【数学】数学 锐角三角函数的专项 培优 易错 难题练习题及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)
1.如图,海上观察哨所B 位于观察哨所A 正北方向,距离为25海里.在某时刻,哨所A 与哨所B 同时发现一走私船,其位置C 位于哨所A 北偏东53°的方向上,位于哨所B 南偏东37°的方向上.
(1)求观察哨所A 与走私船所在的位置C 的距离;
(2)若观察哨所A 发现走私船从C 处以16海里/小时的速度向正东方向逃窜,并立即派缉私艇沿北偏东76°的方向前去拦截.求缉私艇的速度为多少时,恰好在D 处成功拦截.(结果保留根号)
(参考数据:sin37°=cos53°≈,cos37 =sin53°≈去,tan37°≈2,tan76°≈)
【答案】(1)观察哨所A 与走私船所在的位置C 的距离为15海里;(2)当缉私艇以每小时617D 处成功拦截. 【解析】 【分析】
(1)先根据三角形内角和定理求出∠ACB =90°,再解Rt △ABC ,利用正弦函数定义得出AC 即可;
(2)过点C 作CM ⊥AB 于点M ,易知,D 、C 、M 在一条直线上.解Rt △AMC ,求出CM 、AM .解Rt △AMD 中,求出DM 、AD ,得出CD .设缉私艇的速度为x 海里/小时,根据走私船行驶CD 所用的时间等于缉私艇行驶AD 所用的时间列出方程,解方程即可. 【详解】
(1)在ABC △中,180180375390ACB B BAC ︒︒︒︒︒∠=-∠-∠=--=. 在Rt ABC 中,sin AC B AB =
,所以3sin 3725155
AC AB ︒
=⋅=⨯=(海里). 答:观察哨所A 与走私船所在的位置C 的距离为15海里.
(2)过点C 作CM AB ⊥,垂足为M ,由题意易知,D C M 、、在一条直线上. 在Rt ACM 中,4
sin 15125
CM AC CAM =⋅∠=⨯
=,3
cos 1595
AM AC CAM =⋅∠=⨯=.
在Rt ADM △中,tan MD
DAM AM
∠=,
所以tan 7636MD AM ︒=⋅=. 所以222293691724AD AM MD CD MD MC =
+=+==-=,.
设缉私艇的速度为v海里/小时,则有24917
16v
=,解得617
v=.
经检验,617
v=是原方程的解.
答:当缉私艇以每小时617海里的速度行驶时,恰好在D处成功拦截.
【点睛】
此题考查了解直角三角形的应用﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.
2.(2013年四川攀枝花12分)如图,在平面直角坐标系中,四边形ABCD是梯形,
AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=
2
2
.动点P
在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线
A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.
(1)点A的坐标为,直线l的解析式为;
(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;
(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;
(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.
【答案】解:(1)(﹣4,0);y=x+4.
(2)在点P、Q运动的过程中:
①当0<t≤1时,如图1,
过点C作CF⊥x轴于点F,则CF=4,BF=3,由勾股定理得BC=5.
过点Q作QE⊥x轴于点E,则BE=BQ•cos∠CBF=5t•3
5
=3t.
∴PE=PB﹣BE=(14﹣2t)﹣3t=14﹣5t,
S=1
2
PM•PE=
1
2
×2t×(14﹣5t)=﹣5t2+14t.
②当1<t≤2时,如图2,
过点C、Q分别作x轴的垂线,垂足分别为F,E,则CQ=5t﹣5,PE=AF﹣AP﹣EF=11﹣2t﹣(5t﹣5)=16﹣7t.
S=1
2
PM•PE=
1
2
×2t×(16﹣7t)=﹣7t2+16t.
③当点M与点Q相遇时,DM+CQ=CD=7,
即(2t﹣4)+(5t﹣5)=7,解得t=16
7
.
当2<t<16
7
时,如图3,
MQ=CD﹣DM﹣CQ=7﹣(2t﹣4)﹣(5t﹣5)=16﹣7t,
S=1
2
PM•MQ=
1
2
×4×(16﹣7t)=﹣14t+32.
综上所述,点Q与点M相遇前S与t的函数关系式为
()
()
2
2
5t14t0 S{7t16t1 16 14t322 7 -+≤ =-+≤ ⎛⎫ -+ ⎪ ⎝⎭ . (3)①当0<t≤1时, 2 2 749 S5t14t5t 55 ⎛⎫ =-+=--+ ⎪ ⎝⎭ , ∵a=﹣5<0,抛物线开口向下,对称轴为直线t=7 5 ,∴当0<t≤1时,S随t的增大而增大. ∴当t=1时,S有最大值,最大值为9. ②当1<t≤2时, 2 2 864 S7t16t7t 77 ⎛⎫ =-+=--+ ⎪ ⎝⎭ , ∵a=﹣7<0,抛物线开口向下,对称轴为直线t=8 7 , ∴当t=8 7时,S有最大值,最大值为 64 7 . ③当2<t<16 7 时,S=﹣14t+32 ∵k=﹣14<0,∴S随t的增大而减小. 又∵当t=2时,S=4;当t=16 7 时,S=0,∴0<S<4. 综上所述,当t=8 7 时,S有最大值,最大值为 64 7 . (4)t=20 9 或t= 12 5 时,△QMN为等腰三角形. 【解析】 (1)利用梯形性质确定点D的坐标,由sin∠ DAB= 2 ,利用特殊三角函数值,得到 △AOD为等腰直角三角形,从而得到点A的坐标;由点A、点D的坐标,利用待定系数法求出直线l的解析式: ∵C(7,4),AB∥CD,∴D(0,4). ∵sin∠ DAB= 2 ,∴∠DAB=45°.∴OA=OD=4.∴A(﹣4,0). 设直线l的解析式为:y=kx+b,则有 4k b0 { b4 -+= = ,解得: k1 { b4 = = .∴y=x+4. ∴点A坐标为(﹣4,0),直线l的解析式为:y=x+4. (2)弄清动点的运动过程分别求解:①当0<t≤1时,如图1;②当1<t≤2时,如图2;