小学数学《乘法》教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学《乘法》教案
本单元教学两位数乘两位数,下表是第一学段各册教材中乘法的教学安排。
一年级(下册)
二年级(上册)
认识乘法,乘法口诀,表内乘法。
求几个几是多少的实际问题,求一个数的几倍是多少的实际问题。
二年级(下册)
两位数乘一位数,乘加、乘减两步计算的实际问题。
三年级(上册)
三位数乘一位数,连乘计算的两步实际问题。
三年级(下册)
两位数乘两位数,乘法的验算。
本单元的内容分成四部分,依次是比较容易的两位数乘整十数(口算)、两位数乘两位数(笔算)、两位数乘两位数(估算)以及需要笔算的两位数乘整十数。还编排了一道思考题,探索两位数乘11的积的规律;编排了一篇“你知道吗”,介绍我国明朝计算乘法的方法——“铺地锦”。
1.口算两位数乘整十数。(第28~29页)
两位数乘整十数是笔算两位数乘两位数必须进行的一步,因此,在教学笔算两位数乘两位数前应该先教学两位数乘整十数。教学两位数乘整十数的安排是从两位数乘10开始,然后向两位数乘几十迁移。
例题创设了一个搬牛奶的现实情境,根据问题列式12x10,这是学生第一次接触两位数乘10。虽然学生以前没有算过12x10,但现实情境能给学生启发,于是出现多种不同的算法。如图中已有9箱牛奶,又往上放1箱会启发学生算12x9+12;图中把10箱牛奶平均分成两堆,会启发学生算12x5x2……学生的各种算法中,有的是形象思维与抽象思维交融的产物,有的是类比推理的结果,这些算法都是学生数学思考与解决问题的具体表现。组织学生交流算法,许多人会自动选用从12x1=12类推出12x10=120这种方法。教材及时安排“试一试”,学生计算12x30,可能转化成12x10x3进行,也可能从12x3类推,再次组织算法交流,更多学生能接受因为12x3=36,所以12x30=360这样的推理。教材在“想想做做”第1题里,让学生先算32x3,再算32x30;先算4x21,再算40x21……通过这样的引导,学生能较好地掌握两位数乘整十数的口算。
“想想做做”分引、练、用三个层次编写。第1、2题是“引”,发挥“题组”的作用,引导学生利用口算两位数乘一位数带出相应的两位数乘整十数、整十数乘整十数。第3、4题是“练”,提倡同桌学生合作,以口答为主,提高练习的效率。第5题是“用”,用于解决实际问题并从中体验数量关系:每盒的数量x盒数=一共的数量。 2.笔算两位数乘两位数。(第30~32页)
这部分内容是本单元的重点。例题以订牛奶为题材,为了计算订一份牛奶一年要花多少钱列出算式28x12。例题不急于教学竖式的算法,仍然让学生应用已有的经验解决问题。这样一方面培养学生的探索精神,另一方面为学习笔算积累一些感性材料。学生可以估计,也可以通过已经掌握的计算来解决。在交流时要突出“番茄”卡通的算法,即先算10个月和2个月各要多少钱,再合起来就是12个月要的钱,这种思路和竖式算理是一致的,应该让全体学生都理解这种方法。
“试一试”中调换28和12的位置相乘,既让学生独立进行一次两位数乘两位数的笔算,又让他们看到两位数乘两位数时,调换两个乘数的位置,积也是不变的,并应用这个规律验算乘法。
对两位数乘两位数的学习要求是掌握算法,能正确地计算,一般不提速度要求。教材认为,通过例题和“试一试”的教学,学生能理解并学会两位数乘两位数的笔算方法,不需要再以文字叙述的法则指导学生怎样算。教材这样处理,并不是不要总结法则,而是要组织学生在自己体验的基础上总结算法。“想想做做”避免了大量的机械训练,如果学生能把教材中的题算对、算好,既能减轻负担,也能达到教学目的。
学生笔算两位数乘两位数,如果发生错误,较多地集中在进位上。教材“想想做做”里的题,一般都不连续进位,先让学生学会算法,树立信心。然后从练习三起安排一些需要连续进位的题。为了减
少进位时的计算错误,教学时要经常组织一些一位数乘一位数再加一位数的口算练习,如3x7+2、6x8+5……
3.估算两位数乘两位数。(第33~35页)
这是新增加的教学内容,因为日常生活里经常需要估计两位数乘两位数的积大约是多少。估计的方法往往是多样的,虽然有的估计误差大一点,有的估计稍精确一点,都不影响估计在生活里的作用,都是具有一定数感的表现。
例题呈现29x42的积比800多、比1500少、在1200左右三种估计,教材提示学生研究“他们各是怎样估算的”,通过研究学会估计,选择自己喜欢的估计方法。学生在二年级(下册)估计36x2的积大约是多少时是这样想的:因为36在30和40之间,所以36x2的积在60和80之间。在三年级(上册)估计613x8的积时是这样想的:613接近600,613x8的积接近4800。这些已有的估算能力支持学生现在学习两位数乘两位数的估算,他们可能把29与42分别看作20与40,于是判断29x42的积比800大;也可能把29与42分别看作30与50,于是判断29x42的积比1500小;还可能把29与42分别看作30与40,那么28x42的积在1200左右。
“想想做做”里有许多估算练习。第2题算一算同组的三道题,比一比中间的题与上、下两题的乘数与积,就能发现47x23的积比40x20的积大,比50x30的积小,在800和1500之间。第3题在第2题的基础上进行,不求出积是多少,只估计积的范围。第4题让学生自己选择估算方法,可以估计积的范围,也可以估计积大约在多少左
右。练习四第2题组织合作学习,在小组里相互估计卡片上的乘式的积。
这段估算教学,形式比较多。有估计积的范围,也有估计积大约是多少。就估计积的范围,又有比多少大些、比多少小些、在多少和多少之间。回答问题的形式又有说出估算结果,还有选择适当的答案。教材中出现这些形式,其主要原因是鼓励学生估计策略与方法的多样性,允许学生从自己的实际出发选用估计方法。并且还能调动学生估算的积极性,发展其个性。众多估算形式的实质是一致的,都是不笔算出两位数乘两位数的精确积,利用口算求得积的近似值,都是把两位数乘两位数转化成比较接近的整十数乘法,都是满足解决实际问题的需要。教学时绝不能重形式、轻本质,要把握形式与实质的关系,让学生体会到形式虽然不同,思想方法和基本策略都是一致的;要允许学生自主选择形式和方法进行估计,不要强求统一。如第34页第4题,可以估范围,也可以估大约是多少。即使估范围也可以比几大些、比几小些或在几与几之间,只要方法正确,结果合理,都是可以的。
教材里还安排了一些笔算,在笔算前先估一估积大约是多少,笔算后看一看是不是和估计的一致,使笔算和估算相互促进。练习四第3题渗透乘法的运算律,这里仅是渗透,要让学生感觉到,但不对乘法运算律进行概括性的描述。教学时可以让学生用自己的语言解释同组的两道题的得数为什么会相同,只要解释中有一点“味”就可以了。