天津中考数学二轮 相似 专项培优 易错 难题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)
1.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:
(1)求证:△BEF∽△DCB;
(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;
(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?试说明理由.
【答案】(1)解:证明:∵四边形是矩形,
在中,
分别是的中点,
(2)解:如图1,过点作于,
(舍)或秒
(3)解:四边形为矩形时,如图所示:
解得:
(4)解:当点在上时,如图2,
当点在上时,如图3,
时,如图4,
时,如图5,
综上所述,或或或秒时,是等腰三角形.
【解析】【分析】(1)根据矩形的性质可证得AD∥BC,∠A=∠C,根据中位线定理可证得EF∥AD,就可得出EF∥BC,可证得∠BEF=∠C,∠BFE=∠DBC,从而可证得结论。(2)过点Q作QM⊥EF,易证QM∥BE,可证得△QMF∽△BEF,得出对应边成比例,可求出QM的值,再根据△PQF的面积为0.6cm2,建立关于t的方程,求解即可。
(3)分情况讨论:当点 Q 在 DF 上时,如图2, PF=QF;当点 Q 在 BF 上时, PF=QF,如图3;PQ=FQ 时,如图4;PQ=PF 时,如图5,分别列方程即可解决问题。
2.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°).
(1)当α=0°时,连接DE,则∠CDE=________°,CD=________;
(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明;
(3)若m=10,n=8,当旋转的角度α恰为∠ACB的大小时,求线段BD的长;
(4)若m=6,n= ,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长.
【答案】(1)90;
(2)解:如图3中,
∵∠ACB=∠DCE,∴∠ACE=∠BCD.∵,∴△ACE∽△BCD,∴
.
(3)解:如图4中,
当α=∠ACB时.在Rt△ABC中,∵AC=10,BC=8,∴AB= =6.在Rt△ABE中,∵AB=6,BE=BC﹣CE=3,∴AE= = =3 ,由(2)可知
△ACE∽△BCD,∴,∴ = ,∴BD= .故答案为:
(4)解:∵m=6,n= ,∴CE=3,CD=2 ,AB= =2,①如图5
中,
当α=90°时,半圆与AC相切.在Rt△DBC中,BD= =
=2 .
②如图6中,
当α=90°+∠ACB时,半圆与BC相切,作EM⊥AB于M.∵∠M=∠CBM=∠BCE=90°,∴四边形BCEM是矩形,∴,∴AM=5,AE= = ,由
(2)可知 = ,∴BD= .
故答案为:2 或.
【解析】【解答】(1)①如图1中,
当α=0时,连接DE,则∠CDE=90°.∵∠CDE=∠B=90°,∴DE∥AB,∴ =
.∵BC=n,∴CD= .故答案为:90°, n.
【分析】(1)连接DE,当α=0时,由直径所对的圆周角时直角可得∠CDE=90°,判断DE∥AB,从而可得比例式进而求解。
(2)旋转过程中 B D: A E 的大小有无变化,可以看 B D, A E 所在的三角形相似,从而可的△ACE∽△BCD,进而得出结论。
(3)根据勾股定理求得AB和AE,即可求出BD。
(4)由题意分两种情况:当α=90°时,半圆与AC相切。当α=90°+∠ACB时,半圆与BC相切。
3.如图1,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.
(1)请直接写出PM与PN的数量关系及位置关系________;
(2)现将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H.请直接写出PM与PN的数量关系及位置关系________;
(3)若图2中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图3,写出
PM与PN的数量关系,并加以证明.
【答案】(1)PM⊥PN,PM=PN
(2)PM=PN,PM⊥PN
(3)解:PM=kPN,
∵△ACB和△ECD是直角三角形,
∴∠ACB=∠ECD=90°.
∴∠ACB+∠BCE=∠ECD+∠BCE.
∴∠ACE=∠BCD.
∵BC=kAC,CD=kCE,
∴=k.
∴△BCD∽△ACE.
∴BD=kAE,
∵点P、M、N分别为AD、AB、DE的中点,
∴PM= BD,PN= AE.
∴PM=kPN.
【解析】【解答】解:(1)PM=PN,PM⊥PN,
理由如下:
∵△ACB和△ECD是等腰直角三角形,
∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
在△ACE和△BCD中,
∴△ACE≌△BCD(SAS),
∴AE=BD,∠EAC=∠CBD,
∵∠BCD=90°,
∴∠CBD+∠BDC=90°,
∴∠EAC+∠BDC=90°
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,
∴PM= BD,PN= AE,
∴PM=PN,
∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM∥BC,PN∥AE,
∴∠NPD=∠EAC,∠MPN=∠BDC,
∵∠EAC+∠BDC=90°,
∴∠MPA+∠NPC=90°,
∴∠MPN=90°,
即PM⊥PN,