD≌△CBF.(6分)∴∠1=∠2.∴∠2+∠3=∠1+∠3=90°.∴∠4=90°.∴CE⊥AD.(7分)点评:此题主要考查学生对全等三角形的判定及性质及相似三角形的判定及性质的综合运用.19.(巧解妙解)如图所示,△ABC中,M、N是边BC的三等分点,BE是AC边上的中线,连接AM、AN,分别交BE于F、G,求BF:FG:GE的值.考点:平行线分线段成比例.专题:应用题.分析:作已知图形的中心对称图形,如图所示,设BF=a,FG=b,GE=c,由平行线的性质分别求出a,b与c之间的关系,即可得出其比值.解答:解:如答图所示.作已知图形的中心对称图形,以E为对称中心.令BF=a,FG=b,GE=c.∵M′C∥AM,N′C∥AN∴a:(2b+2c)=BM:MC=1:2∴a=b+c,而(a+b):2c=BN:NC=2:1∴a+b=4c,所以a=c,b=c.∴BF:FG:GE=5:3:2.点评:本题主要考查了平行线分线段成比例的性质问题,要求线段的比,通过作平行线构造比例线段是一种重要的方法.20.在△ABC中,∠A∶∠B∶∠C=1∶2∶4.求证1AB +1AC=1BC提示:要证明如1AB +1AC=1BC将原等式变为AB+ACAB∗AC=1BC或AB+ACAB=ACBC,为此若能设法利用长度分别为AB,BC,CA及AB+AC这4条线段,构造一对相似三角形,问题可能解决.注意到,原△ABC中,已含上述4条线段中的三条,因此,不妨以原三角形ABC为基础添加辅助线,构造一个三角形,使它与△ABC相似,期望能解决问题.证延长AB至D,使BD=AC(此时,AD=AB+AC),又延长BC至E,使AE=AC,连结ED.下面证明,△ADE∽△ABC.设∠A=α,∠B=2α,∠C=4α,则:∠A+∠B+∠C=7α=180°.由作图知,∠ACB是等腰三角形ACE的外角,所以∠ACE=180°-4α=3α,所以∠CAE=180°-3α-3α=7α-6α=α.从而∠EAB=2α=∠EBA,AE=BE.∵AE=AC,AE=BD,∴ BE=BD,△BDE是等腰三角形,∴∠D=∠BED=α=∠CAB,∴△ABC∽△DAE,∴ADAE =ABBC,即AB+ACAC=ABBC∴1AB +1AC=1BC。

相关文档
最新文档