统编通用版高考数学必修一之高中数学教案必修1人教A版数学必修一教案:§1.2.1函数的概念

合集下载

人教a版数学必修1教案6篇

人教a版数学必修1教案6篇

人教a版数学必修1教案6篇人教a版数学必修1教案篇1教学准备教学目标1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;归纳——猜想——证明的数学研究方法;3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;难点:等比数列的性质的探索过程。

教学过程教学过程:1、问题引入:前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。

而这个数列就是我们今天要研究的等比数列了。

)2、新课:1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。

这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

2021-2022学年高二上学期数学人教A版必修第一册1.1.2空间向量的数量积运算(第二课时)教案

2021-2022学年高二上学期数学人教A版必修第一册1.1.2空间向量的数量积运算(第二课时)教案

1.1.2空间向量的数量积(第二课时)(人教A 版普通高中教科书数学选择性必修第一册第一章)一、教学目标1.通过学习空间向量的数量积运算,培养学生数学运算的核心素养;2.借助利用向量的数量积运算判定垂直、求模、求夹角的运算,提升学生的逻辑推理和数学运算核心素养.二、教学重难点1.空间向量的数量积运算2.利用向量的数量积运算判定垂直、求模、求夹角三、教学过程1.复习回顾1.1复习回顾,巩固新知问题1:前面我们学习了空间向量的数量积的哪些内容?1.两个向量的夹角的定义:已知两非零向量,在空间 一点,作,则 叫做向量与的夹角,记作 .2. 向量的数量积:已知向量,则 叫做的数量积,记作,即 .规定:零向量与任意向量的数量积等于 .3. 空间向量数量积的性质:(1)设单位向量,则.(2) .(3) = .【设计意图】通过对平面向量的数量积运算的复习,帮助学生回顾知识点的形成过程,对数量积知识点的复习,巩固学生已学知识点的落实,促进对空间向量数量积运算的理解与掌握.1.2【课前热身--初步应用,理解概念】()()21.303,4,_____,____,2_______.a b a b a b a a b a b ︒==⋅==+⋅-=向量、之间的夹角为,且则O ,OA a OB b ==AOB ∠a b ,a b ,a b a b ⋅a b ⋅=e ||cos ,a e a a e ⋅=<>a b a b ⊥⇔⋅=a a ⋅=【设计意图】创设数学情境,通过简单的实例,让学生运用空间向量数量积的相关知识点解决简单的应用问题2.探究典例,应用知识解决问题例1 如右图,在平行六面体ABCD-A'B'C'D'中,AB = 5,AD = 3,AA'= 7,∠BAD = 60°,∠BAA'= ∠DAA'= 45°. 求:(1)AB AD;(2) AC'的长(精确到0.1).【活动预设】学生分析解题思路,教师给出解答示范.【设计意图】巩固空间向量的数量积定义的应用,引导学生思考如何利用空间向量解决立体几何的距离问题,考查学生对空间向量线性运算以及数量积运算律的综合运用,培养学生的数学运算能力,促进数学核心素养的提升.例2 BB1⊥平面ABC,且△ABC是∠B=90°的等腰直角三角形,平行四边形ABB1A1、平行四边形BB1C1C的对角线都分别相互垂直且相等,若AB=a,求异面直线BA1与AC所成的角.【活动预设】学生先完成分并展示他们的解答,师生共同纠正补充.【设计意图】理解具体的对数符号所表示的含义,并且在探究特例的基础上,遵循从具体到抽象的思路,形成对数概念.例3 在三棱锥S-ABC中,SA⊥BC,SB⊥AC,求证:SC⊥AB.【活动预设】学生小组讨论,分析解题思路,然后请小组代表解答,师生共同纠正补充.【设计意图】巩固空间向量的数量积定义的应用,引导学生思考如何利用空间向量解决立体几何的垂直问题,考查学生对空间向量线性运算以及数量积运算律的综合运用,培养学生的数学运算能力,促进数学核心素养的提升。

高中数学《1.2.1 子集与真子集》教案 新人教A版必修1

高中数学《1.2.1 子集与真子集》教案 新人教A版必修1

河南省开封市十七中高一数学《1.2.1 子集与真子集》教案(必修一)【 预 习 】阅读教材第10-14页,试回答下列问题1、子集的概念及记法3、真子集的概念及记法4、子集、真子集的图形表示5.子集、真子集的性质①空集∅与集合A 的关系②子集、真子集的传递性【 质 疑 】本节内容我有哪些疑问?第二部分 走进课堂1、2、1 子集与真子集【复习检测】1、⎪⎪⎩⎪⎪⎨⎧集合的性质元素与集合的关系集合、元素的记法集合、元素的概念集合的含义2、⎪⎩⎪⎨⎧图法描述法列举法集合的表示法enn V问题:1、实数之间存在着相等或不等关系,那么集合间又有怎样的相等或不等关系呢?2、元素与集合间是“属于”或“不属于”的关系,那么集合间还是这样的关系吗?【探索新知】子集的定义阅读下列一段话:已知{}3,2,1=A ,{}5,4,3,2,1=BA 中任意一个元素都在B 中,就说A 包含于B ,记作B A ⊆(或B 包含A ); 也说A 是B 的子集。

在下列个题中指出哪个集合是哪个集合的子集:1、N ,*N (或+N ),Z ,Q ,R2、①{}1|->=x x A ,{}2|>=x x B②{}3|->=x x A ,{}21|<<-=x x B③{}53|<<-=x x A ,{}21|<<-=x x B④{}3x 1|>-<=或x x A ,{}21|><=x x x B 或3、{}是三角形x |x U =,{}是锐角三角形x |x A =,{}是钝角三角形x |x B = {}是直角三角形x |x C =,{}是斜三角形x |x D = 问题:集合A 是集合A 的子集吗?指出:对任意的N n ∈,n ≤0,类比可以规定:φ是任何集合A 的子集,即A ⊆φ。

集合相等的定义例子、{}01|2=-=x x A ,{}1,1-=B 问题:集合A 是集合B 的子集吗? 集合B 又是集合A 的子集吗? 结论:集合A 是集合B 的子集,同时集合B 又是集合A 的子集,即集合A 和集合B 有相同的元素,就说集合A 与集合B 相等。

高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系

高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系

1.2 集合间的基本关系学习目标1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想.重点难点重点:集合间的包含与相等关系,子集与其子集的概念;难点:属于关系与包含关系的区别.知识梳理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B. 图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.学习目标探究一子集1.观察以下几组集合,并指出它们元素间的关系:①A ={1,2,3},B ={1,2,3,4,5};②A 为立德中学高一(2)班全体女生组成的集合, B 为这个班全体学生组成的集合; ③A ={x |x >2},B ={x |x >1}.2.子集定义:一般地,对于两个集合A 、B ,如果集合A 中都是集合B 中的元素,我们就说这两个 集合有包含关系,称集合A 为集合B 的.记作:(A B B A ⊆⊇或)读作:(或“”)符号语言:任意有则.3.韦恩图(Venn 图):用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.牛刀小试1:图中A 是否为集合B 的子集?牛刀小试2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5}, B ={1,2,3,4,5,6} ( )②A ={1,3,5}, B ={1,3,6,9} ( )③A ={0}, B={x | x 2+2=0} ( )④A ={a,b,c,d }, B ={d,b,c,a } ( )探究二集合相等BB A,A1.观察下列两个集合,并指出它们元素间的关系(1)A ={x |x 是两条边相等的三角形},B ={x |x 是等腰三角形};2.定义:如果集合A 的都是集合B 的元素,同时集合B 都是集合A 的元素,我们就说集合A 等于集合B ,记作.牛刀小试3:()(){}{}12012A x x x B A B =++==--,,.集合与什么关系?探究三真子集1.观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5}, B ={1,2,3,4,5,6};(2)A ={四边形}, B ={多边形}.2.定义:如果集合A ⊆B ,但存在元素,且,称集合A 是集合B 的真子集.记作:(或)读作:“A 真含于B ”(或B 真包含A ).探究四空集1.我们把的集合叫做空集,记为φ,并规定:空集是任何集合的子集.空集是任何非空集合的真子集.即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ.问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别?(2)集合A B 与集合A B ⊆有什么区别?(3)0,{0}与 Φ三者之间有什么关系?3.结论:由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即.(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则(类比b a ≤,c b ≤则c a ≤). 例1.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.例2.判断下列各题中集合A 是否为集合B 的子集,并说明理由.(1)A ={1,2,3},B ={x |x 是8的约数};(2)A ={x |x 是长方形},B ={x |x 是两条对角线相等的平行四边形}达标检测1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A .2个B .4个C .6个D .8个2.已知集合M={x|-3<x<2,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}3.①0∈{0},②∅{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.上面关系中正确的个数为( )A.1 B.2C.3 D.44.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}5.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.——★ 参*考*答*案★——学习过程:探究一1.集合A的元素都属于集合B2.任何一个元素子集集合A含于集合B集合B包含集合Ax∈A,x∈BA⊆B牛刀小试1 集合A不是集合B的子集牛刀小试2 ①√ ②×③×④√探究二集合相等1.(1)中集合A中的元素和集合B中的元素相同.2.任何一个元素任何一个元素A=B牛刀小试3 A=B探究三真子集1.集合A中元素都是集合B的元素,但集合B有的元素不属于集合A.2.x∈Bx AA BB A探究四空集1.不含任何元素2.(1)前者为集合之间关系,后者为元素与集合之间的关系.(2) A = B或A B(3){0}与Φ :{0}是含有一个元素0的集合,Φ是不含任何元素的集合.如Φ{0}不能写成Φ ={0},Φ ∈{0}3.(1)(2)例1.解:集合{a,b}的子集:,{a},{b} ,{a, b}.集合{a,b}真子集:,{a},{b}.例2.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.三、达标检测1.『解析』根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1}四个,故选B.『答案』B2.『解析』集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P 中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M.故选D.『答案』D3.『解析』①正确,0是集合{0}的元素;②正确,∅是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.『答案』B4.『解析』由A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.『答案』D5.『解』因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.。

教案高中数学必修一

教案高中数学必修一

教案高中数学必修一
1. 知识与技能:掌握数列的概念、基本性质和常见数列的求和公式等知识,能够运用数列的性质解决实际问题。

2. 过程与方法:培养学生观察问题、提出问题、解决问题的能力,培养学生的逻辑思维和分析问题的能力。

3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的数学思维和解决问题的能力。

教学重点与难点:
1. 了解数列的概念和性质。

2. 掌握数列的求和公式。

3. 理解并应用数列的相关知识解决问题。

教学准备:
1. 教材:高中数学必修一教材。

2. 教具:黑板、粉笔、投影仪等。

3. 学生自带:笔、笔记本等。

教学步骤:
一、导入(5分钟)
教师出示一个数列,让学生分别讨论这个数列的特点,引导学生了解数列的概念。

二、讲授(30分钟)
1. 数列的概念和基本性质。

2. 等差数列和等比数列的性质及求和公式。

三、练习(15分钟)
教师设计一些相关练习题,让学生在课堂上进行练习,巩固所学知识。

四、讨论与解析(10分钟)
教师与学生共同讨论练习题的解法,并解析其中的难点。

五、作业布置(5分钟)
布置作业,让学生回顾所学知识,巩固练习。

六、小结(5分钟)
教师总结本节课的重点内容,强调数列的重要性及应用,并激励学生努力学习数学。

人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习

人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习

【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。

数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。

教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。

人教版高中数学新教材必修第一册第一、二章教案(表格式、值得收藏)

人教版高中数学新教材必修第一册第一、二章教案(表格式、值得收藏)

B 三者之间的关系.让学生独立完成后,教师通过检查,进行反馈,并强调:(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.(2)对于表示不等式解集的集合的运算,可借助数轴解题.2.交集(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A .B 与集合C 之间有什么关系?①{2,4,6,8,10},{3,5,8,12},{8};A B C ===②{|20049}.A x x =是国兴中学年月入学的高一年级女同学B={x |x 是国兴中学2004年9月入学的高一年级同学},C={x |x 是国兴中学2004年9月入学的高一年级女同学}.教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义;一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:A ∩B. 读作:A 交B其含义用符号表示为:{|,}.A B x x A x B =∈∈且接着教师要求学生用Venn 图表示交集运算.(2)练习.检查和反馈①设平面内直线1l 上点的集合为1L ,直线1l 上点的集合为2L ,试用集合的运算表示1l 的位置关系.②学校里开运动会,设A={x |x 是参加一百米跑的同学},B={x |x 是参加二百米跑的同学},C={x |x 是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A ∩B 与A ∩C的含义.学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.(三)学生自主学习,阅读理解1.教师引导学生阅读教材第10页中有关补集的内容,并思考回答下例问题:(1)什么叫全集?(2)补集的含义是什么?用符号如何表示它的含义?用Venn 图又表示?(3)已知集合{|38},R A x x A =≤<求.(4)设S={x |x 是至少有一组对边平行的四边形},A={x |x 是平行四边形},B={xABA S思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学中学教案2020年月日中学教案2020年月日中学教案2020年月日2sin x x+≥x +恒成立,则1x ax -+2sin 3x x -+的值域;sin x x +-中学教案2020年月日中学教案2020年月日中学教案 2020年 月 日课题 2.2基本不等式1教 学 目 标 知识目标学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等能力目标 通过实例探究抽象基本不等式情感目标 通过本节的学习,体会数学来源于生活,提高学习数学的兴趣教学重点 应用数形结合的思想理解不等式,并从不同角度探索不等式2a bab +≤的证明过程教学难点基本不等式2a bab +≤等号成立条件 主要教法 教学媒体教学过程1.课题导入基本不等式2a bab +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。

高中必修1数学a版教案设计

高中必修1数学a版教案设计

高中必修1数学a版教案设计
教学内容:平面向量
教学目标:学生能够理解和掌握平面向量的概念、运算规则和性质。

教学重点:平面向量的定义、加法、减法、数量积和平行四边形法则。

教学难点:向量的线性运算和向量的性质证明。

教学方法:讲授、示范、实践。

教学过程:
一、导入(5分钟)
教师通过讲解实际生活中的例子引入平面向量的概念,让学生了解向量的作用和重要性。

二、讲解平面向量的定义和基本性质(15分钟)
教师讲解平面向量的定义、零向量和单位向量的概念,介绍向量的加法和减法规则,并讲解向量的数量积和平行四边形法则。

三、练习与巩固(20分钟)
让学生进行练习,进行向量的加法、减法和数量积计算,巩固所学内容。

四、拓展与应用(15分钟)
引入实际生活中的问题,让学生通过向量的概念和运算规则解决问题,培养学生的应用能力和创新思维。

五、总结与反思(5分钟)
让学生总结本节课所学内容,并检查自己的学习情况,有针对性地进行巩固和提高。

教学过程中,教师要注重激发学生的学习兴趣和主动性,引导学生通过思考和实践提高自己的数学能力。

同时,要根据学生的不同水平和特点,采用灵活多样的教学方式,确保每个学生都能够达到预设的教学目标。

人教A版高中数学必修1教案完整版

人教A版高中数学必修1教案完整版

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn 图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

高中数学人教a必修教案

高中数学人教a必修教案

高中数学人教a必修教案
教学目标:让学生了解直线和线段的定义,学会直线和线段的命名方法以及直线和线段的性质。

教学重点:直线与线段的定义、直线与线段的命名方法、直线与线段的性质。

教学难点:直线与线段的性质的应用。

教学步骤:
1.引入直线和线段的定义,让学生了解直线和线段的概念。

2.介绍直线与线段的命名方法,让学生能够正确命名直线和线段。

3.讲解直线与线段的性质,包括无限延长性、上下两个方向等。

4.练习直线与线段的命名和性质练习题,帮助学生掌握直线与线段的基本知识。

5.总结本节课内容,强化直线与线段的定义、命名和性质。

作业布置:完成课后练习题,加深对直线与线段的理解。

评价方法:课堂表现、课后作业完成情况。

教学资源:黑板、彩色粉笔、教材。

教学反思:本节课主要是引入直线与线段的概念,让学生了解直线与线段的定义、命名方法和性质,为后续学习打下基础。

需要注意引导学生掌握直线与线段的命名方法,培养学生的逻辑思维能力。

高中数学必修一教案全套优秀6篇

高中数学必修一教案全套优秀6篇

高中数学必修一教案全套优秀6篇高一上册数学教案篇一一、教材《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。

从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。

从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

四、教学重难点(一)重点用解析法研究直线与圆的位置关系。

(二)难点体会用解析法解决问题的数学思想。

五、教学方法根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持。

在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

高中数学必修1教案篇二一、教材分析本节课选自《普通高中课程标准数学教科书-必修1》(人教A版)《1.2.1函数的概念》共3课时,本节课是第1课时。

人教A版高中数学必修1教案完整版

人教A版高中数学必修1教案完整版

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

人教版高中数学必修一第一章 集合与函数概念全章教案

人教版高中数学必修一第一章 集合与函数概念全章教案

课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习

人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习

人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习本文没有明显的格式错误和问题段落。

以下是小幅度改写后的文章:本教案旨在帮助学生掌握高中数学中重要的等式性质与不等式性质,这是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用。

同时,等式性质与不等式性质也为学生以后顺利研究基本不等式起到重要的铺垫。

教学目标包括掌握等式性质与不等式性质及其推论,能够运用其解决简单的问题,进一步掌握比较法比较实数的大小,以及通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。

教学重点是掌握不等式性质及其应用,难点则是不等式性质的应用。

为此,我们采用以学生为主体的诱思探究式教学,精讲多练的教学方法,借助多媒体等教学工具,引导学生独立思考、小组讨论,充分发挥学生的主动性和创造性。

在教学过程中,我们通过情景导入,引导学生观察和思考现实生活中的相等关系和不等关系;通过预课本,引入新课,让学生自主思考和探究不等式的基本性质、比较多项式大小的方法以及重要不等式等内容;通过典例分析和举一反三,帮助学生更好地应用不等式性质解决实际问题。

最后,我们希望通过本教案的教学,能够培养学生的数学抽象、逻辑推理、数学运算、数据分析和数学建模等方面的素养,提高学生的数学思维水平和解决实际问题的能力。

已知2<a<3,-2<b<-1,要求2a+b的取值范围。

首先,可以将2a+b拆开,得到2a+b<6-2=4,即2a+b的上界为4.然后,将2a+b拆开,得到2a+b>2×2+(-1)=3,即2a+b的下界为3.因此,2a+b的取值范围为3<2a+b<4.基本不等式”是必修1的重要内容。

它是在研究不等关系和不等式性质,掌握不等式性质的基础上对不等式的进一步研究。

同时,它也是为了以后研究选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用。

人教A版高中数学必修1全套教案

人教A版高中数学必修1全套教案

课题:§1.1 集合教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课型:新授课教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;教学重点:集合的基本概念与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容二、新课教学(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样5.元素与集合的关系;(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a∉A(或a A)(举例)∈6.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R(二)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

高中-数学-人教A版-必修(第一册)-1.1.2集合间的基本关系_教案

高中-数学-人教A版-必修(第一册)-1.1.2集合间的基本关系_教案

1.1.2集合间的基本关系一、教学目标:.1.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系二、教学重难点:教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.三、教学课时:1课时四、教学过程:课题引入:实数有相等关系,大小关系,元素与集合之间有属于与不属于关系,那类比他们的关系,集合之间是否具备类似的关系?思考:例1:观察下面三个集合, 找出它们之间的关系:A={1,2,3},B={1,2,7},C={1,2,3,4,5}子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B 的元素,称集合A是集合B的子集,记作A B.读作“A包含于B”或“B 包含A”.韦恩图:思考: A= {x | x 是两条边相等的三角形} B= {x | x 是等腰三角形} 有A ⊆B ,B ⊆A ,则A =B.集合相等:若A ⊆B ,B ⊆A ,则A =B.思考:A ={1, 2, 7},B ={1, 2, 3, 7},真子集:如果A ⊆B ,但存在元素x ∈B 且x ∉A ,称A 是B 的真子集. 记作A B(或B A).读作A 真包含于B ,或B 真包含A 。

思考:指出{}01|2=+=x x B 的元素空集:不含任何元素的集合为空集,记作∅规定:空集是任何集合的子集,是任何非空集合的真子集思考:2.若A B ⊆,B C ⊆,则A C ⊆. 即:子集的传递性例(1)写出集合{a 、b }的所有子集;(2)写出集合{a 、b 、c }的所有子集;(3)写出集合{a 、b 、c 、d }的所有子集;一般地:集合A 含有n 个元素则A 的子集共有2n 个.A 的真子集共有2n – 1个. AB R ___Q ___Z ___N ___N .1*课题总结:子集:A B⊆⇔任意x∈A⇒x∈B真子集:A B⇔任意x∈A⇒x∈B,但存在x0∈B,且x0∉A. 集合相等:A = B⇔A B⊆且B A⊆空集∅:不含任何元素的集合性质:①A∅⊆,若A非空,则A≠⊂φ②A A⊆.③A B⊆,B C A C⊆⇒⊆. 课堂作业:8页练习。

高一数学必修一教案6篇

高一数学必修一教案6篇

高一数学必修一教案6篇(最新版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、报告大全、演讲致辞、条据书信、心得体会、党团资料、读后感、作文大全、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as work summary, report encyclopedia, speeches, articles and letters, experience and experience, party and group information, after reading, composition encyclopedia, teaching materials, other sample essays, etc. I want to know the difference Please pay attention to the format and writing of the sample essay!高一数学必修一教案6篇教案在制订的时候,你们肯定要考虑与时俱进,通过教案的写作我们是需要将教学目的表达好的,下面是本店铺为您分享的高一数学必修一教案6篇,感谢您的参阅。

高中数学(人教A版)选择性必修一《1.1.2空间向量的数量积(第一课时)》【教案匹配版】

高中数学(人教A版)选择性必修一《1.1.2空间向量的数量积(第一课时)》【教案匹配版】

A
a
O cC bB
• 对比思考,深入理解
思考问题2 对于三个均不为零的数a,b,c,若ab=c,则 a c或 b .c
那么对于向量a,b,若a·b=k,能写成a k 或 b k 吗? b
a
b
a
不能!
a·b=k =a·c
k =b ? c ? ...? a
向量没有除法运算!
• 对比思考,深入理解 思考问题3 对于三个均不为零的数a,b,c,则 (ab)c = a(bc). 那么对于向量a,b,c,(a·b)c =a(b·c)成立吗?
不一定!两个向量的数量积为一个实数,(a·b)c和a(b·c)分别表示与向量c和 向量a共线的向量,它们不一定相等.
向量的数量积运算没有结合律!
• 课堂小结
(1)空间向量夹角的定义及范围; (2)空间向量数量积运算的定义、性质与几何意义; (3)空间向量数量积运算的运算律及简单计算.
• 例题变式
• 平面向量数量积的运算律:
数乘向量与向量数量积的结合律 交换律 分配律
(λa)·b=λ(a·b), λ∈R a·b=b·a
a·(b+c)=a·b+a·c
空间向量? 同样满足上述运算律!
• 分配律a·(b+c)=a·b+a·c的证明 令OA a,OB b, BC c
B
b
c
C
OC向OA投影,投影向量为OC '
a
M
b
.
O
M1 N
OM1
=|a|cos〈a,b〉|
b b
|
作法1
作法2
类似地,在空间,向量a向向量b的投影有什么意义?
• 问题三 • 向量a向向量b投影:
在空间中,由于向量a与向量b是自由向量,将向量a与向量b平移到同一平面α内 进而利用平面上向量的投影,得到与向量b共线的投影向量c:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统编通用版高考数学必修一之高中数学教案必修1人教A版数学必修一教案:§ 1.2.1函数的概念
§1.2.1函数的概念
一、教学目标
1、知识与技能:
函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间
的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.
2、过程与方法:
(1)能够正确使用“区间”的符号表示某些函数的定义域;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集
合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
3、情态与价值,使学生感受到学习函数的必要性的重要性,激发学习的积极性。

二、教学重点与难点:
重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;
难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
三、学法与教学用具
1、教学用具:投影仪 .
2、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .
四、教学思路
(一)创设情景,揭示课题
1、复习初中所学函数的概念,强调函数的模型化思想;
2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
3、分析、归纳以上三个实例,它们有什么共同点。

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
(二)研探新知
1、函数的有关概念
(1)函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).
注意:
①“y =f (x )”是函数符号,可以用任意的字母表示,如“y =g (x )”;
②函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是
f 乘x .(2)构成函数的三要素是什么?
定义域、对应关系和值域
(3)区间的概念
①区间的分类:开区间、闭区间、半开半闭区间;
②无穷区间;
③区间的数轴表示.
(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?
通过三个已知的函数:y =ax +b (
a ≠0) y =ax 2+
b x +
c (
a ≠0) y =x k
(
k ≠0) 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。

师:归纳总结
(三)质疑答辩,排难解惑,发展思维。

1、如何求函数的定义域
例1:已知函数f (x ) =
3x +21x (1)求函数的定义域;
(2)求f (-3),f (32
)的值;
(3)当a >0时,求f (a ),f (a -1)的值.
分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y =f (x ),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.
解:略
例2、设一个矩形周长为80,其中一边长为x ,求它的面积关于x 的函数的解析式,并写出定义域
. 分析:由题意知,另一边长为
2280x ,且边长为正数,所以0<x <40. 所以s=8022x
x = (40-x )x
(0<x <40)引导学生小结几类函数的定义域:
(1)如果f (x )是整式,那么函数的定义域是实数集R .
(2)如果f (x )是分式,那么函数的定义域是使分母不等于零的实数的集合 .
(3)如果f (x )是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合
. (4)如果f (x )是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)
(5)满足实际问题有意义.
巩固练习:课本P 19第1
2、如何判断两个函数是否为同一函数
例3、下列函数中哪个与函数
y=x 相等?(1)y = (x )2 ;
(2)y = (33x ); (3)y =
2x ; (4)y =x
x 2分析:○
1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

解:(略)
课本P 18例2 (四)巩固深化,反馈矫正:
(1)课本P 19第3题
(2)判断下列函数
f (x )与
g (x )是否表示同一个函数,说明理由?①f ( x ) = (x -1) 0;g ( x ) = 1
②f ( x ) = x ;g ( x ) =
2x ③f ( x ) = x 2;f ( x ) = (
x + 1) 2④ f ( x ) = | x | ;g ( x ) = 2
x (3)求下列函数的定义域
①1
()||
f x x x ②1
()11f x x
③ f (x ) = 1x +
x 21④f (x ) = 2
4x x
⑤()131f x x
x (五)设置问题,留下悬念
1、课本P 24习题1.2(A 组)第1—7题(B 组)第1题
2、举出生活中函数的例子(三个以上)
,并用集合与对应的语言来描述函数,同时说出函数的定义域、
值域和对应关系。

(六)归纳小结
①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念。

【A 组】
1.下列各组函数中,表示同一函数的是()
A .x x
y y ,1B .1
,112x y x x y C .33,x y x y D .2
)(|,|x y x y 答案:C
2.求下列函数定义域:1
()14f x x x ;1
()11/f x x
答案:-41](,{0,1}
x x x 且【B 组】
1.已知x x x f 2)12(2,则)3(f = -1 .
2. 已知f(x+1)=2x 2-3x +1,求f(-1)。

变:1
()1x f x x ,求f(f(x))
解法一:先求f(x),即设x +1=t ;(换元法)解法二:先求f(x),利用凑配法;
解法三:令x +1=-1,则x =-2,再代入求。

(特殊值法)
3.从集合{a,b}到集合{1,2,3},可以建立映射的个数是_______9_______.
【C 组】
1.已知二次函数)0()(2a a x x x f ,若0)(m f ,则)1(m f 的值为(
A )
A .正数
B .负数
C .0
D .符号与a 有关
2.已知22
1
)1(x x x x f ,则)1(x f 等于( C )
A. 22)1(1
)1(x x B. 2
2)
1(1
)1(x x x x C. 2)1(2x D. 1)1(2x。

相关文档
最新文档