初三数学锐角三角函数通用版
专题23 锐角三角函数(课件)2023年中考数学一轮复习(全国通用)
【例7】 (6分)(2021•北京22/28)如图,在四边形ABCD中,∠ACB=∠CAD =90°,点E在BC上,AE∥DC,EF⊥AB,垂足为F. (1)求证:四边形AECD是平行四边形; (2)若AE平分∠BAC,BE=5,cosB = 4 ,求BF和AD的长.
5 【分析】(1)证AD∥CE,再由AE∥DC,即可得出结论; (2)先由锐角三角函数定义求出BF=4,再由勾股定理 求出EF=3,然后由角平分线的性质得EC=EF=3,最后 由平行四边形的性质求解即可.
l 用i表示. 坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα. 坡度越大,α角越大,坡面 越陡 .
知识点2:解直角三角形
知识点梳理
(3)方向角(或方位角) 指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.
知识点2:解直角三角形
典型例题
【例6】(4分)(2021•云南4/23)在△ABC中,∠ABC=90°.若AC =100,
∴ 257 3AH AH ,
tan 40
所以 AH 257 tan 40 ,
tan 40 3
∴ AB 2 257 tan 40 2 257 0.84 168 (海里),
tan 40 3
1.73 0.84
答:AB的长约为168海里.
【点评】本题考查解直角三角形,掌握直角三角形的边角关系是正确解答的关键.
∴EM EF 2 FM 2 1.94 ≈1.4.
【考点】解直角三角形的应用—仰角俯角问题 【分析】连接AC、BC,由锐角三角函数定义求出 BD=CD,AD 3CD ,再由AB=AD- BD,即可求解.
知识点2:解直角三角形
典型例题
【解答】解:连接AC、BC,如图所示:
初三数学锐角三角函数知识精讲
初三数学锐角三角函数知识精讲锐角三角函数1. 锐角三角函数的定义直角三角形中有两条直角边和一条斜边,从这三条边中适当取两条边可以得到不同的比,这些比值的大小显然只与直角三角形中锐角的大小有关,这样便定义了直角三角形中锐角的三角函数,常用的有正弦函数sin A a c =余弦函数cos A bc =正切函数tan A ab =余切函数cot A ba=BCAcab2. 互余角的三角函数间的关系sin cos()cos sin()tan cot()cot tan()αααααααα=︒-=︒-=︒-=︒-909090903. 同余角三角函数间的关系 (1)倒数关系tan cot αα⋅=1(2)商的关系tan sin cos cot cos sin αααααα==, (3)平方关系sin cos 221αα+=4. 三角函数值角度三角函数0°30°45°60°90°sin α 0 12 22 32 1 cos α1 32 22 120 tan α 0 33 13 不存在 cot α不存在3133 0(2)锐角三角函数值的变化情况 <1>锐角三角函数值都是正数且当090︒<<︒α时,01101<<>>+>sin cos sin cos αααα,,,tan α>0,cot α>0。
<2>当角度在090︒︒~间变化时正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大)我们利用以上锐角三角函数的定义及性质,可以解决一些求值、化简以及等式证明等问题。
例(1999某某)已知∆ABC 的两边长a c ==35,,且第三边长b 为关于x 的一元二次方程x x m 240-+=的两个正整数根之一,求sinA 的值。
锐角三角函数课件
45度角的余弦值
$cos 45^circ = frac{sqrt{2}}{2}$
30度角的余弦值
$cos 30^circ = frac{sqrt{3}}{2}$
60度角的正弦值
$sin 60^circ = frac{sqrt{3}}{2}$
45度角的正弦值
在工程学中的应用
结构设计
在建筑和机械设计中,锐角三角 函数用于计算结构件的角度和长
度。
控制系统
在控制系统的设计中,锐角三角函 数用于描述系统的传递函数和稳定 性。
信号处理
在信号处理中,锐角三角函数用于 频谱分析和滤波器的设计。
05
特殊角度的三角函数值
30度、45度、60度的三角函数值
30度角的正弦值
正切函数的图像在每 一个开区间(π/2+kπ, π/2+kπ), k∈Z内都是递增的。
04
锐角三角函数的应用
在几何学中的应用
01
02
03
计算角度
锐角三角函数可以帮助我 们计算出特定角度的三角 形的角度,例如直角三角 形中的锐角。
计算边长
通过已知的角度和边长, 我们可以使用锐角三角函 数来计算其他边的长度。
04
90度角的余弦值
$cos 90^circ = 0$
06
习题与解答
习题
题目1
已知直角三角形中,一个锐角为 30°,邻边长为3,求对边长。
题目2
在直角三角形中,已知一个锐角 为45°,斜边长为5,求邻边长。
题目3
已知直角三角形中,一个锐角为 60°,对边长为6,求斜边长。
答案与解析
01
九年级数学专题复习锐角三角函数
总复习锐角三角函数【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题.【知识网络】【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边.锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA aAc∠==的对边斜边;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA bAc∠==的邻边斜边;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA aAA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点进阶:ABCabc(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点进阶:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点进阶:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点进阶:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,一角,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点进阶:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点进阶:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.考点七、解直角三角形相关的知识如图所示,在Rt△ABC中,∠C=90°,(1)三边之间的关系:222a b c +=; (2)两锐角之间的关系:∠A+∠B =90°; (3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c==,cos sin b A B c ==,1tan tan a A b B==. (4) 如图,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ;由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 面积,得ab =ch .(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则①CD =AD =BD =12AB ; ②点D 是Rt △ABC 的外心,外接圆半径R =12AB . (6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c abr a b c+-==++. 直角三角形的面积: ①如图所示,111sin 222ABC S ab ch ac B ===△.(h 为斜边上的高)②如图所示,1()2ABC S r a b c =++△.【典型例题】类型一、锐角三角函数的概念与性质例1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.举一反三:【变式】如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A .B .C .D .类型二、特殊角的三角函数值 例2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,化简12sin cos A A -.举一反三: 【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值.例3.如图,在锐角△ABC 中,AB=15,BC=14,S △ABC =84,求: (1)tanC 的值;(2)sinA 的值.CBA举一反三:【变式】如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长为多少千米?(精确到0.1千米)类型三、解直角三角形及应用例4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=, AC+CD =18,求tanA 的值和AB 的长.例5.如图所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为1.5m 的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到0.1m).(参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27).举一反三:【变式】如图所示,正三角形ABC的边长为2,点D在BC的延长线上,CD=3.(1)动点P在AB上由A向B移动,设AP=t,△PCD的面积为y,求y与t之间的函数关系式及自变量t的取值范围;(2)在(1)的条件下,设PC=z,求z与t之间的函数关系式.例6.如图(1)所示,一架长4米的梯子AB斜靠在与地面OM垂直的墙ON上,梯子与地面的倾斜角α为60°.(1)求AO与BO的长.(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图(2)所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A 沿NO下滑了多少米;②如图(3)所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.【巩固练习】一、选择题1. 在△ABC 中,∠C =90°,cosA =35,则tan A 等于 ( )A .35 B .45 C .34 D .432.在Rt △ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=ab.则下列关系式中不成立的是( )A .tanA•cotA=1B .sinA=tanA•cosAC .cosA=cotA•sinAD .tan 2A+cot 2A=1第2题 第3题3.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( ) A .34 B .43 C .35 D .454.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan ∠CBE 的值是( )A .247B .73C .724D .135.如图所示,已知∠α的终边OP ⊥AB ,直线AB 的方程为y =-33x +33,则cos α等于 ( ) A .12B .22C .32D .336.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是( )A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为5.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为 .9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求21sincosαα-的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则t an∠OBE=.12.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为 .三、解答题13.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m 时,求点D离地面的高.(≈2.236,结果精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C 不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)。
锐角三角形函数及应用
锐角三角形函数及应用锐角三角形是指三个内角都小于90的三角形。
在锐角三角形中,我们可以应用一些函数来求解各种问题。
以下是一些锐角三角形函数及其应用的例子:1. 正弦函数:在锐角三角形ABC中,以角A为锐角,边BC为斜边,则正弦函数可以定义为sin A = BC / AC。
我们可以利用正弦函数来求解各种问题,如求解角度、边长等。
例如,已知角度A和边长BC,可以通过sin A = BC / AC来求解边长AC。
2. 余弦函数:在锐角三角形ABC中,以角A为锐角,边BC为斜边,则余弦函数可以定义为cos A = AC / BC。
我们可以利用余弦函数来求解各种问题,如求解角度、边长等。
例如,已知角度A和边长AC,可以通过cos A = AC / BC来求解边长BC。
3. 正切函数:在锐角三角形ABC中,以角A为锐角,边BC为斜边,则正切函数可以定义为tan A = BC / AC。
我们可以利用正切函数来求解各种问题,如求解角度、边长等。
例如,已知角度A和边长BC,可以通过tan A = BC / AC来求解边长AC。
4. 余切函数:在锐角三角形ABC中,以角A为锐角,边BC为斜边,则余切函数可以定义为cot A = AC / BC。
我们可以利用余切函数来求解各种问题,如求解角度、边长等。
例如,已知角度A和边长AC,可以通过cot A = AC / BC来求解边长BC。
通过这些函数,我们可以在求解锐角三角形问题时进行角度和边长之间的转换。
例如,已知一个锐角三角形的两边和一个角度,我们可以利用正弦、余弦、正切函数来求解其余的角度和边长。
此外,锐角三角形函数还可以应用于实际生活中的一些问题。
例如,在建筑设计中,我们需要计算一座斜塔的高度。
我们可以通过测量角度和斜塔与地面的距离,利用正切函数来求解其高度。
同样,在地理测量中,我们可以利用正弦、余弦、正切函数来计算两地之间的距离和方位角。
总之,锐角三角形函数是求解锐角三角形问题的重要工具,其应用广泛且实用。
锐角三角函数(公式、定理、结论图表) --中考数学知识必备
锐角三角函数(公式、定理、结论图表)--中考数学知识必备考点一、锐角三角函数的概念如图所示,在Rt△ABC 中,∠C=90°,∠A 所对的边BC 记为a,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB记为c,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA,即cos A bA c∠==的邻边斜边;BCa c锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA a AA b∠==∠的对边的邻边.同理sinB bBc∠==的对边斜边;cosB aBc∠==的邻边斜边;tanB bBB a∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.典例1:(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为..【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.【点评】本题主要考查了锐角三角函数,熟练掌握勾股定理和锐角三角函数的定义是解答本题的关键.考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).典例2:(2022•天津)tan45°的值等于()A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.典例3:(2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.(1)请判断直线CD与⊙O的位置关系,并说明理由;(2)若sin∠ECD=,CE=5,求⊙O的半径.【分析】(1)结论:CD是⊙O的切线,证明OC⊥CD即可;(2)设OA=OC=r,设AE交OC于点J.证明四边形CDEJ是矩形,推出CD=EJ=4,CJ=DE=3,再利用勾股定理构建方程求解.【解答】解:(1)结论:CD是⊙O的切线.理由:连接OC.∵OC=OB,∴∠OCB=∠OBC,∵BC平分∠ABD,∴∠OBC=∠CBE,∴∠OCB=∠CBE,∴OC∥BD,∵CD⊥BD,∴CD⊥OC,∵OC是半径,∴CD是⊙O的切线;(2)设OA=OC=r,设AE交OC于点J.∵AB是直径,∴∠AEB=90°,∵OC⊥DC,CD⊥DB,∴∠D=∠DCJ=∠DEJ=90°,∴四边形CDEJ是矩形,∴∠CJE=90°,CD=EJ,CJ=DE,∴OC⊥AE,∴AJ=EJ,∵sin∠ECD==,CE=5,∴DE=3,CD=4,∴AJ=EJ=CD=4,CJ=DE=3,在Rt△AJO中,r2=(r﹣3)2+42,∴r=,∴⊙O的半径为.【点评】本题考查解直角三角形,切线的判定,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.典例4:(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为()米A.600﹣250B.600﹣250C.350+350D.500【分析】设EF=5x米,根据坡度的概念用x表示出BF,根据勾股定理求出x,根据正切的定义列出方程,解方程得到答案.【解答】解:设EF=5x米,∵斜坡BE的坡度为5:12,∴BF=12x米,由勾股定理得:(5x)2+(12x)2=(1300)2,解得:x=100,则EF=500米,BF=1200米,由题意可知,四边形DCFE为矩形,∴DC=EF=500米,DE=CF,在Rt△ADE中,tan∠AED=,则DE==AD,在Rt△ACB中,tan∠ABC=,∴=,解得:AD=600﹣750,∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,故选:B.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高典例5:(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C 点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为16m.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).【分析】过点D作DE⊥AB于点E,则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB =tan58°=≈1.60,解得x=10,进而可得出答案.【解答】解:过点D作DE⊥AB于点E,如图.则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,∴BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,∴AB=16m.故答案为:16.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键典例6:(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)【分析】(1)根据方位角图,易知∠ACD=60°,∠ADC=90°,解Rt△ADC即可求解;(2)过点D作DE⊥AB于点E.分别解Rt△ADE,Rt△BDE求出AE和BE,即可求出隧道AB的长.【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴(米),在Rt△BDE中,∴(米),∴(米),答:隧道AB的长为米.【点评】本题考查了解直角三角形的应用﹣方向角问题,掌握方向角的概念,掌握特殊角的三角函数值是解题的关键.考点七、解直角三角形相关的知识如图所示,在Rt△ABC 中,∠C=90°,(1)三边之间的关系:222a b c +=;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c ==,cos sin b A B c ==,1tan tan a A b B==.(4)如图,若直角三角形ABC 中,CD⊥AB 于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a 2=pc;由△CAD∽△BAC,得b 2=qc;由△ACD∽△CBD,得h 2=pq;由△ACD∽△ABC 或由△ABC 面积,得ab=ch.(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则①CD=AD=BD=12AB;②点D 是Rt△ABC 的外心,外接圆半径R=12AB.(6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c ab r a b c +-==++.直角三角形的面积:①如图所示,111sin 222ABC S ab ch ac B === △.(h 为斜边上的高)②如图所示,1()2ABCS r a b c=++△.典例7:(2022•黄石)我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈=3.再利用圆的内接正十二边形来计算圆周率,则圆周率π约为()A.12sin15°B.12cos15°C.12sin30°D.12cos30°【分析】利用圆内接正十二边形的性质求出A6A7=2A6M=2R×sin15°,再根据“圆周率等于圆周长与该圆直径的比”,即可解决问题.【解答】解:在正十二边形中,∠A6OM=360°÷24=15°,∴A6M=sin15°×OA6=R×sin15°,∵OA6=OA7,OM⊥A6A7,∴A6A7=2A6M=2R×sin15°,∴π≈=12sin15°,故选:A.【点评】本题主要考查了圆内接多边形的性质,解直角三角形等知识,读懂题意,计算出正十二边形的周长是解题的关键.。
锐角三角形函数公式表
锐角三角形函数公式表锐角三角形是指其中的一个角小于90度的三角形。
在解决与锐角三角形相关的问题时,我们常常需要使用各种函数公式来求解。
本文将为您介绍一些与锐角三角形相关的函数公式,帮助您更好地理解和应用它们。
1. 正弦函数公式在锐角三角形中,正弦函数可以用来描述任意一个角的正弦值与其对边与斜边的比值。
正弦函数公式如下:sin A = a / c其中,A为锐角三角形的一个角,a为该角的对边长度,c为斜边的长度。
2. 余弦函数公式余弦函数可以用来描述锐角三角形中任意一个角的余弦值与其邻边与斜边的比值。
余弦函数公式如下:cos A = b / c其中,A为锐角三角形的一个角,b为该角的邻边长度,c为斜边的长度。
3. 正切函数公式正切函数可以用来描述锐角三角形中任意一个角的正切值与其对边与邻边的比值。
正切函数公式如下:tan A = a / b其中,A为锐角三角形的一个角,a为该角的对边长度,b为该角的邻边长度。
4. 余切函数公式余切函数可以用来描述锐角三角形中任意一个角的余切值与其邻边与对边的比值。
余切函数公式如下:cot A = b / a其中,A为锐角三角形的一个角,b为该角的邻边长度,a为该角的对边长度。
5. 正割函数公式正割函数可以用来描述锐角三角形中任意一个角的正割值与其斜边与邻边的比值。
正割函数公式如下:sec A = c / b其中,A为锐角三角形的一个角,c为斜边的长度,b为该角的邻边长度。
6. 余割函数公式余割函数可以用来描述锐角三角形中任意一个角的余割值与其斜边与对边的比值。
余割函数公式如下:csc A = c / a其中,A为锐角三角形的一个角,c为斜边的长度,a为该角的对边长度。
通过使用上述的函数公式,我们可以在解决与锐角三角形相关的问题时进行计算和推导。
这些函数公式在物理、工程、天文等领域具有广泛的应用,能够帮助我们求解各种实际问题。
需要注意的是,在使用这些函数公式时,我们需要确保所使用的角度单位与函数公式中的角度单位一致。
(完整版)初三锐角三角函数知识点与典型例题(可编辑修改word版)
锐角三角函数:知识点一:锐角三角函数的定义:一、锐角三角函数定义:在Rt△ABC 中,∠C=900, ∠A、∠B、∠C 的对边分别为a、b、c,则∠A 的正弦可表示为:sinA= ,∠A 的余弦可表示为cosA=∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数【特别提醒:1、sinA、∠cosA、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】例1.如图所示,在Rt△ABC 中,∠C=90°.①sin A =(②cos A =()=,对对)=,对对第 1 题图sin B =(cos B =()=;对对)=;对对③tan A =( )=,∠A对对对例2. 锐角三角函数求值:tan B =∠B对对对=.( )在Rt△ABC 中,∠C=90°,若a=9,b=12,则c=,sin A=,cos A=,tan A=,sin B=,cos B=,tan B=.例3.已知:如图,Rt△TNM 中,∠TMN=90°,MR⊥TN 于R 点,TN=4,MN=3.求:sin∠TMR、cos∠TMR、tan∠TMR.典型例题:类型一:直角三角形求值5 1. 已知 Rt △ABC 中, ∠C = 90︒, tan A = 3, BC = 12, 4求AC 、AB 和 cos B .2. 已知:如图,⊙O 的半径 OA =16cm ,OC ⊥AB 于 C 点, sin ∠AOC = 3⋅4求:AB 及 OC 的长.3. 已知:⊙O 中,OC ⊥AB 于 C 点,AB =16cm , sin ∠AOC = 3⋅5(1) 求⊙O 的半径 OA 的长及弦心距 OC ; (2) 求 cos ∠AOC 及 tan ∠AOC .4. 已知∠A 是锐角, sin A = 8 17,求cos A , tan A 的值对应训练:(西城北)3.在 Rt △ABC 中,∠ C =90°,若 BC =1,AB = ,则 tan A 的值为A.55B. 2 55C.12D .2(房ft )5.在△ABC 中,∠C =90°,sin A= 3,那么 tan A 的值等于().5A. 3 5B. 4 5C. 3 4D.4 3类型二. 利用角度转化求值:1. 已知:如图,Rt △ABC 中,∠C =90°.D 是 AC 边上一点,DE ⊥AB 于 E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .32.如图,直径为10的⊙A 经过点C(0对5) 和点O(0对0) ,与x 轴的正半轴交于点D,B 是y 轴右侧圆弧上一点,则cos∠OBC 的值为()1 3A.B.2 2C.3D.45 5yCAO D xB图 8图图3.(2009·孝感中考)如图,角的顶点为O,它的一边在x 轴的正半轴上,另一边OA 上有一点P(3,4),则sin=.4.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm,DE⊥AB,sin A =,则这个菱形5 的面积= cm2.5.(2009·齐齐哈尔中考)如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的3半径为2,AC = 2 ,则sin B 的值是()2 3 3 4A.B.C.D.3 24 3F2 3 6. 如图 4,沿 AE 折叠矩形纸片 ABCD ,使点 D 落在 BC 边的点 F 处.已知 AB = 8 , BC = 10 ,AB=8,则 tan ∠EFC 的值为 ( )ADE 3 4 34 BCA.B.C.D.43557. 如图 6,在等腰直角三角形∆ABC 中, ∠C = 90︒ , AC = 6 , D 为 AC 上一点,若tan ∠DBA = 15,则 AD 的长为()A.B . 2C.1 D . 28. 如图 6,在 Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线 AD = 1633求 ∠B 的度数及边 BC 、AB 的长.ACDB图 6类型三. 化斜三角形为直角三角形例 1 (2012•安徽)如图,在△ABC 中,∠A=30°,∠B=45°,AC=2 ,求 AB 的长.例 2.已知:如图,△ABC 中,AC =12cm ,AB =16cm , sin A = 1⋅3(1)求 AB 边上的高 CD ; (2)求△ABC 的面积 S ; (3)求 tan B .23 33例3.已知:如图,在△ABC 中,∠BAC=120°,AB=10,AC=5.求:sin∠ABC 的值.对应训练1.(2012•重庆)如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)2.已知:如图,△ABC 中,AB=9,BC=6,△ABC 的面积等于9,求sin B.3.ABC 中,∠A=60°,AB=6 cm,AC=4 cm,则△ABC 的面积是A.2 cm2B.4 cm2C.6 cm2D.12 cm2类型四:利用网格构造直角三角形例1 (2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为()1 5A.B.2 5C.1010D.2 55对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A = .CA B2.如图,A、B、C 三点在正方形网络线的交点处,若将∆ABC 绕着点A 逆时针旋转得到∆AC' B',则tan B' 的值为1 1 1A. B. C.4 3 2D. 13.正方形网格中,∠AOB 如图放置,则tan∠AOB 的值是()A.52B.51C. D. 22特殊角的三角函数值锐角30°45°60°sincostan当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而例1.求下列各式的值.(昌平)1).计算:2 cos 30︒+ 2 sin 45︒- tan 60︒.(朝阳)2)计算:tan 60︒+ sin2 45︒- 2 cos 30︒.(2009·黄石中考)计算:3-1+(2π-1)0-3tan30°-tan45°3AO B33(石景ft)4.计算:⎛+ 2 cos 60︒+ sin 45︒-⎝⎫0tan 30︒⎪.2 ⎭tan 45︒+ sin 30︒ (通县)5.计算:;1- cos 60︒例2.求适合下列条件的锐角.(1)cos=12 (2)tan=3(3) s in 2=22(4) 6 cos(- 16 ) = 3(5)已知为锐角,且tan(+300)=,求tan的值(6)在∆ABC 中,若cos A -+(sin B -2)2= 0 ,∠A,∠B 都是锐角,求∠C 的度数.2例3. 三角函数的增减性1.已知∠A 为锐角,且sin A < 1,那么∠A 的取值范围是2A. 0°< A < 30°B. 30°< A <60°C. 60°< A < 90°D. 30°< A < 90°2.已知A 为锐角,且cos A < sin 300,则()A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90°例4. 三角函数在几何中的应用1.已知:如图,在菱形ABCD 中,DE⊥AB 于E,BE=16cm,sin A =12⋅ 13123123求此菱形的周长.2. 已知:如图,Rt △ABC 中,∠C =90°, AC = BC=于 D 点,求:(1) ∠BAD ;(2) sin ∠BAD 、cos ∠BAD 和 tan ∠BAD .,作∠DAC =30°,AD 交 CB3. 已知:如图△ABC 中,D 为 BC 中点,且∠BAD =90°, tan ∠B =CAD 、tan ∠CAD .1 ,求:sin ∠CAD 、cos ∠34. 如图,在 Rt △ABC 中,∠C=90°, sin B = 3,点 D 在 BC 边上,DC= AC = 6,求 tan ∠BAD5的值.ABDC5.(本小题5 分)如图,△ABC 中,∠A=30°, tan B =2C, AC = 4 .求 AB 的长.AB解直角三角形:3 333 1.在解直角三角形的过程中,一般要用的主要关系如下(如图所示):在 Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c ,①三边之间的等量关系: . ②两锐角之间的关系: .③边与角之间的关系:sin A = cos B =; cos A = sin B = ; tan A =1 =tan B1;tan A= tan B =.④直角三角形中成比例的线段(如图所示). 在 Rt △ABC 中,∠C =90°,CD ⊥AB 于 D . CD 2= ;AC 2= ; BC 2= ;AC ·BC = .类型一例 1.在 Rt △ABC 中,∠C =90°.(1)已知:a =35, c = 35 ,求∠A 、∠B ,b ;(2)已知: a = 2 , b = 2 ,求∠A 、∠B ,c ;(3)已知: sin A =2 , c = 6 ,求 a 、b ;3(4)已知: tan B = 3, b = 9, 2求 a 、c ;(5)已知:∠A =60°,△ABC 的面积 S = 12 3, 求 a 、b 、c 及∠B .2例2.已知:如图,△ABC 中,∠A=30°,∠B=60°,AC=10cm.求AB 及BC 的长.例3.已知:如图,Rt△ABC 中,∠D=90°,∠B=45°,∠ACD=60°.BC=10cm.求AD 的长.例4.已知:如图,△ABC 中,∠A=30°,∠B=135°,AC=10cm.求AB 及BC 的长.类型二:解直角三角形的实际应用仰角与俯角:例1.(2012•福州)如图,从热气球C 处测得地面A、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100 米,点A、D、B 在同一直线上,则AB 两点的距离是()A.200 米B.200 米C.220 米D.100()米例2.已知:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45 °.点D 到地面的垂直距离DE 3 2m ,求点 B 到地面的垂直距离BC.例3(昌平)19.如图,一风力发电装置竖立在小ft顶上,小ft的高BD=30m.从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA=60°,测得ft顶B 的仰角∠DCB=30°,求风力发电装置的高AB 的长.ADB E例4 .如图,小聪用一块有一个锐角为30 的直角三角板测量树C高,已知小聪和树都与地面垂直,且相距3AB 为1.7 米,求这棵树的高度.米,小聪身高例5.已知:如图,河旁有一座小ft,从ft顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m.现需从ft顶A 到河对岸点C 拉一条笔直的缆绳AC,求ft的高度及缆绳AC 的长(答案可带根号).例5.(2012•泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20 米,到达点C,再次测得点A 的仰角为60°,则物体AB 的高度为()C.20 米D.米例6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC)为30 米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8 秒,∠BAC=75°.(1)求B、C 两点的距离;(2)请判断此车是否超过了益阳大道60 千米/小时的限制速度?(计算时距离精确到1 米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,≈1.732,60 千米/小时≈16.7 米/秒)3A.10 米B.10 米33 3 3类型四. 坡度与坡角例.(2012•广安)如图,某水库堤坝横断面迎水坡 AB 的坡比是 1: ,堤坝高 BC=50m ,则应水坡面 AB 的长度是( ) A .100mB .100 mC .150mD .50 m类型五. 方位角1. 已知:如图,一艘货轮向正北方向航行,在点 A 处测得灯塔 M 在北偏西 30°,货轮以每小时 20 海里的速度航行,1 小时后到达 B 处,测得灯塔 M 在北偏西 45°,问该货轮 继续向北航行时,与灯塔 M 之间的最短距离是多少?(精确到 0.1 海里,1.732 )2.(2012•恩施州)新闻链接,据[侨报网讯]外国炮艇在南海追袭中国渔船被中国渔政逼退2012 年 5 月 18 日,某国 3 艘炮艇追袭 5 条中国渔船.刚刚完成黄岩岛护渔任务的“中国渔政 310” 船人船未歇立即追往北纬 11 度 22 分、东经 110 度 45 分附近海域护渔,保护 100 多名中国 渔民免受财产损失和人身伤害.某国炮艇发现中国目前最先进的渔政船正在疾速驰救中国渔船,立即掉头离去.(见图 1)324解决问题如图 2,已知“中国渔政 310”船(A )接到陆地指挥中心(B )命令时,渔船(C )位于陆地指挥中心正南方向,位于“中国渔政 310”船西南方向,“中国渔政 310”船位于陆地指挥中心南偏东 60°方向,AB=海里,“中国渔政 310”船最大航速 20 海里/时.根据以上信息,请你求出“中国渔政 310”船赶往出事地点需要多少时间.综合题:三角函数与四边形:(西城二模)1.如图,四边形 ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,6tan ∠BDC= 3.(1) 求 BD 的长; (2) 求 AD 的长.(2011 东一)18.如图,在平行四边形 ABCD 中,过点 A 分别作 AE ⊥BC 于点 E ,AF ⊥CD 于点 F .(1) 求证: ∠BAE =∠DAF ;(2) 若 AE =4,AF =,s in ∠BAE = 53 ,求 CF 的长.5三角函数与圆:1. 如图,直径为 10 的⊙A 经过点C (0对5) 和点O (0对0) ,与 x 轴的正半轴交于点 D ,B 是 y轴右侧圆弧上一点,则 cos ∠OBC 的值为()1 3 A.B .22C .3D . 45 5yC AOD xB图 8图图5 DO4(延庆)19. 已知:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接 AC 与⊙O 交于点 D, (1) 求证:∠AOD=2∠CC4 (2) 若 AD=8,tanC= ,求⊙O 的半径。
九年级下册数学锐角三角函数知识点
九年级下册数学锐角三角函数知识点(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作报告、合同协议、条据文书、策划方案、演讲致辞、人物事迹、学习资料、教学资源、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as work reports, contract agreements, policy documents, planning plans, speeches, character stories, learning materials, teaching resources, essay encyclopedias, and other materials. If you want to learn about different data formats and writing methods, please pay attention!九年级下册数学锐角三角函数知识点三角函数是基本初等函数之一、是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
锐角函数表
初中锐角三角函数公式表公式有如下几个:sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2];cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2];cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2];cosαcosβ=[cos(α+β)+cos(α-β)]/2;sinαcosβ=[sin(α+β)+sin(α-β)]/2;cosαsinβ=[sin(α+β)-sin(α-β)]/2 。
锐角三角函数是以锐角为自变量,以比值为函数值的函数。
如图:我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。
锐角三角函数值都是正值正弦。
(sin)等于对边比斜边;余弦(cos)等于邻边比斜边;正切(tan)等于对边比邻边;余切(cot)等于邻边比对边;正割(sec)等于斜边比邻边;余割(cs c)等于斜边比对边。
扩展资料1、同角三角函数间的关系·平方关系:sin^2(A)+cos^2(A)=1·积的关系:sinA=tanA·cosAcosA=cotA·sinAcotA=cosA·cscAtanA·cotA=1·倒数关系:直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边,余切等于邻边比对边3、三角函数值(1)特殊角三角函数值(2)0°~90°的任意角的三角函数值,查三角函数表。
(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤∠A≤90°间变化时,0≤sinα≤1, 1≥cosA≥0,当角度在0°<∠A<90°间变化时,tanA>0, cotA>0.特殊的三角函数值0°30°45°60°90°0 1/2 √2/2 √3/2 1 ←sinA1 √3/2 √2/2 1/2 0 ←cosA0 √3/3 1 √3 None ←tanANone √3 1 √3/3 0 ←cotA。
九年级数学锐角三角函数_9939
我按要求放置,第一天过去了,没动静。一连六天,我天天换新鲜的红肠,香气扑鼻,以为老鼠会很快地上勾。哪成想,老鼠极为狡猾,根本不屑于红肠令人生疑地不见了,但笼子里面却没有关着一只吱吱叫的老鼠。
怎么办呢?有同事出主意,去小百货商店买个老鼠夹子,很管用,捉住没得跑,我说会不会夹死?他笑,应该活不长,至少受大伤。到底是个性命,不忍心,没采纳;有同事说用粘鼠板,粘性强, 捉住跑不了,我一想,这如同人陷入泥淖,那种垂死挣扎的绝望,我也不忍心看到。开心8官网
我后来又在网上看到有捉鼠笼的,这捉鼠笼,较人性化,被捉住的鼠无痛苦。笼内设机关,放入诱饵点心或红肠类的,老鼠一进,触动机关,盖子即合,还不至丧命。请君入瓮,这个办法好。
我非常气愤,为什么在别人家里里都能捉住的鼠,在我家这儿却成了常胜将军?
既然捉不住,就索性不去想它了,它“吱吱吱”地响、“克哧克哧”地磨牙就去搞动静好了,存在的就是合理的,我为它找着理由安慰自己,就由它去吧。
九年级数学锐角三角函数_9939
对于经济条件适中、是独一无二的首选车型。
嘉本70,采用别具一格的四冲程风冷发动机,车身轻颖、操控性强。对于门外汉、或者讲求体面的消费者而言,外形过于平庸的嘉本70难入法眼,左邻右舍中仅有房管局干事,一位四十出头的吴姓 邻居拥有一辆。能在林林总总摩托车中牢牢占据一席之地,一是适中的价格区间,二是低能高效的四冲程设计,三是只手玩转的驾驭体验。日本机车卓尔不凡的优越性能不必赘述,最值得称道的是炉火 纯青的发动机静音技术。我曾经反复留意过吴姓邻居的机车,如果不是偶然转身,即使已经骑到身边你竟然丝毫察觉不到它的出现。灵活轻便的车身,足够高的离地间隙,使它拥有征服恶劣地形的先天 优势。据说在当时一公里油耗只需要几分钱。在能效比上令时下所有机车难以望其项背。四冲程最吸引人的优点,省却了嘉陵50往汽油里添加机油的繁琐,避免了其他两冲程机车因为疏漏检查机油容量 造成拉缸的风险。
完整版)锐角三角函数超经典讲义
完整版)锐角三角函数超经典讲义锐角三角函数锐角三角函数是三角函数的一种,包括正弦、余弦和正切。
在一个锐角三角形中,锐角的对边、邻边和斜边之间的比例就是锐角三角函数。
具体来说,对于锐角A,其正弦、余弦和正切分别表示为sinA、cosA和XXX。
其中,XXX表示A的对边与斜边的比,cosA表示A的邻边与斜边的比,XXX表示A的对边与邻边的比。
这些符号都是完整的,单独的“sin”没有意义。
在用大写字母表示角度时,一般省略“∠”符号。
在求解锐角三角函数时,关键在于构造以此锐角所在的直角三角形。
例如,在一个直角三角形ABC中,如果已知∠C=90°,cosB=4/5,则AC:BC:AB=3:4:5.另外,需要注意的是,正弦、余弦和正切是实数,没有单位,它们的大小只与角的大小有关,而与所在直角三角形无关。
例1:在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE。
证明△ABE≌△DFA,并求sin∠EDF的值。
解:首先,连接AC,易得△ABC为等腰直角三角形,∠BAC=45°。
又因为AE=BC,所以△ABE和△ACD相似,即∠ABE=∠ACD,∠XXX∠ADC。
又因为∠ADC=90°,所以∠AEB=90°。
因此,△ABE和△DFA是全等三角形。
接下来,求sin∠EDF的值。
由于∠BAC=45°,所以∠AED=45°。
由于△ABE和△DFA全等,所以∠XXX∠BAE=45°。
因此,sin∠EDF=sin45°=1/√2.例2:在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC面积(结果可保留根号)。
解:由于∠A=60°,∠B=45°,所以∠C=75°。
根据三角函数的定义,可以得到:sin75°=cos15°=(sin60°cos45°+cos60°sin45°)/2=√6+√2/4cos75°=sin15°=(sin60°cos45°-cos60°sin45°)/2=√6-√2/4因此,△ABC面积为S=(1/2)AB·BC·sin75°=4(√6+√2)。
(完整版)锐角三角函数超经典学习资料
(完整版)锐角三角函数超经典学习资料锐角三角函数是数学中重要的概念之一,它们在几何、物理和工程等领域都有广泛的应用。
通过研究锐角三角函数,我们可以更好地理解和解决各种相关问题。
一、正弦函数正弦函数是锐角三角函数中最基本的函数之一,在数学中常记作sin。
正弦函数的定义如下:$$ \sin(\theta) = \frac{opposite}{hypotenuse} $$其中,$\theta$ 表示角度,$opposite$ 表示对边的长度,$hypotenuse$ 表示斜边的长度。
正弦函数有许多重要的性质和关系,比如:- 正弦函数的取值范围是[-1, 1]:即对于任意角度 $\theta$,$-1 \leq \sin(\theta) \leq 1$。
- 正弦函数是一个周期函数:即 $\sin(\theta)$ 的周期是 $2\pi$,即在每个 $2\pi$ 的区间内,$\sin(\theta)$ 的值重复。
二、余弦函数余弦函数也是锐角三角函数中的一种重要函数,在数学中常记作cos。
余弦函数的定义如下:$$ \cos(\theta) = \frac{adjacent}{hypotenuse} $$其中,$\theta$ 表示角度,$adjacent$ 表示邻边的长度,$hypotenuse$ 表示斜边的长度。
余弦函数同样有许多重要的性质和关系,比如:- 余弦函数的取值范围是[-1, 1]:即对于任意角度 $\theta$,$-1 \leq \cos(\theta) \leq 1$。
- 余弦函数也是一个周期函数:即 $\cos(\theta)$ 的周期是$2\pi$,即在每个 $2\pi$ 的区间内,$\cos(\theta)$ 的值重复。
三、正切函数正切函数是锐角三角函数中的另一种常见函数,它经常用于计算角度的斜率。
正切函数的定义如下:$$ \tan(\theta) = \frac{opposite}{adjacent} $$其中,$\theta$ 表示角度,$opposite$ 表示对边的长度,$adjacent$ 表示邻边的长度。
锐角三角函数(通用8篇)
锐角三角函数(通用8篇)锐角三角函数篇1教学三维目标:一.学问目标:初步了解正弦、余弦、正切概念;能较正确地用siaa、cosa、tana表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能依据这些值说出对应的锐角度数。
二.力量目标:逐步培育同学观看、比较、分析,概括的思维力量。
三.情感目标:提高同学对几何图形美的熟悉。
教材分析:1.教学重点: 正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaa、cosa、tana表示正弦,余弦,正切教学程序:一.探究活动1.课本引入问题,再结合特别角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数定义。
siaa= ,cosa= ,tana=3例1.求如图所示的rt ⊿abc中的siaa,cosa,tana的值。
4.同学练习p21练习1,2,3二.探究活动二1.让同学画30°45°60°的直角三角形,分别求sia 30°cos45° tan60°归纳结果30°45°60°siaacosatana2. 求下列各式的值(1)sia 30°+cos30°(2)sia 45°- cos30°(3) +ta60°-tan30°abc三.拓展提高p82例4.(略)1. 如图在⊿abc中,∠a=30°,tanb= ,ac=2 ,求ab四.小结五.作业课本p85-86 2,3,6,7,8,10锐角三角函数篇2一、锐角三角函数正弦和余弦第一課时:正弦和余弦(1)教学目的1,使同学了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。
2,使同学了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
锐角三角函数锐角三角函数
03
证明方法
利用正弦定理和余弦定理,将边的关 系转化为角的关系,再利用三角函数 的性质推导得出。
05
锐角三角函数的作图及演 示
利用计算器或计算机软件绘制锐角三角函数图像
总结词
通过使用计算器或计算机软件,我们可以 轻松地绘制出锐角三角函数的图像。
详细描述
首先,我们需要输入锐角的角度值,然后 在计算器或计算机软件中选择对应的三角 函数(正弦、余弦或正切)。这样,我们 就可以得到一个关于角度的函数值。将这 些值在坐标系中表示,就可以形成锐角三 角函数的图像。
证明方法
通过正弦定理将角的关系转化为 边的关系,再利用勾股定理推导 得出。
正切定理的公式及证明
01
02
总结词
详细描述
正切定理是指在一个三角形中,任意 两边长度的比值等于这两边所夹角的 正切值与第三边所对应角的正切值的 比值。
正切定理的公式为 tan(A)/tan(B) = c/b。其中,A、B、C 分别代表与三 边相对应的角度,a、b、c 分别代表 三角形的三边长。
求边长
已知直角三角形的一个锐角和对应的边长,可以应用锐角三 角函数来求解另一条边长。例如,在直角三角形ABC中,已 知角A为30度,对应边a为10单位长度,那么对应边b的长度 可以通过应用三角函数求解。
在实际问题中求解角度或边长
地球定位
在地球上定位一个点,需要知道该点与北极的夹角和该点到北极的距离。这些信息可以通过应用锐角 三角函数来求解。
余弦定理
对于任意三角形ABC,有cosA = (b² + c² - a²) / (2bc),其中a、b、c分别是三角形的三边长度。这表明一个 角的余弦值等于由该角两边长度和它们夹角所确定的三角形的另一边的平方与两邻边平方和的差与两邻边的积 之比。
九年级数学锐角三角函数
的一扭,幽灵的轻灵的脸立刻伸长了九十倍,狼狈的纯白色烤鸭造型的皮肤也突然膨胀了九十倍!最后颤起粗俗的脖子一叫,威猛地从里面窜出一道奇光,她抓住奇光奇妙地一扭,一组红晶晶、 森幽幽的功夫『银玉香妖闪电头』便显露出来,只见这个这玩意儿,一边闪烁,一边发出“哈呵”的疑响!……陡然间女伤兵罗雯依琦妖女快速地整出一个俯卧狂舞倒麦粒的怪异把戏,,只见她 水青色牙膏造型的苦胆中,变态地跳出四十组盆地珍珠尾豺状的盾牌,随着女伤兵罗雯依琦妖女的摇动,盆地珍珠尾豺状的盾牌像新月一样在食指苍茫地替换出隐约光雾……紧接着女伤兵罗雯依 琦妖女又发出七声美黑梦幻色的深邃暴哼,只见她精悍的眼睛中,酷酷地飞出五十串蘑菇状的小溪珍珠腮狐,随着女伤兵罗雯依琦妖女的扭动,蘑菇状的小溪珍珠腮狐像图钉一样,朝着壮扭公主 带着田野气息的嘴唇飞勾过来!紧跟着女伤兵罗雯依琦妖女也窜耍着功夫像蒸笼般的怪影一样朝壮扭公主飞勾过来壮扭公主超然圆润光滑、无忧无虑的快乐下巴奇特紧缩闪烁起来……时常露出欢 快光彩的眼睛喷出浓绿色的飘飘阴气……特像两排闸门一样的牙齿透出浓黑色的点点神香……接着把饱满亮润如同红苹果样的脸摇了摇,只见九道萦绕的如同玉兔般的银影,突然从跳动的棕褐色 短发中飞出,随着一声低沉古怪的轰响,白杏仁色的大地开始抖动摇晃起来,一种怪怪的瘟疫狐隐酸欢味在完美的空气中跳跃。紧接着旋动圆润光滑、无忧无虑的快乐下巴一叫,露出一副惊人的 神色,接着抖动圆圆的极像紫金色铜墩般的脖子,像纯蓝色的千舌沙漠虎般的一旋,仙气的齐整严密特像两排闸门一样的牙齿突然伸长了一百倍,能装下半个太平洋的背包也立刻膨胀了九十倍。 最后扭起憨直贪玩、有着各种古怪想法的圆脑袋一挥,飘然从里面流出一道金光,她抓住金光怪异地一旋,一组紫溜溜、金灿灿的功夫¤巨力碎天指→便显露出来,只见这个这件玩意儿,一边颤 动,一边发出“呜呜”的奇音。……陡然间壮扭公主快速地使了一套盘坐狂跳冲船舵的怪异把戏,,只见她浑圆饱满的霸蛮屁股中,萧洒地涌出四十簇耍舞着¤巨力碎天指→的深峡煤角鸟状的手 表,随着壮扭公主的晃动,深峡煤角鸟状的手表像拉杆一样在食指苍茫地替换出隐约光雾……紧接着壮扭公主又发出三声晨浪九隐色的迷朦猛哼,只见她天穹样的额头中,轻飘地喷出五十片扭舞 着¤巨力碎天指→的铁锚状的城堡煤筋马,随着壮扭公主的旋动,铁锚状的城堡煤筋马像警棍一样,朝着女伤兵罗雯依琦妖女单薄的嘴唇飞勾过去!紧跟着壮扭公主也窜耍着功夫像蒸笼般的怪影 一样朝女伤兵罗雯依
九年级数学锐角三角函数_9939
夏天,放暑假的日子里,我们几乎每天都长在池塘边。我们会在池塘边卷起裤腿抓鱼、捞虾,光着脚丫在泥里踩河蚌。有一次我偷拿了家里捞米饭的笊篱去捞虾,结果带着一桶小河虾回家后,挨了 妈妈一顿骂。不过妈妈也会将我带回去的各种战利品做成美味佳肴:河蚌馅饺子、炸河虾、煎小鱼。后来我们学会了一种省事又有趣的捕鱼方法——闷鱼。这种方法是将透明玻璃罐头瓶去除瓶盖后,用 细铁丝绕着罐头瓶口围上几圈,然后系上长点的绳子当做提线。把里面放上大米粥、面条之类的剩饭,然后扔到水里,将绳子的一端系ቤተ መጻሕፍቲ ባይዱ池塘边的小树上,过几分钟后将罐头瓶提上来,里面就会有不少 馋嘴的小鱼小虾。逐渐我们不断的摸索经验,发现里面的诱饵换上带着油花的猪骨头、鸡骨头收获更多,闷的时间呢,大约在一局“天下太平”结束即可。足球分析
锐角三角形函数公式总结大全
锐角三角形函数公式总结大全
1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下列图,在Rt △ABC 中,∠C 为直角,那么∠A 的锐角三角函数为(∠A 可换成∠B):
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
A
90B 90∠-︒=∠︒
=∠+∠得由B A 邻边
A C A 90
B 90∠-︒=∠︒
=∠+∠得由B A
6、正弦、余弦的增减性:
当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。
7、正切、余切的增减性:
当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学锐角三角函数通用版【本讲主要内容】锐角三角函数包括:正弦、余弦、正切。
【知识掌握】 【知识点精析】1. 在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。
即c aA A sin ==斜边的对边∠;把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c bA A cos =∠=斜边的邻边;把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即b aA A A tan =∠∠=的邻边的对边。
2. 锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。
3. 特殊角的三角函数值:30°45°60°sin α 12 22 32 cos α 32 2212tan α331 34. 记忆方法:【解题方法指导】例1. (2000年成都市)如图,在△ABC 中,∠C =90°,∠ABC =60°,D 是AC 的中点,那么tan ∠DBC 的值是________。
锐角α三角函数分析:在Rt △ABC 中,由∠ABC =60°,可知3BCAC60tan == ,即AC =3BC ,又CD =12AC ,tan ∠DBC 可求。
解:在△ABC 中,∵∠C =90°,∠ABC =60°, ∴tan ∠ABC =tan60°=3BCAC=, ∴AC =3BC 。
又D 是AC 中点, ∴DC =12AC =32BC 。
∴23BC BC23BC DC DBC tan ===∠。
评析:在解题中紧紧扣住tan α的定义。
例2. (2001年四川)在Rt △ABC 中 ,CD 是斜边AB 上的高,已知32ACD sin =∠,那么=ABBC______。
分析:由Rt △ABC 中CD ⊥AB 于D ,可得∠ACD =∠B ,由sin ∠ACD =23,那么sinB =23,设AC =2,AB =3,则BC =32522-=,则AB BC 可求。
解:∵∠ACB =90°,CD ⊥AB 于D ,∴∠ACD =∠B 。
又sin ∠ACD =sinB =23, 可设AC =2,AB =3,∴BC =32522-=。
∴=AB BC53。
评析:这里利用图中相等的角,把sin ∠ACD 转化为sinB ,而sin ∠ACD =23,我们设AC =2,AB =3,求得BC =5。
如果更一般化,可设AC =2m ,AB =3m ,则BC =5m ,同样可以求出ABBC的值。
例3. (2004年北京市)已知:如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长。
分析:图中有共三个直角三角形,都为应用锐角三角函数的定义创造了条件,已知∠B =30°,CD =6,则BC =12,用cosB =ABBC可求得AB ,方法不唯一,可选择不同的方法去做。
解法一:在△BCD 中,∵∠CDB =90°, ∠B =30°,CD =6, ∴BC =2CD =12。
在△ABC 中,∠ACB =90°,∴cosB =ABBC, ∴AB =B cos BC=1230123283cos ==。
解法二:在△ABC 中,∵∠ACB =90°,CD ⊥AB , ∴∠ACD =∠B =30°。
∴cos ∠ACD =ACCD, ∴AC =ACD cos CD∠=632=43。
在△ABC 中,sinB =ABAC, ∴AB =382134Bsin AC ==。
评析:此图是双垂直图形,直角本角形多,相等的角也多,可以用不同的思路去解。
【考点突破】【考点指要】锐角三角函数可以把直角三角形边之间的比转化为角的度数,因此作为一种解题工具,有着广泛的应用价值。
无论是解直角三角形,还是有关几何图形的计算,都常常利用锐角三角函数加以解决。
正因为锐角三角函数是一种解题工具,因此在中考时加大了检查的力度,我们应该熟练地掌握它,并学会应用。
【典型例题分析】例1. (2002年北京市海淀区)如图,在菱形ABCD 中,AE ⊥BC 于E ,EC =1,sinB =513。
求四边形ABCD 的周长。
分析:由菱形的特征可知AB =BC ,由EC =1,可没法找到BE 与EC 的联系,即EC =BC -BE =AB -BE =1,可列出方程求解。
解:在Rt △ABE 中,∵∠AEB =90°,sinB =513=ABAE , ∴设AE =5k ,AB =13K 。
∴BE =k 12)k 5()k 13(AE AB 2222=-=-,又AB =BC =13k ,∴BC -BE =AB -BE =EC , ∴13k -12k =1,k =1 ∴AB =13,周长为52。
评析:此题图形并不复杂,但考查的知识却不少,而且通过设参数列出方程求解,很有寓意。
因此在解题中,善于抓住直角三角形,把∠B 的正弦与两边的比建立联系。
例 2. (2005年沈阳市)如图,在△ABC 中,∠A =30°,tanB =32,AC =23。
则AB =____。
分析:设法使∠B 处于一个直角三角形中,以便于应用tanB =32的条件。
可作CD ⊥AB 于D 。
求出AD ,再求出DB ,则AB 可求。
解:作CD ⊥AB 于D 。
∵∠A =30°,AC =23, ∴CD =3AC 21=,∴AD =3CD AC 22=-。
∵tanB =32, ∴23DB 3,23DB CD ==∴, ∴DB =2。
∴AB =AD+DB =3+2=5。
评析:遇到某个角的三角函数值后,设法“回忆题”,使它处于某一个直角三角形中,从而应用三角函数的定义解题。
例3(2005年沈阳市)在△ABC 中,AB =2,AC =2。
∠B =30°,则∠BAC 的度数是_____。
分析:先画一个草图,找到条件中线段、角所处的位置,然后再考虑到有无特殊情况。
比如,图1中的△ABC 中,AB =2,AC =2,∠B =30°,作AD 垂直于直线BC 于D ,则AD =1212AB AC ==。
,则可求出∠DAB =60°,∠DAC =45°(由2221AC AD DAC cos ===∠),则∠BAC =60°-45°=15°。
还有没有其他情况呢?图2中的钝三角形也符合条件。
∠BAC =60°+45°=105°。
解:作AD ⊥直线BC 于D 。
则有两种可能(如图1,图2)。
当垂足D 落在BC 延长线上时(图1), ∵∠B =30°,AB =2,∴AD =1。
∠DAB =180°-90°-30°=60°。
又2221AC AD DAC cos ===∠, ∴∠DAC =45°。
∴∠BAC =∠BAD -∠CAD =60°-45°=15°。
当垂足D 落在BC 边上时(图2)。
则∠BAD =60°,∠CAD =45°, ∴∠BAC =60°+45°=105°。
因此∠BAC 的度数为15°或105°。
评析:进行分类讨论是一种思维严谨的表现,要结合已知条件把可能出现的情况一一考虑,不要漏解。
例4. 在Rt △ABC 中,若两条直角边a 、b 分别都扩大2倍,则锐角B 的各三角函数值( )(A )都扩大2倍 (B )没变化(C )都缩小2倍 (D )只有正切没有变化分析:若两直角边a 、b 都扩大2倍,斜边也扩大2倍。
则两直角边分别为2a 、2b 。
由锐角三角函数的过义去判断。
解:设Rt △ABC 的两条直角边分别为a 、b ,斜边为c 。
则扩大后的三角形a 为2a ,b 为2b ,则。
c 2)b 2()a 2(c 22=+=∴.aba 2b 2a b B tan ,c ac 2a 2c a B cos ,c bc 2b 2c b B sin =========∴三角函数没有变化,故选(D )。
评析:实际上当两条直角边扩大2倍后,得到的直角三角形与原三角形相似,角度没有变化,因此三角函数值没有发生变化。
例5. 若α是一个锐角,求证:sin 2α+cos 2α=1。
分析:设法构造一个直角三角形,再由三角函数定义去推。
解:在Rt △ABC 中,∠C =90°,BC =a , AC =B ,AB =C ,设∠A =α,则sin α= a c b c,cos .α=。
∴sin cos ()()2222222αα+=+=+a c b c a b c 。
∵a 2+b 2=c 2,∴sin cos 22222221αα+=+==a b c c c。
评析:应用锐角三角函数的定义及勾股定理,得到这个结论。
例6. 化简: 60tan 1)160(sin 2-+-。
分析:这是两个非负数,结果不能出现负数,当去掉根号和绝对值符号后,要使结果中出现大减小。
解:。
原式∴。
23132********tan 1231)123()160(sin 22=---=-=-=--=-=-评析:在遇到非负数的问题时,注意结果中不能出现负数。
例7. (2002年北京市西城区)如果α是锐角,且sin 2α+cos 235°=1。
那么α=_____度。
分析:由sin 2α+cos 2α=1,得知α=35°。
解:由例5推导的公式sin 2α+cos 2α=1,即sin 2α+cos 235°=1,∴α=35°。
评析:这是同角的三角函数的一个关系式,必要时可以推。
【综合测试】1. 已知等腰三角形的一个底角为75°,则顶角的余弦值为_______。
2. 在△ABC 中,AC =3,BC =4,AB =5,则下列结论成立的是( )。
(A )sinA =45(B )cosA =53(C )tanA =34(D )tanA =453. 如图,在Rt △ABC 中,∠ABC =90°,CD ⊥AB 于D ,AC =32AB 2 ,,设∠BCD =α,那么cos α的值为( )。
(A )22(B )2 (C )33(D )634. 计算:sin45°·cos45°+tan45°·tan30°·tan60°=_______。
5. 如图,在△ABC 中,∠C =90°,如果BC >AC ,那么cosA 与cosB 的大小关系是_____。