复合材料学课件

合集下载

第7章复合材料力学的几个专题课件

第7章复合材料力学的几个专题课件

σmax σ
l<l0
l=l0
作用在短纤维上的平均拉应力为
L >l0
l/2
1l l0
fd lf,m a 1 x1 ll0
l l0
β为图中l0/2线段上的面积与(σf,max乘以l0/2积)之比值。 当基体为理想塑性材料时,纤维上的拉应力从末端为零线形增大,则β=1/2,因此
• 对于纵向弹性模量,也可使用混合定律。
2.非连续金属基复合材料的强度
• 混合定律应用于短纤维(包括晶须)时, 应考虑长度对直径比L/d和基体抗剪强度。
• 短纤维长度不同时,最终表达式不同。
– 若纤维长度L小于临界长度Lc,则纤维的最大应 力达不到纤维的平均强度,纤维不会断裂,破 坏是由于界面或基体破坏所造成的。
Hale Waihona Puke 7.2.2 短纤维复合材料强度预测
• 复合材料力学行为的核心:基体与增强体 进行载荷分配。
• 混合定律: 外加载荷等于基体和增强体按体积平均载 荷的总和。
Aff (1f)M
1.连续纤维增强金属基复合材料的强度
• 主要靠连续纤维承受外加载荷 • 金属基体作为传递和分散载荷的媒体 • 纤维增强金属基复合材料的破坏,主要是由
– 若纤维长度L大于临界长度Lc,纤维的应力达到 平均强度时,材料开始断裂。
• 短纤维的增强作用不如连续纤维有效,因 此短纤维的f’比连续纤维的高。
3.颗粒增强金属基复合材料的强度 • 强化机制是弥散强化 • 复合材料破坏从颗粒界面开始,表现为界
面破坏或颗粒脱落
• 切应力导致颗粒破坏,引起材料变型
单向复合材料及铝合金的S-N曲线 1-Kevlar-49/环氧;2-硼纤维/环氧;3-S玻璃纤维/环

《复合材料结构设计》PPT课件

《复合材料结构设计》PPT课件

传统机械按键结构层图:
按键
PCBA
开关键Байду номын сангаас
传统机械按键设计要点:
1.合理的选择按键的类型,尽量选择 平头类的按键,以防按键下陷。
2.开关按键和塑胶按键设计间隙建议 留0.05~0.1mm,以防按键死键。 3.要考虑成型工艺,合理计算累积公
差,以防按键手感不良。
§4.3 层合板与层合件设计
4.3.4 变厚度层合板设计
20
§4.2 设计选材与设计许用值确定
4.2.2 设计许用值的定义与确定原则
金属材料设计许用值以应力表示,称设计许用应力 ;复合材料 结构的设计许用值选择应变,称设计许用应变。
确定设计许用值的一般原则: ★ 结构的拉伸设计许用值主要取决于含孔试样的许用值,结
构的压缩设计许用值主要取决于含冲击损伤试样的许用值。 ★ 薄蒙皮或薄面板蜂窝夹层结构设计许用值的确定,还需根
§4.4 夹层结构设计
4.4.1 夹层结构的破 坏模式与设计 准则
(1)夹层结构破坏模式
37
§4.4 夹层结构设计
4.4.1 夹层结构的破坏模式与设计准则
(2)夹层结构设计准则
◆ 在设计载荷下,面板的面内应力应小于材料强度,或在设计载荷下,面 板应变小于设计许用应变;
◆ 芯子应有足够的厚度(高度)及刚度 ; ◆ 芯子应有足够的弹性模量和平压强度,以及足够的芯子与面板平拉强度; ◆ 面板应足够厚,蜂窝芯格尺寸应合理; ◆ 应尽量避免夹层结构承受垂直于面板的平拉或平压局部集中载荷; ◆ 胶粘剂必须具有足够的胶接强度,同时还要考虑耐环境性能和老化性能; ◆ 碳纤维层合面板与铝蜂窝芯子胶接面要注意防止电偶腐蚀问题; ◆ 对雷达罩等有特殊要求的夹层结构,面板、芯子和胶粘剂选择必须考虑 电性能、阻燃、毒性和烟雾等特殊设计要求。

材料表界面第八章-复合材料界面PPT课件

材料表界面第八章-复合材料界面PPT课件
❖ 分子链中引入环氧基一般有两种方法,一种是由含 活泼氢的化合物如酚类、有机酸类、胺类与环氧氯 丙烷发生开环反应,然后在碱的作用下闭环,引入 环氧基:
16
缩水甘油醚型环氧树脂
R - O H + C H 2 - C H - C H 2 C l O
R - O - C H 2 - C H - C H 2 C l O H
陶瓷基、水泥基、玻璃基
3
复合材料的特性
(1). 轻质高强
复合材料的密度低,在1.4~2.0之 间,约为钢的1/5,铝的1/2,因而 其比强度(抗张强度与密度的比)、 比模量(弹性模量与密度的比)比 钢、铝合金高,如高模量碳纤维/环 氧复合材料的比强度为钢的5倍,铝 合金的4倍。其比模量是钢、铝、钛 的4倍。轻质高强是复合材料适宜用 作航空、航天材料的宝贵性能。
缩水甘油胺型环氧树脂
R - O - C H 2 - C H - C H 2 O
R - N H 2 + C H 2 - C H - C H 2 C l O
R - N H - C H 2 - C H - C H 2 C l O H
R - N H - C H 2 - C H - C H 2 O
O
O
C O HC= C O CH HC=C
调节饱和二元酸和不饱和二元酸的比例,可以控制不饱和聚酯中双键的含量
然后,在引发剂的存在下,不饱和聚酯中的双键与苯乙烯 发生自由基共聚反应,交联成三元网状结构
O CO
O HC-CHCO
HC-CH
CH-Ph
CH-Ph
CH
O
n
O
CH n
CO
HC-CHCO
HC-CH
第8章 复合材料的界面

复合材料力学性能ppt课件

复合材料力学性能ppt课件

低分子是瞬变过程
(10-9 ~ 10-10 秒)
各种运动单元的运动需要 克服内摩擦阻力,不可能
瞬时完成。
高分子是松弛过程
运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
.
8
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
应变硬化
E D A
D A
O A
B
y
图2.4 非晶态聚合物的应力. -应变曲线(玻璃态)
20
2.2 高分子材料的力学性能
.
21
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧
4 软而韧
5 软而弱
曲线
模量





拉伸强度





断裂伸长率 小


很大

断裂能





F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
扭转
F
.
17
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
标准哑 铃型试

实验条件:一定拉伸速率和温度
.
电子万能材料试验机
18
2.2 高分子材料的力学性能
图2.3 高分子材料三种典型的应力-应变曲线
.
19

复合材料教学课件-8水泥基复合材料

复合材料教学课件-8水泥基复合材料

图12-15 聚合物水泥混凝土Konietzko结构模型
图12-15 聚合物水泥混凝土Konietzko结构模型
四、(钢筋混凝土)纤维 / 基体的界面 一般来讲,钢筋混凝土中纤维 / 基
体的界面具有比基体大的水灰比,易形 成较厚的水膜层,即界面薄弱层。
改善界面性能的途径:关键在于 提高最薄弱点(弱谷)的显微硬度及减 小过渡环的范围。
增强剂 — 短纤维; 基体— 硅酸盐水泥、调凝水泥
及高铝矿渣水泥等; 填料 — 沙、粉煤灰等。
2-2 影响材料性能的因素: 1)基体的性能: 2)纤维与基体水泥间的相互作用: 3)纤维与基体在热膨胀系数上的匹配: 4)纤维与基体在弹性模量上的匹配: 5)增强体性能:
1) 基体的性能:水泥基体不仅是传 递应力载荷,而且是受力的主体。
复合材料教学课件-8水泥基复 合材料
水泥颗粒之间的水与水泥发生水化反应生 成水化物,水化物占据了硬化物的主体。 水泥的强度是由这些水化物不留间隙地充 填了空隙而增强的(图12-3)。
图12-3 水泥的水化过程
水泥硬化的条件: 1)原料配比:最重要的是水与水泥
(W / C)比。 2)搅拌: 3)养生:凝结、硬化的过程中,在达到某种 程度的强度期间,促进水化反应,保护混凝土 不受来自外部的有害影响所做的工作叫养生。 其基本做法是在适当的温度范围内,给予充分 的湿度,不要施加冲击及过度的负荷。
2)喷射脱水法 图12-9 喷射脱水法流程
喷射脱水法是将玻璃纤维增强水泥喷射到 一个常有减压装置的铺有滤布的开孔台上。 喷射完后进行减压,通过滤布将玻璃纤维 增强水泥的剩余水分脱掉。其制品比直接 喷射制品强度高,但制品形状仅限于板状 或异性断 面等的弯曲加工制造。喷射脱水 过程可通过机械化很容易进行连续操作。

材料导论第十四章复合材料ppt课件

材料导论第十四章复合材料ppt课件
混凝土=水泥+砂+石
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维

编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等

《复合材料的特性》课件

《复合材料的特性》课件
详细描述
复合材料是由两种或多种材料组合而成的,这些材料可以是金属、非金属、有机或无机材料,通过一定的工艺技 术,如挤压、铸造、热压等,将它们结合在一起,形成一个整体。这个整体具有各组分材料所不具备的特性,从 而满足各种不同的需求。
分类
要点一
总结词
复合材料可以根据不同的分类标准进行分类,如按组分类 型、形态、制造工艺等。
声学性能
通过调整复合材料的结构和组成,可 以控制其声学性能,如隔音、吸音效 果。
化学性能
耐腐蚀性
环境适应性
复合材料中的基体和纤维对各种化学环境 有很好的耐受性,不易被腐蚀。
某些复合材料能在极端环境中保持稳定, 如高温、高压、高湿或强辐射环境。
良好的密封性
可设计性强
复合材料的结构特性使其具有很好的气密 性和水密性,适用于需要密封的场合。
高性能化
随着科技的不断进步,对复合材料性能的要求也越来越高,高性能 复合材料将得到更广泛的应用。
智能化
随着物联网、传感器等技术的不断发展,复合材料将逐渐实现智能 化,提高其使用效率和安全性。
技术挑战
01
02
03
制造技术
复合材料的制造技术要求 高,需要精确控制各组分 的比例和分布,提高制造 效率和质量。
聚合物基复合材料的生产工艺主要包 括手糊成型、喷射成型、层压成型、 模压成型等。
喷射成型是通过将树脂和增强材料混 合后,通过喷枪喷射到模具表面,快 速固化形成复合材料制品。
金属基复合材料工艺
金属基复合材料是以金属或其 合金为基体,以纤维、晶须、 颗粒等为增强剂,通过复合工
艺制备而成的材料。
金属基复合材料的生产工艺主 要包括铸造、粉末冶金、扩散
可以根据特定的化学环境需求,设计复合 材料的组成和结构,以满足各种应用需求 。

复合材料PPT教学课件

复合材料PPT教学课件
原有材料的特点,又使各组分间 协同作用,形成了优于原材料的 特性。
4 复合材料的分类:
(1)按基体分类
树脂基复合材料 金属基复合材料 陶瓷基复合材料
(2)按增强体 的形状分类
颗粒增强复合材料 夹层增强复合材料 纤维增强复合材料
二 形形色色的复合材料
1 生产、生活中常用的复合材料
常见的复合材料有玻璃钢和 碳纤维增强复合材料。
玻璃钢是一种以玻璃纤维做增强体、合成树 脂做基体的复合材料。
优点:玻璃钢的强度可达到甚至超过合金的强度,
而密度只有钢铁的1/5左右;同时,这种材料保持着 较好的耐化学腐蚀性、电绝缘性和机械加工性能, 而且又不像普通玻璃那样硬脆。
玻璃钢制品
交流·研讨
你经常打羽毛球吗?现在羽毛球使用的大 多是碳素球拍,但几年前用的多是铝合金 球拍,人们还曾使用过木制球拍。
3.胰岛素改造
天然胰岛素制剂在储存中易形成二聚体和六聚体, 延缓胰岛素从注射部位进入血液,从而延缓了其降血 糖作用,也增加了抗原性,这是胰岛素B23-B28氨基 酸残基结构所致。利用蛋白质工程技术改变这些残基, 则可降低其聚合作用,使胰岛素快速起作用。该速效 胰岛素已通过临床实验。
4.治癌酶的改造
请与同学们讨论:用于制造碳素球拍的材 料有哪 些优越性?它为什么会具有这些 优越性?
• 碳纤维增强体 • 碳纤维复合材料
• 合成树脂做基体 优点:具有韧性好,强度高而质轻的特点。
• 碳纤维增强复合材料也广泛应用于纺织机 械和化工机械的制造,以及医学上人体组 织中韧带的制作等。
2 航空、航天领域中的复合材料
本节教材小结 复 合 材 料
认识复合材料
基体 增强体
形形色色的复合材料

《复合材料》PPT课件

《复合材料》PPT课件
优异的抗疲劳性能
复合材料能够抵抗循环载荷作用下的疲劳破坏,具有较长的疲劳寿命, 适用于承受交变应力的结构件。
03
良好的减震性能
复合材料具有较好的阻尼性能,能够吸收和分散振动能量,降低结构的
振动和噪音水平。
物理性能
耐高低温性能
复合材料能够在极端温度环境下保持稳定的性能,适用于高温或低 温工作条件。
良好的电绝缘性能
模压成型
缠绕成型
将预浸料或预混料放入模具中,在加热和加 压的条件下使其固化成型。
将浸渍过树脂的连续纤维或布带按照一定规 律缠绕到芯模上,然后固化脱模。
后处理与加工技术
热处理
通过加热或冷却的方式改善复合 材料的性能,如消除内应力、提
高强度等。
表面处理
对复合材料表面进行打磨、喷涂 等处理,以提高其外观质量和耐 腐蚀性。
原材料的预处理
对增强材料和基体材料进行清洗、干燥、筛分等 预处理,以确保原材料的质量和性能。
成型工艺方法
手糊成型
喷射成型
在模具上涂刷脱模剂,然后铺贴一层基体材 料,再涂刷一层树脂,如此反复直至达到所 需厚度,最后固化脱模。
将树脂和增强材料分别通过喷嘴喷射到模具 上,通过调整喷射参数控制复合材料的厚度 和性能。
大多数复合材料具有优异的电绝缘性能,可用于电气设备和电子器 件的绝缘材料。
多样化的热性能
通过调整复合材料的组分和结构设计,可以实现不同的热性能要求, 如耐热性、隔热性或导热性等。
化学性能
耐腐蚀性
复合材料能够抵抗多种化学物质 的侵蚀,包括酸、碱、盐等,适 用于腐蚀性环境下的应用。
耐候性
复合材料能够抵抗紫外线、氧化、 潮湿等自然环境因素的影响,长 期保持稳定的性能。

《复合材料原理》PPT课件

《复合材料原理》PPT课件
的树脂(如乙烯基酯树脂)为基体; 对于碱性介质:宜采用无碱玻璃纤维为增强体和耐碱性
良好的树脂(如胺固化环氧树脂)。
.
15
复合材料特性:
.
16
抗拉强度与密度 之比 比强度高的材料 能承受高的应力
弹性模量与密度之 比 比模量高说明材料 轻而且刚性大
.
17
疲劳破坏的种类不同: 金属: 突发性破坏 疲劳强度极 限是其拉伸强度的30%~50% 聚合物基复合材料: 有预兆破坏 极限为拉伸强度的70%~80%
.
20
(1) 密度低 ; (2) 耐腐蚀; (3) 易氧化、老化; (4) 聚合物的耐热性通常较差; (5) 易燃; (6) 低的摩擦系数; (7) 低的导热性和高的热膨胀性; (8) 极佳的电绝缘性和静电积累; (9) 聚合物可以整体着色而制得带色制品。 (10) 聚合物的一些力学性能随其分子结构的改变而变化。
复合材料原理
.
1
主要内容
1、绪论 2、复合材料的复合效应 3、复合材料的界面状态解析 4、复合体系的界面结合特性 5、复合体系的典型界面反应 6、复合材料的界面处理技术
.
2
7、复合材料物理和化学性能的复合规律 8 、结构复合材复合材料的起源:
.
4
二、复合材料的定义
和聚芳酰胺纤维等高模量纤维为增强剂;
☼ 4、金属、陶瓷基复合材料:上世纪70年代则又出现以
金属、陶瓷等为基体材料的复合材料。
.
7
四、复合材料的分类:
1、无机非金属基复合材料 2、聚合物基复合材料 3、金属基复合材料
基体材料不同
.
8
4.1 复合材料中的材料设计和结构设计
工程应用的角度
结构复合材料

复合材料力学课件第01章 绪论

复合材料力学课件第01章 绪论
复合材料力学
教材:沈观林,复合材料力学,清华 教材:沈观林,复合材料力学, 大学出版社, 大学出版社,2006 学时: 学时:32h。 1-8周,最后一次课考试 。 周
第一章
§1.1 概述
绪论
§1.2 连续纤维复合材料的构造 §1.3 复合材料的特点 §1.4 复合材料的应用 §1.5 复合材料的力学分析方法
应用于航空(1)
航空工程中应用复合材料的例子 如表1-7: 如表1 碳纤维树脂基发动机叶片,玻璃钢 直升机飞机螺旋桨,非金属蜂窝夹层雷 达罩,CF/GF复合材料、中间硼纤维增强 蜂窝结构飞机机身,平尾,水平安定面, 垂直安定面,石墨纤维复合材料喷气发 动机,CF/KF混杂复合材料整流罩、主起 落架舱门等。AD200/400,基本上是高强 玻璃纤维/环氧复合材料制造的。
特点二
使用复合材料, 使用复合材料,可使设计提前到材料 的制造阶段, 的制造阶段,以最有效地发挥材料的潜力 和作用。例如: 和作用。例如:
图5 可设计复合材料结构
特点三
与金属材料相比, 与金属材料相比,复合材料的抗疲劳 断裂性能要好。一般而言, 断裂性能要好。一般而言, 复合材料 :σe ≈60%σb % 金属材料: 金属材料: σe ≈30%σb %
§1.4
§1.4 复合材料的应用
复合材料是各国目前都正在大力发展 的新型材料,使得其性能不断提高, 的新型材料,使得其性能不断提高,同时 在先进结构上也得到了越来越广泛的应用。 在先进结构上也得到了越来越广泛的应用。 1∘在航空结构上的应用 2∘在航天工程中的应用 3∘在车辆制造业的应用 4∘其他用途
层合板结构
图4 叠层材料构造形式
层合板的表示
层合板的表示方法是按叠层顺序依次将各铺 的角度写入方括号中, 层(ply)的角度写入方括号中,并用斜杠分隔 的角度写入方括号中 例如: 之。例如:[0/90/45/0/45/90/0]、[30/-30] 、 当有对称面时,可只写一半,并用下标S表 当有对称面时,可只写一半,并用下标 表 示对称。例如: 示对称。例如:[60/0/0/60] → [60/0]s 当有重复铺层时,可用数字下标表示。例如: 当有重复铺层时,可用数字下标表示。例如: [60/60/0/0/60/60] → [602/0]s [30/-30/0/0/-30/30] → [±30/0]s ± [30/0/0/30/30/0/0/30] → [30/0]2s 半重复层合板的表示方法为: 半重复层合板的表示方法为: [-30/60/0/60/-30] → [定义: 其它定义:

复合材料基础分析PPT课件

复合材料基础分析PPT课件
第10页/共89页
(2)复合材料的特性 一般特性: a. 可设计性 b. 构件复合与成型一次性完成,整体性好 c. 性能分散性大,性能对工艺工程及工艺参数甚至一些 偶然性因素都十分敏感,难以精确控制结构和性能 d. 复合效应(多种复合效应)
一般性能特点: a. 比强度、比模量大 b. 破坏安全性高 c. 耐疲劳性好 d. 阻尼减震性好 e. 耐烧蚀性能好
第33页/共89页
2、纤维―树脂复合材料 (1)玻璃纤维―树脂复合材料
缺点:脆性大、易氧化
第31页/共89页
(3)硼纤维 它是用化学沉积法将非晶态的硼涂覆到钨丝上而制得的。具有高熔点 ( 2300℃ ) 、 高 强 度 ( 2450 ~ 2750MPa ) 、 高 弹 性 模 量 ( 3.8 ~ 4.9×105MPa)。具有良好的抗氧化性、耐蚀性。 缺点:密度大、直径较粗及生产工艺复杂、成本高、价格昂贵。
第32页/共89页
(4)碳化硅纤维 它是用碳纤维作底丝,通过气相沉积法而制得。具有高熔点、高强度、 高弹性模量。其突出特点是具有优良的高温强度,在1100℃时其强度仍高达 2100MPa。
(5)Kevlar有机纤维(芳纶、聚芳酰胺纤维) 特点:比强度、比模量高;其强度可达2800~3700MPa;密度小,只 有1.45 g/㎝3;耐热性比玻璃纤维好。它还具有优良的抗疲劳性、耐蚀性、 绝缘性和加工性。
金 玻 纤维
属 材
璃 颗粒

纤维

炭黑
有机 有机纤维
高分 子材
塑料
料 橡胶
金属材料 纤维/金属基复合材料 晶须/金属基复合材料
连续相 无机非金属材料 钢丝/水泥复合材料 晶须/陶瓷基复合材料
纤维/金属基复合材料 晶须/金属基复合材料

第七章复合材料力学性能的复合规律ppt课件

第七章复合材料力学性能的复合规律ppt课件

u m
(常见情况)
①当 Vf 较低时
单层板中纤维断裂(图7.11(d))而附加到基体 上的额外载荷不足以使基体开裂,而可以全部承受, 此时复合材料的强度为:
1u
muVm
u m
1Vf
②当 Vf 较高时 纤维断裂时,转移载荷大。
u 1
m
u f
m
Vf
1.0 0
u 1
uf Vf
m (1Vf )
1 Vm V f

E2 Em E f
E2
EmV f
EmE f E f (1 V f )
⑶单向板的主泊松比ν12
复合材料的主泊松比——是指在轴向外加应力时横 向应变与纵向应变的比值。
横向收缩,纵向伸长
主泊松比
12
2 1
1 —纵向应变
2 —横向应变
横向变形增量 W为:
W W f Wm
W
12
W
1
W f
f
VfW
1
Wm
m
VmW
1
121W V f f 1W Vm m1W
12 V f f Vm m
⑷单层板的面内剪切模量G12
假定纤维和基体所承受的剪切应力相等,并假 定复合材料的剪切特性是线性的,总剪切变量为D。
试样的剪切特性: f m
若试样宽度为W,则有剪切应变:
u 主要依赖于
1
u m
在纤维断裂前先发生
基体断裂,于是所有载荷转移到纤维上。
树脂破坏时(和破坏后): m 0
刚破坏时: f f
纯树脂破坏时:
u 1
u m
纯纤维破坏时: u 1
u f
当V f 很小时,纤维不能承受这些载荷而破坏,故有:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1 火箭壳体材料对射程的影响
1.2 复合材料的定义、特征与命名
1.2.1 复合材料的定义(复合材料有着不同的定义方式。 )
❖ “由两种以上不同的原材料组成,并使原材料的性能得到 充分发挥,通过复合化而得到单一材料所不具备的性 能。 ”( 岛 村昭治 . 未来を拓く先端材料,工业调查会, 1982 )
ISO定义为是:两种或两种以上物理和化学性质不同的物 质组合而成的一种多相固体材料。 复合材料的一种较认可的定义:由两个或两个以上独立的 物理相(基体材料和分散材料),包含粘结材料和粒料、 纤维或片状材料组成的一种固体产物。 1.2.2 复合材料的特点:
1)由两种或多种不同性能的组分通过宏观或微观复合 在一起的新型材料,组分之间存在着明显的界面。
陶瓷基复合材料的使用温度可达1400C; 碳/碳复合材料的使用温度最高可达2800C。
不同 SiC纤 维复 合材 料的 使用 温度 范围。
1.4.3 良好的尺寸稳定性: 加入增强体到基体材料中不仅可以提高材料的强度和
刚度,而且可以使其热膨胀系数明显下降。通过改变复合 材料中增强体的含量,可以调整复合材料的热膨胀系数。 1.4.4 良好的化学稳定性:
1.1.2 复合材料的提出
现代高科技的发展更紧密地依赖于新材料的发展; 同时也对材料提出了更高、更苛刻的要求。现代高技术 的迅猛发展,特别是航空、航天和海洋开发领域的发展 对材料提出了越来越苛刻的要求。例如,航天飞机等空 间飞行器,空间飞行器的发动机,现代武器系统,要求 材料质轻、高强、高韧、耐热、抗疲劳、抗氧化、抗腐 蚀、吸波、隐身、抗穿甲性等特性。
❖ “把一些个体典型或基本的特性组合,而得到的物质。” (余永宁 等 译. 金属基复合材料导论,北京,冶金工业出 版社,1996 )
❖ “由两种以上异质、异形、异性的材料复合而成的新型材 料。”(吴人洁,复合材料,天津大学出版社,2000)
❖ “经过一定的操作,将复数个原材料合体,或者是由复数 个相生成,且具有比原材料优异的性能。”(香川 丰, 八田博志. セラミックス基复合材料,アグネ承风社,
聚合物基复合材料和陶瓷基复合材料。 1.4.5 良好的抗疲劳、蠕变、 冲击和断裂韧性
陶瓷基复合材料的脆性得到明显改善 1.4.6 良好的功能性能
包括 光、电、磁、热、烧蚀、摩擦及润滑等性能。
作业:
1. 复合材料如何分类? 2. 复合材料有那些优异性能?
1.3.2 按基体材料分类
聚合物复合材料(PMC) 1.3.4 按增强剂分类
金属基复合材料(MMC)
陶瓷基复合材料(CMC)
颗粒增强复合材料
碳碳复合材料
晶须增强复合材料
水泥基复合材料
短纤维增强复合材料
1.3.3 按用途分 结构复合材料 功能复合材料
连续纤维增强复合材料 混杂纤维增强复合材料 三向编织复合材料
1.3 复合材料的分类
1.3.1 按性能分类 : 普通复合材料:普通玻璃、合成或天然纤维增强,
如玻璃钢、钢筋混凝土等; 先进复合材料:高性能增强剂(碳、硼、氧化铝、 SiC 纤维及晶须等)增强高温聚合物、金属、陶瓷和碳(石 墨)等复合材料。
先进复合材料的比强度和比刚度应分别达到 400MPa/(g/cm3)和40GPa/(g/cm3) 以上。
说明:复合材料(Composite Materials ),以后 简称CM
注意:所研究的CM与化合材料、混合材料的区别。
主要体现在:
多相体系和复合效果是复合材料区别于传统的 “混合材料”和“化合材料”的两大特征。
举例:砂子与石子混合,合金或高分子聚合物
1.2.4 复合材料的命名
总命名原则,应该根据物质的组成、结构和特性的相互关 系来确定名称。 (1)根据增强材料和基体材料的名称来命名。将增强材料 的名称放在前面,基体材料的名称放在后面,再加上复合 材料。如:“碳纤维环氧树脂复合材料”。也可叫“碳/环 氧复合材料”。需要突出基体或者增强材料可以叫“碳纤 维复合材料”或“环氧树脂复合材料”。碳纤维和金属基 体构成的复合材料可叫:“金属基复合材料”或“碳/金属 复合材料”。 (2)通俗命名,如“玻璃钢”。
生命体是多层次意义上的复合体系
该完美的特性就来源 于复合与自修复
生命体基本单位—细胞,是细胞 膜、细胞基质、细胞核的复合体, 各自担任营养、信息表达和力学 支撑的作用。即使细胞膜也是有 磷脂双分子层,蛋白质组成的复 合功能体系。
(2)复合材料的意义 现代高科技的发展更是离不开复合材料。 例如:火箭壳体材料对射程的影响, 飞行器减轻一公斤所取得的经济效益与飞行速度 航空发动机材料发展预测如下
如天然的许多植物竹子、树木等就是自生长长纤维增强 复合材料;人类肌肉 / 骨骼结构也是复合材料结构原理。 稻草加粘土(非连续纤维增强复合材料)作为建筑材料 砌建房屋墙壁。
在现代,复合材料的应用更比目皆是,与日常生活 和国民经济密不可分。如由沙石、钢筋和水泥构成的水 泥复合材料;玻璃纤维增强塑料(玻璃钢)。
第一篇 绪论
第1章 复合材料的特性
主要内容:
➢了解复合材料的发展史; ➢了解复合材料的定义; ➢了解复合材料的分类; ➢了解复合材料的特社会的进步
材料是人类社会进步的物质基础和先导,是人类进步的 里程碑。 石器时代;青铜器时代;钢铁时代 二十世纪中后期以来,高分子、陶瓷材料崛起以及复合 材料的发展,又给人类带来了新的材料和技术革命,楼 房可以越盖越高、飞机越飞越快,同时人类进入太空的 梦想成为了现实。 当前材料、能源、信息和生物技术是现代科技的三大支 柱,它会将人类物质文明推向新的阶段。 二十一世纪 将是一个新材料时代。
很明显,传统的单一材料无法满足以上综合要求, 当前作为单一的金属、陶瓷、聚合物等材料虽然仍在不 断日新月异地发展,但是以上这些材料由于其各自固有 的局限性而不能满足现代科学技术发展的需要。
战车
陶瓷刀具
导弹
玻璃纤维绳 碳 纤 维 绳
1.1.3 复合材料的发展历史和意义:
(1)复合材料的发展历史 实际上,在自然界就存在着许多天然的复合物。例
结构/功能一体化复合材料
1.4 复合材料的基本性能(优点)
1.4.1 高比强度、高比模量(刚度): 比强度 = 强度/密度 MPa /(g/cm3), 比模量 = 模量/密度 GPa /(g/cm3)。
1.4.2 良好的高温性能: 目前:聚合物基复合材料的最高耐温上限为350 C;
金属基复合材料按不同的基体性能,其使用温度 在350 1100 C范围内变动;
2)各组分保持各自固有特性的同时可最大限度地发挥 各种组分的优点,赋予单一材料所不具备的优良特殊性能。
3)复合材料具有可设计性。
1.2.3 复合材料的基本结构模式 复合材料=基体+增强剂(由基体和增强剂两个组分构成) 基体:构成复合材料的连续相; 增强剂(增强相、增强体):复合材料中独立的形态分布 在整个基体中的分散相,这种分散相的性能优越,会使材 料的性能显著改善和增强。 增强剂(相)一般较基体硬,强度、模量较基体大, 或具有其它特性。可以是纤维状、颗粒状或弥散状。 增强剂(相)与基体之间存在着明显界面。
相关文档
最新文档