找规律万能公式

合集下载

公式技巧个人经验10个数字规律。

公式技巧个人经验10个数字规律。

公式技巧个人经验10个数字规律。

公式技巧是数学学习中必不可少的一部分,掌握了一些数字规律,可以帮助我们更好地理解公式,提高数学解题的效率。

下面我将分享10个数字规律的个人经验。

1. 11的倍数规律:11的倍数的各位数字之和相等。

例如,121是11的倍数,1+2+1=4,242是11的倍数,2+4+2=8,这些数字的各位数字之和都是相等的。

2. 平方数末位规律:平方数的末位只能是0、1、4、5、6、9。

例如,2的平方是4,3的平方是9,4的平方是16,5的平方是25,6的平方是36,这些平方数的末位只能是0、1、4、5、6、9。

3. 9的倍数规律:9的倍数的各位数字之和一定是9的倍数。

例如,18是9的倍数,1+8=9,27是9的倍数,2+7=9,这些数字的各位数字之和都是9的倍数。

4. 偶数规律:偶数的个位数字一定是0、2、4、6、8。

例如,2、4、6、8、10等都是偶数,它们的个位数字都是0、2、4、6、8。

5. 7的倍数规律:7的倍数的个位数字乘以2再减去十位数字,结果一定是7的倍数。

例如,77是7的倍数,7乘以2减去7等于7,147是7的倍数,4乘以2减去1等于7,这些数字的个位数字乘以2再减去十位数字的结果都是7的倍数。

6. 3的倍数规律:3的倍数的各位数字之和一定是3的倍数。

例如,9是3的倍数,9的各位数字之和是9,18是3的倍数,1+8=9,这些数字的各位数字之和都是3的倍数。

7. 4的倍数规律:4的倍数的末两位数字一定是4的倍数。

例如,20是4的倍数,20的末两位数字是20,24是4的倍数,24的末两位数字是24,这些数字的末两位数字都是4的倍数。

8. 5的倍数规律:5的倍数的末位数字一定是0或5。

例如,5、10、15、20等都是5的倍数,它们的末位数字都是0或5。

9. 6的倍数规律:6的倍数一定是2和3的倍数。

例如,12是6的倍数,它同时也是2和3的倍数,18也是6的倍数,它同时也是2和3的倍数。

初中数学找规律常见公式

初中数学找规律常见公式

一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法. 基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧. 二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减 1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1 B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1 (五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律. 三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。

(完整word版)初中数学找规律常见公式

(完整word版)初中数学找规律常见公式

一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2 (二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+n2-1=n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是.解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3,4,5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2(三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,?,144,196,…?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律?(2)第二、三组分别跟第一组有什么关系?(3)取每组的第7个数,求这三个数的和?2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的?4、3^2-1^2=8×15^2-3^2=8×27^2-5^2=8×3……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。

初中数学找规律常见公式

初中数学找规律常见公式

一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n 位的数也有一种通用求法.基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数.举例说明:2、5、10、17……,求第n位数.分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,…….序列号:1,2,3, 4, 5,…….容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:A:2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.例:4,16,36,64,,144,196,… (第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.三、基本步骤1、先看增幅是否相等,如相等,用基本方法(一)解题.2、如不相等,综合运用技巧(一)、(二)、(三)找规律3、如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······2,5,10,17,26,·····0,6,16,30,48······(1)第一组有什么规律(2)第二、三组分别跟第一组有什么关系(3)取每组的第7个数,求这三个数的和2、观察下面两行数2,4,8,16,32,64,...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前2002个中有几个是黑的4、3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律写出两个连续技术的平方差为888的等式五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差。

数字找规律的方法

数字找规律的方法

数字找规律的方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-数字规律第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。

1、等差数列的常规公式。

设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。

[例1]1,3,5,7,9,() .8 C[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。

从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。

故选C。

2、二级等差数列。

是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 .33 C [解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。

3、分子分母的等差数列。

是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。

[例3] 2/3,3/4,4/5,5/6,6/7,() A、8/9 B、9/10 C、9/11 D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。

故选D。

4、混合等差数列。

是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。

[例4] 1,3,3,5,7,9,13,15,,(),()。

A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。

第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。

5、等比数列的常规公式。

设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。

55个绝密数学公式(万能心算口诀)

55个绝密数学公式(万能心算口诀)

55个绝密数学公式(万能心算口诀)下面是向学霸进军为高中的学生们整理的2022高中数学必背之50个公式,50种快速做题方法,以供参考。

1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x 1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注:上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x1)/(x-1),其他不变。

2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x k),则T=2k;(2)若f(x)=m/(x k)(m不为0),则T=2k;(3)若f(x)=f(x k) f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a x)=f(b-x)恒成立,对称轴为x=(ab)/2(2)函数y=f(a x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a x) f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n m)=S(m) q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an 1=pan q(n 1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1) x,这是一阶特征根方程的运用。

初中数学规律公式归纳整理

初中数学规律公式归纳整理

初中数学规律公式归纳整理初中数学中有许多规律和公式,这些规律和公式是数学知识的基础,掌握它们对于学习数学非常重要。

下面,我将归纳整理一些常见的初中数学规律和公式,希望对同学们的学习有所帮助。

一、整数运算规律1.加法的交换律:a+b=b+a。

2.加法的结合律:(a+b)+c=a+(b+c)。

3.乘法的交换律:a×b=b×a。

4.乘法的结合律:(a×b)×c=a×(b×c)。

5.乘法对加法的分配律:a×(b+c)=a×b+a×c。

二、小数运算规律1.小数的加法:按位对齐,从低位开始相加。

2.小数的减法:将减数变为相反数,然后按照小数的加法规律进行计算。

3.小数的乘法:先将小数转化为整数,再进行乘法运算,最后确定小数点的位置。

4.小数的除法:先将除数和被除数都乘以相同的倍数,使除数成为整数,再进行除法运算,最后确定小数点的位置。

三、分数运算规律1.分数的加法:先找到两个分数的公共分母,然后按照相同分母的分数相加规则进行计算。

2.分数的减法:先找到两个分数的公共分母,然后按照相同分母的分数相减规则进行计算。

3.分数的乘法:将两个分数的分子相乘,分母相乘,然后约分。

4.分数的除法:将除数倒置,然后按照分数的乘法规则进行计算。

四、代数式化简1.同类项的合并:将具有相同字母的项合并,并将它们的系数相加。

2.配方法则:将两个括号中的每一项逐一相乘,并将结果相加。

3.公因式提取:将各项中的公因式提取出来,然后合并。

五、平方数与完全平方数1.平方数的性质:平方数是某个数的平方,例如1、4、9、16等。

2.完全平方数的性质:完全平方数是某个数的平方,并且这个数是整数,例如1、4、9、16等。

六、勾股定理勾股定理是数学中非常重要的定理之一,它是指在一个直角三角形中,直角边的平方之和等于斜边的平方。

即a²+b²=c²,其中a和b 是直角三角形的两条直角边,c是斜边。

找规律题知识点总结

找规律题知识点总结

找规律题知识点总结一、数列的基本概念数列是由一系列的数按照一定的顺序排列而成的序列。

数列中的每个数称为数列的项,用a1,a2,a3,…,an,…表示。

如果数列中各项之间存在明显的规律,那么我们就可以根据这个规律来找出数列的下一项或者某一项是多少。

常见的数列有等差数列和等比数列,它们是我们解找规律题时经常遇到的数列类型。

1. 等差数列等差数列是一种特殊的数列,它的每一项与前一项之间的差都相等。

通常用公式an = a1 + (n-1)d来表示等差数列的第n项,其中a1是首项,d是公差,n是项数。

解题时,我们可以根据等差数列的特点来推导出数列的通项公式,从而方便地求出任意项的值。

2. 等比数列等比数列是一种特殊的数列,它的每一项与前一项之间的比都相等。

通常用公式an = a1 *r^(n-1)来表示等比数列的第n项,其中a1是首项,r是公比,n是项数。

解题时,我们可以根据等比数列的特点来推导出数列的通项公式,从而方便地求出任意项的值。

二、函数的基本概念函数是数学中的一个重要概念,它描述了一个变量与另一个变量之间的对应关系。

通常用y = f(x)来表示函数,其中x是自变量,y是因变量,f(x)是函数的表达式。

在解找规律题时,我们常常需要根据给定的函数来求出特定的值或者变量之间的关系。

三、找规律题的解题方法在解找规律题时,我们需要根据数列和函数的特点来寻找规律并求解问题。

下面我们将从几个具体的例子出发,总结出解找规律题的一般方法和思路。

例1:已知数列1, 3, 6, 10, 15, ...,求出第n项的表达式。

解:首先我们观察数列中相邻两项之间的关系。

我们可以发现,每一项与前一项之间的差递增1,即1,2,3,4,5,这是一个等差数列。

因此我们可以利用等差数列的通项公式来求解。

设数列的第n项为an,则有an = a1 + (n-1)d,其中a1=1,d=1。

代入得到an = 1 + (n-1)*1 = n*(n-1)/2。

找规律知识点文字总结

找规律知识点文字总结

找规律知识点文字总结一、数列的规律在数列中,我们常常需要找到数列中的规律,进而可以推断出数列的通项公式。

在找规律时,我们可以根据数列中相邻项的关系、公差的规律、首项和末项的关系等来进行分析。

常见的数列有等差数列、等比数列、斐波那契数列等,它们的规律各不相同,需要我们对数列有深入的了解才能进行准确的推断。

1. 等差数列的规律等差数列是指数列中相邻两项之差是一个常数的数列,常用的表示方法为an=a1+(n-1)d。

其中,an表示数列的第n项,a1为首项,d为公差,n为项数。

在找等差数列的规律时,我们可以根据公差的规律来进行推断,一般来说,如果数列中相邻两项的差是一个常数,那么就可以判断它是等差数列。

另外,我们还可以通过首项和末项之间的关系来进行判断,例如首项和末项的和是数列项数的两倍减一。

2. 等比数列的规律等比数列是指数列中相邻两项之比是一个常数的数列,常用的表示方法为an=a1*r^(n-1)。

其中,an表示数列的第n项,a1为首项,r为公比,n为项数。

在找等比数列的规律时,我们可以根据相邻两项之比是一个常数的规律来进行推断。

另外,我们还可以通过首项和末项的关系来进行判断,例如首项和末项的乘积是公比的项数次方。

3. 斐波那契数列的规律斐波那契数列是指数列中每一项都是前两项之和的数列,常用的表示方法为an=an-1+an-2。

在找斐波那契数列的规律时,我们可以通过每一项都是前两项之和的规律来进行推断。

例如,我们可以利用递推公式来计算斐波那契数列的任意项,另外,还可以通过黄金分割比例来推断斐波那契数列的性质。

二、函数的规律函数是数学中一个非常重要的概念,它描述了数学世界中各种关系的规律。

通过找函数的规律,我们可以了解函数的性质和特点,进而可以解决各种问题。

常见的函数有线性函数、二次函数、指数函数、对数函数等,它们的规律各不相同,需要我们对函数有深入的了解才能进行准确的分析。

1. 线性函数的规律线性函数是指函数的图像是一条直线的函数,常用的表示方法为y=kx+b。

数字规律万能公式算法

数字规律万能公式算法

数字规律万能公式算法数字规律是数学中的一个重要概念,它可以帮助我们发现数字之间的关系和规律。

而万能公式算法则是一种能够适用于各种数字规律的算法,它可以帮助我们快速推导出数字序列中的规律,并预测未来的数字。

数字规律是数学中的一个重要研究领域,它涉及到数列、数表、数图等多种形式。

在实际生活中,数字规律也随处可见,比如我们常见的斐波那契数列、等差数列、等比数列等等。

这些数字规律不仅仅是数学的研究对象,也是我们解决实际问题的重要工具。

然而,对于一些复杂的数字规律,我们往往需要花费大量的时间和精力去研究和推导。

这时,万能公式算法就能派上用场了。

万能公式算法是一种基于数学原理的算法,它可以通过一系列的计算和推导,快速找到数字序列中的规律,并预测未来的数字。

万能公式算法的核心思想是通过观察数字序列中的规律,找到其中的数学模式,并将其转化为数学公式。

这个公式可以是线性的、指数的、对数的等等。

通过这个公式,我们可以根据已知的数字推导出未知的数字,从而预测未来的数字。

举个例子来说,假设我们有一个数字序列:1,4,9,16,25,...,我们想要找到其中的规律并预测下一个数字。

通过观察我们可以发现,这个序列是平方数序列,即每个数字都是前一个数字的平方。

那么我们可以得到一个公式:an = n^2,其中an表示第n个数字。

通过这个公式,我们可以计算出下一个数字为36。

万能公式算法的优势在于它的适用性。

无论是简单的等差数列还是复杂的斐波那契数列,万能公式算法都可以找到其中的规律,并预测未来的数字。

这使得我们在解决实际问题时能够更加高效和准确。

当然,万能公式算法也有一些限制。

首先,它需要我们对数字序列有一定的观察和分析能力,才能找到其中的规律。

其次,万能公式算法只适用于一些简单的数字规律,对于一些复杂的规律可能无法找到合适的公式。

最后,万能公式算法只能预测未来的数字,而无法解释其中的原因和机制。

总的来说,数字规律万能公式算法是一种能够帮助我们发现数字序列中规律的算法。

数学找规律公式大全

数学找规律公式大全

数学找规律公式大全一、数字规律。

1. 等差数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

- 通项公式:a_n=a_1+(n - 1)d,其中a_n表示第n项的数值,a_1是首项(数列的第一项),n是项数,d是公差(相邻两项的差值)。

- 例如:数列1,3,5,7,·s,a_1=1,d = 2,那么第n项a_n=1+(n - 1)×2=2n - 1。

2. 等比数列。

- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列。

- 通项公式:a_n=a_1q^n - 1,其中a_n表示第n项的数值,a_1是首项,n是项数,q是公比(相邻两项的比值)。

- 例如:数列2,4,8,16,·s,a_1=2,q = 2,则第n项a_n=2×2^n - 1=2^n。

3. 数字规律中的其他常见类型。

- 平方数数列:1,4,9,16,·s,通项公式为a_n=n^2。

- 立方数数列:1,8,27,64,·s,通项公式为a_n=n^3。

- 斐波那契数列:1,1,2,3,5,8,·s,从第三项起,每一项都等于前两项之和,即a_n=a_n - 1+a_n - 2(n≥slant3)。

二、图形规律。

1. 点的规律。

- 在平面直角坐标系中,如果点的坐标呈现一定规律。

例如,点(1,1),(2,4),(3,9),(4,16)·s,横坐标为n,纵坐标为n^2。

2. 多边形边数与内角和的规律。

- 多边形内角和公式:(n - 2)×180^∘,其中n为多边形的边数。

例如三角形(n = 3)内角和为(3 - 2)×180^∘=180^∘;四边形(n = 4)内角和为(4 -2)×180^∘=360^∘。

3. 图形数量规律。

- 例如,用小棒摆三角形,摆1个三角形需要3根小棒,摆2个三角形需要5根小棒(共用一条边),摆3个三角形需要7根小棒。

数列找规律万能公式

数列找规律万能公式

数列找规律公式数列找规律用拉格朗日插值.拉格朗日“提出”了这种方法,所谓得插值,就就是“插”“值",就就是指找出一个通过给出离散数据点得函数。

即,数列中给出数据可以表示为在坐标系上得点,x坐标就就是第几项,y坐标就就是该项得值。

比如说,“1 ,3, 7,8, 0,5,9,2,4,6”这个数列可以表示为:在Mathematica中用几行简单得代码即可做到:接下来,我们找出这些点都在哪一个函数上面,接着下来把下一项得项数带进去,就得到了下一项得值-—这实际上就就是通项公式!事不宜迟,马上来试一试!首先,我们先来瞧瞧拉格朗日插值公式就是怎么样得:好吧,我知道小学生又瞧不懂了。

那下面我们先试一一个简单得数列:1、8、27…那下一个就是什么呢?首先,这表示存在一个函数。

当自变量分别为1、2、3时函数值为1、8、27。

于就是我们可以设一个函数:接下来就就是关键得一步了!小学生可以不懂这就是怎么回事。

但有什么问题?考试会用就行了(如果您不介意再解释一下一些其她得问题、、、比如未知数、自变量与分数得运算).容易瞧到,整个式子就是三项得与,每一个点都有一项.对于每一个单独得点来说,分子就是这一点得函数值乘上x与其她点得自变量得差.而分母就就是该店得自变量与其她点得自变量得差得积。

于就是,一个通项公式就出来了.就是于就是我们迫不及待地把x=4带进去,得到58、至此,大功告成。

等等,什么答案写着就是64?别管了,肯定就是盗版书印错答案了。

有什么可能拉格朗日大牛会错呢?什么,我们得规律不对?正确得就是y=x^3?好得,让我瞧瞧。

嗯…难道就是拉格朗日错了?但就是前面我们得估算也就是没问题得啊.再仔细瞧一下坑爹得高数课本,才发现原来就是我们一直搞错了。

如果我们给得就是n个点,那么拉格朗日给出得函数将会就是(n-1)次得。

这不坑爹吗…用公式之前还得想清楚这个函数就是几次得,而且如果就是更高次数得还没办法加上点去求(更别说斐波那契数列这样得用递归定义得数列了).这就意味着,就算就是1、2、3、4、5、6…这样得数列,拉格朗日插值法在耗尽您大量得考试时间去求出通项公式以后,还会给出一个超级坑爹得答案!那么这个方法还有什么用!别急,前面得计算都就是为后面做铺垫得。

培优练习一:找规律(1)-2021届九年级中考数学(苏科版)一轮复习

培优练习一:找规律(1)-2021届九年级中考数学(苏科版)一轮复习

2021中考数学培优练习一-------找规律一、规律类题必记知识点1. 分组规律 总数÷周期个数=周期数+余数 余几则是周期中的第几个,无余,最后一个。

2. 数列规律: 等差数列 差*n+(首数-差) 3,7,11,15…… 4n+(3-4)=4n-1等比数列: 即相邻的两个项的比值相等(后÷前)。

2,4,8,16……2n差比结合 2,8,26,80…… 3n-1 乘积 3×2 4×3 5×4 ……(2n+1)(n+1) 3.图形规律:(1) 一般 掐头去尾变规律。

(2)分开计算,化为数字规律。

(3) 翻折、旋转的应用。

4.注意:负号 (-1)n 或2(n+1)5. 三个找规律,四个来验证:即把前三个写成相同的形式,写出规律,并用第四个来验证规律。

巧:1可用任何数(0除外)的零次幂或nn 表示。

55;(12)0 ; √3,3,3√3,9,……可以写成√3,√9,√27,√81,……6. 坐标类: 写出规律,转换为数字规律。

或分组规律。

7. 必背公式:等差求和公式(首数+尾数)×个数2;1+3+5+……+2n -1=n 2;8. 部分题目,奇偶分开(即当个数为奇数时与偶数时规律不同)。

一.填空题(共39小题)1.从1开始,将连续的奇数相加,得到的情况如下:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;…按此规律,请你猜想从1开始,将15个连续奇数相加的和是 . 2.已知一列数:a 1=2,a 2=a 1+4,a 3=a 2+6,……,a n =a n ﹣1+2n (n 为正整数,n ≥2), (1)a 4的值是 ;(2)当n =20l 8时,则a n ﹣37n +324的值是 .3.如图,平面内有公共端点的六条射线OA ,OB ,OC ,OD ,OE ,OF ,从射线OA 开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2016”在射线 上.第 3题4.按数字排列规律:…,写出第n个数为(n为正整数).5.在横线上填上适当的数:1,1,2,3,5,.6.观察下面的一列数:,﹣,,﹣,,﹣…请你找出其中排列的规律,解答(1)第10个数是,第15个数是.(2)第2016个数是.7.根据下列各式的规律,在横线处填空:,,=,…,+﹣=8.对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=.9.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是.11.观察“田”字中各数之间的关系:则c的值为.12.已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=.14.观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,① ①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017=;5+52+53…+52019=_________________15.古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是.16.已知a1=﹣,a2=,a3=﹣,a4=,a5=﹣,…,则a8=.17.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.18.观察下列各式:…请你将发现的规律用含自然数n(n ≥1)的代数式表达出来.19.找出下列各图形中数的规律,依此,a的值为.20.已知a1=,a2=,a3=,…,a n+1=(n为正整数,且t≠0,1),则a2016=(用含有t的代数式表示).21.将一些圆按照如图方式摆放,从上向下有无数行,其中第一行有2个圆,第二行有4个圆,第三行有6个圆…按此规律排列下去,则前50行共有圆个.22.如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形……,则第(5)个图案中有个正方形,第n个图案中有个正方形.23.观察下列一组由★排列的“星阵”,按图中规律,第n个“星阵”中的★的个数是.第23题第24题24.每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.25.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有个○.第24题第27题26.如图,观察各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第10个图形中小圆点的个数为.27.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是.28.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=+++…++….图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△C n﹣2C n﹣1∁n、….假设AC=2,这些三角形的面积和可以得到一个等式是.29.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是枚.30.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由个组成的,依此,第n个图案是由个组成的.31.如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由个圆组成.32.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是.33.“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是,并运用这个公式求得图2中多边形的面积是.34.点O在直线AB上,点A1、A2、A3,…在射线OA上,点B1、B2、B3,…在射线OB上,图中的每一个实线段和虚线段的长均为一个单位长度,一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以O为圆心的半圆匀速运动,速度为每秒1个单位长度,按此规律,则动点M到达A101点处所需时间为秒.35.如图,下图是一组由菱形和矩形组成的有规律的图案,第1个图中菱形的面积为S(S为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推…,则第n个图中阴影部分的面积可以用含n的代数式表示为.(n≥2,且n是正整数)36.如图,在标有刻度的直线l上,从点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,…按此规律,继续画半圆,则第4个半圆的面积是第3个半圆面积的倍,第n个半圆的面积为(结果保留π)37.通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.38.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有个.39.电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=6.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为P n(n为正整数),则点P2009与点P2010之间的距离为.参考答案与详解一.填空题(共39小题)1.从1开始,将连续的奇数相加,得到的情况如下:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;…按此规律,请你猜想从1开始,将15个连续奇数相加的和是225.【分析】仔细观察给出的等式可发现从1开始连续两个奇数和是22,连续3个奇数和是32,连续4个,5个奇数和分别为42,52从而推出从1开始几个连续奇数和等于几的平方,根据此规律解题即可.【解答】解:∵1=1=121+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52按此规律请你猜想从1开始,将15个连续奇数相加,和是152=225;故答案为:225.【点评】此题主要考查学生对规律型题的掌握,做此类题要先对给出的数据进行观察分析从而发现规律,根据规律解题.2.已知一列数:a1=2,a2=a1+4,a3=a2+6,……,a n=a n﹣1+2n(n为正整数,n≥2),(1)a4的值是20;(2)当n=20l8时,则a n﹣37n+324的值是4000000.【分析】根据规律表示出a n即可.【解答】解:(1)观察规律可知,a n比a n﹣1多2n.则a4的=2+4+6+8=20(2)由已知n=2018时,a2018=2+4+6+……+2×2018=2×(1+2+3+……+2018)=2×=2019×2018∴a2018﹣37×2018+324=2019×2018﹣37×2018+324=4000000故答案为:(1)20,(2)4000000【点评】本题为规律探究题,考查数值规律归纳能力和整式运算.3.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2016”在射线OF上.【分析】通过观察已知图形,发现共有六条射线,数字依次落在每条射线上,因此六个数字依次循环,算出2016有多少个循环即可.【解答】解:通过观察已知图形,发现共有六条射线,∴数字1﹣2016每六个数字一个循环.∵2016÷6=336,∴2016在射线OF上.故答案为:OF.【点评】题目考查了数字的变化类,通过考察数字的所在线段,考查学生观察和总结能力,解决问题的关键是计算出6个数字一个循环.题目整体较为简单,适合随堂训练.4.按数字排列规律:…,写出第n个数为(n为正整数).【分析】观察已知数字排列,发现,分数分母依次增加1,分子为自然数的平方,结合分子分母和序号的关系得出答案.【解答】解:按数字排列规律:第1个数:=,第2个数:=,第3个数:=,…,第n个数:.故答案为:.【点评】题目考查了数字的变化规律,通过数字与序号之间的规律考查学生观察能力和总结能力,题目整体较为简单,适合随堂训练.5.在横线上填上适当的数:1,1,2,3,5,8.【分析】观察可知每相邻两个数的和是后面一个数,由此即可解决问题.【解答】解:1+1=2,1+2=3,2+3=5,3+5=8,故答案为8【点评】本题考查规律型:数字问题,解题的关键是学会从特殊到一般的探究方法,属于中考常考题型、6.观察下面的一列数:,﹣,,﹣,,﹣…请你找出其中排列的规律,解答(1)第10个数是﹣,第15个数是.(2)第2016个数是﹣.【分析】(1)通过观察数字,可以得出以下规律,奇数项为正,偶数项为负,奇数项分子为1,分母为项数加1,偶数项,分子为项数,分母为项数加一,进而可以得出答案.(2)由(1)的规律可以直接写出第2016个数.【解答】解:(1)观察数字,可以得出以下规律:奇数项为正,奇数项分子为1,分母为项数加1,∴第10个数是:﹣;偶数项为负,分子为项数,分母为项数加一,∴第15个数是:;故答案为:﹣,.(2)由(1)中总结规律:∵偶数项为负,分子为项数,分母为项数加一,∴第2016个数是:﹣.故答案为:﹣.【点评】题目考查了数字的变化规律,通过数字变化项数之间的规律,考查学生观察能力和总结问题的能力,题目整体较简单,适合随堂训练.7.根据下列各式的规律,在横线处填空:,,=,…,+﹣=【分析】根据给定等式的变化,可找出变化规律“+﹣=(n为正整数)”,依此规律即可得出结论.【解答】解:∵+﹣1=,+﹣=,+﹣=,+﹣=,…,∴+﹣=(n为正整数).∵2018=2×1009,∴+﹣=.故答案为:.【点评】本题考查了规律型中数字的变化类,根据等式的变化,找出变化规律“+﹣=(n为正整数)”是解题的关键.8.对于任意大于0的实数x、y,满足:log2(x•y)=log2x+log2y,若log22=1,则log216=4.【分析】利用log2(x•y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2×2×2×2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.【点评】本题考查了规律型:认真观察、仔细思考,善用联想是解决这类问题的方法.9.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是﹣24.【分析】由已知数列得出a n=1+2+3+…+n=,再求出a10、a11的值,代入计算可得.【解答】解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a10==55、a11==66,则a4+a11﹣2a10+10=10+66﹣2×55+10=﹣24,故答案为:﹣24.【点评】本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.10.5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x ﹣12=6﹣x求解.11.观察“田”字中各数之间的关系:则c的值为270或28+14.【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+14【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.12.已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.【分析】根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【解答】解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.【点评】本题考查了规律型中数字的变化类,根据数值的变化找出S n的值,每6个一循环是解题的关键.13.将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.14.观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017=.【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.【点评】本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.15.古希腊数学家把1、3、6、10、15、21、…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是5050.【分析】设第n个三角形数为a n,分析给定的三角形数,根据数的变化找出变化规律“a n=1+2+…+n=”,依此规律即可得出结论.【解答】解:设第n个三角形数为a n,∵a1=1,a2=3=1+2,a3=6=1+2+3,a4=10=1+2+3+4,…∴a n=1+2+…+n=,将n=100代入a n,得:a100==5050,故答案为:5050.【点评】本题考查了规律型中的数字的变化类,解题的关键是找出变化规律“a n=1+2+…+n=”.16.已知a1=﹣,a2=,a3=﹣,a4=,a5=﹣,…,则a8=.【分析】根据已给出的5个数即可求出a8的值;【解答】解:由题意给出的5个数可知:a n=当n=8时,a8=故答案为:【点评】本题考查数字规律问题,解题的关键是正确找出规律,本题属于中等题型.17.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【分析】根据按一定规律排列的一列数依次为:,,,,,,…,可得第n个数为,据此可得第100个数.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.【点评】本题考查了数字变化类问题,解决问题的关键是找出变化规律,认真观察、仔细思考,善用联想是解决这类问题的方法.18.观察下列各式:…请你将发现的规律用含自然数n(n ≥1)的代数式表达出来(n≥1).【分析】观察分析可得:=(1+1);=(2+1);…则将此题规律用含自然数n(n≥1)的等式表示出来【解答】解:∵=(1+1);=(2+1);∴=(n+1)(n≥1).故答案为:=(n+1)(n≥1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n+1)(n≥1).19.找出下列各图形中数的规律,依此,a的值为226.【分析】由0+2=1×2,2+10=3×4,4+26=5×6,6+50=7×8,得出规律:左下和右下的两数和等于另外两数的积,即可得出a的值.【解答】解:根据题意得出规律:14+a=15×16,解得:a=226.故答案为:226.【点评】本题考查了数字的变化类;根据题意得出规律是解决问题的关键.20.已知a1=,a2=,a3=,…,a n+1=(n为正整数,且t≠0,1),则a2016=(用含有t的代数式表示).【分析】把a1代入确定出a2,把a2代入确定出a3,依此类推,得到一般性规律,即可确定出a2016的值.【解答】解:根据题意得:a1=,a2=,a3=,…,2016÷3=672,∴a2016的值为,故答案为【点评】此题考查了分式的混合运算,弄清题中的规律是解本题的关键.21.将一些圆按照如图方式摆放,从上向下有无数行,其中第一行有2个圆,第二行有4个圆,第三行有6个圆…按此规律排列下去,则前50行共有圆2550个.【分析】先找出规律,确定出第n行圆的个数为2n个,即:第50行为100个,进而求2+4+6+8+…+100即可得出结论.【解答】解:∵第一行有2个圆,第二行有4个圆,第三行有6个圆,…∴第n行有2n个圆,∴前50行共有圆:2+4+6+8+…+2×50=2+4+6+8+…+100=2550个,故答案为:2550【点评】本题主要考查图形的变化规律,解题的关键是根据题意得出每行圆的个数即为行数的2倍.22.如图,下列图案是由火柴棒按某种规律搭成的,第(1)个图案中有2个正方形,第(2)个图案中有5个正方形,第(3)个图案中有8个正方形……,则第(5)个图案中有14个正方形,第n个图案中有3n﹣1个正方形.【分析】由题意知,正方形的个数为序数的3倍与1的差,据此可得.【解答】解:∵第(1)个图形中正方形的个数2=3×1﹣1,第(2)个图形中正方形的个数5=3×2﹣1,第(3)个图形中正方形的个数8=3×3﹣1,……∴第(5)个图形中正方形的个数为3×5﹣1=14个,第n个图形中正方形的个数(3n﹣1),故答案为:14、3n﹣1.【点评】本题主要考查图形的变化规律,根据题意得出正方形的个数为序数的3倍与1的差是解题的关键.23.观察下列一组由★排列的“星阵”,按图中规律,第n个“星阵”中的★的个数是n2+n+2.【分析】排列组成的图形都是三角形.第一个图形中有2+1×2=4个★,第二个图形中有2+2×3=8个★,第三个图形中有2+3×4=14个★,…,继而可求出第n个图形中★的个数.【解答】解:∵第一个图形有2+1×2=4个,第二个图形有2+2×3=8个,第三个图形有2+3×4=14个,第四个图形有2+4×5=22个,…∴第n个图形共有:2+n×(n+1)=n2+n+2.故答案为:n2+n+2.【点评】本题考查规律型中的图形变化问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.24.每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035.【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.【点评】本题考查规律型:图形的变化类,解答本题的关键是明确题意,发现题目中三角形个数的变化规律,利用数形结合的思想解答.25.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.26.如图,观察各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第10个图形中小圆点的个数为144.【分析】根据题目中各个图形的小黑点的个数,可以发现其中的规律,从而可以得到第10个图形中小圆点的个数.【解答】解:由题意可得,第一个图形的小圆点的个数为:3×3=9,第二个图形的小圆点的个数为:4×4=16,第三个图形的小圆点的个数为:5×5=25,……第十个图形的小圆点的个数为:12×12=144,故答案为:144.【点评】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中图形的小圆点的变化规律.27.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是n2+2n.【分析】由第1个图形是2×3﹣3、第2个图形是3×4﹣4、第3个图形是4×5﹣5,据此可得答案.【解答】解:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要云子的个数是(n+1)(n+2)﹣(n+2)=n2+2n,故答案为:n2+2n.【点评】本题考查了图形的变化类问题,首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.28.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=+++…++….图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△C n﹣2C n﹣1∁n、….假设AC=2,这些三角形的面积和可以得到一个等式是2=.【分析】先根据AC=2,∠B=30°,CC1⊥AB,求得S△ACC1=;进而得到=×,=×()2,=×()3,根据规律可知=×()n﹣1,再根据S=AC×BC=×2×2=2,即可得到等式.△ABC【解答】解:如图2,∵AC=2,∠B=30°,CC1⊥AB,∴Rt△ACC1中,∠ACC1=30°,且BC=2,∴AC1=AC=1,CC1=AC1=,∴S△ACC1=•AC1•CC1=×1×=;∵C1C2⊥BC,∴∠CC1C2=∠ACC1=30°,∴CC2=CC1=,C1C2=CC2=,∴=•CC2•C1C2=××=×,同理可得,=×()2,=×()3,…∴=×()n﹣1,又∵S△ABC=AC×BC=×2×2=2,∴2=+×+×()2+×()3+…+×()n﹣1+…∴2=.故答案为:2=.【点评】本题主要考查了图形的变化类问题,解决问题的关键是找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.29.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.【分析】设第n个图形有a n个旗子,罗列出部分a n的值,根据数值的变化找出变化规律“a2n+1=3n+1,a2n+2=3(n+1)(n为自然数)”,依次规律即可解决问题.【解答】解:设第n个图形有a n个旗子,观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6,a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n为自然数).当n=4时,a9=3×4+1=13.故答案为:13.【点评】本题考查了规律型中得图形的变化类,解题的关键是找出变化规律“a2n+1=3n+1,a2n+2=3(n+1)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,找出部分图形的棋子数目,根据数的变化找出变化规律是关键.30.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由16个组成的,依此,第n个图案是由3n+1个组成的.【分析】观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n个图案的基础图形的个数即可.【解答】解:由图可得,第1个图案基础图形的个数为4,第2个图案基础图形的个数为7,7=4+3,第3个图案基础图形的个数为10,10=4+3×2,…,第5个图案基础图形的个数为4+3(5﹣1)=16,第n个图案基础图形的个数为4+3(n﹣1)=3n+1.故答案为:16,3n+1.【点评】本题是对图形变化规律的考查,观察出“后一个图案比前一个图案多3个基础图形”是解题的关键.31.如图是由等圆组成的一组图,第①个图由1个圆组成,第②个图由5个圆组成,第③个图由12个圆组成…按此规律排列下去,则第⑥个图由51个圆组成.【分析】根据图形可得第n个图形一定有n排,最上边的一排有n个,下边的每排比上边的一排多1个,据此即可求解.【解答】解:第⑥个图形中圆的个数是:6+7+8+9+10+11=51.故答案为:51.【点评】本题考查了图形的变化规律,根据已知的图形得到排列规律是关键.32.如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是13.。

初中数学找规律常见公式

初中数学找规律常见公式

一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.例:4、10、16、22、28……,求第n位数.所以,第n位数是:2+n2-1=n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.B:2、4、8、16.增幅是2、4、8...答案与2的乘方有关即:2n(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.4、最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······。

数字找规律的方法

数字找规律的方法

数字找规律的方法数字找规律的方法数字规律第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。

1、等差数列的常规公式。

设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。

[例1]1,3,5,7,9,()A.7 B.8 C.11 D.13[解析]这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。

从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。

故选C。

2、二级等差数列。

是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析]相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。

3、分子分母的等差数列。

是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。

[例,,,,,()A、、、、[解析]数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为。

故选D。

4、混合等差数列。

是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。

[例4] 1,3,3,5,7,9,13,15,,(),()。

A、19 21B、19 23C、21 23D、27 30[解析]相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。

第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。

5、等比数列的常规公式。

设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。

[例5] 12,4,,,()A、、、、[解析]很明显,这是一个典型的等比数列,公比为。

故选D。

完整版)初中数学找规律解题方法及技巧

完整版)初中数学找规律解题方法及技巧

完整版)初中数学找规律解题方法及技巧初中数学找规律解题方法及技巧通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。

找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

揭示的规律,常常包含着事物的序列号。

因此,将变量和序列号放在一起进行比较,就更容易发现其中的奥秘。

初中数学考试中,数列的找规律题经常出现,本文就此类题的解题方法进行探索。

一、基本方法——看增幅一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。

然后再简化代数式a+(n-1)b。

例如,4、10、16、22、28……,求第n位数。

分析:第二位数起,每位数都比前一位数增加6,增幅都是6,因此,第n位数是:4+(n-1)6=6n-2.二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。

如增幅分别为3、5、7、9,说明增幅以同等幅度增加。

此种数列第n位的数也有一种通用求法。

基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。

三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9、17增幅为1、2、4、8.四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。

此类题大概没有通用解法,只能用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。

二、基本技巧一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。

找出的规律,通常包含序列号。

因此,将变量和序列号放在一起进行比较,就更容易发现其中的奥秘。

找规律的万能公式

找规律的万能公式

找规律的万能公式在咱们的学习和生活里,找规律这事儿可太常见啦!不管是解数学题,还是理解自然现象,甚至是预测未来的一些小趋势,找规律都能派上大用场。

就说我前段时间吧,带着我家小侄子一起玩拼图。

那是一幅特别复杂的拼图,一开始我俩都有点蒙圈。

但慢慢地,我发现其中是有规律可循的。

比如说,颜色相近的板块往往会在相邻的位置;还有那些有着相似图案线条走向的,也大概率会靠在一起。

其实找规律就像是在一堆乱麻中找到那根能解开所有结的线头。

它没有一个固定的、能适用于所有情况的所谓“万能公式”,但却有一些通用的思路和方法。

先来说说观察。

这可是找规律的第一步,得瞪大了眼睛,像个小侦探一样不放过任何蛛丝马迹。

比如说在数学里,一组数字2、4、6、8、10,咱们一看就能发现,每个数都比前一个数大 2,这就是通过仔细观察得出的规律。

再举个例子,咱们看一年里四季的更替。

春天万物复苏,夏天炎热多雨,秋天果实累累,冬天白雪皑皑。

年复一年,这就是一种规律。

可要是不认真观察,怎么能发现春天里小草偷偷冒头,秋天里树叶慢慢变黄呢?然后是尝试分类。

把一堆看似杂乱无章的东西,按照一定的标准分成不同的小堆儿。

比如说一堆图形,有三角形、正方形、圆形,咱们可以按照边的数量来分类,三角形有三条边,正方形四条边,圆形没有边。

分类之后,规律可能就会自己跳出来啦。

还有对比,这也是个好办法。

把相似的东西放在一起比一比,看看有啥相同点和不同点。

就像语文里的近义词和反义词,通过对比,咱们能更清楚地理解每个词的意思,也能找到它们使用上的规律。

有一次,我在整理书架的时候,发现各种书籍摆放得乱七八糟。

于是我决定按照类别来整理,小说放一堆,传记放一堆,科普读物放一堆。

在整理的过程中,我发现同一类别的书在厚度、封面设计上也有一些小小的规律。

另外,大胆假设也很重要。

当咱们观察到一些现象,觉得可能有规律的时候,不妨大胆地猜一猜。

就算猜错了也没关系,重新再来嘛。

比如说做数学题,看到一组数字 1、3、7、13、21,咱们可以先假设规律是依次加上一个固定的数,然后去验证,如果不对,再换个假设。

数列找规律万能公式

数列找规律万能公式

数列找规律公式数列找规律用拉格朗日插值。

拉格朗日“提出”了这种方法,所谓的插值,就是“插”“值”,就是指找出一个通过给出离散数据点的函数。

即,数列中给出数据可以表示为在坐标系上的点,x坐标就是第几项,y坐标就是该项的值。

比如说,“1 ,3,7,8,0,5,9,2,4,6”这个数列可以表示为:在Mathematica中用几行简单的代码即可做到:接下来,我们找出这些点都在哪一个函数上面,接着下来把下一项的项数带进去,就得到了下一项的值——这实际上就是通项公式!事不宜迟,马上来试一试!首先,我们先来看看拉格朗日插值公式是怎么样的:好吧,我知道小学生又看不懂了。

那下面我们先试一一个简单的数列:1、8、27…那下一个是什么呢?首先,这表示存在一个函数。

当自变量分别为1、2、3时函数值为1、8、27。

于是我们可以设一个函数:接下来就是关键的一步了!小学生可以不懂这是怎么回事。

但有什么问题?考试会用就行了(如果你不介意再解释一下一些其他的问题...比如未知数、自变量和分数的运算)。

容易看到,整个式子是三项的和,每一个点都有一项。

对于每一个单独的点来说,分子是这一点的函数值乘上x与其他点的自变量的差。

而分母就是该店的自变量和其他点的自变量的差的积。

于是,一个通项公式就出来了。

是于是我们迫不及待地把x=4带进去,得到58.至此,大功告成。

等等,什么答案写着是64?别管了,肯定是盗版书印错答案了。

有什么可能拉格朗日大牛会错呢?什么,我们的规律不对?正确的是y=x^3?好的,让我看看。

嗯…难道是拉格朗日错了?但是前面我们的估算也是没问题的啊。

再仔细看一下坑爹的高数课本,才发现原来是我们一直搞错了。

如果我们给的是n个点,那么拉格朗日给出的函数将会是(n-1)次的。

这不坑爹吗…用公式之前还得想清楚这个函数是几次的,而且如果是更高次数的还没办法加上点去求(更别说斐波那契数列这样的用递归定义的数列了)。

这就意味着,就算是1、2、3、4、5、6…这样的数列,拉格朗日插值法在耗尽你大量的考试时间去求出通项公式以后,还会给出一个超级坑爹的答案!那么这个方法还有什么用!别急,前面的计算都是为后面做铺垫的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

找规律万能公式
第一个是等差数列,差为4,所以f(n)=5+4(n-1)=4n+1。

第二个也是等差数列,差为-5,所以f(n)=2-5(n-1)=7-5n。

万能公式不大可能,最简单办法是在坐标系里画出相应点,然后看点
的大致分布,然后选择相应函数,最后根据数值求出具体函数;比如这两
个题目,点分布基本为直线,对应的函数就是一次函数,也就是等比数列,可以按y=ax+b进行求解。

找规律填空的意义
实际上在于加强对于一般性的数列规律的熟悉,虽然它有很多解,但
主要是培养你寻找数列一般规律和猜测数列通项的能力(即运用不完全归
纳法的能力)。

以便于在碰到一些不好通过一般方法求通项的数列时,能够通过前几
项快速准确地猜测到这个数列的通项公式,然后再用数学归纳法或反证法
或其它方法加以证明,绕过正面的大山,快速地得到其通项公式。

所以找
规律填空还是有助于我们增强解一些有难度又有特点的数列的。

相关文档
最新文档