最新人教版七年级数学上册2.2整式的加减练习题及答案

合集下载

初中数学人教版七年级上册第二章 整式的加减2.2 整式的加减-章节测试习题(30)

初中数学人教版七年级上册第二章 整式的加减2.2 整式的加减-章节测试习题(30)

章节测试题1.【答题】去括号并合并同类项:3(a-b)-(2a-b)=______.【答案】a-2b【分析】【解答】2.【题文】先去括号,再合并同类项:(1)-4x-(x-1);(2)3(ab-2c)+(-ab+3c).【答案】(1)-5x+1(2)2ab-3c【分析】【解答】3.【题文】多项式3x2-2x+1减去一个多项式A的差是4x2-3x+4,求这个多项式A.【答案】A=-x2+x-3【分析】【解答】4.【题文】先去括号,再合并同类项:(1)7(p-2q)-2(-3p-7q);(2)4(xyz-2xy)-(xyz-3z)+3(2xy-z).【答案】(1)13p(2)3xyz-2xy【分析】【解答】5.【题文】若x+y=3,xy=2,求(5x+2)-(3xy-5y)的值.【答案】11【分析】【解答】6.【题文】小明在计算一个多项式加上5ab+4bc-3ac,不小心看成减去5ab+4bc-3ac,算出结果为3ab-4bc+5ac,试求出原题目的正确答案.【答案】13ab+4bc-ac【分析】【解答】7.【答题】多项式-x2+2y2与3x2+2y2的和为______.【答案】2x2+4y2【分析】【解答】8.【答题】从多项式3a2+2b2里减去7b2-2a2+3,差是______.【答案】5a2-5b2-3【分析】【解答】9.【题文】化简:.【答案】-3x+y2【分析】【解答】10.【题文】化简:2(3xy2-2x2y)-3(2xy2-x2y)+4(xy2-2x2y).【答案】4xy2-9x2y【分析】【解答】11.【答题】已知A=2a2-3a,B=2a2-a-1.当a=-4时,A-B=()A. 8B. 9C. -9D. -7 【答案】B【分析】【解答】12.【答题】比2a2-3a-7少3-2a2的多项式是()A. -3a-4B. -4a2+3a+10C. 4a2-3a-10D. -3a-10【答案】C【分析】【解答】13.【答题】已知某三角形的第一条边的长为(2a-6)cm,第二条边的长比第一条边的长多(a+b)cm,第三条边的长比第一条边的长的2倍少bcm,则这个三角形的周长为()A. (7a-4b)cmB. (7a-3b)cmC. (9a-4b)cmD. (9a-3b)cm【答案】C【分析】【解答】14.【答题】如果a,b互为相反数,则(3a-2b)-(2a-3b)=______.【答案】0【分析】【解答】15.【答题】(-3a2+2b-c)-______=4a2-2b+c.【答案】-7a2+4b-2c【分析】【解答】16.【题文】一个多项式与2a2-3b+c的差是4a2+3b+c,求这个多项式.【答案】6a2+2c【分析】【解答】17.【题文】化简:-3(a+b-c)-(a+b)+2(-a-c).【答案】-6a-4b+c【分析】【解答】18.【题文】小明去商店买了10元一支的钢笔a支,5元一本的笔记本b本和若干文具盒,共花了(30a+20b)元钱,小明买文具盒花了多少钱?【答案】(20a+15b)元【分析】【解答】19.【题文】如图,将边长为a的正方形剪去两个小长方形得到S图案,再将这两个小长方形拼成一个新的长方形,求新的长方形的周长.【答案】4a-8b【分析】【解答】20.【题文】已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.(1)求多项式A;(2)求出3A+B的正确结果;(3)当时,求3A+B的值.【答案】(1)-3x2-15x+19(2)-4x2-42x+53(3)【分析】【解答】。

人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

人教版-七年级上册-数学-第二章-整式-的加减知识点-例题-练习题-(含答案)

七年级上册第二章整式知识点例题(含答案)第一部分:知识点与例题一.整式1.单项式:都是数字或者字母的积(单独一个数字或字母也是单项式)①单项式中的数字因数叫做这个单项式的系数②一个单项式中,所有字母的指数的和叫做这个单项式的指数。

如:10x2y3z4的指数为9,叫做九次单项式2.多项式:几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,不含字母的叫做常数项;多项式里最高项的次数叫做这个多项式的项。

(这个要与单项式区分开)如:x2+x+3这个多项式有三个项,分别为x2,x和常数项3,最高次是2,所以它是一个二次三项式。

3.单项式与多项式统称整数、二.整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项,如2xy2与3 xy2是同类项练习:2xy n-2与4x m+3y2是同类项,则n=,m=2.把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

3.去括号后要注意的点:①如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同②如果括号外面的因数是负数,去括号后原括号内各项的符号与原来的符号相反4.一般地,几个整式相加减,如果有括号的要先去括号,然后再合并同类项例:(1)合并下面各式的同类项① x+y-4(x-y)② 5ab+3a2-4b2-(6b2+a2-3ab)(2)①求多项式(-x2+5+4x)-(5x-4+2x2)的值,其中x=3②求多项式13x-4(x2-12y2)+(-23x+y2)的值,其中x=-1,y=125. 设方程解决问题:(重点,难点)(1)一条河流的水流速度是2.5km/h,如果已知船在静水中的速度,则船在这条河流中顺水行驶和逆水行驶的速度分别要怎么表示?如果甲,乙两船在静水中的速度分别为20 km/h和35 km/h时,则它们在这条河流中顺水的速度和逆水的速度分别是多少km/h?练习:一种商品每件成本a元,按成本增加20%定出价格,每件售价多少元?后来因库存积压减价,按原价的85%出售,现售价多少钱?每件还能盈利多少元?(2)某村小麦种植的面积是a公顷,水稻种植面积是小麦种植面积的3倍,玉米种植面积比小麦种植面积少5公顷,列式表示水稻,玉米种植面积,并计算水稻种植面积比玉米种植面积大多少?(3)一架飞机无风时的航速为a km/h,风速为20 km/h,从甲地飞到乙地用了3小时,从乙地飞往甲地用了4小时,求飞机的航速a?(4)礼堂第一排有a个座位,后面每排都比前一排多一个座位,第二排有多少个座位?第三排呢?用m表示n排的座位数,m是多少?当a=20,n=19时,m是多少?第二部分:练习题教师用卷:一、精心选一选1、如果与823x y 是同类项,则代数式的值为(C )A 、0B 、-1C 、+1D 、±12、如果2222324,45M x xy y N x xy y =--=+-,则2281315x xy y --等于(D )A 、2M-NB 、2M-3NC 、3M-2ND 、4M-N3、如果22x x -+的值为7,则的值为(A )A 、52B 、32C 、152D 、答案不惟一4、如果2a b -=,3c a -=,则()()234b c b c ---+的值为(C )A 、14B 、2C 、44D 、不能确定5、的值是(C )A 、±3B 、±1C 、±1或±3D 、不能确定6、商场七月份售出一种新款书包a 只,每只b 元,营业额c 元,八月份采取促销活动,优惠广大学子,售出该款书包3a 只,每只打八折,则八月份该款书包的营业额比七月份增加(B )A 、1.4c 元B 、2.4c 元C 、3.4c 元D 、4.4c 元7、一件工作,甲单独做x 天完成,乙单独做y 天完成。

人教版七年级上册数学课后基础练习第2章:2.2 整式的加减(包含答案)

人教版七年级上册数学课后基础练习第2章:2.2 整式的加减(包含答案)

2.2 整式的加减一.填空题1.去括号:﹣2(m﹣3)=.2.若a3b y与﹣2a x b是同类项,则y x=.3.如果单项式3x a+2y b﹣2与5x3y a+2的和为8x3y a+2,那么2a﹣b=.4.计算(1﹣2a)﹣(2﹣2a)=.5.对于有理数a、b,定义a*b=3a+2b,化简x*(x﹣y)=.6.若﹣3x m y3与2x2y n是同类项,则|m﹣n|的值是7.若mn=m﹣3,则mn+4m+8﹣5mn=.8.已知(a+b)2=7,|ab|=3,则(a2+b2)﹣ab=.9.已知﹣a=5,则﹣[+(﹣a)]=.二.选择题10.与2ab2是同类项的是()A.4a2b B.2a2b C.5ab2D.﹣ab11.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.012.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣413.已知:|a|=2,|b|=3,且|a﹣b|=b﹣a,则(8a2b﹣7b2)﹣(4a2b﹣5b2)=()A.30B.﹣66C.30或﹣66D.﹣30或6614.计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1C.a2 D.9 a215.下列各运算中,计算正确的是()A.4xy+xy=5xyB.x+2x=2x2C.5xy﹣3xy=2D.x+y=xy16.已知A=﹣4x2,B是多项式,在计算B+A时,李明同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x317.若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.1118.给出下列结论:①单项式﹣的系数为﹣;②x与y的差的平方可表示为x2﹣y2;③化简(x+)﹣2(x﹣)的结果是﹣x+;④若单项式ax2y n+1与﹣ax m y4的差是同类项,则m+n=5.其中正确的结论有()A.1个B.2个C.3个D.4个19.多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是()A.2B.4C.﹣2D.﹣420.若A=x2y﹣2xy,B=xy2﹣3xy,则计算3A﹣2B的结果是()A.2x2y B.3x2y﹣2xy2C.x2y D.xy221.化简m3+m3的结果等于()A.m6B.2m6C.2m3D.m922.去括号2﹣(x﹣y)=()A.2﹣x﹣y B.2+x+y C.2﹣x+y D.2+x﹣y23.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+424.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5三.解答题25.先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.26.先化简,再求值:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y﹣1],其中x=2,y=﹣.27.已知A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2,(1)求2A﹣3B;(2)若|2x﹣3|=1,y2=9,且|x﹣y|=y﹣x,求2A﹣3B的值.28.(1)设A=2a2﹣a,B=a2+a,若a=- ,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.参考答案一.填空题1.﹣2m+6;2.1;3.﹣3;4.﹣1;5.5x﹣2y;6.1;7.20;8.﹣或;9.﹣5;二.选择题10-24:CACAA ACDCA BCCBC三.解答题25.解:(1)原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x,当x=-1时,原式=-1-1=-2;(2)原式=3x2-6xy-x2+6xy-4y=2x2-4y=2(x2-2y),由x2-2y-5=0,得到x2-2y=5,则原式=10.26.解:原式=4x2y-(6xy-12xy+6-x2y-1)=4x2y-(-6xy-x2y+5)=4x2y+6xy+x2y-5=5x2y+6xy-5当x=2,y=−时,原式=5×4×(−)+6×2×(−=-10-6-5=-21;27.解:(1)2A-3B=2(3x2+3y2-2xy)-3(xy-2y2-2x2)=6x2+6y2-4xy-3xy+6y2+6x2=12x2+12y2-7xy;(2)由题意可知:2x-3=±1,y=±3,∴x=2或1,y=±3,由于|x-y|=y-x,∴y-x≥0,∴y≥x,当y=3,x=2时,原式=12(x2+y2)-7xy=12(x2+2xy+y2-2xy)-7xy=12(x+y)2-31xy=12×25-31×6=114,当y=3,x=1时,原式=12×16-31×3=99.28.解:(1)A-2B=(2a2-a)-2(a2+a)=2a2-a-2a2-2a=-3a,当a=−)=1;(2)今年该公司的年总收入是增加.理由如下:设去年乙类收入为a,则甲类收入是2a,去年甲类、乙类两种经营总收入为:a+2a=3a;预计今年甲类年收入为(1-9%)×2a,B种年收入为(1+19%)a,预计今年甲类、乙类两种经营总收入为:(1-9%)×2a+(1+19%)a=3.01a;因为3.01a>3a,所以今年该公司的年总收入是增加.。

人教版七年级上册数学:2.2 整式的加减练习题及答案

人教版七年级上册数学:2.2 整式的加减练习题及答案

3)5a 2b 与5a 2bc (6)53与一33.4)23a 2与32a 2; (5)3p 2q 与一qp 2;2.2整式的加减(1)♦课前预习1.含有的字母,并字母的也相同的项,•叫做同类项.2.在合并同类项时,我们把同类项的相加,字母和字母的不变♦互动课堂(一) 基础热点例1】下列各题中的两项哪些是同类项?21(1)—2m 2n 与m 2n ;(2)X 2y 3与X 3y 2;32分析:判断同类项要抓住“两同”:即字母相同,相同字母的指数相同,与系数和字母的排列顺序无关,常数项都是同类项.解:(1),(4),(5),(6).点拨:先判断字母是否相同,再判断相同字母的指数是否相同【例2】合并同类项:4x 2y —8xy 2+7—4x 2y+10xy 2—4.分析:初学时可用不同记号标出各同类项,以防止错漏.解:4x 2y —8xy 2+7—4x 2y+10xy 2—4=(4一4)X 2y+(―8+10)xy 2+(+7—4)=2xy 2+3点拨:合并同类项切忌漏项和忘记带上项的符号,两个同类项的系数互为相反数,则合并后结果为0.(二) 易错疑难【例3】已知(a+1)2+|b —2|=0,求多项式a 2b 2+3ab —7a 2b 2—2ab+1+5a 2b 2的值. 分析:先合并同类项,再求a 、b 值代入.解:由非负数性质,得a=—1,b=2.原式=(a2b2—7a2b2+5a2b2)+(3ab—2ab)+1=—a2b2+ab+l把a=—1,b=2代入得:原式=—5.点拨:对于多项式求值,有同类项应先合并同类项,再代值计算,可使计算便捷.(三)中考链接【例4】(1)化简:5a—2a=;(2)若一4x a y+x2y b=—3x2y,则a+b=.答案:(1)3a;(2)3点拨:考查合并同类项及同类项的概念.名师点津1.判断同类项有两个标准,一是字母相同,二是相同字母的指数也相同,•几个常数项也是同类项.2.合并同类项的方法可简记为“一加减两不变”,即合并同类项时,•把系数相加减,其值作为结果的系数,字母和字母的指数不变,同时要特别注意各项系数的符号.♦跟进课堂1.下列各组中的两项,不是同类项的是().A.a2b与一6ab2B.—x3y与2yx3C.2兀R与兀2RD.35与532.下列计算正确的是().A.3a2—2a2=1B.5—2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a33.减去一4x等于3x2—2x—1的多项式为().A.3x2—6x—1B.5x2—1C.3x2+2x—1D.3x2+6x—14.若A和B都是6次多项式,则A+B一定是().A.12次多项式B.6次多项式C.次数不高于6的整式D.次数不低于6的多项式5.多项式一3x2y—10x3+3x3+6x3y+3x2y—6x3y+7x3的值是().A.与x,y都无关B.只与x有关C.只与y有关D.与x,y都有关7.A.±2 B.—2 C.2 D.0 若2x2y m与一3x n y3是同类项,则m+n.8.9. 计算:(1)3x—5x=;(2)(2008,河北)计算a2+3a2的结果是121合并同类项:—r ab2+二ab2ab2=.23410.五个连续偶数中,中间一个是n,这五个数的和是.11.1若m为常数,多项式mxy+2x—3y—1—4xy为二项式,则—m2—m+2的值是.12.11若单项式一—a2x b m与a n b y—可合并为—a2b4,则xy—mn=♦漫步课外13.合并下列各式的同类项:1)—0.8a2b—6ab—3.2a2b+5ab+a2b;2)5(a—b)2—3(a—b)2—7(a—b)—(a—b)2+7(a—b).14.先化简,1)5a2—4a2+a—9a—3a2—4+4a,其中a=—2;6.如果多项式3x3—2x2+x+|k|x—5中不含X2项,则k的值为().9111其中a=1,b=-2;(2)5ab—a2b+a2b—ab—a2b—5,224(3)2a2—3ab+b2—a2+ab—2b2,其中a2—b2=2,ab=—3.15.关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.♦挑战极限16.商店出售茶壶每只定价20元,茶杯每只定价5元,该店制定了两种优惠办法:(1)买一只茶壶赠送一只茶杯;(2)按总价的92%付款.某顾客需购茶壶4只,茶杯x・只(x>4,付款数为y(元),试对两种优惠办法分别写出y与x之间的关系,并研究该顾客买同样多的茶杯时,两种方法哪一种更省钱?n=—•值为4答案:10.・5n ・11.612.-313.(1)—3a 2b —ab (2)(a —b )29114.(1)原式=—2a 2—5a ,值为2(2)・原式=^ab —5a 2b —5,值为=42(3)原式=a 2—b 2—2ab ,值为81 15.m=—, 6 16.y 1=20x4+5(x —4)=5x+60,y 2=(20x4+5x )x92%=4.6x+73.6,由y ]=y 2,即5x+60=4.6x+73.6,得x=34.故当4<x 〈34时,按优惠办法(1)更省钱; 当x=34时,・两种办法付款相同;当x>34时,按优惠办法(2)更省钱1.A2.D3.A4.C 5.A6.A7.58.(1)-2x 2)4a 29. 12 ab 2。

初中数学人教版七年级上册第二章 整式的加减2.2 整式的加减-章节测试习题(21)

初中数学人教版七年级上册第二章 整式的加减2.2 整式的加减-章节测试习题(21)

章节测试题1.【答题】下列计算正确的是()A. 3ab-ab=3B. -ab+ba=0C. a+a=a2D. -2ab2+a2b=-ab2【答案】B【分析】根据合并同类项的定义以及合并同类项的法则即可作出判断.【解答】A.3ab-ab=2ab,选项错误;B.正确;C.a+a=2a,选项错误;D.不是同类项,不能合并,选项错误.2.【答题】如果x=1时,代数式2ax3+3bx+4的值是5,那么x=-1时,代数式2ax3+3bx+4的值是______.【答案】3【分析】本题考查代数式求值.将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b 的值,再将x=-1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=-1时,代数式2ax3+3bx+4=-2a-3b+4=-(2a+3b)+4=-1+4=3.3.【题文】求证:不论x、y取何有理数,多项式(x3+3x2y-2xy2+4y3+1)+(y3-xy2+x2y-2x3+2)+(x3-4x2y+3xy2-5y3-8)的值恒等于一个常数,并求出这个常数.【答案】常数为-5.【分析】本题考查去括号法则以及合并同类项.把所求的式子去括号、然后合并同类项即可证明.【解答】(x3+3x2y-2xy2+4y3+1)+(y3-xy2+x2y-2x3+2)+(x3-4x2y+3xy2-5y3-8)=x3+3x2y-2xy2+4y3+1+y3-xy2+x2y-2x3+2+x3-4x2y+3xy2-5y3-8=-5.4.【答题】对多项式3a+4b–c进行添括号,正确的是()A. 3a+(4b+c)B. 3a–(4b+c)C. 3a+4(b–c)D. 3a–(–4b+c)【答案】D【分析】本题考查添括号法则.【解答】3a+4b–c=3a+(4b–c)=3a–(–4b+c).选D.5.【答题】下列去括号正确的是()A. B.C. D.【答案】D【分析】本题考查去括号法则.【解答】A.,原式去括号错误,故这个选项不符合题意;B.,原式去括号错误,故这个选项不符合题意;C.,原式去括号错误,故这个选项不符合题意;D.,原式去括号正确,故这个选项符合题意;选D.6.【答题】若x–y=–6,xy=–8,则代数式(4x+3y–2xy)–(2x+5y+xy)的值是()A. –12B. 12C. –36D. 不能确定【答案】B【分析】本题考查整式的化简求值.【解答】原式=4x+3y–2xy–2x–5y–xy=2x–2y–3xy=2(x–y)–3xy,当x–y=–6,xy=–8时,原式=–12+24=12,选B.7.【答题】若A+(a+b2–c)=a+c,则A为()A. 0B. 1C. a+b2–cD. 2c–b2【答案】D【分析】本题考查整式的加减运算.【解答】根据题意得A=(a+c)–(a+b2–c)=a+c–a–b2+c=2c–b2,选D.8.【答题】若单项式与单项式的差仍然是一个单项式,则b–a的值为()A. 2B. –2C. 0D. 1【答案】B【分析】本题考查同类项的定义.【解答】∵单项式与单项式的差仍然是一个单项式,∴,解得,故b–a=0–2=–2.选B.9.【答题】若代数式2x2+9kxy–y2中不含xy项,则k的值为()A. B. C. 1 D. 0【答案】D【分析】本题考查多项式.【解答】∵代数式2x2+9kxy–y2中不含xy项,∴9k=0.解得k=0.选D.10.【答题】已知A=2x2+3mx–x,B=–x2+mx+1,其中m为常数,若A+2B的值与x的取值无关,则m的值为()A. 0B. 5C.D.【答案】C【分析】本题考查整式的化简求值.【解答】∵A=2x2+3mx–x,B=–x2+mx+1,∴A+2B=2x2+3mx–x+2(–x2+mx+1)=2x2+3mx–x–2x2+2mx+2=5mx–x+2,∵A+2B的值与x的取值无关,∴5m–1=0,解得.选C.11.【答题】设M是二次多项式,N是五次多项式,下列说法正确的是()A. M+N是五次整式B. M+N是二次整式C. M+N是七次整式D. M+N是十次整式【答案】A【分析】本题考查整式的加减.【解答】∵M是二次多项式,N是五次多项式,∴M+N是五次多项式,选A.12.【答题】若2x2y a+3x b y3=5x2y3,则a b=______.【答案】9【分析】本题考查同类项的定义以及合并同类项.【解答】∵2x2y a+3x b y3=5x2y3,∴a=3,b=2,∴a b=32=9.故答案为9.13.【答题】某同学做题时误将M–N看成了M+N,求得其结果为3m2–2m–5,若N=2m2–3n–2,请你帮助他求得正确答案______.【答案】–m2+6n–2m–1【分析】本题考查整式的加减运算.【解答】∵M+N,求得其结果为3m2–2m–5,N=2m2–3n–2,∴M=3m2–2m–5–(2m2–3n–2)=m2–2m+3n–3,故M–N=m2–2m+3n–3–(2m2–3n–2)=–m2+6n–2m–1.故答案为–m2+6n–2m–1.14.【题文】化简,计算:(1)6a2b+5ab2–4ab2–7a2b;(2),其中,.【答案】(1)–a2b+ab2;(2)–3x+y2,2.【分析】本题考查整式的加减以及整式的化简求值.【解答】(1)6a2b+5ab2–4ab2–7a2b=(6a2b–7a2b)+(5ab2–4ab2)=–a2b+ab2;(2)=–3x+y2.当,时,原式.15.【答题】下列各组同类项的一组是()A. ab2与-0.5a2bB. 3a2b与-4a2bcC. a3与b3D. -2a3b与ba3【答案】D【分析】本题考查同类项的定义.【解答】∵所含字母相同且相同字母的指数也相同的项为同类项,∴四个选项中只有选项D符合同类项的定义,选D.16.【答题】多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m 的值是()A. 2B. 4C. ﹣2D. ﹣4【答案】A【分析】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.【解答】(8x2﹣3x+5)+(3x3﹣4mx2﹣5x+7)=8x2﹣3x+5+3x3﹣4mx2﹣5x+7=3x3+(8﹣4m)x2﹣8x+13,令8﹣4m=0,∴m=2,选A.17.【答题】已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等于()A. 1B. ﹣1C. 7D. ﹣7【答案】C【分析】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.【解答】∵a+b=4,c-d=3,∴原式=b+c-d+a=(a+b)+(c-d)=3+4=7,选C.18.【答题】一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2【答案】B【分析】本题考查了整式的加减.熟练应用整式加减法计算法则进行计算是解题的关键.【解答】这个多项式为x2﹣2y2+(x2+y2)=(1+1)x2+(﹣2+1)y2=2x2﹣y2,选B.19.【答题】关于x,y的代数式(−3kxy+3y)+(9xy−8x+1)中不含二次项,则k=()A. 4B.C. 3D.【答案】C【分析】本题考查了多项式的合并,熟悉掌握概念是解决本题的关键.【解答】合并后为(-3k+9)xy+3y-8x+1,令-3k+9=0,解得k=3,∴选C.20.【答题】下列单项式中,与ab2是同类项的是()A. 2abB.C.D.【答案】B【分析】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.【解答】A.相同字母的指数不同,故A不符合题意;B.字母相同且相同字母的指数也相同,故B符合题意;C.相同字母的指数不同,故C不符合题意;D.相同字母的指数不同,故D不符合题意;选B.。

人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)

人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)

人教版数学七年级上册第2章2.2整式的加减同步练习一、选择题1.下列式子正确的是()A.7m+8n=8m+7nB.7m+8n=15mnC.7m+8n=8n+7mD.7m+8n=56mn2.若a-b=2,b-c=-3,则a-c等于()A.1B.-1C.5D.-53.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2B.3C.4D.54.下列计算正确的是()A.4x-7x=3xB.5a-3a=2C.a2+a=aD.-2a-2a=-4a5.下列各组是同类项的一组是()A.a3与b3B.3x2y与-4x2yzC.x2y与-xy2D.-2a2b与ba26.若-63a3b4与81a x+1b x+y是同类项,则x、y的值为()A. B. C. D.7.去括号正确的是()A.-(3x+2)=-3x+2B.-(-2x-7)=-2x+7C.-(3x-2)=3x+2D.-(-2x+7)=2x-7二、填空题8.计算:2(x-y)+3y= ______ .9.若x+y=3,xy=2,则(5x+2)-(3xy-5y)= ______ .10.若单项式x3y n与-2x m y2是同类项,则(-m)n= ______ .11.若2x3y2n和-5x m y4是同类项,那么m-2n= ______ .三、计算题12.先化简再求值:(2a2b-ab)-2(a2b+2ab),其中a=-2,b=-.13.先化简,再求值:x-(2x-y2+3xy)+(x-x2+y2)+2xy,其中x=-2,y=.14.先化简再求值:4x-3(3x-)+2(x-y),其中x=,y=-.人教版数学七年级上册第2章2.2整式的加减同步练习答案和解析【答案】1.C2.B3.D4.D5.D6.D7.D8.2x+y9.1110.911.-112.解:原式=2a2b-ab-2a2b-4ab=-5ab,当a=-2,b=-时,原式=-5.13.解:原式=x-2x+y2-3xy+x-x2+y2+2xy=-x2+y2-xy,当x=-2,y=时,原式=-4++1=-.14.解:原式=4x-9x+2y2+5x-2y=2y2-2y,当y=-时,原式=2y2-2y=2×(-)2-2×(-)=0.5+1=1.5.【解析】1. 解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.根据合并同类项法则解答.本题考查了合并同类项,熟记同类项的概念是解题的关键.2. 解:∵a-b=2,b-c=-3,∴a-c=(a-b)+(b-c)=2-3=-1,故选B根据题中等式确定出所求即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3. 解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.4. 解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变.5. 解:如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项.且与字母的顺序无关.故选(D)根据同类项的概念即可求出答案.本题考查同类项的概念,注意同类项与字母的顺序无关.6. 解:∵-63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.根据同类项的定义进行选择即可.本题考查了同类项,掌握同类项的定义是解题的关键.7. 解:A、-(3x+2)=-3x-2,故A错误;B、-(-2x-7)=2x+7,故B错误;C、-(3x-2)=-3x+2,故C错误;D、-(-2x+7)=2x-7,故D正确.故选:D.依据去括号法则判断即可.本题主要考查的是去括号,掌握去括号法则是解题的关键.8. 解:原式=2x-2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.9. 解:∵x+y=3,xy=2,∴原式=5x+2-3xy+5y=5(x+y)-3xy+2=15-6+2=11.故答案为:11.原式去括号合并后,将已知等式代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10. 解:由单项式x3y n与-2x m y2是同类项,得m=3,n=2.(-m)n=(-3)2=9,故答案为:9.由同类项的定义可先求得m和n的值,再根据负数的偶数次幂是正数,可得答案.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.11. 解:∵2x3y2n和-5x m y4是同类项,∴m=3,2n=4.∴n=2.∴m-2n=3-2×2=-1.故答案为:-1.由同类项的定义可知:m=3,2n=4,从而可求得m、n的值,然后计算即可.本题主要考查的是同类项的定义,根据同类项的定义求得m、n的值是解题的关键.12.原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.13.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.14.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.A 看B 的方向是北偏东21°,那么B 看A 的方向( )A .南偏东69° B.南偏西69° C.南偏东21° D.南偏西21°3.如图,点C 、O 、B 在同一条直线上,∠AOB=90°,∠AOE=∠DOB ,则下列结论:①∠EOD=90°;②∠COE=∠AOD ;③∠COE=∠DOB ;④∠COE+∠BOD=90°.其中正确的个数是( )A.1B.2C.3D.44.下列所给条件,不能列出方程的是( )A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的12的差 D.某数的3倍与7的和等于29 5.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。

人教版七年级数学上册《2.2整式的加减》练习题-带参考答案

人教版七年级数学上册《2.2整式的加减》练习题-带参考答案

人教版七年级数学上册《2.2整式的加减》练习题-带参考答案一、单选题1.下列各式中,与为同类项的是()A.B.C.D.2.下列计算正确的是()A.B.C.D.3.如果与是同类项,则()A.5 B.C.2 D.4.已知,则代数式的值是()A.100 B.98 C.-100 D.-985.如果多项式减去后得,则为()A.B.C.D.6.若x–y=–6,xy=–8,则代数式(4x+3y–2xy)–(2x+5y+xy)的值是()A.–12 B.12 C.–36 D.不能确定7.若代数式的值与x的取值无关,则的值为()A.6 B.-6 C.2 D.-28.M=x m y3,N=﹣x2y3+2xy3,Q=﹣x n y3都是关于x,y的整式,若M+N的结果为单项式,N+Q的结果为五次多项式,则常数m,n之间的关系是()A.m=n+1 B.m=nC.m=n+1或m=n D.m=n或m=n﹣1二、填空题9.计算的结果等于.10.把多项式按的降幂排列后第二项是.11.苹果每千克a元,香蕉每千克b元,则买3千克苹果和5千克香蕉共需元.12.如果单项式与的和仍是单项式,那么mn=.13.如图,把六张形状大小完全相同的小长方形卡片(如图D不重叠的放在一个底面为长方形(长为7cm宽为6cm的盒子底部(如图②,盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是cm.三、计算题14.计算(1)(2)15.先化简,再求值:已知,求的值.16.已知和 .(1)化简 .(2)当,时,求的值.17.某冰箱销售商今年四月份销售冰箱(a-1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?参考答案:1.A2.D3.D4.C5.A6.B7.D8.C9.10.11.(3a+5b)12.1213.2414.(1)解:原式==(2)解:原式===15.解:原式=2ab−6a−6b+3ab=5ab−6(a+b)当a+b=−180,ab=187时,原式=5×187−6×(−180)=935+1080=2015 16.(1)解:.(2)解:当,时.17.(1)解:由题意得:五月份:2(a-1)-1=(2a-3)台;六月份:(a-1)+(2a-3)+5=(3a+1)台;(2)解:由题意得:(3a+1)-(2a-3)=a+4(台);答:五月份销售冰箱为(2a-3)台,六月份销售冰箱为(3a+1)台,六月份比五月份多销售冰箱(a+4)台。

人教版七年级数学上册《2.2 整式的加减》练习题-附参考答案

人教版七年级数学上册《2.2 整式的加减》练习题-附参考答案

人教版七年级数学上册《2.2 整式的加减》练习题-附参考答案一、选择题1.下列各式中,与−2x3y2是同类项的是()A.−2x5B.3x2y3C.−12x3y2D.−13y52.多项式2a4+4a3b4−5a2b+2a是()A.按a的升幂排列B.按a的降幂排列C.按b的升幂排列D.按b的降幂排列3.减去2x等于x2+3x−6的多项式是()A.x2+5x−6B.x2−5x−6C.x2+x−6D.x2−x−6 4.将式子2(m+n)﹣3(m﹣2n)化简的结果为()A.﹣m+7n B.﹣m﹣4n C.﹣m+8n D.﹣m+4n5.下列运算正确的是()A.5m+n=5mn B.4m-n=3C.3n2+2n3=5n5D.-m2n+2m2n=m2n6.陈老师做了一个周长为(2a+4b)的长方形教具,其中一边长为(a−b),则另一边长为()A.3b B.a+5b C.2a D.3a−5b7.下列整式运算不正确的是()A.﹣ab+2ba=ab B.3a2b+2ab2﹣(5a2b+ab2)=﹣ab2C.﹣2(3﹣x)=﹣6+2x D.m﹣n2+m﹣n2=2m﹣2n28.如果多项式A减去−2x+1后得3x2+7x−2,则A为()A.3x2+5x−1B.3x2−9x−3C.3x2−5x−1D.3x2+9x+3二、填空题9.若ambn与﹣3a4b9是同类项,则mn等于.10.减去−3m等于m2+3m+2的多项式是.11.把(a+b)看成一个整体,对4(a+b)+2(a+b)-(a +b)合并同类项,结果是12.已知多项式2x2+3kxy﹣y2﹣15xy+10中不含xy项,则k=.13.若m2+3mn=−5,则9mn−3m2−(3mn−5m2)=.三、解答题14.化简:(1)3m2+4m−5−4m2+6m+7(2)(3x−2y)−3(x+2y)15.先化简,再求值:,当时,求代数式的值.16.已知和.(1)化简:.(2)当,时,求代数式的值.17.王琦同学在自习课准备完成以下题目:化简(□x2-6X+5) - (-6X+8x2-2),发现系数“□”印刷不清楚(1)他把“□”猜成2,请你化简(2x2-6X+5) - (-6X+8x2-2)(2)老师见到说:“你猜错了,我看到该题正确答案是常数”,请你通过计算说明原题中“□”是多少?1.C2.D3.A4.C5.D6.A7.B8.A9.3610.m2+211.5(a+b)12.513.-1014.(1)解:原式=(3m2−4m2)+(4m+6m)+(7−5) =−m2+10m+2;(2)解:原式=3x−2y−3x−6y=(3x−3x)−(2y+6y)=−8y.15.解:原式=2a2+6a﹣4﹣6a﹣3=2a2﹣7当a=﹣3时,原式=2×(﹣3)2﹣7=11.16.(1)解:.(2)解:当,时多项式17.(1)解:-6x²+7。

人教版七年级数学上册第二章之《2.2整式的加减》练习题

人教版七年级数学上册第二章之《2.2整式的加减》练习题

= - 2x2 + 8
当 a = - 2,b = 1时,
当 x = - 3时,
原式 = - 2×(- 2) + 1
原式 = - 2×(- 3)2 + 8
=5
= - 10
课本第65页 练习 3.(1)x 的 4 倍与 x 的 5 倍的和是多少?
(2)x 的 3 倍比 x 的一半大多少?
解:(1)4x + 5x = 9x
第二章 整式的加减
2.2 整式的加减
.
练习题
课本第65页 练习 1. 计算:
(1)12x - 20x; (3)- 5a + 0.3a - 2.7a; (5)- 6ab + ba + 8ab; 解:(1)12x - 20x
=(12 - 20)x = - 8x
(2)x + 7x - 5x;
(4)
1 3
(2)3x -
1 2
x=
5 2
x
课本第65页 练习
4.
如图,大圆的半径是
R,小圆的面积是大圆面积的
4 9
,求阴
影部分的面积。
解:
阴影部分的面积 =(1 -
4 9
)πR2
=
5 9
πR2
答:阴影部分的面积是
5 9
πR2。
课本第67页 练习
1. 化简:
(1)12(x - 0.5);
(2)- 5(1 -
1 5
x);
(3)- 5a +(3a - 2)-(3a - 7);(4)31 (9y - 3)+ 2(y + 1)。
解:(1)12(x - 0.5)
(2)- 5(1 -

_2、2 整式的加减 课后练习(含答案) 21--22学年人教版 七年级数学上册

_2、2 整式的加减 课后练习(含答案)   21--22学年人教版 七年级数学上册

人教版七年级数学上册 2.2 整式的加减课后提升一、选择题1. 已知某个整式与2x2+5x-2的和为2x2+5x+4,则这个整式是()A.2 B.6C.10x+6 D.4x2+10x+22. 整式x2-3x的值是4,则3x2-9x+8的值是()A.20B.4C.16D.-43. 若A和B都是五次多项式,则A+B一定是()A.十次多项式B.五次多项式C.次数不高于5的整式D.次数不低于5的多项式4. 已知M=4x2-3x-2,N=6x2-3x+6,则M与N的大小关系是()A.M<N B.M>NC.M=N D.以上都有可能5. 如图,两个六边形的面积分别为16和9,两个阴影部分的面积分别为a,b(a<b),则b-a的值为()A.4B.5C.6D.76. 小李家住房的结构如图所示(单位:米),小李打算把卧室和客厅铺上木地板,请你帮他算一算,他至少需买多少平方米的木地板()A.12ab B.10abC.8ab D.6ab7. 当a是整数时,整式a3-3a2+7a+7+(3-2a+3a2-a3)一定是()A.3的倍数B.4的倍数C.5的倍数D.10的倍数8. 已知一个两位数,个位数字为b,十位数字比个位数字大a,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为() A.9a-9b B.9b-9aC.9a D.-9a二、填空题9. 把x-1当作一个整体,则3(x-1)2-2(x-1)3-5(1-x)2+4(1-x)3化简后的结果是_______________________________________.10. 已知4a+3b=1,则8a+6b-3的值为________11. 化简:(7a-5b)-(4a-3b)=________.12. 已知当x=2时,多项式ax3-bx+1的值为-17,那么当x=-2时,多项式ax3-bx+1的值为________.13. 将连续的自然数1至36按图K-26-2所示的方式排成一个正方形阵列,用一个小正方形任意圈出其中的9个数,设圈出的9个数中中心的数为a,则圈出的9个数中,最小的数为________,最大的数为________,最大数与最小数的差为________.图K-26-214. 观察下列等式:第一行:3=4-1;第二行:5=9-4;第三行:7=16-9;第四行:9=25-16;… …按照上述规律,第n (n 为正整数)行的等式为________________.15. 已知2+23=22×23;3+38=32×38; 4+415=42×415;…若10+a b =102×a b (a ,b 为正整数),则a +b =________.三、解答题16. 先去括号,再合并同类项:(1)6x 2-2xy -2(3x 2+12xy );(2)7(a 2b -ab )-2(a 2b -3ab );(3)3+[3a -2(a -10)].17. 当x =-1,y =12时,求多项式2x 3y -4xy 2+5x 2-1的值.18. 有这样一道题:“计算(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)的值,其中x =,y =-1.”甲同学把“x =”错抄成“x =-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.19. 有这样一道题:“当a =0.35,b =-0.28时,求多项式7a 3-6a 3b +3a 2b +3a 3+6a3b-3a2b-10a3的值.”小明说:“本题中a=0.35,b=-0.28是多余的条件.”小强马上反对说:“这不可能,多项式中每一项都含有a和b,不给出a,b的值怎么能求出多项式的值呢?”谁的观点是正确的?请说明理由.20. 暑假期间,学校组织学生去某景点游玩,甲旅行社说:“如果带队的一名老师购买全票,则学生享受半价优惠.” 乙旅行社说:“所有人按全票价的六折优惠.”已知全票价为a元,学生有x人,带队老师有1人.(1)试用含a和x的式子分别表示甲、乙旅行社的收费情况;(2)若有30名学生参加本次活动,请你为他们选择一家更优惠的旅行社.21. 有四个数,第一个数是m+n2,第二个数比第一个数的2倍少1,第三个数是第二个数减去第一个数的差,第四个数是第一个数与m的和.(1)求这四个数的和;(2)当m=1,n=-1时,这四个数的和是多少?人教版七年级数学上册 2.2 整式的加减课后提升-答案一、选择题1. 【答案】B[解析] (2x2+5x+4)-(2x2+5x-2)=2x2+5x+4-2x2-5x+2=6.2. 【答案】A[解析] 原式=3(x2-3x)+8.因为x2-3x=4,所以原式=3×4+8=20.3. 【答案】C4. 【答案】A[解析] 因为M-N=(4x2-3x-2)-(6x2-3x+6)=4x2-3x-2-6x2+3x-6=-2x2-8<0,所以M<N.5. 【答案】D[解析] 因为两个六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),所以b-a=b+空白面积-(a+空白面积)=大六边形面积-小六边形面积=16-9=7.6. 【答案】A[解析] 客厅的面积为4b·2a=8ab(米2),卧室的面积为2a·2b=4ab(米2),所以需买木地板的面积为8ab+4ab=12ab(米2).故选A.7. 【答案】C[解析] a3-3a2+7a+7+(3-2a+3a2-a3)=a3-a3-3a2+3a2+7a-2a+7+3=5a+10.当a是整数时,5a是5的倍数,10是5的倍数,所以5a+10一定是5的倍数.故选C.8. 【答案】C[解析] 由题意可得,原数为10(a+b)+b,新数为10b+a+b,故原两位数与新两位数之差为10(a+b)+b-(10b+a+b)=9a.故选C.二、填空题9. 【答案】-6(x-1)3-2(x-1)2[解析] 3(x-1)2-2(x-1)3-5(1-x)2+4(1-x)3=(-4-2)(x-1)3+(3-5)(x-1)2=-6(x-1)3-2(x-1)2.10. 【答案】-1[解析] 先求出8a+6b的值为2,然后整体代入进行计算即可得解.11. 【答案】3a-2b[解析] 原式去括号、合并同类项即可得到结果,原式=7a-5b-4a+3b=3a-2b.故答案为3a-2b.12. 【答案】19[解析] 因为当x=2时,多项式ax3-bx+1的值为-17,所以8a-2b+1=-17.所以8a-2b=-18.当x=-2时,ax3-bx+1=-8a+2b+1=-(8a-2b)+1=18+1=19.13. 【答案】a-7a+71414. 【答案】2n +1=(n +1)2-n 215. 【答案】109 [解析] 仔细观察式子特点可知:3=22-1,8=32-1,15=42-1,故当a =10时,b =102-1=99,则a +b =10+99=109.三、解答题16. 【答案】解:(1)原式=6x 2-2xy -6x 2-xy =-3xy.(2)原式=7a 2b -7ab -2a 2b +6ab=5a 2b -ab.(3)原式=3+[3a -(2a -20)]=3+(3a -2a +20)=3+(a +20)=a +23.17. 【答案】解:当x =-1,y =12时,原式=2×(-1)3×12-4×(-1)×(12)2+5×(-1)2-1 =-1+1+5-1=4.18. 【答案】解:(2x 3-3x 2y -2xy 2)-(x 3-2xy 2+y 3)+(-x 3+3x 2y -y 3)=2x 3-3x 2y -2xy 2-x 3+2xy 2-y 3-x 3+3x 2y -y 3=-2y 3.因为化简后的结果中不含x ,所以原式的值与x 的取值无关.所以甲同学把“x =”错抄成“x =-”,但他计算的结果也是正确的.当x =,y =-1时,原式=-2×(-1)3=2.19. 【答案】解:小明的观点是正确的.理由:因为7a 3-6a 3b +3a 2b +3a 3+6a 3b -3a 2b -10a 3=(7+3-10)a 3+(-6+6)a 3b +(3-3)a 2b =0,所以a=0.35,b=-0.28是多余的条件,故小明的观点正确.20. 【答案】解:(1)甲旅行社收取的费用为a+50%ax=a+ax元,乙旅行社收取的费用为(x+1)×60%a=ax+a元.(2)当x=30时,甲旅行社收取的费用为=a+15a=16a(元),乙旅行社收取的费用为a·31=a(元).因为a>0,所以16a<a.所以选择甲旅行社更优惠.21. 【答案】[解析] 先分别表示出第二、三、四个数,再求和.解:(1)第二个数是2(m+n2)-1=2m+2n2-1,第三个数是(2m+2n2-1)-(m+n2)=2m+2n2-1-m-n2=m+n2-1,第四个数是m+n2+m=n2+2m.所以这四个数的和为m+n2+(2m+2n2-1)+(m+n2-1)+(n2+2m)=m+n2+2m+2n2-1+m+n2-1+n2+2m=5n2+6m-2.(2)当m=1,n=-1时,5n2+6m-2=5×(-1)2+6×1-2=5+6-2=9.。

初中数学人教版七年级上册第二章 整式的加减2.2 整式的加减-章节测试习题(10)

初中数学人教版七年级上册第二章 整式的加减2.2 整式的加减-章节测试习题(10)

章节测试题1.【答题】下面合并同类项正确的是()A. 3x+2x2=5x3B. 2a2b-a2b=1C. -ab-ab=0D. -xy2+xy2=0【答案】D【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,解答即可.【解答】A.3x和2x2不是同类项不能合并,故A错;B.2a2b−a2b=a2b,故B错C.−ab−ab=−2ab,故C错;D.−y2x+xy2=0,正确;选D.方法总结:本题考查同类项定义,合并同类项时把系数相加减,字母与字母的指数不变.注意当同类项的系数互为相反数时,合并的结果为0.2.【答题】下列计算正确的是()A.B.C.D.【答案】C【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,解答即可.【解答】A中,7a+a=8a,故A选项错误;B中,5y-3y=2y,故B选项错误;C中,3x2y-2yx2=x2y,故C选项正确;D中,3a和2b不是同类项,不能合并,故D选项错误.选C.方法总结:合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.3.【答题】单项式与的和是单项式,则的值是()A. 3B. 6C. 8D. 9【答案】D【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,解答即可.【解答】已知单项式与的和是单项式,可知与是同类项,所以m-1=1,n=3,解得m=2,n=3,所以,选D.4.【答题】去括号应得()A.B.C.D.【答案】A【分析】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.【解答】解::-[a-(b-c)]=-(a-b+c)=-a+b-c.选A.5.【答题】下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy﹣y2)﹣(﹣x2+4xy﹣y2)=﹣x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A. ﹣7xyB. +7xyC. ﹣xyD. +xy【答案】C【分析】本题考查了整式的加减,掌握去括号的法则与合并同类项的法则是解题的关键.【解答】原式=﹣x2+3xy﹣y2+x2-4xy+y2=-x2-xy+y2.则可知被墨迹遮住的一项是-xy.选C.6.【答题】多项式2x-3y+4+3kx+2ky-k中没有含y的项,则k应取()A. k=B. k=0C. k=-D. k=4【答案】A【分析】本题考查了整式的加减,掌握去括号的法则与合并同类项的法则是解题的关键.【解答】原式=(2+3k)x+(-3+2k)y+4-k,由于多项式没有含y的项,即y的系数为0,则-3+2k=0,得k=,选A.7.【答题】-[-(-a2)+b2]-[a2-(+b2)]等于()A. 2a2B. 2b2C. -2a2D. 2(b2-a2)【答案】C【分析】本题考查了整式的加减,掌握去括号的法则与合并同类项的法则是解题的关键.【解答】原式=(﹣a2)-b2﹣a2+b2=﹣2a2,选C.8.【答题】下列各对单项式中,不是同类项的是()A. 8与B. xy与C. 与D. 与【答案】C【分析】根据同类项的定义:所含字母相同,相同字母的指数相同进行解答即可.【解答】根据同类项的定义,所含字母相同,并且相同字母的指数也分别相同.得到C中m和b的指数都不相同,故它们不是同类项.选C.9.【答题】长方形的一边长为2a+3b,另一边比它小a-b,那么这个长方形的周长是()A. 14a+6bB. 3a+7bC. 6a+14bD. 6a+10b【答案】C【分析】本题考查了整式的加减,掌握去括号的法则与合并同类项的法则是解题的关键.【解答】解:首先表示出长方形的另一边是2a+3b-(a-b)=2a+3b-a+b=a+4b,再根据长方形的周长公式,得2(2a+3b+a+4b)=2(5a+5b)=6a+14b.选C.10.【答题】多项式(4xy-3x2-xy+y2+x2)-(3xy+2y-2x2)的值()A. 与x、y的值有关B. 与x、y的值无关C. 只与x的值有关D. 只与y的值有关【答案】D【分析】本题考查了整式的加减,掌握去括号的法则与合并同类项的法则是解题的关键.【解答】解:(4xy-3x2-xy+y2+x2)-(3xy+2y-2x2)=4xy-3x2-xy+y2+x2-3xy-2y+2x2= y2-2y∴多项式(4xy-3x2-xy+y2+x2)-(3xy+2y-2x2)的值只与y的值有关选D.11.【答题】已知2a6b2和a3m b n是同类项,则代数式9m2-mn-36的值为()A. -1B. -2C. -3D. -4【答案】D【分析】本题主要考查了同类项的定义,解题的关键在于清楚所含字母相同并且相同字母的指数也分别相同的单项式是同类项.【解答】解:因为与时同类项,所以,解得,则.所以本题应选D.12.【答题】计算6m2-5m+3与5m2+2m-1的差,结果正确的是()A. m2-3m+4B. m2-3m+2C. m2-7m+2D. m2-7m+4【答案】D【分析】本题考查了整式的加减,掌握去括号的法则与合并同类项的法则是解题的关键.【解答】解:.所以本题应选D.13.【答题】将(x+y)+3(x+y)-5(x+y)化简得( )A. x+yB. -x+yC. -x-yD. x-y【答案】C【分析】本题考查了整式的加减,掌握去括号的法则与合并同类项的法则是解题的关键.【解答】(x+y)+3(x+y)-5(x+y)=x+y+3x+3y-5x-5y=-x-y选C.14.【答题】下列各项中,去括号正确的是()A. x2-2(2x-y+2)=x2-4x-2y+4B. -3(m+n)-mn=-3m+3n-mnC. -(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2D. ab-5(-a+3)=ab+5a-3【答案】C【分析】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.【解答】解: A. 故错误.B. 故错误.C. 故正确.D. 故错误.选C.15.【答题】下列化简正确的是()A. (3a-b)-(5c-b)=3a-2b-5cB. (2a-3b+c)-(2c-3b+a)=a+3cC. (a+b)-(3b-5a)=-2b-4aD. 2(a-b)-3(a+b)=-a-5b【答案】D【分析】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.【解答】A. (3a−b)−(5c−b)=3a−b−5c+b=3a−5c,故本选项项错误;B. (2a−3b+c)−(2c−3b+a)=2a−3b+c−2c+3b−a=2a−c,故本选项项错误;C. (a+b)−(3b−5a)=a+b−3b+5a=−2b+6a,故本选项错误;D. 2(a−b)−3(a+b)=2a−2b−3a−3b=−a−5b,故本选项正确。

《2.2整式的加减》课后练习2024-2025学年人教版数学七年级上册

《2.2整式的加减》课后练习2024-2025学年人教版数学七年级上册

人教版七年级上册《2.2整式的加减》课后练习一、选择题1.化简y-(x+y)的结果是()A.0 B.-x C.-2y D.2y-x2.计算:a-2(1-3a)的结果为()A.7a-2 B.-2-5a C.4a-2 D.2a-23.化简5(2x-3)-4(3-2x)之后,可得下列哪一个结果()A.2x-27 B.8x-15 C.12x-15 D.18x-274.已知一个多项式与3x 2 +9x的差等于5x 2 +4x-1,则这个多项式是()A.8x 2 +13x-1 B.-2x 2 +5x+1 C.8x 2 -5x+1 D.2x 2 -5x-1 5.一个多项式与x 2 -2x+1的和是3x-2,则这个多项式为()A.x 2 -5x+3 B.-x 2 +x=1 C.-x 2 +5x-3 D.x 2 -5x-136.若“ω”是新规定的某种运算符号,设aωb=3a-2b,则(x+y)ω(x-y)的值为()A.x+y B.x+2y C.2x+2y D.x+5y7.红日商店从甲批发部以每包a元的价格进了40包果冻,又在乙批发部以每包b(b<a)元的价格进了同样的60包果冻.如果以每包0.5(a+b)元的价格全部卖出这种果冻,那么这家商店()A.盈利了B.亏损了C.不盈不亏D.盈亏不能确定8.若x为自然数,那么多项式x 3 -2x 2 +5x+3与2x 2 -x 3 +4+9x的和一定是()A.常数B.偶数C.7的倍数D.21的倍数9.若a-b=2,b-c=-3,则a-c等于()A.1 B.-1 C.5 D.-5二、填空题10.某小区要打造一个长方形花圃,已知花圃的长为(a+2b)米,宽比长短b米,则花圃的周长为 ______ 米(请用含a、b的代数式表示).11.某服装店新开张,第一天销售服装a件,第二天比第一天多销售10件,第三天的销售量是第二天的3倍少1件,则第三天销售了______ 件.12.有理数a,b,c在数轴上的对应点如图所示,化简:|a+b|-|b-c|= ______ .13.若多项式mx 2 -(1-x+6x 2 )化简后不含x的二次项,则m的值为 ______ .14.已知轮船在静水中的速度为(a+b)千米/时,逆流速度为(2a-b)千米/时,则顺流速度为 ______ 千米/时.15.某三角形的第一条边长是3m+2n,第二条边长比第一条边长短m,第三条边长是m+4n,则该三角形的周长是 ______ .三、解答题16.化简:(1)3x-2(x-y);(2)(7a-2b)+(3a+5b);(3)(5a-6b)-(a-5b);(4)3(3a 2 b-ab 2 )+3(ab 2 +5a 2 b).17.先化简,再求值:3x 2 +(2x 2 -3x)-(-x+5x 2 ),其中x=-2.18.先化简,再求值:5x 2 y-3xy 2 -7(x 2 y-xy 2 ),其中x=2,y=-1.19.如图,小婉在手工课上做了如图所示的长方体纸盒(尺寸见图,单位:厘米).(1)做小纸盒比做大纸盒少用料多少平方厘米?(2)当a=2cm,b=4cm,c=1.5cm时,两个纸盒共用料多少?20.已知A=2a 2 +3ab-2a-1,B=-a 2 +ab+2.(1)化简:4A-(3A-2B);(2)若(1)中式子的值与a的取值无关,求b的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册第2.2整式的加减
一、选择题(每小题3分,共24分)
1、下列各组中,不是同类项的是( )
A 、2235.0ab b a 与
B 、y x y x 2222-与
C 、315与
D 、m m x x 32--与
2、若七个连续整数中间的一个数为n ,则这七个数的和为( )
A 、0
B 、7n
C 、-7n
D 、无法确定
3、若a 3与52+a 互为相反数,则a 等于( )
A 、5
B 、-1
C 、1
D 、-5
4、下列去括号错误的共有( )
①c ab c b a +=++)(;②d c b a d c b a +--=-+-)(;③c b a c b a -+=-+2)(2;④b a a b a a b a a +-=+--+---222)]([
A 、1个
B 、2个
C 、3个
D 、4个
5、计算:)](2[n m m n m ----等于( )
A 、n 2-
B 、m 2
C 、n m 24-
D 、m n 22-
6、式子223b a -与22b a +的差是( )
A 、22a
B 、2222b a -
C 、24a
D 、2224b a -
7、c b a -+-的相反数是( )
A 、c b a +--
B 、c b a +-
C 、c b a +--
D 、c b a ---
8、减去m 3-等于5352
--m m 的式子是( )
A 、)1(52-m
B 、5652--m m
C 、)1(52+m
D 、)565(2-+-m m 二、填空题(每小题3分,共24分)
1、若4243b a b a m n 与是同类项,则m =____,n =____。

2、在x x x x 6214722+--+-中,27x 与___同类项,x 6与___是同类项,-2与__是同类项。

3、单项式ab b a ab ab b a 3,4,3,2,3222--的和为____。

4、把多项式3223535y x y x xy +--按字母x 的指数从大到小排列是:____
5、若4)13(22+-=+--a a A a a ,则A =_____。

6、化简:_______77_______,6
53121
_________,5722=+-=+-=-ba b a a a a x x 7、去括号:__________)(32________;)2(2=-+-=-+-d c b a y x
8、已知:_______2,3,2=-+=-=-c b a c b c a 则
三、解答题(52分)
1、去括号并合并同类项
①)22(--a a ; ②)32(3)5(y x y x --+-;
③)(2)(2b a b a a +-++; ④)32(2[)3(1yz x x xy +-+--
2、计算
①22222323xy xy y x y x -++-;
②)32(3)23(4)(5b a b a b a -+--+;
③)377()5(322222a b ab b ab a a ---+--
3、化简求值
①2),45()54(3223-=--++-x x x x x 其中
②4
3,32),12121()3232(==+----y x xy x y xy 其中
4、试用含x 的多项式表示如图所示中阴影部分的面积。

5、已知2
22222324,c b a B c b a A ++-=-+=,且A +B +C =0。

求(1)多项式C 。

(2)若3,1,1=-==c b a ,求A +B 的值。

6、三个队植树,第一队种a 棵,第二队种的比第一队种的树的2倍还多8棵,第三队种的比第二队种的树的一半少6棵,问三个队共种多少棵树?并求当100=a 棵时,三个队种树的总棵数。

参考答案:
一、
1、A
2、B
3、B
4、C
5、C
6、B
7、B
8、B
二、
1、2,4
2、1,4,2x x --
3、2235ab ab b a -+-
4、5533
223-++-xy y x y x 5、12
+-x 6、2x,a,0 7、d c b a y x 3332,42+---+- 8、-1 三、
1、
解:①原式=a a a -=+-222
②原式=y x y x y x 811965+-=+---
③原式=b a b a b a a -=--++222
④原式=yz x xy yz x x xy 63316431---=--+-
2、
解:①原式=222222)23()23(xy y x xy xy y x y x +-=-++-
②原式=b a b b b a a a b a b a b a 4)985()6125(9681255+-=-+++-=-++-+ ③原式=22222226637753b ab a a b ab b ab a a +-=++--+-
3、
(1) 721434554233223--=++=--++-=时,原式=当解:原式x x x x x x x
(2)
4
743,32121213232时,原式=-,解:原式==-+---
=y x xy x y xy 4、 x x x x x x x x x 2432.3)2(S 222+=++=++=解:阴影
5、
解:(1)因为A +B +C =0,所以
2
22222222222233)233()324()(c b a c b a c b a c b a B A C --=++--=++--+-=+-=(2)3,1,1=-==c b a ,A +B =18
6、
解:第二队种树的棵数为82+a ,第三队种树的棵数为2646)82(2
1-=-+=-+a a a ,三个队共种的棵数为64)2()82(+=-+++a a a a ,当100=a 时,三队种树的总棵数为
+
⨯(棵)。

406
4=
100
6。

相关文档
最新文档