武汉纺织大学大学物理下册作业题答案
大学物理下习题册答案详解
解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )
大学物理D下册习题答案
习题99.1选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[答案:A](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[答案:C]9.2填空题(1)在静电场中,电势梯度不变的区域,电场强度必定为。
[答案:零](2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。
[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。
[答案:1:5]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.9.7 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9 C/m 的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题9.7图所示由于对称性⎰=l QxE 0d ,即Q E ϖ只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x=以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E . 解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E ϖd 方向如图,大小为 ()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP E ϖd 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅ϖϖ立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10 图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C/m 3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外.9.12 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0dε∑⎰=⋅qS E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰ϖϖ对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E ϖϖ)(21210σσε-=1σ面外, n E ϖϖ)(21210σσε+-= 2σ面外, n E ϖϖ)(21210σσε+=n ϖ:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E ϖ,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=ϖ∴ O 点电场'd 33030OO r E ερ=ϖ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ϖρ-球在O '产生电场002='E ϖ∴ O ' 点电场 003ερ='E ϖ'OO题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ(如题8-13(b)图)则 03ερrE PO ϖϖ=,3ερr E O P '-='ϖϖ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N/C 的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εεϖϖ)11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题9.17图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题9.18图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O9.19 一电子绕一带均匀电荷的长直导线以2×104m/s 的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30 kV/cm ,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εεϖϖ题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sϖϖd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内;介质外)(2R r <场强303π4,π4r rQ E r Qr D εϖϖϖ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ϖϖ外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D ϖϖ得11σ=D ,22σ=D而 101E D ε=,202E D r εε=rd r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内d21U E E == ∴r r E E εεεεσσ==102012题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴)/ln(π22122R R lW Q C ε==题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r rQ E εϖϖ=3R r >时 302π4rrQ E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E εϖϖ=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F。
2020年下学期《大学物理(下)》期末考试及答案
2020年下学期《大学物理(下)》期末考试一、选择题(共27分) 1. (本题3分) (2717)距一根载有电流为3×104 A 的电线1 m 处的磁感强度的大小为 (A) 3×10-5 T . (B) 6×10-3 T . (C) 1.9×10-2T . (D) 0.6 T .(已知真空的磁导率μ0 =4π×10-7 T ·m/A) [ ] 2. (本题3分)(2391)一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C)正比于B ,反比于v . (D) 反比于B ,反比于v .[ ] 3. (本题3分)(2594)有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B 的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y 轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使α 角减小.(B) 转动使α角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ ] 4. (本题3分)(2314)如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动.(C) 向左移动. (D) 向右移动.[ ] 5. (本题3分)(2125)如图,长度为l 的直导线ab 在均匀磁场B中以速度v移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ] 6. (本题3分)(2421)已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则c a bd NMB两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21.(C) 都大于L 21. (D) 都小于L 21. [ ]7. (本题3分)(3174)在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时 (A) P 点处仍为明条纹.(B) P 点处为暗条纹.(C) 不能确定P 点处是明条纹还是暗条纹.(D) 无干涉条纹. [ ] 8. (本题3分)(3718)在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹 (A) 宽度变小. (B) 宽度变大. (C) 宽度不变,且中心强度也不变. (D) 宽度不变,但中心强度增大. [ ] 9. (本题3分)(3215)若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0×10-1 mm . (B) 1.0×10-1 mm . (C) 1.0×10-2 mm . (D) 1.0×10-3 mm . [ ] 10. (本题3分)(4223)下述说法中,正确的是 (A) 本征半导体是电子与空穴两种载流子同时参予导电,而杂质半导体(n 型或p 型)只有一种载流子(电子或空穴)参予导电,所以本征半导体导电性能比杂质半导体好.(B) n 型半导体的导电性能优于p 型半导体,因为n 型半导体是负电子导电,p 型半导体是正离子导电.(C) n 型半导体中杂质原子所形成的局部能级靠近空带(导带)的底部,使局部能级中多余的电子容易被激发跃迁到空带中去,大大提高了半导体导电性能. (D) p 型半导体的导电机构完全决定于满带中空穴的运动. [ ] 二、填空题(共27分) 11 (本题3分)(5125)一根无限长直导线通有电流I ,在P 点处被弯成了一个半径为R 的圆,且P 点处无交叉和接触,则圆心O 处的磁感强度 大小为_______________________________________,方向为 ______________________________. 12. (本题3分)(5134)图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:a 代表______________________________的B ~H 关系曲线.b 代表______________________________的B ~H 关系曲线.c 代表______________________________的B ~H 关系曲线. 13. (本题3分)(2624)一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I =3 A 时,环中磁 场能量密度w =_____________ .(μ 0 =4π×10-7 N/A 2) 14. (本题3分)(5161)一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 ________________________.15. (本题4分)(3177)如图,在双缝干涉实验中,若把一厚度为e 、折射率 为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________. 16. (本题3分)(4611)某一波长的X 光经物质散射后,其散射光中包含波长________和波长 __________的两种成分,其中___________的散射成分称为康普顿散射. 17. (本题5分)(4203)设描述微观粒子运动的波函数为),(t rψ,则*ψψ表示____________________________________________________________________; ),(t rψ须满足的条件是______________________________________;其归一化条 件是__________________________________________.18. (本题3分)(4787)在主量子数n =2,自旋磁量子数21=s m 的量子态中,能够填充的最大电子数是_________________. 三、计算题(共33分) 19. (本题10分)(2567)S 21AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2) 20. (本题8分)(3628)用白光垂直照射置于空气中的厚度为0.50 μm 的玻璃片.玻璃片的折射率为1.50.在可见光范围内(400 nm ~ 760 nm)哪些波长的反射光有最大限度的增强? (1 nm=10-9 m)21. (本题5分)(3768)强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30°角,求透过每个偏振片后的光束强度. 22. (本题5分)(4393)以波长λ = 410 nm (1 nm = 10-9 m)的单色光照射某一金属,产生的光电子的最大动能E K = 1.0 eV ,求能使该金属产生光电效应的单色光的最大波长是多少? (普朗克常量h =6.63×10-34 J ·s) 23. (本题5分)(4547)已知电子在垂直于均匀磁场B的平面内运动,设电子的运动满足玻尔量子化条件,求电子轨道的半径r n =?四、理论推导与证明题(共5分) 24. (本题5分)(4550)一束具有动量p的电子,垂直地射入宽度为a 的狭缝,若在狭缝后远处与狭缝相距为R 的地方放置一块荧光屏,试证明屏幕上衍射图样中央最大强度的宽度)/(2ap Rh d =,式中h 为普朗克常量. 五、回答问题(共5分) 25. (本题5分)(4781)粒子(a)、(b)的波函数分别如图所示,若用位置和动量描述它们的运动状态,两者中哪一粒子位置的不确定量较大?哪一粒子的动量的不确定量较大?为什么?参考答案:一、选择题(共27分) 1. (本题3分) (2717) B 2. (本题3分)(2391) B 3. (本题3分)(2594) Bx (a)x(b)4. (本题3分)(2314)D5. (本题3分)(2125)D6. (本题3分)(2421)D7. (本题3分)(3174)B8. (本题3分)(3718)A9. (本题3分)(3215)D 10. (本题3分)(4223)C 二、填空题(共27分) 11 (本题3分)(5125))11(20π-R I μ 2分垂直纸面向里. 1分 12. (本题3分)(5134)铁磁质 1分 顺磁质 1分 抗磁质 1分 13. (本题3分)(2624)22.6 J ·m -3 3分 14. (本题3分)(5161)t E R d /d 20πε 3分 15. (本题4分)(3177)上 2分 (n -1)e 2分 16. (本题3分)(4611)不变 1分 变长 1分 波长变长 1分 17. (本题5分)(4203)粒子在t 时刻在(x ,y ,z )处出现的概率密度 2分 单值、有限、连续 1分1d d d 2=⎰⎰⎰z y x ψ 2分18. (本题3分)(4787)4 2分三、计算题(共33分) 19. (本题10分)(2567)解:AA '线圈在O 点所产生的磁感强度002502μμ==AA A A r I NB (方向垂直AA '平面) 3分 CC '线圈在O 点所产生的磁感强度 005002μμ==CC C C r IN B (方向垂直CC '平面) 3分 O 点的合磁感强度 42/1221002.7)(-⨯=+=C A B B B T 2分 B 的方向在和AA '、CC '都垂直的平面内,和CC '平面的夹角︒==-4.63tg 1A C B Bθ 2分20. (本题8分)(3628)解:加强, 2ne+21λ = k λ, 2分 123000124212-=-=-=k k ne k ne λ nm 2分 k = 1, λ1 = 3000 nm ,k = 2, λ2 = 1000 nm , k = 3, λ3 = 600 nm , k = 4, λ4 = 428.6 nm ,k = 5, λ5 = 333.3 nm .2分∴ 在可见光范围内,干涉加强的光的波长是λ=600 nm 和λ=428.6 nm . 2分 21. (本题5分)(3768)解:透过第一个偏振片后的光强为2001cos 212121⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=I I I 30° 2分=5I 0 / 8 1分 透过第二个偏振片后的光强I 2=( 5I 0 / 8 )cos 260°1分=5I 0 / 32 1分22. (本题5分)(4393)解:设能使该金属产生光电效应的单色光最大波长为λ0. 由 00=-A h ν可得 0)/(0=-A hc λ A hc /0=λ 2分 又按题意: K E A hc =-)/(λ ∴ K E hc A -=)/(λ得 λλλλK K E hc hc E hc hc -=-=)/(0= 612 nm 3分A23. (本题5分)(4547)解:设轨道半径为r n ,电子运动速度为v .则由n r m B e /2v v = 2分 n r m L n ==v 2分 得 n eB r n ⋅=2/1)/( ( n = 1,2,3……) 1分四、理论推导与证明题(共5分) 24. (本题5分)(4550)证:单缝夫朗禾费衍射各级极小的条件为: λφk a ±=sin ( k = 1,2……)令 k = 1, 得 λφ=sin a 1分 可见,衍射图形第一级极小离中心点距离 a f f R x /sin tg 1λφφ⋅=≈= 1分 又电子德布罗意波的波长 p h /=λ 2分 所以中央最大强度宽度 )/(221ap Rh x d == 1分 五、回答问题(共5分) 25. (本题5分)(4781)答:由图可知,(a)粒子位置的不确定量较大. 2分 又据不确定关系式 xp x ∆∆≥π2h可知,由于(b)粒子位置的不确定量较小,故(b)粒子动量的不确定量较大. 3分x(a)x (b)。
大学物理(下册)课后题答案_完整版
大学物理下册课后习题答案习题八8-1电量都是q 的三个点电荷,分别放在正三角形的三个顶点 .试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡 (即每个电荷受其他三个电荷的库 仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ?解:如题8-1图示(1)以A 处点电荷为研究对象,由力平衡知:q 为负电荷2-1 q1 qq2cos30 ----------------------a4 n0/.3 2(T a)T q(2)与三角形边长无关.8-2两小球的质量都是m ,都用长为I 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所 带的电量.解:如题8-2图示T cos mg解得 q 21 sin 4mgtan8-3根据点电荷场强公式 E J ,当被考察的场点距源点电荷很近(r T 0)时,贝U 场强4°r*,这是没有物理意义的,对此应如何理解解:Ey^r °仅对点电荷成立,当r 0时,带电体不能再视为点电荷,再用上式求4 n 0r场强是错误的,实际带电体有一定形状大小 ,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4在真空中有 A , B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+ q 和解得 题8-1图题8-2图T sinF e4 n 0 (2l sin )2H |2-q •则这两板之间有相互作用力f ,有人说f = q2,又有人说,因为4 o d 22f = qE ,E —,所以f =卫•试问这两种说法对吗?为什么? f 到底应等于多少? o S o S解:题中的两种说法均不对 .第一种说法中把两带电板视为点电荷是不对的 ,第二种说法 把合场强E 2看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一oS2个板的电场为E —,另一板受它的作用力 f q q q ,这是两板间相互作2 o S 2 o S 2 o S用的电场力.p ql ,场点到偶极子中心 0点的距离为r ,矢量r 与丨的夹角为l .试证P 点的场强E 在r 方向上的分量 E r 和垂直于r 的分量E分别为•••场点P 在r 方向场强分量垂直于r 方向,即方向场强分量psi n 34n o r8-6长l =15.0cm 的直导线AB 上均匀地分布着线密度=5.0x10求:(1)在导线的延长线上与导线 B 端相距a i =5.ocm 处P 点的场强;⑵在导线的垂直平分 线上与导线中点相距 d 2=5.ocm 处Q 点的场强. 解:如题8-6图所示(1)在带电直线上取线元 dx ,其上电量dq 在P 点产生场强为dE p1dx4no (a x)2E P dE P1 2dx 4 n o 2(ax)28-5 一电偶极子的电矩为 ,(见题8-5图),且r E r =2pcos3 , orE =严 4 o r证:如题8-5所示,将p 分解为与 r 平行的分量psin 和垂直于lr 的分量psinE rp cos 2 n o r 3 E o题8-5图 -9Cm -1的正电荷.试题8-6图用I 15 cm , 5.0E P(2)同理dE Q 6.741由于对称性dElQx 0,dE Qy5.0 10 C cm14.9612 2~n 0(4a l )9 110 9 C m 1, a 12.5 cm 代入得2 110 N C 方向水平向右dx—2方向如题8-6图所示x d2即E Q只有y分量,1 dx d24nxd2―dfE Qy l dE Qyl4n 22 dx1 32 z 2 2\2(x d2) l2 n 0 J l24d;1, l 15 cm,d2 5 cm代入得102 N C 1,方向沿y轴正向R的均匀带电半圆环,电荷线密度为,求环心处0点的场强•一个半径为8-7RdE Q E Qydq dl Rd ,它在O点产生场强大小为RddE4 n0R2方向沿半径向外则dE x dE sin sin4 n 0 R积分E x dE y dE cos( cos d4 n 0 Rsin dE y cos d 04 n 0RE E x,方向沿x轴正向.2 n 0R8-8均匀带电的细线弯成正方形,边长为I,总电量为q . (1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在r I处,它相当于点电荷q产生的场强E .q解:如8-8图示,正方形一条边上电荷在P点产生物强dE p方向如图,大小为4COS 12COS 2 COS 1dE P在垂直于平面上的分量dE dE P COSdE I r| 2 f 1 2 丨I 2/ 1 2I 1 2I I 2 I4 n °」—<r—i1r —4 \ 2 V 4题8-8图由于对称性,P点场强沿OP方向,大小为8-9 (1)点电荷q位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少*(3)如题8-9(3)图所示,在点电荷q的电场中取半径为R的圆平面.q在该dE pCOS 1 COS 2E PE P4 dE4n o(r2g4lqr4 lr方向沿OPdE p平面轴线上的A点处,求:通过圆平面的电通量.(R arcta n — )x解:⑴由高斯定理E dS -S立方体六个面,•••各面电通量(2)电荷在顶点时当q在立方体中心时,每个面上电通量相等q6 0 .,将立方体延伸为边长2a的立方体,使q处于边长2a的立方体中心qe6 0边长2a的正方形上电通量对于边长a的正方形,如果它不包含q所在的顶点,则e 如果它包含q所在顶点则 e 0 .如题8-9(a)图所示.题8-9(3)图题8-9(b)图题8-9(a)图(3) ••通过半径为面积* 题8-9(c)图R的圆平面的电通量等于通过半径为..R2x2的球冠面的电通量,球冠S 2 M R2x2)[1q。
大学物理Ⅰ习题课智慧树知到课后章节答案2023年下武汉纺织大学
大学物理Ⅰ习题课智慧树知到课后章节答案2023年下武汉纺织大学武汉纺织大学第一章测试1.某同学爬山,从山脚到山顶,又从原路返回到山脚,上山平均速率为v1,下山平均速率为v2,则往返的平均速度和平均速率为()答案:2.以下关于速度和速率,说法不正确的是()答案:速度反映运动的快慢,其大小就是速率3.关于加速度,说法正确的是()答案:速度变化越来越快,加速度可能越来越小4.匀速圆周运动的切向加速度为零,法向加速度也为零。
()答案:错5.描述圆周运动的物理量中,切向加速度反映的是线速度方向变化的快慢。
()答案:错第二章测试1.已知质点的运动方程为x=-10+12t-2t2 (SI),则在前5 s内质点作()答案:前3 s作减速运动,后2 s作加速运动,路程为26 m2.根据牛顿运动定律可知()答案:力是改变物体运动状态的原因3.下列说法正确的是()答案:物体的惯性仅与质量有关,质量大的惯性大,质量小的惯性小4.质量m=6 kg的物体,在一光滑路面上作直线运动,t=0时,x=0,v=0。
在力 F=3+4t 作用下,t=3s 时物体的速度为3 m/s. ()答案:错5.某质点的运动学方程为x=−7t3+2t +3 (SI),则该质点做的是匀变速直线运动。
()答案:错第三章测试1.在下列关于动量的表述中,不正确的是()。
答案:质点始、末位置的动量相等,表明其动量一定守恒;;内力对系统内各质点的动量没有影响。
2.对一个物体系来说,下列条件中,哪种情况下系统的机械能守恒?()。
答案:外力和非保守内力都不作功;3.一长为l,质量为m的匀质链条,放在光滑的桌面上,若其长度的1/5悬挂于桌边下,将其慢慢拉回桌面,需作功()。
答案:4.冲量反映的是力在时间上的积累效果,冲量方向与动量方向一致。
()答案:错5.变力作功可以用元功积分求解,功有正负,所以功是矢量。
()答案:错第四章测试1.1、如图所示,一轻绳子绕于半径为r的飞轮边缘,并以质量为m的物体挂在绳端,飞轮对过轮心且与轮面垂直的水平固定轴的转动惯量为J,若不计摩擦,飞轮的角加速度α为:()答案:mgr/(mr2+J)2.2、如图所示,有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J。
武汉纺织大学大学物理下册作业题答案
v 1 2 由 E E0 (1 2 ) c E E v c( ) 2 E
2
2
,得电子的速率为
2 0 12
0.995c
ห้องสมุดไป่ตู้
第九章 振动
一、选择题 1.BD 2. A~C′B~A′C~D′D~B′ 3. C 4. C 5. B 6. D 7. A 8. C 9. B 10. D
二、填空题
2 1. 2 / ( x12 x22 ) /(v2 v12 )
4. 10; / 6 ; / 3 6. v 2v0 7.
/2
mv0 / k (m m0 )
A
9. 2 / 3
第十章 波动
一、选择题 1. D 2. D 3. D 4. C 5. B 6. D 7. A 8. C 9. C 10. C
二、填空题
3. x=t3+8t-628 ;x0=-628 m;v0=8 m/s 8. v>=ul/h 10. t=1 s;s=1.5 m;0.5 rad
解 根据分析,因AB、CD为等温过程,循环过程中系 统作的净功为
W WAB WCD V2 m V1 m RT1 ln RT2 ln M V1 M V2
V2 m R(T1 T2 ) ln 5.76 103 J M V1
循环过程中系统吸热的总量为 V2 m m Q QAB QDA RT1 ln CV ,m (T1 T2 ) M V1 M
第十一章 波动光学
一、选择题
1. A 2. A 3. C 4. C 5. D 6. D 7. B 8. E 9. A 10. B
二、填空题
14 有N个质量均为m的同种气体分子,它们的速率 分布如图所示. (1)说明曲线与横坐标所包围面积的 含义(2)由N和 v0 求a值;(3)求在速率v / 2 到v / 3 0 0 间隔内的分子数;(4)求分子的平均平动动能.
大学物理第五版下 课后答案 ~
加速度的表达式,代入 t 值后,即可求得结果.
解 (1) 将 x = 0.10 cos(20πt + 0.25π)(m) 与 x = Acos(ωt + ϕ ) 比较后可得:振幅 A =
0.10m,角频率 ω = 20π s−1 ,初相ϕ =0.25 π ,则周期 T = 2π / ω = 0.1 s ,频率 v = 1/T Hz .
时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率.
题 9-10 图
分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看
是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b)所示的坐标.设
系统平衡时物体所在位置为坐标原点 O,Ox 轴正向沿斜面向下,由受力分析可知,沿 Ox 轴,
x − t 、 v − t 及 a − t 图如图所示.
9-7 若简谐运动方程为 x = 0.10 cos(20πt + 0.25π)(m) ,求:(1) 振幅、频率、角频率、
周期和初相;(2) t = 2s 时的位移、速度和加速度.
分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式
动的初相位为(
3 (A) π
2
)
1 (B) π
2
(C) π
(D) 0
分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差
是 π(即反相位).运动方程分别为 x1
=
Acosωt 和 x2 =
A cos(ωt + π).它们的振幅不同.对
大学物理下册课后答案 超全超详细
第十二章 导体电学【例题精选】例12-1 把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示. 设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则 (A) U B > U A ≠0. (B) U B > U A = 0.(C) U B = U A . (D) U B < U A . [ D ]例12-2 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20r RU . (D) r U 0. [ C ] *例12-3 如图所示,封闭的导体壳A 内有两个导体B 和C 。
A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是(A ) U A = UB = UC (B ) U B > U A = U C (C ) U B > U C > U A (D ) U B > U A > U C例12-4 在一个不带电的导体球壳内,先放进一个电荷为 +q 的点电荷,点电荷不与球壳内壁接触。
然后使该球壳与地接触一下,再将点电荷+q 取走。
此时,球壳的电荷为 ;电场分布的范围是 . -q 球壳外的整个空间例12-5 如图所示,A 、B 为靠得很近的两块平行的大金属平板,两板的面积均为S ,板间的距离为d .今使A 板带电荷q A ,B 板带电荷q B ,且q A > q B .则A 板的靠近B 的一侧所带电荷为 ;两板间电势差U = .)(21B A q q - Sd q q B A 02)(ε- 例12-6 一空气平行板电容器,电容为C ,两极板间距离为d 。
充电后,两极板间相互作用力为F 。
则两极板间的电势差为 ;极板上的电荷为 。
C Fd /2 FdC 2例12-7 C 1和C 2两个电容器,其上分别标明200 pF (电容量)、500 V (耐压值) 和300 pF 、900 V .把它们串连起来在两端加上1000 V 电压,则(A) C 1被击穿,C 2不被击穿. (B) C 2被击穿,C 1不被击穿.(C) 两者都被击穿. (D) 两者都不被击穿. [ C ]ABA C Bd例12-8 半径分别为1.0 cm 与2.0 cm 的两个球形导体,各带电荷 1.0³10-8 C ,两球相距很远.若用细导线将两球相连接.求:(1) 每个球所带电荷;(2) 每个球的电势.(22/C m N 1094190⋅⨯=πε) 解:两球相距很远,可视为孤立导体,互不影响.球上电荷均匀分布.设两球半径分别为r 1和r 2,导线连接后的电荷分别为q 1和q 2,而q 1 + q 1 = 2q , 则两球电势分别是 10114r q U επ=, 20224r q U επ=两球相连后电势相等 21U U =,则有 21212122112r r qr r q q r q r q +=++== 由此得到 921111067.62-⨯=+=r r qr q C 92122103.132-⨯=+=r r qr q C两球电势 310121100.64⨯=π==r q U U ε V例12-9 如图所示,三个“无限长”的同轴导体圆柱面A 、B 和C ,半径分别为 R a 、 R b 、R c .圆柱面B 上带电荷,A 和C 都接地.求B的内表面上电荷线密度λ1和外表面上电荷线密度λ2之比值λ1/ λ2.解:设B 上带正电荷,内表面上电荷线密度为λ1,外表面上电荷线密度为λ2,而A 、C 上相应地感应等量负电荷,如图所示.则A 、B 间场强分布为 E 1=λ1 / 2πε0r ,方向由B 指向AB 、C 间场强分布为E 2=λ2 / 2πε0r ,方向由B 指向CB 、A 间电势差 a b R R R R BA R R r r r E U ab a bln 2d 2d 0111ελελπ=π-=⋅=⎰⎰B 、C 间电势差 b c R R R R BC R R r r r E U cb cb ln 2d 2d 0222ελελπ=π-=⋅=⎰⎰ 因U BA =U BC ,得到()()a b b c R R R R /ln /ln 21=λλ 【练习题】*12-1 设地球半径R =6.4⨯106 m ,求其电容?解:C=4πε0R=7.12³10-4F12-2三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图所示.则比值σ1 / σ2为λ2(A) d 1 / d 2. (B) d 2 / d 1. (C) 1. (D) 2122/d d . [ B ]12-3 充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系:(A) F ∝U . (B) F ∝1/U . (C) F ∝1/U 2. (D) F ∝U 2. [ D ] 12-4 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ C ] 12-5 一导体A ,带电荷Q 1,其外包一导体壳B ,带电荷Q 2,且不与导体A 接触.试证在静电平衡时,B 的外表面带电荷为Q 1 + Q 2.证明:在导体壳内部作一包围B 的内表面的闭合面,如图.设B 内表面上带电荷Q 2′,按高斯定理,因导体内部场强E 处处为零,故0/)(d 021='+=⎰⋅εQ Q S E S∴ 12Q Q -=' 根据电荷守恒定律,设B 外表面带电荷为2Q '',则 222Q Q Q =''+' 由此可得 21222Q Q Q Q Q +='-='' 第十三章 电介质【例题精选】例13-1 一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E . (C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ] 例13-2 C 1和C 2两空气电容器串联起来接上电源充电。
大学轻工纺织食品专业《大学物理(下册)》开学考试试卷 附答案
大学轻工纺织食品专业《大学物理(下册)》开学考试试卷附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、质点p在一直线上运动,其坐标x与时间t有如下关系:(A为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.2、质量为m的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T.当它作振幅为A的自由简谐振动时,其振动能量E=__________。
3、如图,在双缝干涉实验中,若把一厚度为e、折射率为n的薄云母片覆盖在缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O处的光程差为_________________。
4、一弹簧振子系统具有1.OJ的振动能量,0.10m的振幅和1.0m/s的最大速率,则弹簧的倔强系数为_______,振子的振动频率为_______。
5、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变_____;转动惯量变_____。
6、三个容器中装有同种理想气体,分子数密度相同,方均根速率之比为,则压强之比_____________。
7、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。
8、一质量为0.2kg的弹簧振子, 周期为2s,此振动系统的劲度系数k为_______ N/m。
9、真空中有一半径为R均匀带正电的细圆环,其电荷线密度为λ,则电荷在圆心处产生的电场强度的大小为____。
10、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的。
大学轻工纺织食品专业《大学物理(下册)》月考试题 含答案
大学轻工纺织食品专业《大学物理(下册)》月考试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动角速度应变_____;转动惯量变_____。
2、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
3、一电子以0.99 c的速率运动(电子静止质量为9.11×10-31kg,则电子的总能量是__________J,电子的经典力学的动能与相对论动能之比是_____________。
4、二质点的质量分别为、. 当它们之间的距离由a缩短到b时,万有引力所做的功为____________。
5、一个绕有500匝导线的平均周长50cm的细螺绕环,铁芯的相对磁导率为600,载有0.3A 电流时, 铁芯中的磁感应强度B的大小为___________;铁芯中的磁场强度H的大小为___________ 。
6、已知质点的运动方程为,式中r的单位为m,t的单位为s。
则质点的运动轨迹方程,由t=0到t=2s内质点的位移矢量______m。
7、沿半径为R的圆周运动,运动学方程为 (SI) ,则t时刻质点的法向加速度大小为________;角加速度=________。
8、长为的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。
如果将细杆置与水平位置,然后让其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为_____,细杆转动到竖直位置时角加速度为_____。
9、一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I=3A时,环中磁场能量密度w =_____________ .()10、一根长为l,质量为m的均匀细棒在地上竖立着。
知道网课《大学物理Ⅰ(武汉纺织大学)》课后章节测试答案
第一章测试1【单选题】(10分)某同学爬山,从山脚到山顶,又从原路返回到山脚,上山平均速率为v1,下山平均速率为v2,则往返的平均速度和平均速率为A.B.C.D.2【单选题】(10分)一质点沿半径R=1m的圆轨道作圆周运动,其角位移与时间的关系为(SI),则质点在t=1s时,其速度和加速度的大小分别为A.1m/s,m/s2B.1m/s,2m/s2C.2m/s,m/s2D.1m/s,1m/s23【单选题】(10分)在下列关于加速度的表述中,正确的是A.若质点的加速度为恒矢量,则其运动轨迹必为直线B.质点作圆周运动时,加速度方向总是指向圆心C.在曲线运动中,质点的加速度必定不为零D.质点沿x轴运动,若加速度a<0,则质点必作减速运动4【多选题】(10分)以下关于位移说法正确的是A.直线运动中位移大小就是路程B.位移是从初位置指向末位置的有向线段C.位移是矢量,既有大小又有方向D.位移的方向就是质点的运动方向5【单选题】(10分)以下关于速度和速率,说法不正确的是A.速率是路程与时间的比值,是标量B.速度反映运动的快慢,其大小就是速率C.绕圆形跑道一周,平均速度总为0D.瞬时速度的大小等于瞬时速率6【多选题】(10分)以下加速度与速度的说法,正确的是A.速度越大,加速度越大B.加速度的方向就是速度变化的方向C.速度为零,加速度一定为零D.速度变化越快,加速度越大7【单选题】(10分)关于加速度,说法正确的是A.加速度方向和速度方向一定相同B.加速度增大,速度一定增大C.速度越来越大,加速度可能越来越小D.速度变化越来越快,加速度可能越来越小8【单选题】(10分)一质点在平面上运动,已知质点位置矢量的表示式为r=at2i+bt2j(其中a,b为常量),则该质点作:A.抛物线运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 波动光学
一、选择题
1. A 2. A 3. C 4. C 5. D 6. D 7. B 8. E 9. A 10. B
二、填空题
14 有N个质量均为m的同种气体分子,它们的速率 分布如图所示. (1)说明曲线与横坐标所包围面积的 含义(2)由N和 v0 求a值;(3)求在速率v / 2 到v / 3 0 0 间隔内的分子数;(4)求分子的平均平动动能.
第九章 振动
一、选择题 1.BD 2. A~C′B~A′C~D′D~B′ 3. C 4. C 5. B 6. D 7. A 8. C 9. B 10. D
二、填空题
2 1. 2 / ( x12 x22 ) /(v2 v12 )
4. 10; / 6 ; / 3 6. v 2v0 7.
查表知氧气的定压摩尔热容
2
C p,m 29.44J mol-1 K-1
定体摩尔热容
CV ,m 21.12J mol-1 K-1
(1)等压过程中氧气(系统)吸热
QP pdV E nC p ,m (T2 T1 ) 129.8J
等体过程中氧气(系统)吸热
18 目前实验室获得的极限真空约为1.33×10-11Pa, 这与距地球表面1.0×104km处的压强大致相等。试求在 27oC时单位体积中的分子数及分子的平均自由程。(设 气体分子的有效直径d=3.0×10-8cm)
20 如果理想气体的温度保持不变,当压强降 为原值的一半,分子的平均碰撞频率和平均自由 程如何变化?
v 1 2 由 E E0 (1 2 ) c E E v c( ) 2 E
2
2
,得电子的速率为
2 0 12
0.995c
可知在等温过程中,氧气吸收的热量为
QAB WAB 2.77 103 J
(2)沿A到C再到B的过程中系统做功和吸热分别为
WACB WAC WCB WCB PC (VB VC ) 2.0 10 J
3
QACB WACB 2.0 10 J
3
6-19 0.32kg的氧气作图中所示循环ABCDA,设V2=2V1, T1=300K,T2=200K,求循环效率. (已知氧气的定体摩 尔热容的实验值Cv, m=21.1 J·mol-1·K-1)
0
由于电子的总能量 E E0 ,因此该电子相对 观察者所在的参考系还具有动能、动量和速率。 电子动能为
Ek E E0 4.488MeV
2 2 2 2 由 E p c E0,得电子的动量为
1 p c
2 E 2 E0 2.66 10 21 kg m s 1
解 根据分析,因AB、CD为等温过程,循环过程中系 统作的净功为
W WAB WCD V2 m V1 m RT1 ln RT2 ln M V1 M V2
V2 m R(T1 T2 ) ln 5.76 103 J M V1
循环过程中系统吸热的总量为 V2 m m Q QAB QDA RT1 ln CV ,m (T1 T2 ) M V1 M
QV E nCV ,m (T2 T1 ) 93.1J
m RdT (2)在等压过程中 dW PdV M T
W dW
2
T1
m RdT 36.6J M
而在等体过程中,因气体的体积不变,故做功为
WV p(V )dV 0
6-11 如图所示,系统从状态A沿ABC变化到状态C 的过程中,外界有326J的热量传递给系统,同时系统 对外作功126J. 如果系统从状态C沿另一曲线CA回到 状态A,外界对系统作功为52J,则此过程中系统是吸 热还是放热?传递热量是多少?
/2
mv0 / k (m m0 )
A
9. 2 / 3
第十章 波动
一、选择题 1. D 2. D 3. D 4. C 5. B 6. D 7. A 8. C 9. C 10. C
二、填空题
3. x=t3+8t-628 ;x0=-628 m;v0=8 m/s 8. v>=ul/h 10. t=1 s;s=1.5 m;0.5 rad
式中符号表示系统向外放热252J
6-16 如图所示,使1mol氧气(1)由A等温 地变到B;(2)由A等体地变到C,再由C等压地 变到B. 试分别计算氧气所作的功和吸收的热量.
解 (1)沿AB作等温膨胀的过程中,系统作功
WAB
VB VB m RT ln( ) PAVA ln( ) 2.77 103 J M VA VA
解 系统经ABC过程所吸收的热量及对外所作的功分别为 则由热力学第一定律可得由A到C过程中系统内能的增量
QABC 326J
WABC 126J
EAC QABC WABC 200J
由此可得从C到A系统内能的增量为
ECA 200J
从C到A,系统所吸收的热量为
QCA ECA WCA 252J
3.84 104 J
W 15% Q
18-17 若一电子的总能量为5.0MeV,求该 电子的静能、动能、动量和速率。
解 粒子静能 E0是指粒子在相对静止的参考系中 m 的能量。对确定的粒子, 0 为常数,故其静能也 31 为常数。对于电子,有 m0 9.110 kg ,其 静能为 E 0.512MeV
6-10 一压强为1.010 5pa,体积为1.010-3m3的 氧气自0℃加热到100℃,问:(1)当压强不变时, 需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?
解 根据题给初始条件得氧气的物质的量为
n m / M PV1 / RT1 4.4110 mol 1