简述大体积混凝土温度控制措施

合集下载

大体积混凝土施工温控措施

大体积混凝土施工温控措施

大体积混凝土施工温控措施
1)温度预测分析。

根据现场商品混凝土配合比和施工中的气温气候情况及各种养护方案,采用计算机仿真技术对商品混凝土施工期温度场及温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随商品混凝土龄期变化情况,制定商品混凝土在施工期内不产生温度裂缝的温控标准及进行保温养护优化选择。

2)商品混凝土浇筑方案。

采用延缓温差梯度与降温梯度的措施,在浇筑前经详细计算安排分块、分层浇筑次序、流向、浇筑厚度、宽度、长度及前后浇筑的搭接时间;控制商品混凝土入模温度并加强振捣,严格控制振捣时间,移动距离和插入深度,保证振捣密实,严防漏振及过振,确保商品混凝土均匀密实;做好现场协调、组织管理,要有充足的人力、物力,保证施工按计划顺利进行,保证商品混凝土供应,确保不留冷缝;浇筑后对大体积商品混凝土表面较厚的水泥浆进行必要的处理(一般浇筑后3~4h内初步用水长刮尺刮平,初凝前用铁滚筒碾压两遍,再用木抹子搓平压实)以控制表面龟裂;商品混凝土浇灌完及拆模后,立即采取有效的保温措施并按规定覆盖养护。

3)商品混凝土温度监测。

在商品混凝土内部及外部设置温度测点,并且设置保温材料温度测点及养护水温度测点,现场温度监测数据由数据采集仪自动采集并进行整理分析,每一测点的温度值及各测位中心测点与表层测点的温差值,作为研究调整控温措施的依据,防止商品混凝土出现温度裂缝。

4)温度应力检测。

为反映温控效果可在少数商品混凝土层中埋设应变计进行温度应力检测,应变计沿水平方向布置,检测水平向应力分量。

5)通水冷却。

采用薄壁钢管在一些商品混凝土浇筑分层中布设冷却水管,冷却水管使用前进行试水,防止管道漏水、阻塞,根据商品混凝土内部温度监测,控制冷却水管进水流量及温度。

大体积混凝土施工温控措施(全文)

大体积混凝土施工温控措施(全文)

大体积混凝土施工温控措施(全文)文档一:正文:一:项目介绍该文档旨在详细介绍大体积混凝土施工的温控措施。

混凝土施工过程中,温度控制是十分重要的环节,对于确保混凝土的质量和性能具有重要影响。

本文将从混凝土浇筑前的准备工作、施工过程中的温度控制措施以及施工后的养护情况等方面进行详细介绍。

二:混凝土浇筑前的准备工作1. 环境温度监测:在进行混凝土浇筑前,需要对施工场地的环境温度进行监测,并记录下环境温度的变化情况。

这将有助于后续的施工过程中的温度控制。

2. 混凝土材料处理:在混凝土浇筑前,需要对混凝土材料进行处理,以控制混凝土的初始温度。

可以采取降温措施,如在水泥中添加冷却剂等。

三:施工过程中的温度控制措施1. 浇筑方式的选择:在大体积混凝土浇筑过程中,可以采用分层浇筑的方式进行。

即将混凝土分为若干层进行浇筑,并在每层浇筑结束后进行养护,以控制混凝土的温度上升。

2. 水泥浆温度控制:如果环境温度较高,可以适当降低水泥浆的温度,控制混凝土的温度上升速度。

可以通过控制水泥与水的比例、水温等方式实现。

3. 外部温度控制:在施工过程中,可以采取遮阳措施,降低环境温度对混凝土的影响。

可以利用遮阳网、喷水等方式进行控制,并且可以根据环境温度的变化进行调整。

四:施工后的养护情况1. 养护时间:混凝土浇筑完成后,需要进行养护,以控制温度的变化。

养护时间一般为28天,可以根据具体情况进行调整。

2. 养护方式:养护方式可以采用喷水、覆盖养护剂等方式进行。

养护过程中需要注意保持养护湿度,并避免混凝土表面过早干燥。

可以根据养护情况的变化,适时进行调整。

附件:1. 环境温度监测记录表2. 混凝土浇筑前处理记录3. 施工过程中温度控制记录4. 养护情况记录表法律名词及注释:1. 温度控制:混凝土施工过程中,通过采取一系列措施,控制混凝土的温度,以确保施工质量和性能。

2. 养护:混凝土施工完成后的一种保护性措施,目的是控制混凝土的温度和湿度,以增强混凝土的强度和耐久性。

简述大体积混凝土温度控制措施

简述大体积混凝土温度控制措施

简述大体积混凝土温度控制措施大体积混凝土温度控制措施1. 引言大体积混凝土结构由于其体积庞大、内部化学反应热释放较高,易引起温度升高和应力积累,从而影响混凝土的强度和耐久性。

因此,采取适当的温度控制措施对于确保混凝土结构的质量和使用寿命至关重要。

2. 温度控制的目标温度控制的主要目标是确保混凝土中温度的合理控制,避免温度过高引起开裂或者温度过低导致强度下降。

具体目标包括:控制混凝土的最高温度、温度梯度和温度变化速率;控制混凝土的表面温度和环境温度;控制混凝土的降温速度和时间。

3. 温度控制措施3.1 混凝土材料的选择:选择低热释放水泥、矿渣粉等掺合料,减少混凝土的内部热释放。

同时,控制水灰比,选用合适的减水剂,以提高混凝土的流动性和可泵性。

3.2 施工时的温度控制:在混凝土浇筑过程中,采取以下措施控制温度:- 分段浇注:将大体积混凝土结构的浇筑过程划分为若干个段,逐段进行浇筑,以减少热量的积累。

- 使用冷却管道:在混凝土中埋设冷却管道,通过水的循环流动,实现对混凝土温度的控制。

- 预冷处理:在浇筑前,可以采取喷淋水或者铺设湿布等方式对模板进行预冷处理。

3.3 后期养护中的温度控制:在混凝土浇筑完成后,采取以下措施控制温度:- 加强养护措施:及时采取覆盖物、湿润养护、避免阳光直射等措施,防止混凝土水分的蒸发过快。

- 冷却处理:可以采用降温剂进行冷却处理,有效降低混凝土的温度。

4. 监测和评估在大体积混凝土温度控制过程中,应进行温度监测和评估,以确保控制措施的有效性。

监测方法包括使用温度计测量混凝土的温度、应力计测量混凝土的应力等。

5. 附件本所涉及的附件如下:- 附件1:混凝土温度控制计划表- 附件2:大体积混凝土施工工艺图6. 法律名词及注释本所涉及的法律名词及注释如下:- 混凝土结构:指使用混凝土作为主要材料的建造结构。

- 温度梯度:指混凝土中不同部位之间的温度差异。

- 水泥:指用于制备混凝土的粉状胶凝材料。

大体积混凝土温度裂缝控制措施

大体积混凝土温度裂缝控制措施

大体积混凝土温度裂缝控制措施
大体积混凝土温度裂缝控制措施主要包括以下几点:
1.合理选择原材料:选用低水化热的水泥,如矿渣水泥、粉煤灰水泥等,以降低混凝土浇筑温度。

同时,掺加粉煤灰或高效减水剂等外加剂,减少混凝土的用水量,改善混凝土的和易性和可泵性,降低水灰比。

2.优化配合比:通过优化配合比,降低混凝土的收缩,提高混凝土的抗裂性。

例如,采用级配良好的骨料,控制砂率,掺加适量的膨胀剂等。

3.控制混凝土浇筑温度:在高温季节,应采取措施降低混凝土的浇筑温度,如对骨料进行洒水降温,避免在高温时段进行浇筑等。

4.加强混凝土养护:在混凝土浇筑完成后,应及时进行养护,保持适宜的温度和湿度,防止出现温度梯度引起的裂缝。

可以采用覆盖保温材料、洒水、喷雾等方式进行养护。

5.适当增加构造钢筋:在容易出现温度裂缝的部位,适当增加构造钢筋的数量和直径,提高混凝土的抗裂性。

6.施加外力约束:在混凝土表面施加外力约束,如加装钢板约束带、预应力钢筋等,限制混凝土的变形,防止裂缝的产生。

7.加强温度监测:在施工过程中,应加强温度监测,及时掌握混凝土内部的温度变化情况,采取相应的措施进行控制和调整。

综上所述,大体积混凝土温度裂缝控制需要从多个方面入手,包括原材料选择、配合比优化、施工方法、养护方式、构造钢筋增加、外力约束和温度监测等方面。

在实际施工过程中,应根据具体情况采取相应的措施,确保大体积混凝土的施工质量符合要求。

大体积混凝土温控措施

大体积混凝土温控措施

大体积混凝土温控措施一、背景介绍随着建筑业的不断发展,大体积混凝土的使用越来越广泛。

然而,由于混凝土的自身性质,其在养护期间易受温度影响,从而导致裂缝、变形等问题。

因此,对于大体积混凝土的温控措施显得尤为重要。

二、温度对混凝土的影响1.温度变化会导致混凝土内部产生应力,从而引起裂缝。

2.高温会使得混凝土过早干燥,从而降低强度。

3.低温会使得混凝土的硬化速率变慢,从而延长养护时间。

三、大体积混凝土的温控措施1.预防性措施(1)选择合适的材料:选择早强水泥、矿物掺合料等材料可以缩短养护时间。

(2)调整配合比:通过调整水灰比、骨料粒径等参数可以改善混凝土内部结构,提高其耐久性和抗裂性。

(3)采用降温剂:在混凝土中加入降温剂可以有效降低混凝土的温度,从而减小温度应力。

(4)使用遮阳板:在混凝土表面覆盖遮阳板可以防止太阳直射,从而避免混凝土过早干燥。

2.治理性措施(1)喷水养护:在混凝土表面喷水可以降低其表面温度,从而缓解温度应力。

(2)覆盖湿布:在混凝土表面覆盖湿布可以保持其表面湿润,从而延长养护时间。

(3)加热养护:在低温环境下采用加热设备对混凝土进行养护,可以提高其硬化速率。

四、具体实施步骤1.根据工程要求选择合适的预防性措施,并在施工前进行预处理。

2.采用实时监测技术对混凝土内部温度进行监测,并根据实际情况调整治理性措施。

3.严格控制施工过程中的环境条件,如遮阳、通风等。

4.对于高重要性的工程,应采用加热养护等措施进行强化处理。

5.根据实际情况及时调整措施,并对温度变化进行记录和分析,以便于后期总结经验。

五、总结大体积混凝土的温控措施是建筑工程中非常重要的一环。

通过选择合适的材料、调整配合比、采用降温剂等预防性措施和喷水养护、覆盖湿布、加热养护等治理性措施,可以有效降低混凝土内部应力,避免裂缝和变形等问题的发生。

在实施过程中需要严格控制环境条件,并根据实际情况及时调整措施。

最终达到保证建筑质量和提高工作效率的目的。

大体积混凝土温度控制措施

大体积混凝土温度控制措施

大体积混凝土温度控制措施引言在大体积混凝土施工过程中,温度控制是非常重要的一个环节。

由于混凝土的体积较大,其内部温度分布不均匀,温度变化过大会引起混凝土的开裂和变形,从而影响工程的质量和安全性。

因此,在施工过程中,必须采取一系列的温度控制措施来确保混凝土的温度稳定在可接受的范围内。

本文将介绍一些常见的大体积混凝土温度控制措施。

1. 控制混凝土浇筑温度混凝土浇筑温度是影响混凝土温度的关键因素之一。

在大体积混凝土施工中,应尽量控制混凝土的浇筑温度,避免过高温度导致混凝土快速凝固和开裂。

一般来说,混凝土的浇筑温度应控制在20℃-30℃之间。

为了达到这个目标,可以采取以下措施:•控制混凝土原材料的温度,尽量避免过高或过低的原材料使用;•合理调整混凝土的配比,控制水泥用量和水灰比,以减少混凝土的内部温度升高;•在混凝土搅拌过程中增加冷却水或冰块来降低混凝土温度。

2. 加强混凝土温度监测在大体积混凝土施工过程中,对混凝土的温度进行持续监测是非常重要的。

通过及时监测混凝土的温度变化,可以及时采取相应的温度控制措施。

常见的混凝土温度监测方法包括:•在混凝土中埋设温度计,通过实时监测混凝土的温度变化;•使用红外线测温仪来测量混凝土的表面温度;•利用无线传感器网络来监测混凝土的温度分布。

通过加强混凝土温度监测,可以及时掌握混凝土的温度变化情况,从而采取相应的控制措施来保证施工质量。

3. 采取降温措施在混凝土浇筑过程中,如果预测到混凝土温度将超过可接受范围,需要及时采取降温措施。

常见的降温措施包括:•使用冷却剂来降低混凝土的温度。

冷却剂可以通过混入混凝土中或直接喷洒在混凝土表面,以降低混凝土的温度。

•在混凝土浇筑表面覆盖湿润的保护层。

湿润的保护层可以通过喷水或铺设湿润的毛毡来防止混凝土表面过早干燥,从而降低混凝土的温度。

•使用保温隔热材料包裹混凝土。

保温隔热材料可以减少混凝土的热量损失,从而降低混凝土的温度变化。

4. 控制混凝土的固化过程混凝土的固化过程也会对混凝土的温度产生影响。

大体积混凝土温度控制措施

大体积混凝土温度控制措施
3 监测结果分析
本承台混凝土分两次浇筑,本文以第一次浇筑 为例。 浇筑完成后,对混凝土内部和外部温度分别 进行了不间断的监测,具体监测结果如图 2~5。
图 4 温度变化图(二)
图 5 温度变化图(三) 从图 2~图 5 中可以看出,承台混凝土第一层测 点区域平均温度曲线从左至右第一段是升温段,由 于入模温度较高,冷却水流量较小,水化反应快,在 18~22 h 左右即达到峰值,持续 8~14 h 后温度开始 下降。 曲线第二段是强制降温段,在冷却水管的持
3 施工中出现的问题
3.1 垫层施工缝开裂 由于基坑开挖深度大,且基坑底部土为细砂、流
砂层,开挖面呈坡状,易造成土方大面积塌陷。 结合 实际情况,施工单位随着垫层的开挖深度逐步浇筑 垫层,致使垫层存在施工缝(如图 3)。




图 3 垫层裂缝现场照片
在垫层整体浇筑完成后,工地停电,基坑降水
停止了 4 个小时,造成地下水位上升,在垫层底部
广东省肇庆市阅江大桥主桥采用双塔单索面, 墩、塔、梁固结的预应力混凝土斜拉桥,主墩承台体 积庞大。 浇筑过程中,大体积混凝土内外温差引起 的温度应力易导致混凝土温度裂缝发生。 为防止温 度裂缝的出现, 施工时应采取有效的降温措施,并 进行温度监测。
1 温度监测方法
鉴于承台的对称性,在承台 1/4 范围内布置温 度测点。 布置位置如图 1 所示。
(下转第 14 页)
12
Henan Building Materials
河南建材 2016 年第 5 期
3.25 m;③粉砂:层厚 1.3~11.7 m,平均埋深 7.45 m。 场地地下水位位于地下 0.6~6.6 m, 地下水类
型为潜水,年变化幅度为 1.50 m 左右,主要受大气 降水补给,历史最高水位为-1.000 m。 拟建场地地 下水对混凝土结构具有微腐蚀性,对混凝土结构内 的钢筋具微腐蚀性。

浅谈大体积混凝土温控措施

浅谈大体积混凝土温控措施

浅谈大体积混凝土温控措施摘要大体积混凝土产生裂缝严重影响工程质量,本文以一个工程实例来说明如何采取温控措施,以理论与实际相结合的方法来加深对大体积混凝土温差控制方面的理解关键词:大体积混凝土裂缝温控措施Abstract: mass concrete crack the serious influence project quality, this paper presents a project example to illustrate how to take temperature control measures, in theory and practice method to deepen our understanding of the mass concrete temperature difference of control to understandKeywords: mass concrete crack temperature control measures一、引言大体积混凝土因体量大,内部水化热高,对温度控制有较高的控制要求,根据《大体积混凝土施工规范》(GB50496-2009)第3.0.4条规定:1、混凝土浇筑体在入模温度基础上的温升值不宜大于50℃;2、混凝土浇体的里表温差(不含混凝土收缩的当量温度不宜大于25℃;3、混凝土浇筑体的降温速率不宜大于2.0℃/d。

根据此规定,大体积混凝土在施工前必须偏求专项施工技术方案,对温度等相关参数进行计算,并根据计算结果进行判断、调整,以确保工程质量。

二、温控措施1、根据当地市场原材料供应情况,合理选择原材料,并进行配合比计算,根据配合比进行预拌试验,根据基准配合比及上、下浮动水灰比,进行对比试验,优选配合比。

2、掺一定数量的粉煤灰,矿渣水泥及减水剂,以降低水化热。

3、根据混凝土最终配合比进行绝热温升、里表温差、温度应力、综合降温差计算,依据计算结果进行表面保温层厚度计算。

简述大体积【混凝土】温度控制措施

简述大体积【混凝土】温度控制措施

大体积混凝土温度控制措施摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。

一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。

在此对大体积混凝土温度控制措施进行了探讨。

关键词:大体积混凝土,温度裂缝,温度控制,水化热随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。

这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。

因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。

大体积混凝土的温度裂缝的产生原因大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。

1、水泥水化热在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。

因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。

混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。

而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。

当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝2、外界气温变化大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。

混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。

大体积混凝土的温控施工技术措施

大体积混凝土的温控施工技术措施

大体积混凝土的温控施工技术措施1. 混凝土浇筑前,要对混凝土的温度、环境温度、浇筑方式和混凝土配合比进行合理设计和调整,以确保混凝土浇筑后能够控制温度的变化。

2. 采用冻土灌浆混凝土浇筑时,应在混凝土中掺加适量的冰块,以控制混凝土的温度。

3. 在夏季高温季节,可以采用夜间或清晨进行混凝土浇筑,以避免白天高温时对混凝土的影响。

4. 在严寒季节,应采取必要的保温措施,例如棚盖、加热设备等,以保证混凝土浇筑后能够充分凝固。

5. 在地下工程的混凝土浇筑中,应考虑地下水的影响,适当控制混凝土中的水泥用量,同时控制混凝土的水灰比,以避免混凝土出现冷缝等现象。

6. 在混凝土浇筑前应进行试块试验,以确保混凝土的强度符合要求。

7. 在混凝土浇筑时,应采用慢浇淋的方法,避免局部温度过高,影响混凝土的强度和稳定性。

8. 在混凝土浇筑完成后,应及时覆盖塑料薄膜或湿布等,以控制混凝土表面的蒸发,避免过快干燥导致开裂。

9. 对于大体积混凝土浇筑,应控制每次浇筑的体积,避免混凝土温度过高,导致混凝土强度、密实度不良。

10. 大体积混凝土浇筑前,应适当减少混凝土中的冷却剂用量,以避免混凝土温度过低,造成混凝土强度下降。

11. 在混凝土浇筑后应及时进行养护,确保混凝土的强度和稳定性,避免开裂、渗水等现象。

12. 在混凝土浇筑过程中应配合施工人员的操作,控制混凝土的密度,避免混凝土松散,导致混凝土强度下降。

13. 大体积混凝土浇筑时,采用水泥预冷处理,可以有效控制混凝土温度变化,提高混凝土强度和耐久性。

14. 大体积混凝土浇筑前应加装补偿器,避免因混凝土收缩导致混凝土开裂。

15. 混凝土浇筑前应采用布帘等方式保证混凝土充分凝固后,方可拆除布帘等措施,避免混凝土流失。

16. 在混凝土浇筑前应对施工场地进行必要的控制,如加盖遮阳棚等,以防止外部环境对混凝土的影响。

17. 在混凝土浇筑过程中应注意加强施工质量的监督管理,确保混凝土浇筑的质量和速度。

大体积混凝土施工中采取的温度控制措施

大体积混凝土施工中采取的温度控制措施

大体积混凝土施工中采取的温度控制措施:
大体积混凝土内部由于水化热导致温度升高,混凝土内部与表面温差过大,易造成表面混凝土开裂,为防止混凝土芯部与表层,表层与环境温差太大引起混凝土开裂,必须采取措施,减小混凝土内部及表面的温差,按照规范要求,内外温差应不大于25℃。

①、采用低水化热水泥,降低混凝土的水化热量。

优先采用大坝水泥,次之采用矿渣水泥,不宜使用硅酸盐水泥和普通水泥。

②、在确定大体积混凝土施工配合时,在满足设计强度的情况下,减少水泥掺量,降低混凝土水化热量。

施工配合比优先使用中粗砂和较大粒径碎石。

③、采用低温拌合水,以降低混凝土搅拌、入模温度,混凝土入模温度最好控制在+5~+15℃,不宜超过+20℃。

其他拌合物应存储在阴凉环境下,避免阳光暴晒。

在当地地下水水质检验满足混凝土施工要求时,可将地下水直接进行混凝土搅拌,以利用地下水的低温降温。

④、混凝土拌合掺加缓凝剂,延长混凝土水化热集中放热峰值时间,以降低混凝土水化热最高温度。

缓凝剂的掺量应通过试验确定,缓凝时间控制在最大值。

根据施工情况,混凝土缓凝时间一般控制在12小时左右。

大体积混凝土浇筑温度控制措施

大体积混凝土浇筑温度控制措施

大体积混凝土浇筑温度控制措施
在大型混凝土工程中,温度控制是非常重要的一项工作,因为混凝土的温度对其强度、耐久性和整体质量都有着重要的影响。

以下是大体积混凝土浇筑温度控制的措施:
1. 控制混凝土的初始温度:在混凝土浇筑前,需要控制混凝土的初始温度,以确保其在浇筑后的温度不会过高或过低。

通常情况下,混凝土的初始温度应该在15℃-25℃之间。

2. 控制混凝土的浇筑速度:混凝土的浇筑速度也会影响其温度。

如果浇筑速度过快,混凝土的温度会升高,从而影响其强度和耐久性。

因此,在浇筑混凝土时,需要控制浇筑速度,以确保混凝土的温度不会过高。

3. 控制混凝土的环境温度:混凝土的环境温度也会影响其温度。

在夏季高温天气中,需要采取措施降低混凝土的温度,例如在混凝土表面喷水或覆盖遮阳网等。

4. 采用冷却剂:在大型混凝土工程中,可以采用冷却剂来降低混凝土的温度。

冷却剂可以通过降低混凝土的凝固温度来降低其温度,从而保证混凝土的质量。

5. 采用隔热材料:在冬季低温天气中,可以采用隔热材料来保持混凝土的温度。

隔热材料可以减少混凝土的散热,从而保持其温度。

总之,在大型混凝土工程中,温度控制是非常重要的一项工作。

通过控制混凝土的初始温度、浇筑速度、环境温度,以及采用冷却剂和隔热材料等措施,可以保证混凝土的质量和强度,从而确保工程的安全和可靠性。

大体积混凝土温度控制技术措施

大体积混凝土温度控制技术措施

大体积混凝土温度控制技术措施对于大体积混凝土结构,为防止混凝土出现温度裂缝,施工时采用降低水泥水化热、降低混凝土入模温度、通水散热、混凝土养护、严格控制拆模时间等几方面做好混凝土温度控制工作,确保内外温差控制在25℃以内,尽量降低混凝土内部温度的升降速率。

⑴混凝土配合比设计为降低水化热,同时满足混凝土防腐、耐久性、泵送的设计要求,掺加了一定量的矿物质超细粉(如优质粉煤灰等),等量取代水泥;掺入一定量的高效缓凝减水剂,改善了混凝土的和易性,减少拌合用水量,降低水灰比,同时推迟了混凝土温度峰值出现的时间,相应的提高了同龄期的容许拉应力。

⑵合理的布置散热及测温系统①散热管的布置根据混凝土温度计算结果,设置合理的散热管。

散热管采用耐腐蚀的镀锌钢管,与钢筋一起绑扎。

在使用前要求通水进行密闭性试验,防止管道在焊接接头位置处漏水或阻塞。

通水散热后对散热管作压浆处理。

②测温设备测温设备可采用“大体积混凝土温度微机自动测试仪”,温度传感器预先埋设在测点位置上,基础承台测点位置分承台内部、薄膜下温度、大气温度、冷却水管进、出水温度设置。

测点温度、温差以及环境温度的数据与曲线用电脑打印绘制。

当混凝土内外温差超过控制要求时,系统马上报警。

测温点的布置应考虑由于大体积混凝土浇筑顺序时间不一致,应由各区域均匀布置,核心区、中心区为重点。

③通水散热承台基坑的顶部和底部各放置一个水箱,利用高差形成的势能完成水循环。

进出水管之间用塑料管连接,在散热管的每个出水口设置一阀门控制流量。

当混凝土浇注至该层散热管标高时,即通水散热,单根散热管流量按不小于1.5m3/h控制,通水时间不小于12天。

④控制砼入模温度选用放热速度较幔的胶结材料—矿碴水泥,采用集料堆底部料或加凉水对骨料降温,采用井水或加冰片拌合,运输工具覆盖或遮阳等措施降低入模温度。

⑤严格控制拆模时间根据测量的混凝土内部温度与外界气温的差值来决定拆模时间,若两者温差大于25℃,则不能拆模,继续通水散热;直至外界气温与混凝土内部温差小于25℃时才可拆模。

大体积混凝土温控措施

大体积混凝土温控措施

大体积混凝土温控措施1.引言大体积混凝土是指用于较大规模建筑工程的混凝土结构,例如高层建筑、大桥、水坝等。

由于体积较大,混凝土的温度控制成为一个重要的工程问题。

本文将介绍大体积混凝土温控措施,以保证混凝土的质量和性能。

2.影响因素大体积混凝土的温度受以下因素的影响:2.1 外界温度外界温度是影响混凝土温度的重要因素。

在施工过程中,需要考虑环境温度的变化,并采取相应的措施进行调节。

2.2 混凝土自身性质混凝土的导热性、比热容和收缩性等自身性质,会影响混凝土的温度变化。

不同材料的加入、水胶比的调整等措施,可以改善混凝土的性能。

2.3 施工方式混凝土的施工方式也会对混凝土温度产生影响。

例如采用预应力或后张拉等施工方式,可以改变混凝土的温度分布。

3.温控措施3.1 预冷措施在大体积混凝土浇筑之前,可以进行预冷处理。

预冷可以通过降低混凝土温度,减少水胶比,提前进行散热等方式实现。

预冷可以有效降低混凝土的内部温度,减少温度差异。

3.2 冷却措施混凝土浇筑后,可以采取冷却措施控制混凝土温度的升高。

冷却措施包括使用冷却水进行浇水、在浇筑面覆盖防水材料等。

这些措施可以降低混凝土的表面温度,减缓混凝土的硬化过程。

3.3 后期维护措施在混凝土浇筑后的一段时间内,需要对混凝土进行后期维护。

维护措施包括覆盖保湿材料、加强通风等。

这些措施能够保持混凝土的湿润状态,防止水分的蒸发,从而控制温度的升高。

3.4 控制混凝土浇筑速度大体积混凝土浇筑的速度也会影响混凝土的温度。

过快的浇筑速度会导致混凝土温度升高过快。

因此,在浇筑过程中,需要控制浇筑速度,保持适当的温度。

3.5 监测与调整在施工过程中,需要定期监测混凝土的温度变化,并根据实际情况进行调整。

这可以通过安装温度传感器,实时监测混凝土温度的变化,并根据监测结果进行相应的调整。

4.结论大体积混凝土的温度控制是保证混凝土质量和性能的重要环节。

通过合理采取预冷措施、冷却措施、后期维护措施以及控制浇筑速度等措施,可以有效控制混凝土的温度。

大体积混凝土温控措施

大体积混凝土温控措施

大体积混凝土温控措施大体积混凝土在现代建筑工程中应用广泛,如大型基础、桥梁墩台、大坝等。

由于其体积大,水泥水化热释放集中,内部温升快,容易产生温度裂缝,影响结构的安全性和耐久性。

因此,采取有效的温控措施至关重要。

一、大体积混凝土温度裂缝产生的原因大体积混凝土在浇筑后,水泥水化过程中会释放出大量的热量,导致混凝土内部温度迅速升高。

而混凝土表面散热较快,形成较大的内外温差。

当温差超过一定限度时,混凝土内部产生压应力,表面产生拉应力。

由于混凝土早期抗拉强度较低,当表面拉应力超过混凝土抗拉强度时,就会产生裂缝。

此外,混凝土在降温阶段,由于收缩受到约束,也会产生拉应力,从而导致裂缝的产生。

二、大体积混凝土温控的基本原则1、控制混凝土内外温差尽量减小混凝土内外温差,一般要求不超过 25℃。

2、控制混凝土降温速率降温速率不宜大于 20℃/d,以避免温度骤降引起的裂缝。

3、延缓混凝土降温时间通过保温保湿养护等措施,延长混凝土散热时间,降低混凝土中心最高温度。

三、大体积混凝土温控措施1、原材料选择与优化(1)水泥选用水化热较低的水泥品种,如矿渣硅酸盐水泥、粉煤灰硅酸盐水泥等。

(2)骨料选用粒径较大、级配良好的粗骨料,以减少水泥用量,降低水化热。

同时,严格控制骨料的含泥量。

(3)掺合料适量掺入粉煤灰、矿渣粉等掺合料,不仅可以降低水泥用量,减少水化热,还能改善混凝土的和易性和耐久性。

2、配合比设计通过优化配合比,在保证混凝土强度和工作性能的前提下,尽量减少水泥用量,降低水化热。

可以采用增加骨料用量、掺入外加剂等方法来实现。

3、施工工艺控制(1)分层浇筑采用分层浇筑的方法,每层厚度不宜超过 500mm,以利于混凝土散热。

(2)振捣密实振捣过程中应避免过振或漏振,确保混凝土密实,提高混凝土的抗拉强度。

(3)控制浇筑温度在炎热季节施工时,应采取措施降低混凝土原材料的温度,如对骨料进行遮阳、洒水降温,对拌合水加冰等,将混凝土浇筑温度控制在合理范围内。

大体积混凝土浇筑温度控制措施

大体积混凝土浇筑温度控制措施

大体积混凝土浇筑现场温度控制措施一、温度控制指标1、混凝土入模温度不得大于30℃;2、混凝土浇筑体在入模温度基础上的温升值不宜大于50℃;3、混凝土浇筑块体的里表温差(不含混凝土收缩的当量温度) 不宜大于25℃;4、混凝土浇筑体的降温速率不宜大于2.0℃/d;5、混凝土浇筑体表面与大气温差不宜大于20℃。

二、温度测量时间1、混凝土入模温度每浇筑台班不得少于2次;2、混凝土浇筑体温度上升阶段每2小时测读一次(前3天),温度下降阶段每4小时测读一次(4至7天),8至12天12小时测读一次,13天至21天24小时测读一次。

三、温度控制措施1、混凝土入模温度的控制:在泵车处现场实测,当混凝土温度接近或超过30℃,立即通知商混站,降低粗、细骨料的入机温度,对搅拌用水降温(加冰等),在混凝土运送边程中对罐车进行淋水等措施,对进场的混凝土及时浇筑,尽量必免暴晒;2、混凝土浇筑体在入模温度基础上的温升值不宜大于50℃控制:浇筑时必须随时观察混凝土的浇筑进度,及时测温,当温升值在30℃左右(实测温度-入模温度)时,供应冷却水管循环水,循环水供应必须期间如温升较快,应加快供水流速;3、混凝土里表温差及混凝土表面与大气温差的控制:当混凝土部份浇筑完成后,应及时覆盖麻袋等保温材料(12h内),对混凝土进行保温、保湿养护。

当混凝土里面温度-混凝土表面温度≥25℃时,主要措施是降低内部温度,提高表面温度。

增加循环水流速,降低循环水水温控制混凝土内部温度;增加覆盖层的厚度,提高混凝土表面温度。

当混凝土表面温度-大气温度≥20℃时,主要措施降低混凝土表面温度,增加覆盖层浇水次数,及时释放混凝土表面温度;4、降温速率的控制:当现实测每天的降温速率接近2℃时,应减少浇水次数,降低循环水供水速率或间断性的进行供水;5、混凝土温度控制是个不断重复过程,控制每项温度时可能会影响其它温度,要兼顾全局,在实际操作中态度必须端正,专人进行供应循环水、浇水覆盖养护。

大体积混凝土的温控措施

大体积混凝土的温控措施

大体积混凝土的温控措施1 温控指标规定混凝土浇筑体在入模温度基础上的温升值不宜大于50℃;混凝土浇筑体的里表温差(不含混凝土收缩的当量温度)不宜大于251℃;混凝土浇筑体的降温速率不宜大于2.0℃/d。

2 温控措施除上述配合比原材料的控制方法外,还有几点需要注意:浇筑混凝土前用深井水冲洗碎石让其冷却;采用深井水作为拌合用水;在罐车、地泵管等输送工具表面包裹吸水材料并不断洒水降温。

3 混凝土测温(1)可采用温度检测仪器,但一般多采用预埋测温管和温度计配套测温的方法。

混凝土浇筑厚度均匀时,测位间距为10~15m,变截面部位可增加测位数量。

根据混凝土厚度,每个测位布置3~5个测点,分别位于混凝土的表层、中心、底层及中上、中下部位。

混凝土表层温度测点宜布置在距混凝土表面50mm处;底层的温度测点宜布置在混凝土浇筑体底面以上50~100mm处。

预埋测温管时与钢筋绑扎牢固,以免位移或损坏。

配备专职测温人员,对测温人员要进行培训和技术交底。

测温人员要认真负责,按时按孔测温,不得遗漏或弄虚作假。

测温记录要填写清楚、整洁,换班时要进行交底。

根据每次测温记录判断混凝土内温差、混凝土表面与塑料膜内温差,如不超过25℃,表示保温正常;如超过25℃,说明保温措施不满足要求,应采取再加盖一层塑料膜予以保温。

当混凝土内与混凝土面温差、混凝土面与室外温差均小于25℃,且降温趋于稳定后,停止测温。

(2)当出现下列情况之一时,宜采用水冷却方式控制大体积混凝土温度:经计算或实测混凝土试样的中心温度大于80℃;混凝土的厚度大于2500mm、强度等于大于C50,且混凝土入模温度大于30℃;其他需要控制混凝土的中心温度时。

混凝土浇筑完成后,对混凝土表面进行洒水养护,并铺设保温层。

一般保温层由塑料薄膜和草帘组成,如有条件宜采用蓄水养护。

在四周筑起临时性的小堤,蓄水养护,水的高度维持在40~60mm,蒸发后及时补充。

承台大体积混凝土温度控制措施

承台大体积混凝土温度控制措施

承台大体积混凝土温度控制措施承台大体积混凝土温度控制是在混凝土浇筑过程中考虑混凝土内部温度的控制措施。

由于混凝土水化反应是一个释放热量的过程,如果不进行适当的温度控制,就可能导致“温度裂缝”的产生,从而降低混凝土的强度和耐久性。

下面将介绍一些常用的承台大体积混凝土温度控制措施。

1.使用低温混凝土:在热天气条件下浇筑混凝土时,可以使用低温混凝土。

低温混凝土是通过减少水泥用量和使用冷却剂来控制混凝土的温度。

这种混凝土可以降低混凝土的内部温度,从而减少温度裂缝的产生。

2.使用温度计控制:在混凝土浇筑过程中,可以使用温度计来监测混凝土的温度。

一旦混凝土的温度超过预定的限制,就可以采取措施来降低混凝土的温度,例如使用冷却水冷却混凝土或者喷水湿润混凝土表面。

3.控制浇筑时间:在热天气条件下,可以选择在早晨或傍晚等温度较低的时间进行混凝土浇筑。

这样可以减少混凝土的温度上升速度,降低温度裂缝的产生。

4.采取遮阳措施:在混凝土浇筑过程中,可以采取遮阳措施来降低混凝土的温度。

例如在混凝土上方设置遮阳棚或覆盖遮阳布,减少太阳直射光的照射,从而降低混凝土的温度上升速度。

5.使用冷却设备:在混凝土浇筑过程中可以使用冷却设备来降低混凝土的温度。

例如,可以在混凝土输送过程中使用冷水管冷却混凝土,在搅拌过程中加入冷却剂等。

6.控制施工速度:在浇筑大体积混凝土时,应控制施工速度,不宜一次性浇筑过大的面积,要进行适时的停浇,以保证混凝土的温升速度不超过允许值。

7.使用散热减缓剂:散热减缓剂是一种能够减慢混凝土散热速度的添加剂。

散热减缓剂能够延长混凝土的散热时间,减少温度裂缝的产生。

8.进行养护措施:在混凝土浇筑完成后,应及时进行养护措施,例如喷水养护等。

养护措施能够保持混凝土内部的湿润状态,减少水分的蒸发,从而降低混凝土的温度。

在承台大体积混凝土温度控制过程中,以上措施可以单独采用或组合使用,要根据具体情况进行选择。

同时,还需要根据混凝土的温度控制规范进行操作,调整具体的控制参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大体积混凝土温度控制措施摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。

一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。

在此对大体积混凝土温度控制措施进行了探讨。

关键词:大体积混凝土,温度裂缝,温度控制,水化热随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。

这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。

因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。

大体积混凝土的温度裂缝的产生原因大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。

1、水泥水化热在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。

因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。

混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。

而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。

当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝2、外界气温变化大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。

混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。

浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。

如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。

另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。

大体积混凝土的温度控制措施针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。

一、温度控制标准混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。

温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。

二、混凝土的配置及原料的选择1、使用水化热低的水泥由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。

铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。

因此选用低水化热或中水化热的水泥品种配制混凝土。

不宜使用早强型水泥。

采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温度尽可能较低。

2、使用微膨胀水泥使用微膨胀水泥的目的是在混凝土降温收缩时膨胀, 补偿收缩, 防止裂缝。

但目前使用的微膨胀水泥, 大多膨胀过早, 即混凝土升温时膨胀, 降温时已膨胀完毕, 也开始收缩, 只能使升温的压应力稍有增大, 补偿收缩的作用不大。

所以应该使用后膨胀的微膨胀水泥。

3、控制砂、石的含泥量严格控制砂的含泥量使之不大于3% ; 石子的含泥量, 使之不大于1% , 精心设计、选择混凝土成分配合如尽可能采用粒径较大、质量优良、级配良好的石子。

粒径越大、级配良好, 骨料的孔隙率和表面积越小, 用水量减少, 水泥用量也少。

在选择细骨料时, 其细度模数宜在26~ 29。

工程实践证明, 采用平均粒径较大的中粗砂, 比采用细砂每方混凝土中可减少用水量20~ 25kg, 水泥相应减少28~ 35kg, 从而降低混凝土的干缩, 减少水化热, 对混凝上的裂缝控制有重要作用。

4、采用线胀系数小的骨料混凝土由水泥浆和骨料组成, 其线胀系数为水泥浆和骨料线胀系数的加权(占混凝土的体积)平均值。

骨料的线胀系数因母岩种类而异。

不同岩石的线胀系数差异很大。

大体积混凝土中的骨料体积占75% 以上, 采用线胀系数小的骨料对降低混凝土的线胀系数, 从而减小温度变形的作用是十分显著的。

5、外掺料选择水泥水化热是大体积混凝土发生温度变化而导致体积变化的主要根源。

干湿和化学变化也会造成体积变化, 但通常都远远小于水泥水化热产生的体积变化。

因此,除采用水化热低的水泥外, 要减小温度变形, 还应千方百计地降低水泥用量, 减少水的用量。

根据试验每减少10kg水泥, 其水化热将使混凝土的温度相应升降1℃。

这就要求: (1)在满足结构安全的前提, 尽量降低设计要求强度。

(2)众所周知, 强度越低, 水泥用量越小。

充分利用混凝土后期强度, 采用较长的设计龄期混凝土的强度, 特别是掺加活性混合材(矿渣、粉煤灰)的。

大体积混凝土因工程量大, 施工时间长, 有条件采用较长的设计龄期, 如90d、180d等。

折算成常规龄期28d的设计强度就可降低, 从而减小水泥用量。

(3)掺加粉煤灰: 粉煤灰的水化热远小于水泥, 7d约为水泥1/3, 28d约为水泥的1/20掺加粉煤灰减小水泥用量可有效降低水化热。

大体积混凝土的强度通常要求较低, 允许参加较多的粉煤灰。

另外, 优质粉煤灰的需水性小, 有减水作用, 可降低混凝土的单位用水量和水泥用量; 还可减小混凝土的自身体积收缩, 有的还略有膨胀, 有利于防裂。

掺粉煤灰还能抑制碱骨料反应并防止因此产生的裂缝。

(4)掺减水剂: 掺减水剂可有效地降低混凝土的单位用水量, 从而降低水泥用量。

缓凝型减水剂还有抑制水泥水化作用, 可降低水化温升, 有利于防裂。

大体积混凝土中掺加的减水剂主要是木质素磺酸钙, 它对水泥颗粒有明显的分散效应, 可有效地增加混凝土拌合物的流动性, 且能使水泥水化较充分, 提高混凝土的强度。

若保持混凝土的强度不变, 可节约水泥10% 。

从而可降低水化热, 同时可明显延缓水化热释放速度, 热峰也相应推迟。

三、混凝土浇筑温度的控制降低混凝土的浇筑温度对控制混凝土裂缝非常重要。

相同混凝土,入模温度高的温升值要比入模温度低的大许多。

混凝土的入模温度应视气温而调整。

在炎热气候下不应超过28℃,冬季不应低于5℃。

在混凝土浇筑之前,通过测量水泥、粉煤灰、砂、石、水的温度,可以估算浇筑温度。

若浇筑温度不在控制要求内,则应采取相措施。

1、在高温季节、高温时段浇筑的措施(1)除水泥水化温升外, 混凝土本身的温度也是造成体积变化的原因, 有条件的应尽量避免在夏季浇筑。

若无法做到, 则应避免在午间高温时浇筑。

(2)高温季节施工时, 设混凝土搅拌用水池(箱), 拌和混凝土时, 拌和水内可以加冰屑(可降低3~ 4 )和冷却骨料(可降低10 以上), 降低搅拌用水的温度。

(3)高温天气时, 砂、石子堆场的上方设遮阳棚或在料堆上覆盖遮阳布, 降低其含水率和料堆温度。

同时提高骨料堆料高度, 当堆料高度大于6m 时, 骨料的温度接近月平均气温。

(4)向混凝土运输车的罐体上喷洒冷水、在混凝土泵管上裹覆湿麻袋片控制混凝土入模前的温度。

(5)预埋钢管, 通冷却水: 如果绝热温升很高, 有可能因温度应力过大而导致温度裂缝时, 浇灌前, 在结构内部预埋一定数量的钢管(借助钢筋固定), 除在结构中心布置钢管外, 其余钢管的位置和间距根据结构形式和尺寸确定(温控措施圆满完成后用高标号灌浆料将钢管灌堵密实)。

大体积混凝土浇灌完毕后, 根据测温所得的数据, 向预埋的管内通以一定温度的冷却水, 应保证冷却水温度和混凝土温度之差不大于25 , 利用循环水带走水化热; 冷却水的流量应控制, 保证降温速率不大于15 /d, 温度梯度不大于2 /m。

尽管这种方法需要增加一些成本, 却是降低大体积混凝土水化热温最为有效的措施。

(6)可采用表面流水冷却, 也有较好效果。

2、冬季施工如日平均气温低于5℃时,为防止混凝土受冻,可采取拌和水加热及运输过程的保温等措施。

3、控制混凝土浇筑间歇期、分层厚度各层混凝土浇筑间歇期应控制在7天左右,最长不得超过10天。

为降低老混凝土的约束,需做到薄层、短间歇、连续施工。

如因故间歇期较长,应根据实际情况在充分验算的基础上对上层混凝土层厚进行调整。

四、浇筑后混凝土的保温养护及温差监测保温效果的好坏对大体积混凝土温度裂缝控制至关重要。

保温养护采用在混凝土表面覆盖草垫、素土的养护方法。

养护安排专人进行,养护时间5天。

自施工开始就派专人对混凝土测温并做好详细记录,以便随时了解混凝土内外温差变化。

承台测温点共布设9个,分上中下三层,沿着基础的高度,分布于基础周边,中间及肋部。

测温点具体埋设位置见专项施工方案(作业指导书)。

混凝土浇筑完毕后即开始测温。

在混凝土温度上升阶段每2-4h测一次,温度下降阶段每8h测一次,同时应测大气温度,以便掌握基础内部温度场的情况,控制砼内外温差在25℃以内。

根据监测结果,如果砼内部升温较快,砼内部与表面温度之差有可能超过控制值时,在混凝土外表面增加保温层。

当昼夜温差较大或天气预报有暴雨袭击时,现场准备足够的保温材料,并根据气温变化趋势以及砼内部温度监测结果及时调整保温层厚度。

当砼内部与表面温度之差不超过20℃,且砼表面与环境温度之差也不超过20℃,逐层拆除保温层。

当砼内部与环境温度之差接近内部与表面温差控制值时,则全部撤掉保温层。

五、做好表面隔热保护大体积混凝土的裂缝, 特别是表面裂缝, 主要是由于内外温差过大产生的浇筑后, 水泥水化使混凝土温度升高, 表面易散热温度较低, 内部不易散热温度较高, 相对地表面收缩内部膨胀, 表面收缩受内部约束产生拉应力。

但通常这种拉应力较小, 不至于超过混凝土抗拉强度而产生裂缝。

只有同时遇冷空气袭击。

或过水或过分通风散热、使表面降温过大时才会发生裂缝(浇筑后5~ 20d最易发生)。

表面隔热保护防止表面降温过大, 减小内外温差, 是防裂的有效措施。

1、不拆模保温蓄热养护大体积混凝土浇灌完成后应适时地予以保温保湿养护(在混凝土内外温差不大于25 的情况下, 过早地保温覆盖不利于混凝土散热)。

养护材料的选择、维护层数以及拆除时间等应严格根据测温和理论计算结果而定。

2、不拆模保温蓄热及混凝土表面蓄水养护对于筏板式基础等大体积混凝土结构, 混凝土浇灌完毕后, 除在模板表面裹覆保温保湿材料养护外, 可以通过在基础表面的四周砌筑砖围堰而后在其内蓄水的方法来养护混凝土, 但应根据测温情况严格控制水温, 确保蓄水的温度和混凝土的温度之差小于或等于25C', 以免混凝土内外温差过大而导致裂缝出现。

相关文档
最新文档