苏科版七年级上数学第三章《代数式》单元检测试卷含答案

合集下载

2022-2023学年苏科版七年级上册数学第3章 代数式单元测试卷含答案

2022-2023学年苏科版七年级上册数学第3章 代数式单元测试卷含答案

2022-2023学年苏科新版七年级上册数学《第3章代数式》单元测试卷一.选择题(共10小题,满分30分)1.计算﹣(4a﹣5b),结果是()A.﹣4a﹣5b B.﹣4a+5b C.4a﹣5b D.4a+5b2.下列各式中,不是整式的是()A.3a B.C.0D.x+y3.给出下列程序:,已知当输入x值为1时,输出值为1;输入x值为﹣1时.输出值为﹣3.当输入值为时.输出值为()A.﹣B.C.0D.14.某商品每次降价20%,连续两次降价后的价格为m元,则原价为()A.1.2m元B.元C.元D.0.82m元5.如图,图(1)是由6块完全相同的正三角形地砖铺成,图(2)是由10块完全相同的正三角形地砖铺成,图(3)是由14块完全相同的正三角形地砖铺成,…,按图中所示规律.则图(8)所需地砖数量为()A.26块B.30块C.34块D.38块6.单项式﹣xy2的次数是()A.0B.1C.2D.37.填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a,b的值分别为()A.16,257B.16,91C.10,101D.10,1618.若4a2b n﹣1与a m b2是同类项,则m+n的值是()A.6B.5C.4D.39.有n个依次排列的整式:第1项是(x+1),用第1项乘以(x﹣1),所得之积记为a1,将第1项加上(a1+1)得到第2项,再将第2项乘以(x﹣1)得到a2,将第2项加上(a2+1)得到第3项,以此类推;下面4个结论中正确结论的个数为()①第4项为x4+x3+x2+x+1;②;③若第2022项的值为0,则x2023=1;④当x=﹣3时,第k项的值为.A.1B.2C.3D.410.下列代数式符合书写要求的是()A.B.ab÷c2C.D.mn•二.填空题(共10小题,满分30分)11.计算:=.12.若x﹣2y=3,则2(x﹣2y)﹣x+2y﹣5的值是.13.如果关于x,y的多项式xy|a|﹣+1是三次三项式,则a的值为.14.单项式a2b2的次数是.15.化简:﹣(﹣m+n)=.16.如果2x2﹣3x+3的值为5,则6x2﹣9x﹣5的值为.17.一公路全长xkm,汽车的速度是每小时ykm,如需提前1小时到达,则汽车的速度应变为每小时km.18.观察下列图形的构成规律,根据此规律,第9个图形中有个圆.19.赋予“3a”一个实际意义为.20.下列式子中:①﹣;②a+b,③,④,⑤a2﹣2a+1,⑥x,是整式的有(填序号)三.解答题(共5小题,满分90分)21.如图所示,在一块长为3x,宽为y(3x>y)的长方形铁皮的四个角上,分别截去半径都为的圆的.(1)试计算剩余铁皮的面积(阴影部分面积);(2)当x=4,y=8时,剩余铁皮的面积是多少?(π取3)22.(1)请你用生活解释6+(﹣2)=4的意义.(2)代数式(1+8%)x可以表示什么?23.(1)计算:(﹣10)+(+3)﹣(﹣6)﹣(+7);(2)合并同类项:x3﹣x+2x3﹣3x3.24.某企业有A、B两条加工相同原材料的生产线,在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.(1)当a=b=1时,两条生产线的加工时间分别是多少小时?(2)第一天,该企业把5吨原材料分配到A、B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A生产线分配了m吨原材料,给B生产线分配了n吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m和n有怎样的数量关系?若此时m与n 的和为6吨,则m和n的值分别为多少吨?25.如图,一扇窗户,窗框为铝合金材料,下面是由两个大小相等的长方形窗框构成,上面是由三个大小相等的扇形组成的半圆窗框构成,窗户半圆部分和两个长方形部分都安装透明玻璃(本题中π取3,长度单位为米).(1)一扇这样窗户一共需要铝合金多少米?(用含x,y的代数式表示)(2)一扇这样窗户一共需要玻璃多少平方米(铝合金窗框宽度忽略不计)?(用含x,y 的代数式表示)(3)某公司需要购进40扇窗户,在同等质量的前提下,甲、乙两个厂商分别给出如下报价:甲厂商报价为铝合金每米400元,透明玻璃不超过100平方米的部分每平方米180元,超过100平方米的部分每平方米140元;乙厂商报价为铝合金每米420元,透明玻璃每平方米160元,每购买1米铝合金送0.1平方米的透明玻璃.当x=1,y=3时,该公司在哪家厂商购买窗户合算?参考答案与试题解析一.选择题(共10小题,满分30分)1.解:﹣(4a﹣5b)=﹣4a+5b,故选:B.2.解:A、3a是整式,不符合题意;B、是分式,不是整式,符合题意;C、0是整式,不符合题意;D、x+y是整式,不符合题意;故选:B.3.解:根据题意可得,13×k+b=1,(﹣1)3×k+b=﹣3,解得:k=2,b=﹣1,当x=时,()3×2+(﹣1)=﹣.故选:B.4.解:原价为:(元);故选:B.5.解:∵图(1)所需要的正三角形地砖数为:6,图(2)所需要的正三角形地砖数为:10=6+4=6+4×1,图(3)所需要的正三角形地砖数为:14=6+4+4=6+4×2,…∴图(n)所需要的正三角形地砖数为:6+4(n﹣1)=4n+2,∴图(8)所需要的正三角形地砖数为:4×8+2=34,故选:C.6.解:单项式﹣xy2的次数为:1+2=3,故选:D.7.解:第二行第一个数的规律是2n+2,∴a=10,第一行第二个数的规律是2n,∴c=16,第二行第二个数是的规律是b=ac+1,∴b=160+1=161,故选:D.8.解:∵4a2b n﹣1与a m b2是同类项,∴m=2,n﹣1=2,∴m=2,n=3,∴m+n=2+3=5,故选:B.9.解:根据题意:第1项为x+1,a1=(x+1)(x﹣1)=x2﹣1,a1+1=x2,第2项为x2+x+1,a2=(x2+x+1)(x﹣1)=x3﹣1,a2+1=x3,第3项为x3+x2+x+1,a3=(x3+x2+x+1)(x﹣1)=x4﹣1,a3+1=x4,......∴第4项为x4+x3+x2+x+1,故①正确;a41=x42﹣1,故②错误;若第2022项为0,则x2022+x2021+......x4+x3+x2+x+1=0,∴a2022=(x2022+x2021+......x4+x3+x2+x+1)(x﹣1)=0,∴x2023﹣1=0,即x2023=1,故③正确;当x=﹣3时,设S=(﹣3)k+(﹣3)k﹣1+......+(﹣3)2+(﹣3)+1(Ⅰ),∴﹣3S=(﹣3)k+1+(﹣3)k+......+(﹣3)3+(﹣3)2+(﹣3)(Ⅱ),(Ⅰ)﹣(Ⅱ)得:4S=1﹣(﹣3)k+1,∴S=,故④错误,∴正确的有①③两个.故选:B.10.解:A、带分数要写成假分数,原书写错误,故此选项不符合题意;B、应写成分数的形式,原书写错误,故此选项不符合题意;C、符合书写要求,故此选项符合题意;D、系数应写在字母的前面,原书写错误,故此选项不符合题意.故选:C.二.填空题(共10小题,满分30分)11.解:﹣ab2﹣3ab2=(﹣﹣3)ab2=﹣ab2.故答案为:﹣.12.解:原式=2x﹣4y﹣x+2y﹣5=x﹣2y﹣5,当x﹣2y=3时,原式=3﹣5=﹣2,故答案为:﹣2.13.解:∵关于x,y的多项式xy|a|﹣+1是三次三项式,∴|a|=2且a﹣2≠0,解得,a=﹣2.故答案为:﹣2.14.解:单项式a2b2的次数是4.故答案为:4.15.解:原式=m﹣n,故答案为:m﹣n.16.解:∵2x2﹣3x+3=5,∴2x2﹣3x=2,∴6x2﹣9x﹣5=3(2x2﹣3x)﹣5=3×2﹣5=1,故答案为:1.17.解:根据题意知,汽车的速度应变为每小时km.整理,得.故答案为:.18.解:第1个图形中,圆的个数为1+1=2个;第2个图形中,圆的个数为2×2+1=5个;第3个图形中,圆的个数为3×3+1=10个;…第9个图形中,圆的个数应该是9×9+1=82个.故答案为:82.19.解:赋予“3a”一个实际意义为:若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额;若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长;故答案为:若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额(答案不唯一).20.解:①﹣,是单项式,符合题意;②a+b,是多项式符合题意,③,是单项式,符合题意;④,是分式不合题意,⑤a2﹣2a+1,是多项式符合题意,⑥x,是单项式,符合题意;即是整式的有:①②③⑤⑥.故答案为:①②③⑤⑥.三.解答题(共5小题,满分90分)21.解:(1)由图形可知:S=3xy﹣π•()2阴影=3xy﹣y2答:剩余铁皮的面积为3xy﹣y2;(2)当x=4,y=8时,S=3×4×8﹣×82=48,阴影答:剩余铁皮的面积为48.22.解:(1)小明12月份赚了6千元,消费2千元,还剩下4千元(答案不唯一);(2)11月份的电费为x元,12月份的电费比11月份增长8%,(1+8%)x表示12月份的电费(答案不唯一).23.解:(1)(﹣10)+(+3)﹣(﹣6)﹣(+7)=﹣10+3+6﹣7=﹣17+9=﹣8;(2)x3﹣x+2x3﹣3x3=(1+2﹣3)x3﹣x=﹣x.24.解:(1)当a=b=1时,4a+1=5,2b+3=5.答:当a=b=1时,A生产线的加工时间为5小时,B生产线的加工时间为5小时.(2)由题意可知,,解得:a=2,b=3.答:分配到A生产线2吨,分配到B生产线3吨.(3)由题意可知,4(2+m)+1=2(3+n)+3,解得:2m=n,,解得:m=2,n=4.答:m和n的数量关系为2m=n,当m与n的和为6吨时,m为2吨,n为4吨.25.解:(1)一扇这样窗户一共需要铝合金=8x+2y+πx(米).(2)(平方米).(3)当x=1,y=3时,1个窗户铝合金的长度:8x+2y+πx=8×1+2×3+π×1=14+3=17,共40×17=680米,1个窗户玻璃的面积:=(平方米),共50×9=450平方米,∴甲厂的报价为:400×680+100×180+(450﹣100)×140=339000,乙厂的报价为:420×680+160×(450﹣680×0.1)=346720,∵339000<346720,∴该公司在甲厂商购买窗户合算.。

第3章 代数式数学七年级上册-单元测试卷-苏科版(含答案)

第3章 代数式数学七年级上册-单元测试卷-苏科版(含答案)

第3章代数式数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、下列运算正确的是()A.a 3•a 2=a 6B.2a(3a﹣1)=6a 3﹣1C.(3a 2)2=6a4 D.2a+3a=5a2、化简(a3﹣3a2+5b)+(5a2﹣6ab)﹣(a2﹣5ab+7b),当a=﹣1,b=﹣2时,求值得()A.4B.48C.0D.23、在式子,2x+5y,0.9,﹣2a,﹣3x2y,中,单项式的个数是()A.5个B.4个C.3个D.2个4、如图,将边长为的正方形剪去两个小长方形得到S图案,再将这两个小长方形拼成一个新的长力形,求新的长方形的周长()A. B. C. D.5、下列运算中正确的是()A.(a 2)3=a 5B.a 2•a 3=a 5C.a 6÷a 2=a 3D.a 5+a 5=2a 106、下列说法正确的是( )A. 的系数是2B. 的系数是0C. 的系数是2 D. 的系数是47、若a2+3a=1,则代数式2a2+6a﹣2的值为()A.0B.1C.2D.38、若单项式2x n y m﹣n与单项式3x3y2n的和是5x n y2n,则m与n的值分别是()A.m=3,n=9B.m=9,n=9C.m=9,n=3D.m=3,n=39、下列说法中正确的是()A.多项式是二次多项式B. 是次单项式,它的系数是C. ,都是单项式,也都是整式D. ,,是多项式中的项10、下列运算正确的是()A.a 2•a 3=a 6B.(﹣a+b)(a+b)=b 2﹣a 2C.(a 3)4=a7 D.a 3+a 5=a 811、某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()万元A.(a﹣10%)(a+15%)B. a(1﹣90%)(1+85%)C. a(1﹣10%)(1+15%)D. a(1﹣10%+15%)12、下列运算正确的是()A.| |=B.x 3•x 2=x 6C.x 2+x 2=x 4D.(3x 2)2=6x 413、若,则( )A. B. C. D.无法确定14、“一个数a的3倍与2的和”用代数式可表示为()A.3(a+2)B.(3+a)aC.2a+3D.3a+215、下列计算正确的是()A.a 2+a 2=a 4B.a 5÷a 2=a 3C.a 3•a 2=a 6D.(﹣a 3)2=﹣a 6二、填空题(共10题,共计30分)16、如果代数式x2+2x的值为5,那么代数式2x2+4x﹣3的值等于________17、已知2x﹣3y=3,则代数式6x﹣9y+5的值为________18、已知实数满足,则________.19、如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为________(用含a,b的式子表示).20、、两地之间相距440千米,一辆汽车以110千米/时的速度从地前往地,(<4)小时后距离地________千米.21、我们定义三个有理数之间的新运算法则“⊕”:a⊕b⊕c=(|a﹣b﹣c|+a+b+c),如:1⊕(﹣2)⊕3=[|1﹣(﹣2)﹣3|+1+(﹣2)+3]=l,在﹣2,﹣4,﹣5,0,2,5,6这7个数中,任意取三个数作为a,b,c的值,进行“a⊕b⊕c“运算,求在所有计算的结果中的最大值是________.22、夜间温度是t °C ,白天温度比夜间高16 °C ,则白天的温度是________ °C 。

2020年苏科版七年级数学上学期《第3章代数式》单元检测卷(含答案)

2020年苏科版七年级数学上学期《第3章代数式》单元检测卷(含答案)

《第3章代数式》单元测试卷一.选择题(共15小题)1.下列代数式书写规范的是()A.a×2B.2a C.(5÷3)a D.2a22.某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则2月份的产值是()A.(1﹣10%)x万元B.(1﹣10%x)万元C.(x﹣10%)万元D.(1+10%)x万元3.如果m﹣n=5,那么﹣3m+3n﹣7的值是()A.﹣22B.﹣8C.8D.﹣224.下列各组单项式中,是同类项的是()A.与a2b B.3x2y与3xy2C.a与1D.2bc与2abc5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a46.去括号正确的是()A.﹣(3x+2)=﹣3x+2B.﹣(﹣2x﹣7)=﹣2x+7C.﹣(3x﹣2)=3x+2D.﹣(﹣2x+7)=2x﹣77.填在如图各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、958.如图,△ABC的面积为1.第一次操:分别延长AB,BC,CA至点A1,B1,C1,使A1B =AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2016,最少经过()次操作.A.6B.5C.4D.39.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个10.下列式子:x2+1,+4,,,﹣5x,0中,整式的个数是()A.6B.5C.4D.311.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.2y3B.2xy3C.﹣2xy2D.3x212.在代数式a+b,x2,,﹣m,0,,中,单项式的个数是()A.6B.5C.4D.313.下列说法错误的是()A.﹣xy的系数是﹣1B.﹣c是五次单项式C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣114.下面的说法错误的个数有()①单项式﹣πmn的次数是3次;②﹣a表示负数;③1是单项式;④x++3是多项式.A.1B.2C.3D.415.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2B.x3﹣3xy2C.x3﹣6x2y+3xy2D.x3﹣6x2y﹣3x2y二.填空题(共6小题)16.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:.17.如图,将长和宽分别是a,b的长方形纸片的四个角都剪去一个边长为x的正方形.用含a,b,x的代数式表示纸片剩余部分的面积为.18.若a、b互为相反数,c、d互为倒数,则2(a+b)﹣3cd=.19.和统称为整式.20.单项式﹣的系数是.21.多项式2x3﹣3x4+2x﹣1有项,其中次数最高的项是.三.解答题(共3小题)22.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.23.为了加强公民的节水意识,合理利用水资源,我市采用价格调控的手段达到节水的目的,我市自来水收费的价目表如下表(注:水费按月份结算,m3表示立方米):价目表每月用水量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3注:水费按月结算请根据如表的内容解答下列问题:(1)填空:若该户居民2月份用水4m3,则应收水费元;(2)若该户居民3月份用水am3(其中6m3<a<10m3),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4,5两个月共用水15m3(5月份用水量超过了4月份),设4月份用水xm3,求该户居民4,5两个月共交水费多少元?(用含x的代数式表示,并化简)24.已知多项式﹣5x2a+1y2﹣x3y3+x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.参考答案与试题解析一.选择题(共15小题)1.下列代数式书写规范的是()A.a×2B.2a C.(5÷3)a D.2a2【分析】根据代数式的书写要求判断各项.【解答】解:选项A正确的书写格式是2a,B正确的书写格式是a,C正确的书写格式是a,D正确.故选:D.【点评】代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.某企业今年1月份产值为x万元,2月份的产值比1月份减少了10%,则2月份的产值是()A.(1﹣10%)x万元B.(1﹣10%x)万元C.(x﹣10%)万元D.(1+10%)x万元【分析】直接利用2月份比1月份减少了10%,表示出2月份产值.【解答】解:∵1月份产值x亿元,2月份的产值比1月份减少了10%,∴2月份产值达到(1﹣10%)x亿元.故选:A.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.3.如果m﹣n=5,那么﹣3m+3n﹣7的值是()A.﹣22B.﹣8C.8D.﹣22【分析】把(m﹣n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m﹣n=5,∴﹣3m+3n﹣7=﹣3(m﹣n)﹣7,=﹣3×5﹣7,=﹣15﹣7,=﹣22.故选:D.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.4.下列各组单项式中,是同类项的是()A.与a2b B.3x2y与3xy2C.a与1D.2bc与2abc【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关.【解答】解:A、a2b与a2b是同类项;B、x2y与xy2不是同类项;C、a与1不是同类项;D、bc与abc不是同类项.故选:A.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a4【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、7ab﹣3ab=4ab,故计算错误,不合题意;C、2ab+3ab=5ab,正确,符合题意;D、a2+a2=2a2,故计算错误,不合题意;故选:C.【点评】此题主要考查了合并同类项,正确掌握运算法则是解题关键.6.去括号正确的是()A.﹣(3x+2)=﹣3x+2B.﹣(﹣2x﹣7)=﹣2x+7C.﹣(3x﹣2)=3x+2D.﹣(﹣2x+7)=2x﹣7【分析】依据去括号法则判断即可.【解答】解:A、﹣(3x+2)=﹣3x﹣2,故A错误;B、﹣(﹣2x﹣7)=2x+7,故B错误;C、﹣(3x﹣2)=﹣3x+2,故C错误;D、﹣(﹣2x+7)=2x﹣7,故D正确.故选:D.【点评】本题主要考查的是去括号,掌握去括号法则是解题的关键.7.填在如图各正方形中的四个数之间都有一定的规律,按此规律得出a、b的值分别为()A.10、91B.12、91C.10、95D.12、95【分析】分析前三个正方形,发现“右上的数=左上的数+3,左下的数=左上的数+4,右下的数=右上的数×左下的数+1”,依此即可得出a、b、c的值.【解答】解:分析正方形中的四个数:∵第一个正方形中0+3=3,0+4=4,3×4+1=13;第二个正方形中2+3=5,2+4=6,5×6+1=31;第三个正方形中4+3=7,4+4=8,7×8+1=57.∴c=6+3=9,a=6+4=10,b=9×10+1=91.故选:A.【点评】本题考查了规律型中的数字的变换类,解题的关键是分析正方形中四个数找出它们之间的关系“右上的数=左上的数+3,左下的数=左上的数+4,右下的数=右上的数×左下的数+1”.本题属于基础题,难度不大,解决该题型题目时,根据给定的正方形中的4个数,找出它们之间的关系是关键.8.如图,△ABC的面积为1.第一次操:分别延长AB,BC,CA至点A1,B1,C1,使A1B =AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2016,最少经过()次操作.A .6B .5C .4D .3【分析】先根据已知条件求出△A 1B 1C 1及△A 2B 2C 2的面积,再根据两三角形的倍数关系求解即可.【解答】解:△ABC 与△A 1BB 1底相等(AB =A 1B ),高为1:2(BB 1=2BC ),故面积比为1:2, ∵△ABC 面积为1, ∴S △A 1BB 1=2.同理可得,S △C 1B 1C =2,S △AA 1C =2,∴S △A 1B 1C 1=S △C 1B 1C +S △AA 1C +S △A 1B 1B +S △ABC =2+2+2+1=7; 同理可证S △A 2B 2C 2=7S △A 1B 1C 1=49, 第三次操作后的面积为7×49=343, 第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2016,最少经过4次操作, 故选:C .【点评】本题考查了图形的变化规律,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可. 9.下列各式﹣mn ,m ,8,,x 2+2x +6,,,中,整式有( )A.3个B.4个C.6个D.7个【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.【点评】本题主要考查了整式的定义,注意分式与整式的区别在于分母中是否含有未知数.10.下列式子:x2+1,+4,,,﹣5x,0中,整式的个数是()A.6B.5C.4D.3【分析】根据整式的定义进行选择即可.【解答】解:整式有x2+1,,﹣5x,0,共4个,故选:C.【点评】本题考查了整式的定义,掌握整式的定义是解题的关键.11.已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.2y3B.2xy3C.﹣2xy2D.3x2【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、2y3系数是2,次数是3,正确;B、2xy3系数是2,次数是4,错误;C、﹣2xy2系数是﹣2,次数是,3,错误;D、3x2系数是3,次数是2,错误.故选:A.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.12.在代数式a+b,x2,,﹣m,0,,中,单项式的个数是()A.6B.5C.4D.3【分析】根据单项式的概念判断即可.【解答】解:x2,﹣m,0是单项式,故选:D.【点评】本题考查的是单项式的概念,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.13.下列说法错误的是()A.﹣xy的系数是﹣1B.﹣c是五次单项式C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1【分析】根据单项式、多项式的概念及单项式的次数、系数的定义解答.【解答】解:A、﹣xy的系数是﹣1,正确,不合题意;B、﹣c是六次单项式,故选项错误,符合题意;C、2x2﹣3xy﹣1是二次三项式,正确,不合题意;D、把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1,正确,不合题意;故选:B.【点评】此题考查了多项式的次数和项:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数,组成多项式的每个单项式叫做多项式的项.14.下面的说法错误的个数有()①单项式﹣πmn的次数是3次;②﹣a表示负数;③1是单项式;④x++3是多项式.A.1B.2C.3D.4【分析】分别根据单项式的次数,正负数的定义,单项式的定义和多项式的定义进行判断即可.【解答】解:①单项式的次数为m和n的指数之和,故为2次的,所以不正确;②当a为0时,则﹣a不是负数,所以不正确;③单个的数或字母也是单项式,所以1是单项式正确;④多项式中每个项都是单项式,而不是单项式,所以不正确;所以错误的有3个,故选:C.【点评】本题主要考查单项式和多项式的有关概念,掌握单项式的次数和多项式的定义是解题的关键.15.一个多项式加上3x2y﹣3xy2得x3﹣3x2y,则这个多项式是()A.x3+3xy2B.x3﹣3xy2C.x3﹣6x2y+3xy2D.x3﹣6x2y﹣3x2y【分析】根据题意得出:(x3﹣3x2y)﹣(3x2y﹣3xy2),求出即可.【解答】解:根据题意得:(x3﹣3x2y)﹣(3x2y﹣3xy2)=x3﹣3x2y﹣3x2y+3xy2=x3﹣6x2y+3xy2,故选:C.【点评】本题考查了整式的加减的应用,主要考查学生的计算能力.二.填空题(共6小题)16.对单项式“0.8a”可以解释为:一件商品原价为a元,若按原价的8折出售,这件商品现在的售价是0.8a元,请你对“0.8a”再赋予一个含义:练习本每本0.8元,小明买了a本,共付款0.8a元(答案不唯一).【分析】根据生活实际作答即可.【解答】解:答案不唯一,例如:练习本每本0.8元,小明买了a本,共付款0.8a元.【点评】本题考查了代数式的意义,此类问题应结合实际,根据代数式的特点解答.17.如图,将长和宽分别是a,b的长方形纸片的四个角都剪去一个边长为x的正方形.用含a,b,x的代数式表示纸片剩余部分的面积为ab﹣4x2.【分析】根据题意和图形可以用相应的代数式表示出纸片剩余部分的面积.【解答】解:由图可得,纸片剩余部分的面积为:ab﹣4x2,故答案为:ab﹣4x2.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.18.若a、b互为相反数,c、d互为倒数,则2(a+b)﹣3cd=﹣3.【分析】利用相反数,倒数的定义求出a+b,cd的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,则原式=0﹣3=﹣3.故答案为:﹣3.【点评】此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.19.单项式和多项式统称为整式.【分析】根据整式的定义进行解答.【解答】解:整式包括单项式和多项式.故答案为:单项式和多项式.【点评】本题重点考查整式的定义:整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母.单项式和多项式统称为整式.20.单项式﹣的系数是﹣.【分析】根据单项式系数的概念求解.【解答】解:单项式﹣的系数为﹣.故答案为:﹣.【点评】本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数.21.多项式2x3﹣3x4+2x﹣1有4项,其中次数最高的项是﹣3x4.【分析】根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,进而得出答案.【解答】解:多项式2x3﹣3x4+2x﹣1一共有4项,最高次项是﹣3x4.故答案为:4,﹣3x4.【点评】本题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.三.解答题(共3小题)22.请将下列代数式进行分类(至少三种以上),a,3x,,,,a2+x,4x2ay,x+8.【分析】根据代数式的分类解答:.【解答】解:本题答案不唯一.单项式:,a,3x,4x2ay;多项式:,a2+x,x+8;整式:,a,3x,4x2ay,,a2+x,x+8;分式:.【点评】本题考查了代数式的定义及其分类.由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.注意,分式和无理式都不属于整式.23.为了加强公民的节水意识,合理利用水资源,我市采用价格调控的手段达到节水的目的,我市自来水收费的价目表如下表(注:水费按月份结算,m3表示立方米):价目表每月用水量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3注:水费按月结算请根据如表的内容解答下列问题:(1)填空:若该户居民2月份用水4m3,则应收水费8元;(2)若该户居民3月份用水am3(其中6m3<a<10m3),则应收水费多少元?(用含a 的代数式表示,并化简)(3)若该户居民4,5两个月共用水15m3(5月份用水量超过了4月份),设4月份用水xm3,求该户居民4,5两个月共交水费多少元?(用含x的代数式表示,并化简)【分析】(1)根据表格可以求得该户居民2月份应缴纳的水费;(2)根据表格可以求得该户居民3月份用水am3(其中6m3<a<10m3)应缴纳的水费;(3)根据题意分三种情况,可以求得该户居民4,5两个月共交的水费.【解答】解:(1)由表格可得,该户居民2月份用水4m3,则应收水费为:2×4=8(元),故答案为:8;(2)由题意可得,该户居民3月份用水am3(其中6m3<a<10m3),则应收水费为:2×6+(a﹣6)×4=12+4a﹣24=(4a﹣12)元,即该户居民3月份用水am3(其中6m3<a<10m3),则应收水费为(4a﹣12)元;(3)由题意可得,当6<x<7.5时,该户居民4,5两个月共交水费为:[2×6+(x﹣6)×4]+[2×6+(15﹣x﹣6)×4]=36(元),当5<x≤6时,该户居民4,5两个月共交水费为:2x+[2×6+(15﹣x﹣6)×4]=(48﹣2x)元,当0<x≤5时,该户居民4,5两个月共交水费为:2x+[2×6+4×4+(15﹣x﹣10)×8]=(68﹣6x)元.【点评】本题考查列代数式,解题的关键是明确题意,找出所求问题需要的条件,运用分类讨论的数学思想解答.24.已知多项式﹣5x2a+1y2﹣x3y3+x4y.(1)求多项式中各项的系数和次数;(2)若多项式是7次多项式,求a的值.【分析】(1)根据多项式次数、系数的定义即可得出答案;(2)根据次数是7,可得出关于a的方程,解出即可.【解答】解:(1)﹣5x2a+1y2的系数是﹣5,次数是2a+3;﹣x3y3的系数是:,次数是6;x4y的系数是:,次数是5;(2)由多项式的次数是7,可知﹣5x2a+1y2的次数是7,即2a+3=7,解得:a =2.【点评】本题考查了多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.1、学而不思则罔,思而不学则殆。

苏科版七上数学第三章《代数式》单元测试卷(含答案)

苏科版七上数学第三章《代数式》单元测试卷(含答案)

第三章代数式综合测试卷一、选择题1. 2014年我国启动“家电下乡”工程,国家对购买家电补贴13%.若某种品牌彩电每台售价a元,则购买时国家需要补贴( )A.a元B.13%a元C.(1-13%)a元D.(1+13%)a元2.代数式2(y-2)的正确含义 ( )A.2乘y减2 B.2与y的积减去2C.y与2的差的2倍D.y的2倍减去23.下列代数式中,单项式共有 ( )a,-2ab,3x,x+y,x2+y2,-1 ,12ab2c3A.2个B.3个C.4个D.5个4.下列各组代数式中,是同类项的是( )A.5x2y与15xy B.-5x2y与15yx2 C.5ax2与15yx2D.83与x35.下列式子合并同类项正确的是 ( )A.3x+5y=8xy B.3y2-y2=3C.15ab-15ba=0 D.7x3-6x2=x6.同时含有字母a、b、c且系数为1的五次单项式有( )A.1个B.3个C.6个D.9个7.右图中表示阴影部分面积的代数式是 ( )A.ab+bcB.c(b-d)+d(a-c)C.ad+c(b-d)D.ab-cd8.圆柱底面半径为3 cm,高为2 cm,则它的体积为()A.97π cm2B.18π cm2 C.3π cm2D.18π2 cm2 9.下面选项中符合代数式书写要求的是( )A.213cb2a B.ay·3 C.24a bD.a×b+c10.下列去括号错误的共有 ( )①a+(b+c)=ab+c ②a-(b+c-d)=a-b-c+d③a+2(b-c)=a+2b-c ④a2-[-(-a+b)]=a2-a-b A.1个B.2个C.3个D.4个11.a、b互为倒数,x、y互为相反数,且y≠0,则(a+b)(x+y)-ab-xy的值是 ( )A.0 B.1 C.-1 D.不确定12.随着计算机技术的迅速发展,电脑价格不断降低.某品牌电脑按原价降低m元后,又降价20%,现售价为n元,那么该电脑的原价为 ( )A.(45n+m)元B.(54n+m)元 C.(5m+n)元D.(5n+m)元二、填空题13.计算:-4x-3(x+2y)+5y=_______.14.一个长方形的一边为3a +4b ,另一边为a +b ,那么这个长方形的周长为_______. 15.若-5ab n -1与13a m -1b 3是同类项,则m +2n =_______.16.a 是某数的十位数字,b 是它的个位数字,则这个数可表示为_______.17.若A =x 2-3x -6,B =2x 2-4x +6,则3A -2B =_______×105a 3bc 4的次数是_______,单项式-23πa 2b 的系数是_______. 19.代数式x 2-x 与代数式A 的和为-x 2-x +1,则代数式A =_______.20.已知21×2=21+2,32×3=32+3,43×4=43+4,…,若a b ×10=a b+10(a 、b 都是正整数),则a +b 的值是_______.21.已知m 2-mn =2,mn -n 2=5,则3m 2+2mn -5n 2=_______.22.观察单项式:2a ,-4a 2,8a 3,-16a 4,…,根据规律,第n 个式子是_______.三、解答题23.合并同类项.(1)5(2x -7y)-3(4x -10y); (2) (5a -3b)-3(a 2-2b);(3)3(3a 2-2ab)-2(4a 2-ab) (4) 2x -[2(x +3y)-3(x -2y)]24.化简并求值.(1)4(x -1)-2(x 2+1)-12(4x 2-2x),其中x =-3. (2)(4a 2-3a)-(2a 2+a -1)+(2-a 2+4a),其中a =2.(3)5x 2-(3y 2+7xy)+(2y 2-5x 2) ,其中x =1,y =-2.25.如图1,从边长为a 的正方形纸片中剪去一个边长为b 的小正方形,再沿着线段AB 剪开,把剪成的两张纸片拼成如图2的等腰梯形.(1)设图1中阴影部分面积为S 1,图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1 和S 2;(2)请写出上述过程所揭示的乘法公式.26.有这样一道计算题:“计算(2x 3-3x 2y -2xy 2)-(x 312,y =-1”,甲同学把x =12看错成x =-1227.某市出租车收费标准:3 km 以内(含3 km)起步价为8元,超过3 km 后每1 km(1)若小明坐出租车行驶了6 km ,则他应付多少元车费?(2)如果用s 表示出租车行驶的路程,m 表示出租车应收的车费,请你表示出s 与m 之间的数量关系(s>3).28.寻找公式,求代数式的值:从2开始,连续的偶数相加,它们的和的情况如下表:(1)当n 个最小的连续偶数相加时,它们的和S 与n 之间有什么样的关系,用公式表示出来;(2)并按此规律计算:①2+4+6+…+300的值;②162+164+166+…+400的值. 29.已知()()11f x x x =⨯+,则 ……已知()()()()1412315f f f f n ++++=,求n 的值。

苏科版七年级数学上册第3章 代数式测试题( 含答案)

苏科版七年级数学上册第3章 代数式测试题( 含答案)

第3章代数式测试题一、选择题(本大题共10小题,每小题3分,共30分)1. 用式子表示“a与5的差的2倍”,下列正确的是()A. a-(-5)×2B. a+(-5)×2C. 2(a-5)D. 2(a+5)2. 计算-a2+2a2的结果为()A. a2B. -a2C. 2a2D. 03. 单项式m2n的系数和次数分别是()A. 0,2B. 0,3C. 1,2D. 1,34. 下列各组单项式中,属于同类项的是()A.1-2mn与-2mn B. 18ab与18abc C. 16a2b与-16ab2 D. x3与635. 下列整式中,去括号后得a-b+c的是()A. a-(b+c)B. -(a-b)+cC. -a-(b+c)D. a-(b-c)6. 下列选项中,加上5x2-3x-5等于3x的式子是()A. 5x2-6x-5B. 5+5x2C. -5x2+6x+5D. 5x2-57. 某商场举行促销活动,促销的方法是消费超过200元时,所购买的商品按原价打8折后,再减少20元.若某商品的原价为x(x>200)元,则购买该商品实际付款的金额是()A.(80%x-20)元B. 80%(x-20)元C.(20%x-20)元D. 20%(x-20)元8. 按图1所示的程序计算,当输入x=7时,输出的值为()A. 28B. 42C. 52D. 100图1 图29. 如图2,两个面积分别为35,23的长方形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a-b的值为()A. 6B. 8C. 9D. 1210. 观察图3所示的图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n(n为正整数)的结果为()A. n2B.(2n-1)2C.(n+2)2D.(2n+1)2图3二、填空题(本大题共6小题,每小题3分,共18分)11. 多项式-3x2y-2x2y2+xy-4的最高次项为.12. 写出1-2xy3的一个同类项.13. 已知x=2y+3,则式子4x-8y+9的值是.14. 若多项式(k-1)x2+3x|k+2|+2为三次三项式,则k的值为.15. 长红枣是地方特产,色泽红艳、酥脆甘甜、营养丰富,有着较高的滋补和药用价值,被誉为“天然维生素丸”.某网店以a元一包的价格购进500包长红枣,加价20%卖出400包以后,剩余每包比进价降低b元后全部卖出,则可获得利润元.16.如图4-①,小长方形纸片的长为2、宽为1,将4张这样的小长方形纸片按图4-②所示的方式不重叠的放在大长方形内,未被覆盖的部分恰好被分割为两个长方形Ⅰ和Ⅱ,设长方形Ⅰ和Ⅱ的周长分别为C1和C2,则C1C2(填“>”“=”或“<”).①②图4三、解答题(本大题共6小题,共52分)17.(6分)先化简,再求值:3a2b-[2ab2-2(ab-1.5a2b)+ab]+3ab2,其中a=2,b=-3.18.(8分)(1)有下列式子:①2x2+bx+1;②-ax2+3x;③13a;④1-2x2.其中是整式的有.(填序号)(2)已知a,b为常数,将上面的①式与②式相加,化简所得的结果是单项式,求a,b的值.19.(8分)图5所示的是一个长方形,其尺寸如图所示.(1)根据图中尺寸大小,用含x的式子表示阴影部分的面积S;(2)当x=2时,求S的值.图520.(8分)已知A=x2-mx+2,B=nx2+2x-1,且化简2A-B的结果与x无关.(1)求m,n的值;(2)求式子-3(m2n-2mn2)-[m2n+2(mn2-2m2n)-5mn2]的值.21.(10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.(1)求所捂的多项式;(2)若x为正整数,任取几个x的值并求出所捂多项式的值,你能发现什么规律?(3)若所捂多项式的值为144,请直接写出正整数x的值.22.(12分)国庆期间,王老师计划组织朋友出去游玩两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,超出部分每人按八折收费.假设组团参加两日游的人数为x人.(1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,帮助王老师在甲、乙两家旅行社中选择收取总费用较少的一家.附加题(共20分,不计入总分)1.(6分)“双十一”前,某微商在某平台以每个a 元的价格购进充电宝50个,后又从另一平台以每个b 元的价格购进相同型号的充电宝30个(其中a >b ),“双十一”时以每个2a b 元的价格在平台全部卖出,则该微商 ( )A. 亏损了B. 盈利了C. 不亏不盈D. 亏损还是盈利由a ,b 的值决定2.(14分)请同学们仔细阅读下列步骤:①任意写一个三位数,百位数字比个位数字大2;②交换百位数字与个位数字,得到一个三位数;③用上述的较大的三位数减去较小的三位数,所得的差为三位数;④交换这个差的百位数字与个位数字又得到一个三位数;⑤把③④中的两个三位数相加,得到最后结果.请根据以上步骤完成下列问题:(1)③中的三位数是 ,④中的三位数是 ,⑤中的结果是 .(2)在草稿纸上试一个不同的三位数,看看结果是否都一样?如果一样,请你用含a ,b 的式子表示这个三位数,解释其中的原因.第3章 代数式测试题参考答案一、1. C 2. A 3. D 4. A 5. D 6. C 7. A 8. C 9. D 10. D二、11. -2x 2y 2 12. 答案不唯一,如xy 3 13. 21 14. -5 15.(80a -100b )16. = 提示:设图②中大长方形长为x ,宽为y ,则长方形Ⅰ的长为x -1,宽为y -3,周长C 1=2(x -1+y -3)=2x +2y -8;长方形Ⅱ的长为x -2,宽为y -2,周长C 2=2(x -2+y -2)=2x +2y -8.所以C 1=C 2.三、 17. 解:原式=3a 2b -2ab 2+2ab -3a 2b -ab +3ab 2=ab 2+ab .当a =2,b =-3时,原式=2×(-3)2+2×(-3)=18-6=12.18. 解:(1)①②④(2)2x 2+bx +1+(-ax 2+3x )=2x 2+bx +1-ax 2+3x =(2-a )x 2+(b +3)x +1.因为①式与②式相加,化简所得的结果是单项式,所以2-a =0,b +3=0,所以a =2,b =-3.19. 解:(1)S 阴影部分=S 长方形ABCD -S 三角形ABC -S 三角形DEF =12×6-12×12×6-12×(12-6)×(6-x )=72-36-18+3x =18+3x ;(2)当x =2时,S =18+3×2=24.20. 解:(1)2A-B=2(x2-mx+2)-(nx2+2x-1)=2x2-2mx+4-nx2-2x+1=(2-n)x2-(2m+2)x+5.由化简2A-B的结果与x无关,得2-n=0,2m+2=0,解得n=2,m=-1.(2)原式=-3m2n+6mn2-m2n-2mn2+4m2n+5mn2=9mn2.当n=2,m=-1时,原式=9×(-1)×22=-36.21. 解:(1)所捂的多项式是:(-2x2+3x-6)-(-3x2+5x-7)=-2x2+3x-6+3x2-5x+7=x2-2x+1.(2)当x=1时,x2-2x+1=12-2×1+1=0;当x=2时,x2-2x+1=22-2×2+1=1;当x=3时,x2-2x+1=32-2×3+1=4;当x=4时,x2-2x+1=42-2×4+1=9.规律:所捂多项式的值是代入的正整数减去1的平方.(3)若所捂多项式的值为144,又122=14,所以此时正整数x的值是13.22. 解:(1)由题意,得甲旅行社收取组团两日游的总费用(单位:元)为:500x×0.85=425x.若人数不超过20人时,乙旅行社收取组团两日游的总费用(单位:元)为:500x×0.9=450x;若人数超过20人时,乙旅行社收取组团两日游的总费用(单位:元)为:500(x-20)×0.8+500×20×0.9=400x+1000.(2)甲旅行社收取组团两日游的总费用为:425×30=12 750(元);乙旅行社收取组团两日游的总费用为:400×30+1000=13 000(元).因为12 750<13 000,所以王老师应选择甲旅行社.附加题1. A2. 解:(1)198 891 1089(2)结果都一样.设①中的三位数为100a+10b+(a-2),则②中的三位数为100(a-2)+10b+a.因为100a+10b+(a-2)-[100(a-2)+10b+a]= 100a+10b+a-2-100a+200-10b-a=198,这是一个常数,在交换百位数字与个位数字后得到891,198+891=1089,所以相加后是常数1089.。

2020-2021学年苏科版七年级数学上册第3章《代数式》单元测试题含答案

2020-2021学年苏科版七年级数学上册第3章《代数式》单元测试题含答案

七年级上册第3章《代数式》单元测试卷满分120分姓名:___________班级:___________学号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列各式符合书写要求的是()A.B.n•2C.a÷b D.2πr22.下列式子中a,﹣xy2,,0,是单项式的有()个.A.2个B.3个C.4个D.5个3.下列运算结果是a2的是()A.a+a B.a+2C.a•2D.a•a4.下列合并同类项正确的是()A.a3+a2=a5B.3x﹣2x=1C.3x2+2x2=6x2D.x2y+yx2=2x2y5.对于3x2y﹣2x+3y﹣xy﹣1,小糊涂同学说了四句话,其中不正确的是()A.是一个整式B.由5个单项式组成C.次数是2D.常数项是﹣16.﹣(a2﹣b3+c4)去括号后为()A.﹣a2﹣b3+c4B.﹣a2+b3+c4C.﹣a2﹣b3﹣c4D.﹣a2+b3﹣c4 7.若a+2b=3,则代数式2a+4b的值为()A.3B.4C.5D.68.A和B都是三次多项式,则A+B一定是()A.三次多项式B.次数不高于3的整式C.次数不高于3的多项式D.次数不低于3的整式9.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较10.如图所示,在这个数据运算程序中,若开始输入的x的值为2,结果输出的是1,返回进行第二次运算则输出的是﹣4,…,则第2020次输出的结果是()A.﹣1B.3C.6D.8二.填空题(共6小题,满分24分,每小题4分)11.在x+y,0,2>1,2a﹣b,2x+1=0中,代数式有个.12.若练习本每本a元,铅笔每支b元,那么代数式8a+3b表示的意义是.13.单项式2x m y3与﹣3xy3n是同类项,则m+n=.14.去括号:﹣(a+b﹣c)=.15.一个多项式A与x2﹣2x+1的和是2x﹣7,则这个多项式A为.16.一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么5张桌子需配椅子把.三.解答题(共8小题,满分66分)17.(6分)请你用实例解释下列代数式的意义.(1)﹣4+3;(2)3a;(3)()3.18.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)19.(6分)先化简,再求值:5xy+2(2xy﹣3x2)﹣(6xy﹣7x2),其中x=﹣1,y=﹣2.20.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为300米,宽为100米,圆形花坛的半径为20米,求广场空地的面积(π取3.14).21.(8分)已知代数式2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与字母x的取值无关,且A=4a2﹣ab+4b2,B=3a2﹣ab+3b2.(1)求a,b的值;(2)先化简代数式:3A﹣[2(3A﹣2B)﹣3(4A﹣3B)],再求该代数式的值.22.(8分)已知多项式M,N,其中M=2x2﹣x﹣1,小马在计算2M﹣N时,由于粗心把2M﹣N看成了2M+N求得结果为﹣3x2+2x﹣1,请你帮小马算出:(1)多项式N;(2)多项式2M﹣N的正确结果.求当x=﹣1时,2M﹣N的值.23.(8分)某超市出售茶壶和茶杯,茶壶每只定价48元,茶杯每只定价6元,该超市制定了两种优惠方案:①买一只茶壶送一只茶杯;②按总价的90%付款.某顾客需买茶壶3只,茶杯x(x>3)只.(1)若该客户按方案①购买,需付款多少元?(用含x的代数式表示)(2)若该客户按方案②购买,需付款多少元?(用含x的代数式表示)(3)讨论买15只茶杯时,按哪种方案购买较为合算?24.(10分)阅读下列材料:①=1﹣,=﹣,=…②③(1)写出①组中的第5个等式:,第n个等式:;(2)写出②组的第n个等式:;(3)利用由①②③组中你发现的等式规律计算:.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、中的带分数要写成假分数,故不符合书写要求;B、中的2应写在字母的前面且省略乘号,故不符合书写要求;C、应写成分数的形式,故不符合书写要求;D、符合书写要求.故选:D.2.解:式子中a,﹣xy2,,0,是单项式的有a,﹣xy2,0,一共3个.故选:B.3.解:a+a=2a,因此选项A不符合题意;a+2=a+2,因此选项B不符合题意;a•2=2a,因此选项C不符合题意;a•a=a2,因此选项D符合题意;故选:D.4.解:A、本选项不能合并,错误;B、3x﹣2x=x,本选项错误;C、3x2+2x2=5x2,本选项错误;D、x2y+yx2=2x2y,本选项正确.故选:D.5.解:式子3x2y﹣2x+3y﹣xy﹣1是一个整式,由五个单项式组成,其次数为3,常数项是﹣1.所以A、B、D正确,C错误.故选:C.6.解:原式=a2+b3﹣c4,故选:D.7.解:∵a+2b=3,∴原式=2(a+2b)=2×3=6,故选:D.8.解:A和B都是三次多项式,则A+B一定是次数不高于3的整式,故选:B.9.解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.10.解:把x=2代入得:×2=1,把x=1代入得:1﹣5=﹣4,把x=﹣4代入得:×(﹣4)=﹣2,把x=﹣2代入得:×(﹣2)=﹣1,把x=﹣1代入得:﹣1﹣5=﹣6,把x=﹣6代入得:×(﹣6)=﹣3,把x=﹣3代入得:﹣3﹣5=﹣8,把x=﹣8代入得:×(﹣8)=﹣4,以此类推,∵(2020﹣1)÷6=336…3,∴第2020次输出的结果为﹣1,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:代数式有x+y,0,2a﹣b,故答案为:312.解:8a+3b表示的意义是买8本练习本和3支铅笔需要的钱数,故答案为:买8本练习本和3支铅笔需要的钱数.13.解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.14.解:原式=﹣a﹣b+c,故答案为:﹣a﹣b+c.15.解:2x﹣7﹣(x2﹣2x+1)=2x﹣7﹣x2+2x﹣1=﹣x2+4x﹣8.故答案为:﹣x2+4x﹣8.16.解:设n张桌子需配椅子a n(n为正整数)把.观察图形,可知:a1=6=2×1+4,a2=8=2×2+4,a3=10=2×3+4,∴a n=2n+4,∴a5=2×5+4=14.故答案为:14.三.解答题(共8小题,满分66分)17.解:(1)﹣4+3表示气温从﹣4℃,上升3℃后的温度;(2)3a表示一辆车以akm/h的速度行驶3小时的路程;(3)()3表示棱长为的正方体的体积.18.解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.19.解:原式=5xy+4xy﹣6x2﹣6xy+7x2=x2+3xy当x=﹣1,y=﹣2时,原式=(﹣1)2+3×(﹣1)(﹣2)=1+6=720.解:(1)矩形的面积为ab,四分之一圆形的花坛的面积为πr2,则广场空地的面积为ab﹣4×πr2=ab﹣πr2,答:广场空地的面积为(ab﹣πr2)米2;(2)由题意得:a=300米,b=100米,r=20米,代入(1)的式子得:300×100﹣π×202=30000﹣400π=30000﹣400×3.14=28744(米2),答:广场空地的面积为28744米2.21.解:(1)原式=2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1=(2﹣b)x2+(a+3)x﹣6y+5,由题意可知:,解得:;(2)原式=3A﹣[6A﹣4B﹣12A+9B]=3A﹣(﹣6A+5B)=3A+6A﹣5B=9A﹣5B,又∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴原式=9A﹣5B=9(4a2﹣ab+4b2)﹣5(3a2﹣ab+3b2)=36a2﹣9ab+36b2﹣15a2+5ab﹣15b2=21a2﹣4ab+21b2,当a=﹣3,b=2时,原式═21×(﹣3)2﹣4×(﹣3)×2+21×22=189+24+84=297.22.解:(1)根据题意得:N=﹣3x2+2x﹣1﹣2(2x2﹣x﹣1)=﹣3x2+2x﹣1﹣4x2+2x+2=﹣7x2+4x+1;(2)2M﹣N=2(2x2﹣x﹣1)﹣(﹣7x2+4x+1)=4x2﹣2x﹣2+7x2﹣4x﹣1=11x2﹣6x﹣3,当x=﹣1时,2M﹣N=11+6﹣3=14.23.解:(1)该客户按方案①购买,需付款:48×3+6(x﹣3)=6x+126答:该客户按方案①购买,需付款(6x+126)元.(2)该客户按方案②购买,需付款:(48×3+6x)×90%=5.4x+129.6答:该客户按方案②购买,需付款(5.4x+129.6)元.(3)当x=15时,6x+126=6×15+126=216(元)5.4x+129.6=5.4×15+129.6=210.6(元)因为216>210.6所以该客户按方案②购买较合算.答:该客户按方案②购买较合算.24.解:(1)①组中的第5个等式为:=﹣,第n个等式为:=﹣;故答案为:=﹣,=﹣;(2)②组的第n个等式为:=(﹣);故答案为:=(﹣);(3)原式=(1﹣)+(﹣)+…+(﹣)=×(1﹣)=.1、三人行,必有我师。

苏科版七年级数学上册 第三章 代数式 单元检测试题(有答案)

苏科版七年级数学上册 第三章 代数式 单元检测试题(有答案)

第三章代数式单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 如果2−(m+1)a+a n−3是关于a的二次三项式,那么m、n满足的条件是()A.m=1,n=5B.m≠1,n>3C.m≠−1,n为大于3的整数D.m≠−1,n=52. 原产量n吨,增产30%之后的产量应为()A.(1−30%)n吨B.(1+30%)n吨C.n+30%吨D.30%n吨3. 下列各式中,是整式的有()−13x2,2xy,2x+y,1x,3,1+π,6x2−y2+1A.6个B.5个C.4个D.3个4. “比x的倒数的2倍小3的数”,用代数式表示为()A.2x+3B.2x−3C.2x +3 D.2x−35. 多项式−x2+12x−1的各项分别是()A.−x2,12x,−1 B.−x2,−12x,−1C.x2,12x,1 D.−x2,−12x,−16. 在代数式ab3,−1,x2−3x+2,π,5x,−23a2b3cd中,单项式有()A.3个B.4个C.5个D.6个7. 下列说法正确的是()A.−2xy3的系数是−2 B.−πab2的系数是−1,次数是4C.x+y2是多项式 D.x3−xy−1的常数项是18. 如果M=3x2−2xy−4y2,N=4x2+5xy−y2,则8x2−13xy−15y2等于()A.2M−3NB.2M−NC.3M−2ND.4M−N9. 若代数式a2+2a的值为−1,则代数式3a2+6a−2的值是()A.−1B.1C.5D.−510. 下列说法正确的是()A.x−1的项是x和1B.m+n3和xy2都是单项式C.0和x2+xy+y2都是多项式D.a,−6,abc,2x−15都是整式二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 合并同类项:7x2−3x2=________.12. 在等号右边括号内填上适当的项:a−b+c−d=a−(________).13. 小明用如图所示的L形框,任意框住日历中的三个数a,b,c.则代数式c−a的值等于________.14. 老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:−(x2−2x+1)=−x2+5x−3,则所捂的多项式为________.15. 若−3x m y3与2x4y n是同类项,那么m−n=________.16. 购买2个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为________元.17. 请写出一个只含有x,y两个字母,次数为5,系数是负数的单项式________.18. 观察一列单项式:−2x,4x2,−8x3,16x4,…,则第5个单项式是________.19. 若m+n=0,则多项式m3−m2n−mn2+n3的值为________.20. 观察一列单项式:−x,3x2,−5x3,7x,−9x2,11x3…,则第2015个单项式是________.三、解答题(本题共计6 小题,共计60分,)21. 化简下列各式:(1)m−5m2+3−2m−1+5m2;(2)−2y3+(3xy2−x2y)−2(xy2−y3).22. 先化简,再求值:12a2b−[52a2b−3(2ab−a2b)−4a2c]−5abc,其中a=−1,b=−3,c=2.23. 已知关于x的多项式(a+b)x4+(b−2)x3−2(a−1)x2+ax−3不含x3与x2项,试求当x=−1时这个多项式的值.24. 如图,用棋子摆图形:回答问题:(1)摆第五个图形用多少个棋子?(2)请直接写出第n个图形所用的棋子数和每边上的棋子数(用含n的代数式表示)(3)按此规律,把现有的100个棋子全用上,是否可以摆出其中的一个图形?如果可以,求出是第几个图形?如果不可以,请说明理由.25. 某市电话拨号上网有两种收费方式,用户可以任选其一:(A)计时制:0.05元每分钟;(B)包月制:60元每月(限一部个人住宅电话上网);此外,每一种上网方式都得加收通信费0.02元每分钟.(1)某用户某月上网的时间为x小时,请分别写出两种收费方式下该用户应该支付的费用;(2)你知道怎样选择计费方式更省钱吗?26. 理解与思考:在某次作业中有这样的一道题:“如果代数式5a+3b的值为−4,那么代数式2(a+b)+ 4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b,把式子5a+3b=−4两边同乘以2,得10a+6b=−8.仿照小明的解题方法,完成下面的问题:(1)如果a2+a=0,则a2+a+2019=________.(2)已知a−b=−3,求3(a−b)−5a+5b+5的值.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:∵ 多项式2−(m+1)a+a n−3是关于a的二次三项式,∵ n−3=2且m+1≠0,∵ n=5且m≠−1.故选D.2.【答案】B【解答】由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨.3.【答案】A【解答】解:−13x2,2xy,2x+y,1x,3,1+π,6x2−y2+1中是整式是:−13x2,2xy,2x+y,3,1+π,6x2−y2+1.故选A.4.【答案】D【解答】解:由题知1x ×2−3=2x−3.故选D.5.【答案】A【解答】解:多项式−x2+12x−1的各项分别是:−x2,12x,−1.故选A.6.【答案】B【解答】解:在代数式ab3,−1,x2−3x+2,π,5x,−23a2b3cd中,单项式有ab3,−1,π,−23a2b3cd共4个,故选B.7.【答案】C【解答】解:A、−2xy3的系数是−23,故A错误;B、−πab2的系数是−π,次数是3,故B错误;C、x+y2是多项式,故C正确;D、x3−xy−1的常数项是−1,故D错误.故选C.8.【答案】D【解答】解:A、原式=−6x2−19xy−5y2;B、原式=2x2−9xy−7y2;C、原式=x2−16xy−10y2;D、原式=8x2−13xy−15y2.故选D.9.【答案】D【解答】此题暂无解答10.【答案】D【解答】解:A、x−1的项是x和−1,故本选项错误;B、m+n3是多项式,xy2是单项式,故本选项错误;C、0是单项式,x2+xy+y2是多项式,故本选项错误;D、a,−6,abc,2x−15都是整式,故本选项正确;故选D.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】4x2【解答】解:原式=4x2,故答案为:4x2.12.【答案】b−c+d【解答】解:a−b+c−d=a−(b−c+d),故填b−c+d.13.【答案】8【解答】根据日历中的特征得:a=b−7,c=b+1,则c−a=(b+1)−(b−7)=b+1−b+7=8,14.【答案】3x−2【解答】解:(x2−2x+1)+(−x2+5x−3)=x2−2x+1−x2+5x−3=3x−2.故答案为:3x−2.15.【答案】1【解答】解:由−3x m y3与2x4y n是同类项,得m=4,n=3.m−n=4−3=1,故答案为:1.16.【答案】2a+3b【解答】购买2个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为(2a+3b)元.17.【答案】−x2y3【解答】解:符合条件的单项式为:−x2y3.故答案为:−x2y3(答案不唯一).18.【答案】−32x5【解答】解:由−2x,4x2,−8x3,16x4,…,可得第5个单项式为:−32x5,故答案为:−32x5.19.【答案】【解答】解:把多项式m3−m2n−mn2+n3分解因式,先提取同类项,得m2(m−n)−n2(m−n),(m−n)(m2−n2)再根据平方差公式,得(m−n)(m−n)(m+n),因为m+n=0,所以该多项式的值为0.20.【答案】−4029x2015【解答】解:系数依次为−1,3,−5,7,−9,11,…(−1)n2n−1,x的指数依次是1,2,1,2,1,2,可见两个单项式一个循环,故可得第2015个单项式的系数为−4029,则第2015个单项式是−4029x2015.故答案为−4029x2015.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)原式=(−5m2+5m2)+(m−2m)+(3−1)=−m+2;(2)原式=−2y3+3xy2−x2y−2xy2+2y3=(−2y3+2y3)+(3xy2−2xy2)−x2y =xy2−x2y.【解答】解:(1)原式=(−5m2+5m2)+(m−2m)+(3−1)=−m+2;(2)原式=−2y3+3xy2−x2y−2xy2+2y3=(−2y3+2y3)+(3xy2−2xy2)−x2y =xy2−x2y.22.【答案】解:原式=12a2b−(52a2b−6ab+3a2b−4a2c)−5abc=12a2b−(112a2b−6ab−4a2c)−5abc =−5a2b+6ab+4a2c−5abc当a=−1,b=−3,c=2时,原式=−5×(−1)2×(−3)+6×(−1)×(−3)+4×(−1)2×2−5×(−1)×(−3)×2 =11.【解答】解:原式=12a2b−(52a2b−6ab+3a2b−4a2c)−5abc=12a2b−(112a2b−6ab−4a2c)−5abc =−5a2b+6ab+4a2c−5abc当a=−1,b=−3,c=2时,原式=−5×(−1)2×(−3)+6×(−1)×(−3)+4×(−1)2×2−5×(−1)×(−3)×2 =11.23.【答案】解:由(a+b)x4+(b−2)x3−2(a−1)x2+ax−3不含x3与x2项,得b−2=0,a−1=0.解得b=2,a=1.原多项式为3x4+x−3,当x=−1时,原式=3×(−1)4+(−1)−3=−1.【解答】解:由(a+b)x4+(b−2)x3−2(a−1)x2+ax−3不含x3与x2项,得b−2=0,a−1=0.解得b=2,a=1.原多项式为3x4+x−3,当x=−1时,原式=3×(−1)4+(−1)−3=−1.24.【答案】解:(1)摆第五个图形用3×6−3=15个棋子;(2)第n个图形所用的棋子数为3(n+1)−3=3n;每边上的棋子数为n+1;(3)不可以.理由:3n=100,解得:n=3313因为n是整数,所以把现有的100个棋子全用上,不可以摆出其中的一个图形.【解答】解:(1)摆第五个图形用3×6−3=15个棋子;(2)第n个图形所用的棋子数为3(n+1)−3=3n;每边上的棋子数为n+1;(3)不可以.理由:3n=100,解得:n=3313因为n是整数,所以把现有的100个棋子全用上,不可以摆出其中的一个图形.25.【答案】解:(1)A计时制花费为:3X B包月制花费为:60+1.2X(2)3X=60+1.2X X=100/3即通话时间大于100/3小时选B,通话时间等于10/3小时A.B,通话时间小于100/3小时选A.【解答】解:(1)A计时制花费为:3X B包月制花费为:60+1.2X(2)3X=60+1.2X X=100/3即通话时间大于100/3小时选B,通话时间等于10/3小时A.B,通话时间小于100/3小时选A.26.【答案】2019(2)原式=3(a−b)−5(a−b)+5=−2(a−b)+5,当a−b=−3时,原式=6+5=11.【解答】解:(1)∵ a2+a=0,∵ 原式=0+2019=2019.故答案为:2019.(2)原式=3(a−b)−5(a−b)+5=−2(a−b)+5,当a−b=−3时,原式=6+5=11.11/ 11。

2021年苏科版数学七年级上册第3章《代数式》单元检测卷(含答案)

2021年苏科版数学七年级上册第3章《代数式》单元检测卷(含答案)

苏科版数学七年级上册第3章《代数式》单元检测卷一、选择题1.用语言叙述3a﹣15的数量关系,其中错误的是()A.a的3倍与l5的差B.3a与15的相反数的和C.a与5差的3倍D.a与l5的差的3倍2.下列语句正确的是()A.1+a不是一个代数式B.0是代数式C.S=πr2是一个代数式D.单独一个字母a不是代数式3.代数式中,单项式共有( )A.6个B.5个C.4个D.3个4.下列说法正确的是( )A.单项式-2πR2的次数是3,系数是-2B.单项式-的系数是3,次数是4C.不是多项式D.多项式3x2-5x2y2-6y4-2是四次四项式5.若 x表示一个两位数,y 也表示一个两位数,小明想用 x、y来组成一个四位数,且把 x 放在 y 的右边,你认为下列表达式中哪一个是正确的( )A.yxB.x+yC.100x+yD.100y+x6.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m-n的值是( )A.2B.0C.-1D.17.使(ax2﹣2xy+y2)﹣(﹣ax2+bxy+cy2)=6x2﹣9xy+cy2的a,b,c值依次是( )A.3,﹣7,﹣B.﹣3,7,C.3,7,D.3,7,﹣8.已知-4x a y+x2y b=-3x2y,则a+b的值为( )A.1B.2C.3D.49.如果m是三次多项式,n是三次多项式,则m+n一定是( )A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的多项式10.若多项式36x2-3x+5与3x3+12mx2-5x+7相加后,不含二次项,则常数m的值是( )A.2B.-3C.-2D.-811.有理数a,b在数轴上的位置如图所示,则|a+b|-2|a-b|化简后为( )A.b-3aB.-2a-bC.2a+bD.-a-b12.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.64B.77C.80D.85二、填空题13.a与b的平方和是________.14.若a-2b=3,则9-2a+4b的值为_______.15.化简:(1)-|-5|=_________;(2)(a-b)-(a+b)=_______.16.计算:3(2x+1)-6x= .17.如果x=3时,式子px3+qx+1的值为2026,则当x=﹣3时,式子px3+qx﹣1的值是.18.如图为一组有规律的图案,则第n个图案中“●”和“△”的个数之和为______.(用含n的代数式表示)三、解答题19.化简:-[2m-3(m-n+1)-2]-120.化简:(x2y2-xy+3)+2[x2-(xy-2x+y-1)]+3x-1.21.已知A=2a2-a,B=-5a+1.(1)化简:3A-2B+2;(2)当a=-0.5时,求3A-2B+2的值.22.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工质量减少了20%,价格增加了40%,问:(1)x千克这种蔬菜加工后可卖多少钱?(2)如果这种蔬菜有1 000千克,不加工直接出售每千克可卖1.50元,加工后原1 000千克这种蔬菜可卖多少钱?比不加工多卖多少钱?23.某位同学做一道题:已知两个多项式A,B,求A-B的值.他误将A-B看成A+B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求A-B的正确答案.24.如图,用火柴棒按以下方式搭小鱼,是课本上多次出现的数学活动.(1)搭n条小鱼需要火柴棒根;(2)计算搭12条小鱼需要多少根火柴棒?(3)若搭n朵某种小花需要火柴棒(3n+20)根,现有一堆火柴棒,可以全部用上搭出m条小鱼,也可以全部用上搭出m朵小花,求m的值及这堆火柴棒的数量.25.已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.参考答案1.答案为:D.2.答案为:B.3.答案为:B4.答案为:D.5.答案为:D6.答案为:A7.答案为:C.8.答案为:C;9.答案为:B;10.答案为:B;11.答案为:A;12.答案为:D13.答案为:a2+b214.答案为:3.15.答案为:(1)-5 (2)-2b16.答案为:3;17.答案为:﹣2026.18.答案为:(n+1)2+4n.19.原式=m-3n+4.20.原式=-x2y2-xy+2x2+5x-y-121.解:(1)3A-2B+2=3(2a2-a)-2(-5a+1)+2=6a2-3a+10a-2+2=6a2+7a.(2)当a=-0.5时,3A-2B+2=6×(-0.5)2+7×(-0.5)=-2.22.解:23.解:(1)A=2x2-2x+6;(2)A-B=x2-x+7;24.解:(1)∵第一个小鱼需要8根火柴棒,第二个小鱼需要14根火柴棒,第三个小鱼需要20根火柴棒;∴每个小鱼比前一个小鱼多用6根火柴棒,∴搭n条小鱼需要用8+6(n﹣1)=(6n+2)根火柴棒.故答案为:6n+2;(2)∵n=12,∴6n+2=6×12+2=74(条).答:搭12条小鱼需要74根火柴棒;(3)根据题意得6m+2=3m+20,解得m=6,3m+20=38.答:m=6,这堆火柴有38根.25.解:(1)3A﹣(2A+3B)=3A﹣2A﹣3B=A﹣3B∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2∴A﹣3B=(2x2+5xy﹣7y﹣3)﹣3(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣3x2+3xy﹣6=﹣x2+8xy﹣7y﹣9(2)A﹣2B=(2x2+5xy﹣7y﹣3)﹣2(x2﹣xy+2)=7xy﹣7y﹣7∵A﹣2B的值与x的取值无关∴7y=0,∴y=0。

苏教版七年级上册第三章《代数式》单元测试卷 含答案

苏教版七年级上册第三章《代数式》单元测试卷   含答案

七年级上册第三章《代数式》单元测试卷满分:120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列各式不是代数式的是()A.3+x=y B.3 C.πr2D.2.下面各组是同类项的是()A.3x和﹣2y B.﹣3a2b和2ab2C.3a2和2a3D.﹣3mn和2mn3.一批电脑进价为a元,提价20%后出售,则售价为()A.a×(1+20%)B.a×(1﹣20%)C.a×20% D.a÷20%4.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.3是单项式D.﹣x2y+xy﹣7是5次三项式5.多项式﹣3x2y+x2﹣1的次数和项数分别是()A.3,3 B.2,3 C.﹣3,2 D.3,26.下面计算正确的()A.﹣3x﹣3x=0 B.x4﹣x3=xC.x2+x2=2x4D.﹣4xy+3xy=﹣xy7.若代数式x2+2x的值为2,则代数式4x2+8x的值为()A.4 B.8 C.﹣4 D.﹣88.下面去括号正确的是()A.2y+(﹣x﹣y)=2y+x﹣y B.a﹣2(3a﹣5)=a﹣6a+10C.y﹣(﹣x﹣y)=y+x﹣y D.x2+2(﹣x+y)=x2﹣2x+y9.小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1 B.﹣3a2﹣5a+6 C.a2+a﹣4 D.﹣3a2+a﹣410.观察下列按一定规律排列的图标:则第2020个图标是()A.B.C.D.二.填空题(共8小题,满分24分,每小题3分)11.代数式a×1应该写成.12.在式子①﹣x2,②﹣2xy,③xy2﹣x2,④⑤﹣x,⑥,⑦0中,整式有个.13.把多项式x3﹣7x2y+y3﹣4xy2+1按x的升幂排列为.14.已知﹣3x1﹣2a y b+2与是同类项,则a b=.15.已知a2+a﹣3=0,则2024﹣a2﹣a=.16.如果多项式4x3+2x2﹣(kx2+17x﹣6)中不含x2的项,则k的值为.17.如果多项式4x2+7x2+6x﹣5x+3与ax2+bx+c(其中a,b,c是常数)相等,则a+b+c=.18.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为3,第2幅图形中“●”的个数为3+5,第3幅图形中“●”的个数为3+5+7,…,以此类推,第10幅图中“●”的个数为.三.解答题(共8小题,满分66分)19.(5分)根据你的生活与学习经验,对代数式3x+2y作出两种解释.20.(6分)已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n的值.21.(8分)合并同类项:(1)5m+2n﹣m﹣3n (2)3a2﹣1﹣2a﹣5+3a﹣a222.(10分)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)23.(12分)先化简,再求值:(1)5a2+bc+abc﹣2a2﹣bc﹣3a2+abc,其中a=2,b=3,c=﹣;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),其中x+y=.24.(8分)已知A=2x2﹣6ax+3,B=﹣7x2﹣8x﹣1,按要求完成下列各小题.(1)若A+B的结果中不存在含x的一次项,求a的值;(2)当a=﹣2时,求A﹣3B的结果.25.(8分)如果关于x、y的单项式2ax c y与单项式3bx3y是同类项,并且2ax c y+3bx3y=0(xy≠0),当m的倒数是﹣1,n的相反数是时,求(2a+3b)99+m c﹣n c的值.26.(9分)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、因为3+x=y包含数量关系,所以不是代数式,而是二元一次方程.B、是一个数字,属于代数式.C、πr2是一个代数式.D、是代数式.故选:A.2.解:A、字母不同不是同类项,故本选项不合题意;B、相同的字母的指数不同,不是同类项,故本选项不合题意;C、相同的字母的指数不同,不是同类项,故本选项不合题意;D、所含字母相同,并且相同字母的指数也相同,是同类项,本选项符合题意;故选:D.3.解:售价为a×(1+20%)元.故选:A.4.解:A、﹣的系数为﹣,错误;B、32x3y的次数是9,错误;C、3是单项式,正确;D、多项式﹣x2y+xy﹣7是三次三项式,错误;故选:C.5.解:多项式﹣3x2y+x2﹣1的次数和项数分别是:3,3.故选:A.6.解:A、﹣3x﹣3x=﹣6x,错误;B、x4与x3不是同类项,不能合并,错误;C、x2+x2=2x2,错误;D、﹣4xy+3xy=﹣xy,正确;故选:D.7.解:∵x2+2x=2,∴4x2+8x=4(x2+2x)=8.故选:B.8.解:A、2y+(﹣x﹣y)=2y﹣x﹣y,故选项A错误;B、a﹣2(3a﹣5)=a﹣6a+10,故选项B正确;C、y﹣(﹣x﹣y)=y+x+y,故选项C错误;D、x2+2(﹣x+y)=x2﹣2x+2y,故选项D错误.故选:B.9.解:根据题意,这个多项式为(a2+a﹣4)﹣(2a2+3a﹣5)=a2+a﹣4﹣2a2﹣3a+5=﹣a2﹣2a+1,则正确的结果为(﹣a2﹣2a+1)﹣(2a2+3a﹣5)=﹣a2﹣2a+1﹣2a2﹣3a+5=﹣3a2﹣5a+6,故选:B.10.解:观察图形发现:每4个图标为一组,∵2020÷4=505,∴第2020个图标是第505组的第4个图标,故选:D.二.填空题(共8小题,满分24分,每小题3分)11.解:a×1应该写成,故答案为:.12.解:所列代数式中整式有①﹣x2,②﹣2xy,③xy2﹣x2,⑥,⑦0这5个,故答案为:5.13.解:按x的升幂排列为:x3﹣7x2y+y3﹣4xy2+1=y3+1﹣4xy2﹣7x2y+x3,或x3﹣7x2y+y3﹣4xy2+1=1+y3﹣4xy2﹣7x2y+x3.故答案为:y3+1﹣4xy2﹣7x2y+x3;或1+y3﹣4xy2﹣7x2y+x3.14.解:∵﹣3x1﹣2a y b+2与是同类项,∴1﹣2a=7,b+2=4,解得a=﹣3,b=2,∴a b=(﹣3)2=9.故答案为:9.15.解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.16.解:合并得4x3+2x2﹣(kx2+17x﹣6)=4x3+(2﹣k)x2﹣17x+6,根据题意得2﹣k=0,解得k=2.故答案是:2.17.解:由题意得:4x2+7x2+6x﹣5x+3=11x2+x+3,∵11x2+x+3与ax2+bx+c(其中a,b,c是常数)相等,∴a=11,b=1,c=3,∴a+b+c=11+1+3=15,故答案为:15.18.解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);所以第10幅图形中“●”的个数为10×(10+2)=120.故答案为:120.三.解答题(共8小题,满分66分)19.解:(1)某水果超市推出两款促销水果,其中苹果每斤x元,香蕉每斤y元,小明买了3斤苹果和2斤香蕉,共花去(3x+2y)元钱;(2)一个篮球的价格为x元,一个足球的价格为y元,购买了3个篮球和2个排球,共花去(3x+2y)元钱.20.解:∵多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,∴2+2m+1=5,n+4m﹣3=5,解得m=1,n=4.21.解:(1)原式=(5﹣1)m+(2﹣3)n=4m﹣n;(2)原式=(3﹣1)a2+(3﹣2)a﹣(1+5)=2a2+a﹣6.22.解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.23.解:(1)5a2+bc+abc﹣2a2﹣bc﹣3a2+abc,=(5a2﹣2a2﹣3a2)+(abc+abc)+(bc﹣bc)=abc,当a=2,b=3,c=﹣时,原式=2×3×(﹣)=﹣1;(2)6(x+y)2﹣9(x+y)+(x+y)2+7(x+y),=7(x+y)2﹣2(x+y)当x+y=时,原式=7×﹣2×=﹣=0.24.解:(1)∵A=2x2﹣6ax+3,B=﹣7x2﹣8x﹣1,∴A+B=2x2﹣6ax+3﹣7x2﹣8x﹣1=﹣5x2﹣(6a+8)x+2,由A+B结果中不含x的一次项,得到6a+8=0,解得:a=﹣;(2)∵A=2x2﹣6ax+3,B=﹣7x2﹣8x﹣1,a=﹣2,∴A﹣3B=2x2﹣6ax+3+21x2+24x+3=23x2+(24﹣6a)x+6=23x2+36x+6.25.解:∵m的倒数是﹣1,n的相反数是,∴m=﹣1,n=,∵关于x、y的单项式2ax c y与单项式3bx3y是同类项,∴c=3,∵2ax c y+3bx3y=0,∴2a+3b=0,∴(2a+3b)99+m c﹣n c=099+(﹣1)3﹣=.26.解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;(2)∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.。

第3章 代数式数学七年级上册-单元测试卷-苏科版(含答案)

第3章 代数式数学七年级上册-单元测试卷-苏科版(含答案)

第3章代数式数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如果单项式与是同类项,那么()A.1B.-1C.2D.42、(x+a)(x-3)的积的一次项系数为零,则a的值是()A.1B.2C.3D.43、下列计算正确的是()A.2+a=2aB.2a﹣3a=﹣1C.(﹣a)2•a 3=a 5D.8ab÷4ab=2ab4、下列各式:ab,,,3,,其中单项式有()A.2个B.3个C.4个D.5个5、下列解方程过程中,正确的是()A.将去括号,得B.由,得 C.将去分母,得D.由,得6、单项式-6ab的系数与次数分别为()A.6,1B.-6,1C.6,2D.-6,27、下列式子正确的是()A.a 2•a 3=a 5B.a 2•a 3=a 6C.a 2+a 3=a 5D.a 2+a 3=a 68、如果多项式(a﹣2)x4﹣x b+x2﹣5是关于x的三次多项式,那么()A.a=0,b=3B.a=1,b=3C.a=2,b=3D.a=2,b=19、利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为,那么可以转换为该生所在班级序号,其序号为(注:),如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生,那么表示7班学生的识别图案是()A. B. C. D.10、多项式是关于的二次三项式,则n的值是()A.2B.-2C.2或-2D.311、下列运算中,正确的是()A.7a+a=7a 2B.a 2•a 3=a 6C.a 3÷a=a 2D.(ab)2=ab 212、下列运算正确的是()A.3x+4y=7xyB.6y 2﹣y 2=5C.b 4+b 3=b 7D.4x﹣x=3x13、下列运算正确的是()A.(x 3)3=x 9B.(﹣2x)3=﹣6x 3C.2x 2﹣x=xD.x 6÷x 3=x 214、下列各式计算结果正确的是().A.x+x=x 2B.(2x)2=4xC.(x+1)2=x 2+1D.x•x=x 215、若代数式是五次二项式,则a的值为()A.2B.±2C.3D.±3二、填空题(共10题,共计30分)16、如图所示是计算机程序计算,若开始输入,则最后输出的结果是________.17、化简:________.18、若m=3n+2,则m2﹣6mn+9n2的值是________19、若a2﹣3b﹣3=2,则6b﹣2a2+2016=________.20、若 3x m+5y2与 x3y n 的和是单项式,则 n m =_________.21、如图,按程序框图中的顺序计算,当运算结果小于或等于时,则将此时的值返回第一步重新运算,直至运算结果大于才输出最后的结果,若输入的初始值为,则最后输出的结果是 ________22、单项式的系数是________,次数是________.23、若x+y﹣1=0,则x2+xy+ y2﹣2=________.24、已知a﹣b=1,则a2﹣b2﹣2b的值是________.25、已知和是同类项,则的值是________.三、解答题(共5题,共计25分)26、先化简,再求值:a﹣2b﹣a+2b﹣5a+2b,其中a=1,b=﹣.27、多项式7x m+(k﹣1)x2﹣(2n+4)x﹣6是关于x的三次三项式,并且二次项系数为1,求m+n﹣k的值.28、已知今年小明的年龄是x岁,小红的年龄比小明的2倍少4岁,小华的年龄比小红的还大1岁,小刚的年龄恰好为小明、小红、小华三个人年龄的和.试用含x的式子表示小刚的年龄,并计算当x=5时小刚的年龄.29、已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求的值30、下列代数式可以表示什么?(1)2x;(2);(3)8a3.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、B6、D7、A8、C9、D10、A11、C12、D13、A14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

七年级上册数学单元测试卷-第3章 代数式-苏科版(含答案)

七年级上册数学单元测试卷-第3章 代数式-苏科版(含答案)

七年级上册数学单元测试卷-第3章代数式-苏科版(含答案)一、单选题(共15题,共计45分)1、如果有理数x、y满足|x﹣1|+|x+y|=0,那么xy的等于()A.-1B.±1C.1D.22、每kgm元的糖果xkg与每kgn元的糖果ykg混合成杂拌糖,则这种杂拌糖每kg的价格为()A. 元B. 元C. 元D. 元3、若x=2是关于x的一元一次方程ax-2=b的解,则3b-6a+2的值是().A.-8B.-4C.8D.44、下列运算中正确的是()A.a 2+a 2=2a 4B.a 10÷a 2=a 5C.a 3•a 2=a 5D.(a+3)2=a 2+95、若点在抛物线上,则的值()A.2021B.2020C.2019D.20186、下列整式中,其中次数为的是( ).A. B. C. D.7、火车站、机场、邮局等场所都有为旅客提供打包服务的项目.现有一个长、宽、高分别为a、b、c的箱子,按如图所示的方式打包,则打包带的长(不计接头处的长)至少应为()A.2a+2b+4cB.2a+4b+6cC.4a+6b+6cD.4a+4b+8c8、下列各组数中,互为相反数的是()A.|+2|与|﹣2|B.﹣|+2|与+(﹣2)C.﹣(﹣2)与+(+2) D.|﹣(﹣3)|与﹣|﹣3|9、下列各组数是同类项的是()A.x 2y和xy 2B.3ab和-abcC. 和D.0和-510、若或是同类项,那么=()A.0B.1C.D.11、下列关于单项式-的说法中,正确的是()A.次数是2B.次数是3C.系数是-2D.系数是12、下列说法正确的是()A.a是单项式B.a没有系数C.a的指数是0D.﹣3是一次单项式13、一个边长为a的正方形广场,扩建后边长增加2,扩建后广场的面积为()A.a=2B.a 2+4C.a 2+2D.(a+2) 214、下列式子中,是单项式的是()A. B. C. D.15、下列运算正确的是()A.a 6÷a 2=a 3B.(a 2)3=a 5C.a 2•a 3=a 6D.3a 2﹣2a 2=a 2二、填空题(共10题,共计30分)16、若a,b互为相反数,c,d互为倒数,m的绝对值为2,则的值为________.17、若单项式a m﹣2b n+7与单项式﹣3a4b4的和仍是一个单项式,则m﹣n=________.18、单项式的次数是________.19、若|2x-4|与|y-3|互为相反数,则2x-y=________.20、已知一个两位数M的个位上的数字是a,十位上的数字是b,交换这个两位数的个位与十位上的数字的位置,所得的新数记为N,则3M﹣2N=________(用含a和b的式子表示).21、若a=1,b=19,c=200,d=2000,则________。

苏科版七年级上册数学第三章《代数式》单元测试卷(含答案)

苏科版七年级上册数学第三章《代数式》单元测试卷(含答案)

苏科版七年级上册数学第三章《代数式》单元测试卷满分:120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列各式不是代数式的是()A.3+x=y B.3C.πr2D.2.下面各组是同类项的是()A.3x和﹣2y B.﹣3a2b和2ab2C.3a2和2a3D.﹣3mn和2mn3.一批电脑进价为a元,提价20%后出售,则售价为()A.a×(1+20%)B.a×(1﹣20%)C.a×20%D.a÷20%4.关于整式的概念,下列说法正确的是()A.的系数是B.32x3y的次数是6C.3是单项式D.﹣x2y+xy﹣7是5次三项式5.多项式﹣3x2y+x2﹣1的次数和项数分别是()A.3,3B.2,3C.﹣3,2D.3,26.下面计算正确的()A.﹣3x﹣3x=0B.x4﹣x3=xC.x2+x2=2x4D.﹣4xy+3xy=﹣xy7.若代数式x2+2x的值为2,则代数式4x2+8x的值为()A.4B.8C.﹣4D.﹣88.下面去括号正确的是()A.2y+(﹣x﹣y)=2y+x﹣y B.a﹣2(3a﹣5)=a﹣6a+10C.y﹣(﹣x﹣y)=y+x﹣y D.x2+2(﹣x+y)=x2﹣2x+y9.小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a ﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2﹣5a+6C.a2+a﹣4D.﹣3a2+a﹣4 10.观察下列按一定规律排列的图标:则第2020个图标是()A.B.C.D.二.填空题(共8小题,满分24分,每小题3分)11.代数式a×1应该写成.12.在式子①﹣x2,②﹣2xy,③xy2﹣x2,④⑤﹣x,⑥,⑦0中,整式有个.13.把多项式x3﹣7x2y+y3﹣4xy2+1按x的升幂排列为.14.已知﹣3x1﹣2a y b+2与是同类项,则a b=.15.已知a2+a﹣3=0,则2024﹣a2﹣a=.16.如果多项式4x3+2x2﹣(kx2+17x﹣6)中不含x2的项,则k的值为.17.如果多项式4x2+7x2+6x﹣5x+3与ax2+bx+c(其中a,b,c是常数)相等,则a+b+c=.18.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为3,第2幅图形中“●”的个数为3+5,第3幅图形中“●”的个数为3+5+7,…,以此类推,第10幅图中“●”的个数为.三.解答题(共8小题,满分66分)19.(5分)根据你的生活与学习经验,对代数式3x+2y作出两种解释.20.(6分)已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n的值.。

苏科版七年级数学上册_第三章_代数式_单元检测试题(解析版)

苏科版七年级数学上册_第三章_代数式_单元检测试题(解析版)

苏科版七年级数学上册 第三章 代数式 单元检测试题考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1. 下列式子:2x ,2a ,p q +,ab ,2c r π=,5,其中代数式的个数是( )A. 6B. 5C. 4D. 3【答案】B【解析】【分析】代数式是有数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、<、>、≤、≥、≈、≠等符号.【详解】c=2πr 含有=,所以不是代数式.x 2、2a 、p+q 、ab 、5都是代数式.故选B .【点睛】此题主要考查了代数式的定义,比较简单.2. 一列数:0,1,2,3,6,7,14,15,30,____,____,____,____这串数是由小新按照一定规则写下来的,他第一次写下“0,1”,第二次接着写“2,3”,第三次接着写“6,7”,第四次接着写“14,15”,就这样一直接着往下写,那么这列数的后面三个数应该是下面的( )A. 31,32,64B. 31,32,33C. 31,62,63D. 31,45,46 【答案】C【解析】【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可解出接下来的3个数.【详解】第一次(0,1),第二次2×1=2,2+1=3,(2,3), 第三次2×3=6,6+1=7,(6,7), 第四次2×7=14,14+1=15,(14,15),第五次2×15=30,30+1=31,(30,31),第六次2×31=62,62+1=63,(62,63).因此这串数的最后三个数应该是31,62,63.故选C.【点睛】本题主要考查了数字的变化规律,解决此类问题的关键是要分组讨论,发现数字规律,寻找问题的答案.3. 多项式432-++-中不可能含有的因式是()2553x x x xA. x+1B. x-1C. x-2D. 2x-3【答案】C【解析】【分析】将多项式进行因式分解,然后找出不可能含有的选项.【详解】2x4-5x3+x2+5x-3=2x4+x2-3-5x3+5x=(2x2+3)(x2-1)-5x(x2-1)=(x2-1)(2x2-5x+3)=(x+1)(x-1)(2x-3)(x-1),多项式存在的因式为:x+1,x-1,2x-3,不含有的因式为x-2.故选C.【点睛】本题考查了多项式的知识,解答本题的关键是进行因式分解,找出所有的因式.4. 如图,下列图案是相同的小正方形按一定的规律拼搭而成:第一个图案有2个小正方形,第2个图案有4个小正方形,…,依次规律,第10个图案有小正方形的个数是()A. 54个B. 55个C. 56个D. 57个【答案】C【解析】【分析】求出前5个图形中的正方形的个数,从而得到图案中正方形的个数的规律,再根据规律写出第n个图案中的正方形的个数即可.【详解】由题意可得:a1=2=1+1,a2=4=1+2+1,a3=7=1+2+3+1,a4=11=1+2+3+4+1,a5=16=1+2+3+4+5+1,..a n=1+2..+n+1=1+()12n n+,∴依次规律,第10个图案有小正方形的个数是:1+() 101012⨯+=56,故选C.【点睛】本题主要考查了图形变化规律,得出数字之间变化规律是解题的关键.5. 代数式3a2-2a+6的值是8,则32a2-a+1的值是().A. 1B. 2C. 3D. 4【答案】B【解析】试题分析:因为3a2-2a+6=8,所以3a2-2a =2,32a2-a+1=()213212a a-+=1212⨯+=2.故选B.考点:代数式求值;整体思想.6. 下列说法不正确的是()A. 1,a-都是单项式B. 28a-+是多项式C. 0不是整式D. π,26a b+都是整式【答案】C 【解析】【分析】根据单项式、整式、多项式的概念求解.【详解】A、1,-a都是单项式,该说法正确,故本选项错误;B、-a2+8是多项式,该说法正确,故本选项错误;C、0是整式,该说法错误,故本选项正确;D、π,26a b+都是整式,该说法正确,故本选项错误.故选C.【点睛】本题考查了单项式、整式、多项式的知识,解答本题的关键是掌握各知识点的概念.7. 下列计算:()21n n na a a⋅=,()66122a a a+=,()553c c c⋅=,()7784222+=,()33395(3)9xy x y=,()552336()a b ab a b÷=中正确的个数为()A. 3个B. 2个C. 1个D. 0个【答案】A【解析】【分析】根据整式的除法,合并同类项的方法,以及同底数幂的乘法和幂的乘方与积的乘方的运算方法逐一判断即可.【详解】∵a n•a n=a2n,∴(1)正确;∵a6+a6=2a6,∴(2)不正确;∵c•c5=c6,∴(3)不正确;∵27+27=28,∴(4)正确;∵(3xy3)3=27x3y9,∴(5)不正确;∵a5b5÷(ab)2=a3b3,∴(6)正确.综上,可得正确的有3个:(1)、(4)、(6).故选A.【点睛】此题主要考查了整式的除法,合并同类项的方法,以及同底数幂的乘法和幂的乘方与积的乘方的运算,要熟练掌握运算法则.8. 下列各组单项式中,不是同类项的是()A. 3与2-B. xy -与yxC. 13a 与12bD. 213x y 与223yx 【答案】C【解析】【分析】根据同类项的概念求解. 【详解】A 、3和-2是同类项,故本选项错误;B 、-xy 与yx 是同类项,故本选项错误;C 、13a 与12b 不是同类项,故本选项正确; D 、13x 2y 与23yx 2是同类项,故本选项错误. 故选C .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.9. 以下说法正确的是( )A. 不是正数的数一定是负数B. 0o C 表示没有温度C. 小华的体重增长了2kg -表示小华的体重减少2kgD. 多项式225x x -+的次数是3【答案】C【解析】【分析】根据正数和负数的定义及多项式次数的定义解答即可.正数与负数表示相反的意义,多项式的次数是多项式中最高次项的次数.【详解】A 、错误,因为0既不是正数也不是负数;B 、错误,因为0℃表示0度.C 、正确;D 、多项式x 2-2x+5的次数是2;故选C .【点睛】本题比较简单,考查的是正数和负数的意义,及多项式次数的定义.10. 若单项式2m n x y -与单项式2312m n x y +-是同类项,那么这两个多项式的和是( )A. 4612x yB. 2312x yC. 2332x yD. 233 2x y 【答案】B【解析】【分析】利用同类项定义列出方程组,求出方程组的解得到m 与n 的值,即可求出两个多项式的和.【详解】∵单项式x 2y m-n 与单项式-12x 2m+n y 3是同类项, ∴223m n m n +=⎧⎨-=⎩, 解得:5343m n ⎧=⎪⎪⎨⎪=-⎪⎩, 则原式=x 2y 3-12x 2y 3=12x 2y 3, 故选B .【点睛】本题考查了整式的加减,以及同类项,熟练掌握同类项的定义是解本题的关键. 二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11. 单项式235x yz -的次数是________.【答案】6【解析】【分析】 根据单项式次数的概念求解.【详解】单项式-5x 2yz 3的次数为6.故答案为6.【点睛】本题考查了单项式知识,一个单项式中所有字母的指数的和叫做单项式的次数.12. 已知代数式2a a +的值是5,则代数式2222013a a ++的值是________.【答案】2023【解析】【分析】 原式前两项提取2变形后,把代数式的值代入计算即可求出值.【详解】∵a 2+a=5,∴原式=2(a 2+a )+2013=10+2013=2023.故答案为2023.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13. 一个三位数,十位数字为,个位数字比十位数字少3,百位数字是十位数字的3倍,则这个三位数为________. 【答案】【解析】 由题意可得个位数字为,百位数字为, 所以这个三位数为 14. 单项式225ab π-的系数是________;多项式5531b bc +-的次数是________次. 【答案】 (1). 25π-(2). 6 【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定. 【详解】项式−225ab π的系数是-25π;多项式b 5+3bc 5-1的次数是6次. 故答案是:-25π,6. 【点睛】此题考查是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.15. 买一个篮球需要x 元,买一个排球需要y 元,则买3个篮球和2排球共需________元.【答案】()32x y +【解析】【分析】 直接利用根据题意表示出买3个篮球以及2个排球的钱数,相加即可.【详解】∵买一个篮球需要x 元,买一个排球需要y 元,∴买3个篮球和2排球共需:(3x+2y )元.故答案为(3x+2y ).【点睛】此题主要考查了列代数式,正确表示出买篮球以及排球的钱数是解题关键.16. ()(a b c ++-________)2a b c =-+.【答案】2a b -+【解析】【分析】根据“减数=被减数-差”求解即可.【详解】(a+b+c)-(2a-b+c)=a+b+c-2a+b-c ,=2a b -+.【点睛】本题主要考查了整式的减法,关键是掌握去括号的法则.17. 写出一个整式,具备以下两个条件:()1它是一个关于字母x 的二次三项式;()2各项系数的和等于10;________.【答案】28x x ++【解析】【分析】根据题意列出一个满足条件的整式.【详解】如x 2+x+8,该整式总共三项最高项是2次,各项系数和为:1+1+8=10.所以该整式满足条件.【点睛】本题重点在于对整式的项数和次数以及系数的考查.18. 已知P=xy ﹣5x+3,Q=x ﹣3xy+2,当x≠0时,3P ﹣2Q=5恒成立,则y=______. 【答案】179【解析】【分析】根据题意和合并同类项法则求出3P-2Q 的值,根据3P-2Q=5恒成立求出y 的值.【详解】∵P=xy-5x+3,Q=x-3xy+2,∴3P-2Q=3xy-15x+9-2x+6xy-4=9xy-17x+5,当9xy-17x=0,即y=179时,3P-2Q=5恒成立, 故答案为179.【点睛】本题考查的是整式的加减,掌握合并同类项的法则是解题的关键.19. 若0a b +=,则多项式3223a ab ab b +--的值是________.【答案】0【解析】【分析】 先对多项式分组因式分解,得到a 2(a+b )-b 2(a+b ),将a+b=0代入即可求出多项式的值.【详解】a 3+a 2b-ab 2-b 3=a 2(a+b )-b 2(a+b ),将a+b=0代入得,原式=a 2×0+b 2×0=0. 原式值为0.故答案为0.【点睛】本题整体代入考虑解答较为方便,也可以将a+b=0变形为a=-b ,代入多项式,进行乘方运算 20. 如图,观察下列图案,它们都是由边长为1cm 的小正方形按一定规律拼接而成的,依此规律,则第5个图案中的小正方形有________个.第n 个图案中的小正方形有________个.【答案】 (1). 15 (2).()112n n + 【解析】【分析】 根据图形可以得到第n 个图案有n 层,从上到下分别有1,2,3…n 个正方形,据此即可求解.【详解】根据图形可以得到第n 个图案有n 层,从上到下分别有1,2,3…n 个正方形.则第5个图案的正方形的个数是:1+2+3+4+5=15;第n 个图案的正方形的个数是:1+2+3+…+n=12n (n+1). 故答案是:15;12n (n+1). 【点睛】本题考查了图形的变化规律,正确理解第n 个图案有n 层,从上到下分别有1,2,3…n 个正方形是关键.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )21. 化简:(1)2225423m n m n mn m n mn -+-++(2)()()223323a b b a ---【答案】(1)mn ;(2)13a-12b.【解析】【分析】(1) 题中-5m 2n 与4m 2n 、m 2n 是同类项,合并成一项;-2mn 与3mn 是同类项,合并成一项.(2) 去括号后找到同类项进行合并即可.【详解】解:(1)2225423m n m n mn m n mn -+-++=(-5m 2n+4m 2n+m 2n )+(-2mn+3mn )=(-5+4+1)m 2n+mn=mn(2)2(2a-3b )-3(2b-3a )=4a-6b-6b+9a=13a-12b【点睛】此题考察整式加减法,正确掌握无括号法则,合并同类项法则是解题关键.22. 化简求值:()()22223232x xy x xy x ----,其中2x =,3y =.【答案】18【解析】【分析】先去括号,再合并同类项,最后代入求出即可.【详解】解:原式22222692x xy x xy x =--+- 267x xy =-+,当2x =,3y =时,原式262723=-⨯+⨯⨯18=.【点睛】本题考查了整式的加减和求值的应用,能正确运用整式的加减法则进行化简是解此题的关键.23. 人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a 表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么()0.8220b a =-.()1正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?()2一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?【答案】(1) 在运动时一个20岁的人所能承受的每分钟心跳的最高次数是160;(2) 他有危险,理由见解析【解析】【分析】(1)根据题意给出的等式,将a=20代入即可求出b 的值.(2)根据题意给出的等式,将a=50时代入求出b 的值,然后将b 与23相比较即可知道是否有危险.【详解】()1当20a =时,()()0.82200.822020160b a =-=⨯-=,所以在运动时一个20岁的人所能承受的每分钟心跳的最高次数是160;()2他有危险,当50a =时,()()0.82200.822050136b a =-=⨯-=, 因为681366010233÷⨯=<,所以此人有危险. 【点睛】本题考查代数式求值,解题的关键是理解题意,分别求出a 与b 的值,本题涉及有理数大小比较,属于基础题型.24. 甲、乙两地相距100km ,一辆汽车的行驶速度为v /km h .()1用代数式表示这辆汽车从甲地到乙地需要行驶的时间;()2若汽车行驶速度增加了a /km h ,则从甲行驶到乙可比原来早到多少小时?()3若10/a km h =,40/v km h =,求上述()1、()2两小题中代数式的值.【答案】(1)()100h v ;(2)()100100h v v a ⎛⎫- ⎪+⎝⎭;(3)0.5h 【解析】【分析】(1)利用路程除以速度求得时间即可;(2)用原来的时间减去速度增加后的时间即可;(3)把数值分别代入(1)(2)中的代数式求得答案即可.【详解】() 1这辆汽车从甲地到乙地需要行驶时间是()100h v; ()2行驶速度增加了a /km h 后,从甲行驶到乙需要()100h v a+,故可比原来早到()100100h v v a ⎛⎫- ⎪+⎝⎭;(3)10/a km h =,40/v km h =时, ()100 2.540h =, ()1002.50.54010h -=+. 【点睛】此题考查列代数式,掌是握路程、速度、时间三者之间的关系是解决问题的关键.25. 火柴棒按图中所示的方法搭图形.()1填写下表 三角形个数1 2 3 4 5 火柴棒根数 ()2搭n 个这样的三角形需要多少根火柴棒?【答案】(1)3、5、7、9、11;(2) 第n 个图形要火柴122...212n ++++=+根【解析】【分析】(1)可以从几个图形中数出火柴根数;(2)规律:除第一个图形外,每增加一个三角形需要两根火柴.【详解】解:(1)3、5、7、9、11;()2由图形得到:第一个图形要火柴123+=根;第二个图形要火柴1225++=根;第三个图形要火柴12227+++=根;…故第n 个图形要火柴122...212n ++++=+根.【点睛】本题考查了图形的变化类题目,认真观察、分析和归纳总结是解决此题的关键.26. 如图,长为60cm ,宽为()x cm 的大长方形被分割为7小块,除阴影 A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短一边长为 ()y cm .()1分别用含x ,y 的代数式表示阴影 A ,B 的面积,并计算阴影 A ,B 的面积差.()2当10y =时,阴影 A 与阴影 B 的面积差会随着x 的变化而变化吗?请你作出判断,并说明理由.【答案】(1)2 6061209x xy y y --+;(2) 阴影 A 与阴影 B 的面积差不会随着x 的变化而变化,理由见解析【解析】【分析】(1)根据图形表示出A 与B 面积,求出面积差即可;(2)把y=10代入,找出A 与B 随着x 变化而变化情况即可.【详解】() 1根据题意得:()()226036031206A x y y x xy y y =--=--+; ()2333B y x y xy y =-=-;26061209A B x xy y y -=--+;()2把10y =代入2606120960601200900300x xy y y x x --+=--+=-,所以阴影 A 与阴影 B 的面积差不会随着x 的变化而变化.【点睛】此题考查了代数式求值,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的关系列出代数式,再求值.。

苏科版七年级数学上册《第三章代数式》单元检测试题(有答案)

苏科版七年级数学上册《第三章代数式》单元检测试题(有答案)

第一学期苏科版七年级数学上册_第三章代数式单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.代数式a−2表示()bA.a减2除以b所得的差B.a除以b减去2C.a减2的差除以bD.b除以a减2所得的商2.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…则230的尾数是()A.2B.4C.6D.83.若a是一位数,b是两位数,把a放在b的左边,所得的三位数可以表示为()A.10a+bB.10b+aC.100a+bD.ab4.如图是由一些火柴棒搭成的图案:按照这种方式摆下去,摆第6个图案用多少根火柴棒()A.24B.25C.26D.275.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,−1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,−10,−1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第100次以后所产生的那个新数串的所有数之和是多少()A.500B.520C.780D.20006.下列判断正确的是()A.3a2b与ba2不是同类项B.m2n不是整式5C.单项式−x3y2的系数是−1D.3x2−y+5xy2是二次三项式7.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形有1个五角星,第②个图形有5个五角星,第③个图形有13个五角星…,则第⑥个图形中五角星的个数为()A.41B.53C.57D.618.下列结论中,正确的是()A.单项式3xy2的系数是3,次数是2 B.−xy2z的系数是−1,次数是4 7C.单项式m的次数是1,没有系数单项式D.多项式2x2+xy+3是三次三项式9.代数式x2+5,0,2,y,−2,−3x+2中,整式有()x+1A.2个B.3个C.4个D.5个10.已知代数式x2+y的值是3,则代数式2x2+2y−4的值是()A.−2B.−1C.1D.2二、填空题(共 10 小题,每小题 3 分,共 30 分)11.单项式−πa3b2c4的系数是________,次数是________.x n y3的和仍为单项式,则m+n的值是________.12.若单项式2x2y m与−1313.多项式5a3−ab4−3abc5+1是________次________项式,其中的最高次项是________.14.合并同类项:2xy 2−3xy 2=________.15.计算:3m −2n +3n −4m +1=________.16.如果x p−2+4x 3−(q −2)x 2−2x +5是关于x 的五次四项式,那么p +q =________.17.已知6a m b 4与−37a 3b n+1是同类项,则m =________,n =________.18.已知a +b =12,a +c =2,那么代数式(b −c)2−3(c −b)+94的值是________. 19.把多项式11x −9+76x +1−2x 2−3x 合并同类项后是________.20.如果a 的相反数是最大的负整数,b 是绝对值最小的数,那么a −b 的值为________.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )21.合并同类项.(1)x −f +5x −4f ; (2)2a +3b +6a +9b −8a +12b ;(3)30a2b+2b2c−15a2b−4b2c; (4)7xy−8wx+5xy−12xy.22.(1)计算:x−(2x−y)+(3x−2y);(2)如图是一个数值运算程序.①当输入x的值为3时,则输出的结果y=________.②当输出的结果y的值为3时,输入x的值为________.23.从左向右依次观察如图的前三个图形,照此规律请你将第四个图形涂上合适的阴影.24.一辆客车上原有(6α−2b)人,中途下车一半人数,又上车若干人,这时车上共有(12α−5b)人.问上车的乘客是多少人?当α=2,b=3时,上车的乘客是多少人?25.某种T型零件尺寸如图所示(左右宽度相同),求:(1)用含x,y的代数式表示阴影部分的周长.(2)用含x,y的代数式表示阴影部分的面积.(3)x=2,y=2.5时,计算阴影部分的面积.26.海洋服装厂生产一种夹克和一种牛仔裤,夹克每件定价140元,牛仔裤每件定价70元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件牛仔裤;②夹克和牛仔裤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,牛仔裤x件(x>30).(1)若该客户按方案①购买,夹克需付款________元,牛仔裤需付款________元(用含x的式子表示);若该客户按方案②购买,夹克需付款________元,牛仔裤需付款________元(用含x的式子表示);(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?答案1.C2.B3.C4.B5.B6.C7.D8.B9.D10.D11.−π912.513.七四−3abc514.−xy215.−m+n+116.917.3318.019.−2x2+84x−820.121.解:(1)原式=x+5x−f−4f=6x−5f;(2)原式=2a+6a−8a+3b+ 9b+12b=24b;(3)原式=30a2b−15a2b+2b2c−4b2c=15a2b−2b2c;(4)原式=7xy+5xy−12xy−8wx=−8wx.22.解:(1)原式=x−2x+y+3x−2y=2x−y;2−2或223.解:根据五角星是按照顺时针旋转的,顺第三个图转一个角即可,故得图片24.上车的乘客是9α−4b人,当α=2,b=3时,上车的乘客是6人.25.解:(1)根据题意得:2(y+3y+2.5x)=5x+8y;(2)根据题意得:y⋅2.5x+3y⋅0.5x=4xy;(3)当x=2,y=2.5时,S=4×2×2.5=20.26.4200(70x−2100)3360(56x−1680)。

2022-2023学年苏科版七年级数学上册第3章代数式单元测试题含答案

2022-2023学年苏科版七年级数学上册第3章代数式单元测试题含答案

2022-2023学年苏科版七年级数学上册《第3章代数式》测试题(附答案)一.选择题(共10小题,满分30分)1.下列关于多项式﹣﹣5的说法中,正确的是()A.它是七次三项式B.它是四次二项式C.它的最高次项系数是D.它的常数项是52.下列判断中正确的是()A.3a2bc与bca2不是同类项B.单项式﹣x3y2的系数是﹣1C.3x2﹣y+5xy2是二次三项式D.不是整式3.如果a表示一个一位数,b表示一个两位数,将a放在b的左边,那么,所得的三位数列式表示正确的是()A.ab B.10a+b C.100a+b D.a+100b4.下列计算中正确的是()A.x﹣0.5x=0B.1+2x=3xC.2x2﹣x2=1D.3x2+2x3=5x55.若单项式﹣的系数是m,次数是n,则m•n的值为()A.﹣2B.﹣10C.D.﹣66.若整式2x2﹣3x的值为5,则整式﹣4x2+6x+9的值是()A.﹣1B.14C.5D.47.已知某三角形的周长为3m﹣n,其中两边的和为m+n﹣4,则此三角形第三边的长为()A.2m﹣4B.2m﹣2n﹣4C.2m﹣2n+4D.4m﹣2n+48.若多项式3x2﹣2(5+y﹣2x2)+mx2的值与x的值无关,则m等于()A.0B.1C.﹣1D.﹣79.已知一个多项式与3x2+9x的和等于5x2+4x﹣1,则这个多项式是()A.8x2+13x﹣1B.﹣2x2+5x+1C.8x2﹣5x+1D.2x2﹣5x﹣1 10.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5二.填空题(共9小题,满分27分)11.在多项式2﹣4x2+x﹣3x3中,二次项的系数等于.12.当a=﹣1时,代数式=.13.如图,是计算输入转换程序图,开始输入x的值为5,发现第一次得12,第二次得6;若输入10,第三次得到.14.一件商品的进价为a元,将进价提高80%后标价,再按标价打七折销售,则这件商品销售价是元.(结果需化简)15.关于x的多项式x4+(a﹣1)x3+5x2﹣(b+3)x﹣1不含x3项和x项,求a+b=.16.若一个多项式加上5x2+3x﹣2的2倍得3x2﹣x﹣1,则这个多项式是.17.当x=3时,代数式px5+qx3+1的值为2022,则当x=﹣3时,代数式px5+qx3+1的值为:.18.已知某三角形第一条边长为(3a﹣2b)cm,第二条边比第一条边长(a+2b)cm,第三条边比第一条边的2倍少bcm,则这个三角形的周长为cm.19.如图,两个多边形的面积分别为13和22,两个阴影部分的面积分别为a,b(a<b),则b﹣a的值为.三.解答题(共7小题,满分63分)20.去括号,并合并同类项:(1)(3a+1.5b)﹣(7a﹣2b)(2)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3)21.已知:关于x,y的多项式x2+ax﹣y+b与多项式bx2﹣2x+6y﹣3的和的值与字母x的取值无关.(1)求a,b的值.(2)求代数式3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]的值.22.小明同学做一道数学题时,误将求“A﹣B”看成求“A+B”,结果求出的答案是3x2﹣2x+5.已知A=4x2﹣3x﹣6.请你帮助小明同学求出A﹣B.23.如图是一个长为a,宽为b的长方形,两个阴影图形都是一对底边长为1,且底边在长方形对边上的平行四边形.(1)用含字母a,b的式子表示长方形中空白部分的面积;(2)当a=6,b=5时,求长方形中空白部分的面积.24.课堂上,在求多项式(3a3b3﹣a2b+b2)﹣(4a3b3﹣a2b﹣b2)﹣(﹣a3b3﹣a2b)﹣(b2﹣3)的值时.王老师将班级分两组比赛:要求第一组把a=﹣2020,b=﹣代入计算,第二组把a=2021,b=﹣代入计算,两组的计算结果相同,并且都正确,这是为什么?说明理由并计算结果.25.某文具批发店销售一款笔记本,一次性批发价如下表:批发数量(本)不超过200本超过200本的部分单价(元)6元5元(1)若小明在该店一次性批发250本上述笔记本,则他需付的费用为元;(2)某零售店店主小强分两次向该批发店共批发1200本该款笔记本,第一次批发m本,且第二次批发的数量超过第一次批发的数量,则小强两次批发笔记本共付费多少元?(用含m的代数式表示)26.已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)(1)化简此多项式;(2)小红取x,y互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y的值等于多少?(3)聪明的小刚从化简的多项式中发现,只要字母y取一个固定的数,无论字母x取何数,代数式的值恒为一个不变的数,请你通过计算求出小刚所取的字母y的值.参考答案一.选择题(共10小题,满分30分)1.解:多项式﹣﹣5是四次三项式,它的最高次项系数是,常数项是﹣5.故选:C.2.解:A、3a2bc与bca2是同类项,故错误;B、单项式﹣x3y2的系数是﹣1,正确;C、3x2﹣y+5xy2是3次3项式,故错误;D、是整式,故错误;故选:B.3.解:∵a表示一个一位数,b表示一个两位数,将a放在b的左边,∴a表示百位上的数字,∴所得的三位数为100a+b.故选:C.4.解:A.,正确,故本选项符合题意;B.1与2x不是同类项,所以不能合并,故本选项不合题意;C.2x2﹣x2=x2,故本选项不合题意;D.3x2与2x3不是同类项,所以不能合并,故本选项不合题意.故选:A.5.解:∵单项式﹣的系数是m,次数是n,∴m=﹣,n=3+2=5,∴m•n=﹣×5=﹣2,故选:A.6.解:∵2x2﹣3x=5,∴﹣4x2+6x+9=﹣2(2x2﹣3x)+9=﹣2×5+9=﹣1.故选:A.7.解:根据题意得:(3m﹣n)﹣(m+n﹣4)=3m﹣n﹣m﹣n+4=2m﹣2n+4,故选:C.8.解:∵3x2﹣2(5+y﹣2x2)+mx2=3x2﹣10﹣2y+4x2+mx2,=(3+4+m)x2﹣2y﹣10,此式的值与x的值无关,则3+4+m=0,故m=﹣7.故选:D.9.解:根据题意得:(5x2+4x﹣1)﹣(3x2+9x)=5x2+4x﹣1﹣3x2﹣9x=2x2﹣5x﹣1.故选:D.10.解:∵a﹣b=3,c+d=2,∴原式=a+c﹣b+d=(a﹣b)+(c+d)=3+2=5.故选:C.二.填空题(共9小题,满分27分,每小题3分)11.解:在多项式2﹣4x2+x﹣3x3中,二次项的系数等于﹣4.故答案为:﹣4.12.解:把a=﹣1代入原式==0.故答案为:0.13.解:输入10,x的值为偶数,第一次得y=x=5;输入5,x的值为奇数,第二次得y=x+7=12;输入12,x的值为偶数,第三次得y=x=6.14.解:由题意得:实际售价为:(1+80%)a•70%=1.26a(元),故答案为:1.26a.15.解:由题意得:a﹣1=0,b+3=0,解得:a=1,b=﹣3,则a+b=﹣2.故答案为:﹣2.16.解:根据题意得:(3x2﹣x﹣1)﹣2(5x2+3x﹣2)=3x2﹣x﹣1﹣10x2﹣6x+4=﹣7x2﹣7x+3.故答案为:﹣7x2﹣7x+3.17.解:∵当x=3时,代数式px5+qx3+1的值为2022,∴35p+33q+1=2022.∴35p+33q=2021.当x=﹣3时,代数式px5+qx3+1=(﹣3)5p+(﹣3)3q+1=﹣35p﹣33q+1=﹣(35p+33q)+1=﹣2021+1=﹣2020.故答案为:﹣2020.18.解:∵某三角形第一条边长为(3a﹣2b)cm,第二条边比第一条边长(a+2b)cm,第三条边比第一条边的2倍少bcm,∴第二条边长为(3a﹣2b+a+2b)=4acm,第三条边长为:2(3a﹣2b)﹣b=(6a﹣5b)cm,则这个三角形的周长为:3a﹣2b+4a+6a﹣5b=(13a﹣7b)cm.故答案为:13a﹣7b.19.解:设空白部分面积为x,则a+x=13,b+x=22,由题意可得:b+x﹣(a+x)=b﹣a=22﹣13=9.故答案为:9.三.解答题(共7小题,满分63分)20.解:(1)(3a+1.5b)﹣(7a﹣2b)=3a+1.5b﹣7a+2b=﹣4a+3.5b;(2)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3)=8xy﹣x2+y2﹣4x2+4y2﹣8xy+12=﹣5x2+5y2+12;21.解:(1)由题意可得:x2+ax﹣y+b+(bx2﹣2x+6y﹣3)=x2+ax﹣y+b+bx2﹣2x+6y﹣3=(1+b)x2+(a﹣2)x+5y+b﹣3,∵和的值与字母x的取值无关,∴1+b=0,a﹣2=0,解得:b=﹣1,a=2;(2)3(a2﹣2ab+b2)﹣[4a2﹣2(a2+ab﹣b2)]=3a2﹣6ab+3b2﹣4a2+2(a2+ab﹣b2)=3a2﹣6ab+3b2﹣4a2+a2+2ab﹣3b2=﹣4ab,当b=﹣1,a=2时,原式=﹣4×2×(﹣1)=8.22.解:由题意,知B=3x2﹣2x+5﹣(4x2﹣3x﹣6)=3x2﹣2x+5﹣4x2+3x+6=﹣x2+x+11.所以A﹣B=4x2﹣3x﹣6﹣(﹣x2+x+11)=4x2﹣3x﹣6+x2﹣x﹣11=5x2﹣4x﹣17.23.解:(1)由题意知,大长方形的面积=ab,横向的长方形的面积=a×1=a,倾斜方向的平行四边形面积=b×1=b,上述两个图形的重叠部分是平行四边形,它的面积=1×1=1,设空白部分的面积为S,则S=ab﹣a﹣b+1;(2)当a=6,b=5时,S=ab﹣a﹣b+1=30﹣6﹣5+1=20.24.解:原式=3a3b3﹣a2b+b2﹣4a3b3+a2b+b2+a3b3+a2b﹣b2+3=b2+3,当a=﹣2020,b=﹣时,原式=;当a=2021,b=﹣时,原式=,原式的值与a的取值无关,故两组的计算结果相同,并且都正确.25.解:(1)200×6+5(250﹣200)=1450,答:他需付的费用为1450元;故答案为:1450;(2)由题意得:1200﹣m>m,∴m<600,①当0<m≤200时,1200﹣m≥1000,依题意,得小强两次批发笔记本共付费为:6m+[200×6+5(1200﹣m﹣200)]=6m+1200+5000﹣5m =m+6200.②当200<m<600时,600<1200﹣m<1000,依题意,得小强两次批发笔记本共付费为:[200×6+5(m﹣200)]+[200×6+5(1200﹣m﹣200)]=1200+5m﹣1000+1200+5000﹣5m=6400.综上所述,当0<m≤200时,小强两次批发笔记本共付费(m+6200)元;当200<m<600时,小强两次批发笔记本共付费6400元.26.解:(1)3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1)=3x2+6(y2+xy﹣2)﹣3x2﹣6y2﹣4xy+4x+4=3x2+6y2+6xy﹣12﹣3x2﹣6y2﹣4xy+4x+4=2xy+4x﹣8;(2)∵x,y互为倒数,∴2xy+4x﹣8=4x﹣6=0,解得:x=,故y=;(3)∵只要字母y取一个固定的数,无论字母x取何数,代数式的值恒为一个不变的数,∴2xy+4x=0,则2y+4=0,解得:y=﹣2.。

七年级数学上册《第三章 代数式》单元测试卷及答案-苏科版

七年级数学上册《第三章 代数式》单元测试卷及答案-苏科版

七年级数学上册《第三章 代数式》单元测试卷及答案-苏科版(考试时间:60分钟 总分:100分)一、选择题1.下列用代数式表示“比x 的三倍还少5的数”正确的是( )A .35x -B .53x -C .35x +D .53x -⨯2.下列整式中,是二次单项式的是( )A .21x +B .xyC .2x yD .3x -3.已知两个等式425m n p m -=-=-,则2p n -的值为( )A .3-B .3C .6D .6-4.下列单项式中,xy 2的同类项是( )A .x 3y 2B .x 2yC .2xy 2D .2x 2y 35.()2--=( )A .2B .2-C .12D .12-6.设2221M a a =++,2327N a a =-+其中a 为实数,则M 与N 的大小关系是( )A .M N ≥B .M N >C .N M ≥D .N M >7.已知我省2022年上半年的GDP 总值为a 万亿元,2022年下半年的GDP 总值比2022年上半年增长7.5%,预计2023年上半年的GDP 总值比2022年下半年增长6.8%,若预计我省2023年上半年的GDP 总值为b 万亿元,则a ,b 之间的关系是( ) A .(1 6.8%)(17.5%)b a =++ B .2(17.5%)b a =+ C .(1 6.8%)(17.5%)a b =--D .(17.5% 6.8%)b a =++8.下列计算正确的是( )A .336x y xy +=B .()()22224x y x y x y +-=- C .()222x y x xy y -=-+D .()2266x y x y -=-9.若()a --为正数,则a 为( )A .正数B .负数C .0D .不能确定10.把图1中周长为16cm 的长方形纸片分割成四张大小不等的正方形纸片A 、B 、C 、D 和一张长方形纸片E ,并将它们按图2的方式放入周长为24cm 的的长方形中.设正方形C 的边长为cm x ,正方形D 的边长为cm y .则下结论中正确的是( )A .正方形C 的边长为1cmB .正方形A 的边长为3cmC .正方形B 的边长为4cmD .阴影部分的周长为20cm二、填空题11.“x 加上y 的平方的和”,用代数式表示是 .12.某商品原价为a 元,经营者连续两次提价,两次分别提价10%.后因市场物价调整,又一次性降价20%,则这种商品的现价是 元.13.已知2210x x --=,则3231052027x x x -++的值等于 . 14.若234m a b -与615n a b +是同类项,则m n += .三、解答题15.已知:a b 、 互为相反数,c d 、 互为倒数,m 是最小的正整数,求代数式2022()32a b cd m +-+的值.16.已知有理数a ,b ,c 在数轴上对应点的位置如图所示,化简:2a b c a +++.17.已知一个数比a 的6倍大3,另一个数比a 的7倍小5.求前一个数减去后一个数的差.四、综合题18.为体现党和政府对农民健康的关心,解决农民看病难问题,某市全面实行新型农村合作医疗,对住院农民的医疗费实行分段报销制、下面是某市新型农村合作医疗制度中卫生院住院医疗费用报销比例:医药费报销比例 500元以下(含500元) 不予报销 500元(不含)以上至5000元 65% 5000元(不含)以上至20000元75%20000(不含)元以上65%(如:某住院病人花去医疗费6000元,报销金额为()()500050065%6000500075%3675-⨯+-⨯=(元)) (1)农民刘老汉因脑中风住院花去医疗费5600元,他可以报销多少元? (2)写出医疗费为()20000x x >元时的报销金额.19.毕业季,某文具批发店购进足够数量的甲、乙两种纪念册,已知每天这两种纪念册的销售量共为200本,这两种纪念册的成本和售价如下:纪念册 成本(元/本) 售价(元/本) 甲 12 16 乙1518设每天销售甲种纪念册x 本.(1)用含x 的式子表示该文具批发店每天销售这两种纪念册的成本,并化简; (2)当x=110时,求该文具批发店每天销售这两种纪念册获得的利润.20.阅读材料:我们知道42(421)3x x x x x -+=-+=,类似地,我们把()a b +看成一个整体,则4()2()()(421)()3()a b a b a b a b a b +-+++=-++=+ “整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用:(1)把2()a b -看成一个整体,求出2223()6()2()a b a b a b -+---的结果. (2)已知224x y -=,求23621x y --的值.21.某同学做一道数学题,已知两个多项式A 、B ,221B x y xy x =--+试求A B +.这位同学把A B +误看成A B -,结果求出的答案为26421x y xy x +--.(1)请你替这位同学求出A B +的正确答案;(2)当x 取任意数值,7A B -的值是一个定值时,求y 的值.参考答案与解析1.【答案】A【解析】【解答】解:由题意可得:35x -.故答案为:A.【分析】根据题意直接列出代数式即可。

2020年苏科版数学七年级上册第三章代数式 单元测试卷(含答案)

2020年苏科版数学七年级上册第三章代数式 单元测试卷(含答案)

第三章代数式单元检测本卷共100分,时间60分钟一、选择题(本大题共8小题,共24.0分)1. 下列代数式书写规范的是( )A. a ×2B. 112aC. (5÷3)aD. 2a 32. 下列运算结果正确的是( )A. 5x −x =5B. 2x 2+2x 3=4x 5C. −4b +b =−3bD. a 2b −ab 2=03. 下列整式中,属于单项式的是( )A. 3x 2B. x+y2 C. a 2+b 2 D. ab −54. 下列去括号正确的是( )A. a −2(−b +c)=a −2b −2cB. a −2(−b +c)=a +2b −2cC. a +2(b −c)=a +2b −cD. a +2(b −c)=a +2b +2c 5. 单项式-32ax 2y 3的系数和次数分别是( )A. −32,5B. −32,6C. −32a ,5D. −32a ,6 6. 已知x -2y =3,那么代数式3-2x +4y 的值是( )A. −3B. 0C. 6D. 97. 观察以下一列数的特点:0,1,-4,9,-16,25,…,则第11个数是()A. −121B. −100C. 100D. 1218. 如图,长方形内的阴影部分是由四个半圆围成的图形,则阴影部分的面积是()A. 14π(2ab −b 2)B. 12π(2ab −b 2)C. 14π(b 2−a 2)D. 18π(b 2−a 2) 二、填空题(本大题共8小题,共24.0分) 9. 若单项式-12x 4a y 与-3x 8y b +4的和仍是单项式,则a +b =______.10. 多项式x 3y 2+4x 2y −5x −1的次数是______,项数是______,常数项是______.11. 若2a -b =5,则7+4a -2b =______.12. 观察下列图形,第一个图形中有一个三角形;第二个图形中有5个三角形;第三个图形中有9个三角形;…;则第2017个图形中有________个三角形.13. 如图所示,已知数 a ,b ,c 在数轴上对应点的位置:化简|a -b |+|b -c |得______ .14. 观察其中的规律:,,,…按此规律,=________.15. 已知a :b :c =2:3:5,求a+b a−2b+3c 的值为______ .16. 我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a 1=1,a 2=3,a 3=6,a 4=10,…,那么a 4+a 11﹣2a 10+10的值是 .三、计算题(本大题共2小题,共12.0分)17. 计算:(1)(5a 2-ab +1)-(-4a 2+2ab +1); (2)x -12[x -13(x -9)]-16(x -9四、解答题(本大题共5小题,共40.0分)18. 若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,求a+b m +m -cd 的值.19. (1)若|a|=3,|b|=4,且a <b ,求a −b 的值. (2)已知|a −3|+|b +5|+|c −2|=0,计算2a +b +c 的值.20.有一道题:先化简,再求值:15x2-(6x2+4x)-(4x2+2x-3)+(-5x2+6x+9),其中x=2017.”小芳同学做题时把“x=2017”错抄成“2016”,但她的计算结果却是正确的,你能说明这是什么原因吗?21.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款______元.(用含x的代数式表示)若该客户按方案二购买,需付款______元.(用含x的代数式表示)(2)若x=5时,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.22.如图,已知数轴上的点A表示的数为6,点B表示的数为-4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是______.(2)求当t等于多少秒时,点P到达点A处?(3)点P表示的数是______(用含字母t的式子表示)(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.答案和解析1.【答案】D【解析】【分析】本题考查代数式书写,熟练掌握代数式的书写要求是解题的关键.根据代数式书写要求即可判断.【解答】解:A.应写为:2a,故A不正确;B.应写为:,故B不正确;C.应写为:,故C不正确;D.正确.故选D.2.【答案】C【解析】解:A、5x-x=4x,错误;B、2x2与2x3不是同类项,不能合并,错误;C、-4b+b=-3b,正确;D、a2b-ab2,不是同类项,不能合并,错误;故选:C.根据合并同类项得法则判断即可.本题主要考查合并同类项,掌握合并同类项的法则是解题的关键.3.【答案】A【解析】【分析】此题考查了单项式的定义的有关知识,根据数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式,结合选项即可得出答案.【解答】解:A.符合单项式的定义,是单项式,故此选项正确;B.不符合单项式的定义,不是单项式,故此选项错误;C.不符合单项式的定义,不是单项式,故此选项错误;D.不符合单项式的定义,不是单项式,故此选项错误;故选A.4.【答案】B【解析】【分析】本题主要考查去括号法则:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.根据去括号法则即可求解,要注意括号前面的符号.【解答】解:A.a-2(-b+c)=a+2b-2c,故A错误;B.a-2(-b+c)=a+2b-2c,正确;C.a+2(b-c)=a+2b-2c,故C错误;D.a+2(b-c)=a+2b-2c,故D错误;故选B.5.【答案】B【解析】解:单项式-ax2y3的系数是-,次数是6.故选:B.单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得出答案.本题考查了单项式的知识,属于基础题,注意掌握单项式系数与次数的定义.6.【答案】A【解析】解:∵x-2y=3,∴3-2x+4y=3-2(x-2y)=3-2×3=-3;故选:A.将3-2x+4y变形为3-2(x-2y),然后代入数值进行计算即可.本题主要考查的是求代数式的值,将x-2y=3整体代入是解题的关键.7.【答案】B【解析】解:0=-(1-1)2,1=(2-1)2,-4=-(3-1)2,9=(4-1)2,-16=-(5-1)2,∴第11个数是-(11-1)2=-100,故选B.根据已知数据得出规律,再求出即可.本题考查了数字的变化类,能根据已知数据得出规律是解此题的关键.8.【答案】A【解析】解:据题意可知:阴影部分的面积S=大圆的面积S1-小圆的面积S2,∵据图可知大圆的直径=a,小圆的直径=,∴阴影部分的面积S=π()2-π()2=π(2ab-b2).故选A.9.【答案】-1【解析】解:由题意,得4a=8,b+4=1.解得a=2,b=-3.∴a+b=-3+2=-1,故答案为:-1.根据单项式的和是单项式,可得同类项,根据同类项的定义,可得答案.本题考查了合并同类项,利用同类项的定义得出a、b的值是解题关键.10.【答案】5;4;-1【解析】【分析】本题考查了多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中.最高次数,就是这个多项式的次数.不含x的项为常数项,根据这个定义即可填空.【解答】解:依题意:最高次项的次数是5,∴多项式的次数是5,有,,,-1共4项组成,∴多项式的项数是4,多项式的常数项是-1,故答案为5;4;-1.11.【答案】17【解析】【分析】本题主要考查的是求代数式的值,利用等式的性质求得4a-2b=10是解题的关键,依据等式的性质可求得4a-2b的值,然后整体代入即可.【解答】解:∵2a-b=5,∴4a-2b=10.∴7+4a-2b=7+10=17.故答案为17.12.【答案】8065【解析】解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…第n个图形中三角形的个数是1+4(n-1)=4n-3,当n=2017时,4n-3=8065,故答案为:8065.结合图形数出前三个图形中三角形的个数,发现规律:后一个图形中三角形的个数总比前一个三角形的个数多4.此题考查图形的变化规律,由特殊到一般的归纳方法,找出规律:后一个图形中三角形的个数总比前一个三角形的个数多4解决问题.13.【答案】2b-a-c【解析】解:根据数轴上点的位置得:c<a<0<b,∴a-b<0,b-c>0,则原式=b-a+b-c=2b-a-c,故答案为:2b-a-c根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,判断出绝对值里边式子的正负是解本题的关键.14.【答案】0【解析】【分析】由2+1-3=0,-1+2-5=-4,-1+6-(-2)=7得出左下角的数加上顶点的数再减去右下角的数即是计算结果,由此规律得出答案即可.【解答】解:∵2+1-3=0,-1+2-5=-4,-1+6-(-2)=7,∴-2+(-1)-(-3)=0.故答案为0.15.【答案】511【解析】 【分析】设a 、b 、c 均为k 的倍数,然后用k 表示出a 、b 、c ,再把a 、b 、c 的值代入代数式进行计算即可得解.【解答】解:∵a :b :c=2:3:5,∴设a=2k ,b=3k ,c=5k (k≠0),∴==. 故答案为.16.【答案】-24【解析】【分析】本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n =1+2+3+…+n=.由已知数列得出a n =1+2+3+…+n=,再求出a 10、a 11的值,代入计算可得.【解答】解:由a 1=1,a 2=3,a 3=6,a 4=10,…,知a n =1+2+3+…+n=,∴a 10==55、a 11==66, 则a 4+a 11-2a 10+10=10+66-2×55+10=-24,故答案为-24.17.【答案】解:(1)(5a 2-ab +1)-(-4a 2+2ab +1)=5a 2-ab +1+4a 2-2ab -1=(5a 2+4a 2)+(-ab -2ab )+(1-1)=9a 2-3ab ;(2)x -12[x -13(x -9)]-16(x -9)=x -12(x -13x +3)-16x +32=x -12x +16x -32-16x +32=12x . 【解析】此题考查了整式的加减运算,涉及的知识有:去括号法则,合并同类项法则,运用去括号法则时,注意括号外边的系数应乘以括号中的每一项后再利用法则计算,合并同类项关键是找出同类项,同类项即为所含字母相同,相同字母的指数也相同,常数项都为同类项,合并同类项法则为只把系数相加减,字母和字母的指数不变,熟练掌握法则是解本题的关键.(1)利用去括号法则:括号前面是正号,去掉括号和正号,括号里边不变号;括号前面是负号,去掉负号和括号,括号里各项都变号,然后找出同类项,合并同类项即可得到最后结果;(2)根据运算顺序,先计算小括号里的,先用括号外的系数乘以括号中的每一项,然后利用去括号法则去掉小括号,同理把中括号外的系数乘以括号中的每一项,去掉中括号,然后找出同类项,合并同类项即可得到最后结果.18.【答案】解:(1)原式=-a 2-6a ;(2)原式=2x 2y +x 2-3x 2y +x 2=-x 2y +2x 2;(3)原式=3a 2b -2ab 2-2a 2b +8ab 2-5ab 2=a 2b +2ab 2,当a =-2,b =12时,原式=2-1=1.【解析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果;(3)原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值. 此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键. 19.【答案】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是2,∴a +b =0,cd =1,m =±2,∴a+b+m-cd=±2-1,m∴所求代数式的值为1或-3.【解析】由于a,b互为相反数,c,d互为倒数,m的绝对值是2,由此可以得到a+b=0,cd=1,m=±2,然后发vdr所求代数式计算即可求解.此题分别考查了相反数、绝对值、倒数的定义及求代数式的值,解题的关键熟练掌握相关的定义及其性质即可解决问题.20.【答案】解:(1)根据题意得:a=3,b=4;a=-3,b=4,则a-b=-1或-7;(2)∵|a-3|+|b+5|+|c-2|=0,∴a=3,b=-5,c=2,则2a+b+c=6-5+2=3.【解析】此题考查了代数式求值,绝对值的有关知识,熟练掌握运算法则是解本题的关键.(1)根据a<b,利用绝对值的代数意义求出a与b的值,即可确定出a-b的值;(2)利用非负数的性质求出a,b,c的值,代入原式计算即可得到结果.21.【答案】解:原式=15x2-6x2-4x-4x2-2x+3-5x2+6x+9=12,结果不含字母x,原式的值与x的取值无关,则小芳同学做题时把“x=2017”错抄成了“x=2016”,但她的计算结果却是正确的.【解析】原式去括号合并得到最简结果,即可作出判断.本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)由图可知,阴影部分的面积为:ab-4x2;(2)阴影部分的面积为:200×150-4×102=29600(m2).答:阴影部分的面积为29600平方米.【解析】本题考查列代数式,涉及代入求值问题有关知识.(1)根据题意可知,阴影部分面积是长方形面积减去四个正方形的面积;(2)利用列出的代数式代入求得答案.23.【答案】(1)200x+1200;180x+1440;(2)当x=5时,方案一:200×5+1200=2200(元);方案二:180×5+1440=2340(元).所以按方案一购买较合算.(3)先按方案一购买2台微波炉送2台电磁炉,再按方案二购买3台电磁炉,共2×800+200×3×90%=2140(元).【解析】解:(1)若该客户按方案一购买,需付款:800×2+200(x-2)=200x+1200(元);若该客户按方案二购买,需付款:(800×2+200x)×90%=180x+1440(元).故答案为:200x+1200;180x+1440.、(2)(3)参看答案(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=5代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意可以得到先按方案一购买2台微波炉再送2台电磁炉,再按方案二购买3台电磁炉更合算.本题考查了列代数式和求代数式的值,解题的关键是认真分析题目并正确的列出代数式.24.【答案】(1)1(2)[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】解:(1)依题意得,点C是AB的中点,故点C表示的数是:=1.故答案是:1;(2)见答案(3)点P 表示的数是2t-4.故答案是:2t-4;(4)见答案【分析】(1)根据题意得到点C 是AB 的中点;(2)、(3)根据点P 的运动路程和运动速度列出方程;(4)分两种情况:点P 在点C 的左边有右边.本题考查了一元一次方程的应用,列代数式和数轴.解题时,利用了数形结合的数学思想.1、读书破万卷,下笔如有神。

苏科版初中数学七年级上册《第3章 代数式》单元测试卷

苏科版初中数学七年级上册《第3章 代数式》单元测试卷

苏科新版七年级上学期《第3章代数式》单元测试卷一.选择题(共30小题)1.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“y与1的积”记作y1C.“x的3倍”记作x3D.“2a除以3b的商”记作2.下列各式最符合代数式书写规范的是()A.3a B.C.3x﹣1个D.a×33.比x的五分之三多7的数表示为()A.B.C.D.4.2017年底厦门市有绿化面积696公顷,若绿化面积平均每年的增长率为x,那么2019年底厦门市绿化面积比2018年底厦门市绿化面积大多少公顷()A.696(1+x)B.696(1+x)2C.696(1+2x)D.696(x+x2)5.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如多项式f(x)=x2+2x﹣5,当x =﹣1时,那么f(﹣1)等于()A.﹣2B.﹣4C.﹣6D.﹣86.在某段时间里,按如图所示程序工作,如果输入的数是1,那么输出的数是多少?()A.﹣5B.4C.﹣8D.77.如果代数式﹣3a2m b与ab是同类项,那么m的值是()A.0B.1C.D.38.下列说法①0是最小的有理数;②一个有理数不是正数就是负数;③分数不是有理数;④没有最大的负数;⑤2πR+πR2是三次二项式;⑥6x2﹣3x+1的项是6x2,﹣3x,1;⑦a2与2a2是同类项.其中正确说法的个数是()A.2个B.3个C.5个D.6个9.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得()A.7(x﹣y)2B.﹣3(x﹣y)2C.﹣3(x+y)2+6(x﹣y)D.(y﹣x)210.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=611.下面计算正确的是()A.(m+1)a﹣ma=1B.a+3a2=4a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b12.下列计算正确的是()A.﹣1﹣1=0B.2(a﹣3b)=2a﹣3bC.a3﹣a=a2D.﹣32=﹣913.有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,利用这个规律可得a2018等于()A.﹣B.C.2D.314.填在下面各正方形中的四个数之间都有一定的规律,按此规律可得到a+b+c 的值为()A.79B.100C.110D.12015.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()个黑子.A.37B.42C.73D.12116.在代数式a2+1,﹣3,x2﹣2x,π,中,是整式的有()A.2个B.3个C.4个D.5个17.下列代数式中,不是整式的是()A.B.x C.0D.x+y18.代数式﹣a+,x3﹣,,中,是整式的有()A.1个B.2个C.3个D.4个19.下列式子中,是单项式的是()A.x3y2B.x+y C.﹣m2﹣n2D.20.对于单项式﹣,下列结论正确的是()A.它的系数是,次数是5B.它的系数是,次数是5C.它的系数是,次数是6D.它的系数是,次数是521.下列说法正确的是()A.﹣的系数是﹣2B.4不是单项式C.的系数是D.πr2的次数是322.多项式2﹣3xy﹣4xy3的次数及最高次项的系数分别是()A.4,﹣3B.4,﹣4C.3,4D.3,﹣3 23.多项式4xy2﹣3xy+12的次数为()A.3B.4C.6D.724.下列说法中:①最大的负整数是﹣1;②平方后等于9的数是3;③﹣(﹣2)3=﹣23;④﹣a是负数;⑤若a、b互为相反数,则ab<0;⑥﹣3xy2+2x2﹣y是关于x、y的三次三项式,其中正确的有()A.2个B.3个C.4个D.5个25.下列各式正确的是()A.a﹣(2b﹣7c)=a﹣2b+7cB.(a+1)﹣(﹣b+c)=a+1+b+cC.a2﹣2(a﹣b+c)=a2﹣2a﹣b+cD.(a﹣d)﹣(b+c)﹣a﹣b+c﹣d26.若A为五次多项式,B为四次多项式,则A+B一定是()A.次数不高于九次多项式B.四次多项式C.五次多项式D.次数不定27.甲、乙两个水桶中装有少量且重量相等的水,先把甲桶的水倒出三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出),最后甲、乙两桶中水的重量的大小是()A.甲桶中水的重量>乙桶中水的重量B.甲桶中水的重量=乙桶中水的重量C.甲桶中水的重量<乙桶中水的重量D.不能确定,与桶中原有水的重量有关28.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.﹣5D.5 29.已知b﹣a=10,c+d=﹣5,则(b+c)﹣(a﹣d)的值为()A.10B.15C.5D.﹣5 30.若m﹣x=2,n+y=3,则(m+n)﹣(x﹣y)=()A.﹣1B.1C.5D.﹣5苏科新版七年级上学期《第3章代数式》单元测试卷参考答案与试题解析一.选择题(共30小题)1.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“y与1的积”记作y1C.“x的3倍”记作x3D.“2a除以3b的商”记作【分析】根据代数式的书写要求逐一分析判断各项.【解答】解:A、“负x的平方”记作(﹣x)2,此选项错误;B、“y与1的积”记作y,此选项错误;C、“x的3倍”记作3x,此选项错误;D、“2a除以3b的商”记作,此选项正确;故选:D.【点评】此题考查代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2.下列各式最符合代数式书写规范的是()A.3a B.C.3x﹣1个D.a×3【分析】根据代数式的书写要求判断各项.【解答】解:A、正确的书写格式是,不符合题意;B、正确,符合题意;C、正确的书写格式是(3x﹣1)个,不符合题意;D、正确的书写格式是3a,不符合题意.故选:B.【点评】考查了代数式的知识,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.3.比x的五分之三多7的数表示为()A.B.C.D.【分析】利用已知假设出这个数为x,x的五分之三即为x,比x的五分之三多7,即为x+7.【解答】解:假设出这个数为x:∵x的五分之三是为x,比x的五分之三多7的数即为:x+7;故选:A.【点评】此题主要考查了如何列代数式,应注意搞清题目要求,即分解好题干,分步进行列代数式.4.2017年底厦门市有绿化面积696公顷,若绿化面积平均每年的增长率为x,那么2019年底厦门市绿化面积比2018年底厦门市绿化面积大多少公顷()A.696(1+x)B.696(1+x)2C.696(1+2x)D.696(x+x2)【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积平均每年的增长率为x,根据题意表示2019年底厦门市绿化面积和2018年底厦门市绿化面积,相减可得结论.【解答】解:2018年底厦门市绿化面积:696(1+x),2019年底厦门市绿化面积:696(1+x)2,根据题意得:696(1+x)2﹣696(1+x)=696(1+x)(1+x﹣1)=696(x+x2),故选:D.【点评】本题考查的是增长率问题,关键是能根据增长前的面积表示经过一年和两年变化增长后的面积.5.历史上,数学家欧拉最先把关于x的多项式用记号f(x)来表示,把x等于某数a时的多项式的值用f(a)来表示,例如多项式f(x)=x2+2x﹣5,当x =﹣1时,那么f(﹣1)等于()A.﹣2B.﹣4C.﹣6D.﹣8【分析】把x=﹣1代入f(x)=x2+2x﹣5计算即可确定出f(﹣1)的值.【解答】解:当x=﹣1时,f(﹣1)=(﹣1)2+2×(﹣1)﹣5=1﹣2﹣5=﹣6,故选:C.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.6.在某段时间里,按如图所示程序工作,如果输入的数是1,那么输出的数是多少?()A.﹣5B.4C.﹣8D.7【分析】把1代入计算程序中计算,即可确定出输出结果.【解答】解:把x=1代入计算程序中得:1﹣1+2﹣4=﹣2>﹣4,把x=﹣2代入计算程序中得:﹣2﹣1+2﹣4=﹣5<﹣4,则输出结果为﹣5,故选:A.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.如果代数式﹣3a2m b与ab是同类项,那么m的值是()A.0B.1C.D.3【分析】根据同类项的定义得出2m=1,求出即可.【解答】解:∵单项式﹣3a2m b与ab是同类项,∴2m=1,∴m=,故选:C.【点评】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.8.下列说法①0是最小的有理数;②一个有理数不是正数就是负数;③分数不是有理数;④没有最大的负数;⑤2πR+πR2是三次二项式;⑥6x2﹣3x+1的项是6x2,﹣3x,1;⑦a2与2a2是同类项.其中正确说法的个数是()A.2个B.3个C.5个D.6个【分析】根据有理数的分类和定义、多项式、同类项的定义即可作出判断.【解答】解:①0是绝对值最小的有理数,错误;②一个有理数不是正数就是负数,还有0,错误;③分数是有理数,错误;④没有最大的负数,正确;⑤2πR+πR2是二次二项式,错误;⑥6x2﹣3x+1的项是6x2,﹣3x,1,正确;⑦a2与2a2是同类项,正确.故选:B.【点评】本题考查了有理数的分类和定义、多项式、同类项的定义,认真掌握正数、负数、整数、分数、正有理数、负有理数的定义与特点、有理数的分类和定义、多项式、同类项的定义是解题的关键.9.若把x﹣y看成一项,合并2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x)得()A.7(x﹣y)2B.﹣3(x﹣y)2C.﹣3(x+y)2+6(x﹣y)D.(y﹣x)2【分析】把x﹣y看作整体,根据合并同类项的法则,系数相加字母和字母的指数不变,进行选择.【解答】解:2(x﹣y)2+3(x﹣y)+5(y﹣x)2+3(y﹣x),=[2(x﹣y)2+5(y﹣x)2]+[3(y﹣x)+3(x﹣y)],=7(x﹣y)2.故选:A.【点评】本题考查了合并同类项的法则,是基础知识比较简单.10.下列计算正确的是()A.3a+2b=5ab B.3x2y﹣yx2=2x2yC.5x+x=5x2D.6x﹣x=6【分析】根据合并同类项的法则解答即可.【解答】解:A、3a与2b不是同类项,错误;B、3x2y﹣yx2=2x2y,正确;C、5x+x=6x,错误;D、6x﹣x=5x,错误;故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变计算进行判断.11.下面计算正确的是()A.(m+1)a﹣ma=1B.a+3a2=4a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b【分析】根据去括号和合并同类项进行判断即可.【解答】解:A、(m+1)a﹣ma=a,错误;B、a+3a2=a+3a2,错误;C、﹣(a﹣b)=﹣a+b,正确;D、2(a+b)=2a+2b,错误;故选:C.【点评】此题考查去括号和添括号问题,关键是根据法则进行解答.12.下列计算正确的是()A.﹣1﹣1=0B.2(a﹣3b)=2a﹣3bC.a3﹣a=a2D.﹣32=﹣9【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【解答】解:A.﹣1﹣1=﹣2,故本选项错误;B.2(a﹣3b)=2a﹣6b,故本选项错误;C.a3÷a=a2,故本选项错误;D.﹣32=﹣9,正确;故选:D.【点评】本题考查了去括号与添括号,解决本题的关键是明确去括号法则.13.有若干个数,第一个数记为a1,第二个数记为a2,…,第n个数记为a n.若a1=,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过探究可以发现这些数有一定的排列规律,利用这个规律可得a2018等于()A.﹣B.C.2D.3【分析】根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3,由2018÷3=672…2可知a2018=a2.【解答】解:当a1=时,,a3=,a4=,∴这列数的周期为3,∵2018÷3=672…2,∴a2018=a2=3,故选:D.【点评】本题主要考查数字的变化规律,根据每个数都等于“1与它前面那个数的差的倒数”可知这列数的周期为3是解题的关键.14.填在下面各正方形中的四个数之间都有一定的规律,按此规律可得到a+b+c 的值为()A.79B.100C.110D.120【分析】观察不难发现,左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,根据此规律列式进行计算即可得解.【解答】解:根据左上角+4=左下角,左上角+3=右上角,右下角的数为左下和右上的积加上1的和,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110,故选:C.【点评】本题是对数字变化规律的考查,仔细观察前三个图形,找出四个数之间的变化规律是解题的关键.15.如图,小桥用黑白棋子组成的一组图案,第1个图案由1个黑子组成,第2个图案由1个黑子和6个白子组成,第3个图案由13个黑子和6个白子组成,按照这样的规律排列下去,则第8个图案中共有()个黑子.A.37B.42C.73D.121【分析】观察图象得到第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,…,据此规律可得.【解答】解:第1、2图案中黑子有1个,第3、4图案中黑子有1+2×6=13个,第5、6图案中黑子有1+2×6+4×6=37个,第7、8图案中黑子有1+2×6+4×6+6×6=73个,故选:C.【点评】本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.16.在代数式a2+1,﹣3,x2﹣2x,π,中,是整式的有()A.2个B.3个C.4个D.5个【分析】直接利用整式的定义分析得出答案.【解答】解:在代数式a2+1,﹣3,x2﹣2x,π,中,是整式的有:a2+1,﹣3,x2﹣2x,π共4个.故选:C.【点评】此题主要考查了整式,正确把握定义是解题关键.17.下列代数式中,不是整式的是()A.B.x C.0D.x+y【分析】直接利用整式的定义分析得出答案.【解答】解:A、,不是整式,故此选项正确;B、x是整式,不合题意;C、0是整式,不合题意;D、x+y是整式,不合题意;故选:A.【点评】此题主要考查了整式,正确把握定义是解题关键.18.代数式﹣a+,x3﹣,,中,是整式的有()A.1个B.2个C.3个D.4个【分析】直接利用整式的定义分析得出答案.【解答】解:在代数式﹣a+,x3﹣,,中,是整式的有:x3﹣,共2个.故选:B.【点评】此题主要考查了整式,正确把握定义是解题关键.19.下列式子中,是单项式的是()A.x3y2B.x+y C.﹣m2﹣n2D.【分析】根据单项式的概念即可求出答案.【解答】解:由数或字母的积组成的代数式叫做单项式,故选:A.【点评】本题考查单项式的概念,解题的关键是正确理解单项式的概念,本题属于基础题型.20.对于单项式﹣,下列结论正确的是()A.它的系数是,次数是5B.它的系数是,次数是5C.它的系数是,次数是6D.它的系数是,次数是5【分析】直接利用单项式的次数与系数确定方法进而得出答案.【解答】解:单项式﹣的系数是,次数是5,故选:A.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.21.下列说法正确的是()A.﹣的系数是﹣2B.4不是单项式C.的系数是D.πr2的次数是3【分析】根据单项式的概念及单项式的次数的定义解答.【解答】解:A、﹣的系数是﹣,错误;B、4是单项式,错误;C、的系数是,正确;D、πr2的次数是2,错误;故选:C.【点评】此题考查了单项式,需注意:单项式中的数字因数叫做这个单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数.22.多项式2﹣3xy﹣4xy3的次数及最高次项的系数分别是()A.4,﹣3B.4,﹣4C.3,4D.3,﹣3【分析】直接利用多项式的次数与系数确定方法进而得出答案.【解答】解:多项式2﹣3xy﹣4xy3的次数及最高次项的系数分别是:4,﹣4.故选:B.【点评】此题主要考查了多项式,正确把握相关定义是解题关键.23.多项式4xy2﹣3xy+12的次数为()A.3B.4C.6D.7【分析】直接利用多项式的次数确定方法是解题关键.【解答】解:多项式4xy2﹣3xy+12的次数为,最高此项4xy2的次数为:3.故选:A.【点评】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.24.下列说法中:①最大的负整数是﹣1;②平方后等于9的数是3;③﹣(﹣2)3=﹣23;④﹣a是负数;⑤若a、b互为相反数,则ab<0;⑥﹣3xy2+2x2﹣y是关于x、y的三次三项式,其中正确的有()A.2个B.3个C.4个D.5个【分析】直接利用平方根以及相反数、多项式的次数与项数确定方法分析得出答案.【解答】解:①最大的负整数是﹣1,正确;②平方后等于9的数是±3,故此选项错误;③﹣(﹣2)3=23,故此选项错误;④﹣a是负数,错误;⑤若a、b互为相反数,则ab≤0,故此选项错误;⑥﹣3xy2+2x2﹣y是关于x、y的三次三项式,正确,故选:A.【点评】此题主要考查了平方根以及相反数、多项式的次数与项数,正确把握相关定义是解题关键.25.下列各式正确的是()A.a﹣(2b﹣7c)=a﹣2b+7cB.(a+1)﹣(﹣b+c)=a+1+b+cC.a2﹣2(a﹣b+c)=a2﹣2a﹣b+cD.(a﹣d)﹣(b+c)﹣a﹣b+c﹣d【分析】根据整式的加减进行计算即可.【解答】解:A、a﹣(2b﹣7c)=a﹣2b+7c,故本选项正确;B、(a+1)﹣(﹣b+c)=a+1+b﹣c,故本选项错误;C、a2﹣2(a﹣b+c)=a2﹣2a+2b﹣2c,故本选项错误;D、(a﹣d)﹣(b+c)=a﹣b﹣c﹣d,故本选项错误;故选:A.【点评】本题考查了整式的加减,掌握合并同类项的法则是解题的关键.26.若A为五次多项式,B为四次多项式,则A+B一定是()A.次数不高于九次多项式B.四次多项式C.五次多项式D.次数不定【分析】根据A与B的次数,确定出A+B的次数即可.【解答】解:∵A是五次多项式,B是四次多项式,∴A+B的次数是5.∴A+B一定是五次多项式,故选:C.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.27.甲、乙两个水桶中装有少量且重量相等的水,先把甲桶的水倒出三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出),最后甲、乙两桶中水的重量的大小是()A.甲桶中水的重量>乙桶中水的重量B.甲桶中水的重量=乙桶中水的重量C.甲桶中水的重量<乙桶中水的重量D.不能确定,与桶中原有水的重量有关【分析】设甲、乙两个水桶中水的重量是a,甲桶的水倒三分之一给乙桶后乙桶的水=(1+)a,甲桶为(1﹣)a,把乙桶的水倒出四分之一给甲桶时,甲桶有(1﹣)a+(1+)a×,乙桶有水=(1+)a×(1﹣),再比较出其大小即可.【解答】解:设甲、乙两个水桶中水的重量是a,∵甲桶的水倒三分之一给乙桶后乙桶的水=(1+)a,甲桶为(1﹣)a,∴把乙桶的水倒出四分之一给甲桶时,甲桶有(1﹣)a+(1+)a×=a+a=a;乙桶有水=(1+)a×(1﹣)=a,∴甲桶中水的重量=乙桶中水的重量.故选:B.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.28.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.﹣5D.5【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=3,c+d=2,∴原式=a+c﹣b+d=(a﹣b)+(c+d)=3+2=5.故选:D.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.29.已知b﹣a=10,c+d=﹣5,则(b+c)﹣(a﹣d)的值为()A.10B.15C.5D.﹣5【分析】将b﹣a=10、c+d=﹣5代入原式=b+c﹣a+d=b﹣a+c+d,计算可得.【解答】解:当b﹣a=10,c+d=﹣5时,原式=b+c﹣a+d=b﹣a+c+d=10﹣5=5,故选:C.【点评】本题主要考查整式的加减﹣化简求值,解题的关键是熟练掌握去括号法则和整体代入思想的运用.30.若m﹣x=2,n+y=3,则(m+n)﹣(x﹣y)=()A.﹣1B.1C.5D.﹣5【分析】直接利用整式的加减运算法则化简得出答案.【解答】解:∵m﹣x=2,n+y=3,∴m﹣x+n+y=5,∴(m+n)﹣(x﹣y)=5.故选:C.【点评】此题主要考查了整式的加减运算,正确掌握运算法则是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章《代数式》单元检测
(满分:100分时间:60分钟)
一、选择题(每题3分,共24分)
1.下列表述不能表示代数式“4a”意义的是( )
A.4的a倍B.a的4倍
C.4个a相加D.4个a相乘
2.单项式7ab2c3的次数是( )
A.3 B.5 C.6 D.7
3.通信市场竞争日益激烈,若某通信公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在的收费标准是每分钟6元,则原收费标准是( )
A.
5
4
a b
⎛⎫
+

⎝⎭
元B.
5
4
a b
⎛⎫
-

⎝⎭
元C.(a+5b)元D.(a-5b)元
4.下列运算正确的是( )
A.-2(3x-1)=-6x-1 B.-2(3x-1)=-6x+1
C.-2(3x-1)=-6x-2 D.-2(3x-1)=-6x+2
5.化简5(2x-3)+4 (3-2x)的结果为( )
A.2x-3 B.2x+9 C.8x-3 D.18x-3
6.某校组织若干师生到恩施大峡谷进行社会实践活动.若学校租用45座的客车x辆,则余下20人无座位;若租用60座的客车,则可少租用2辆,且最后一辆还没坐满,则乘坐最后一辆60座客车的人数是( )
A.200-60x B.140-15x C.200-15x D.140-60x
7.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部可剪拼成一个矩形(不重叠无缝隙),若拼成矩形的一边长为3,则另一边长是( )
A.m+3 B.m+6 C.2m+3 D.2m+6
8.小明用棋子摆放图形来研究数的规律,图1中棋子围成三角形,其颗数3,6,9,12,…称为三角形数,类似地,图2中的4,8,12,16,…称为正方形数,下列数既是三角形数又是正方形数的是( )
A .2010
B .2012
C .2014
D .2016
二、填空题(每题2分,共20分)
9.农民张大伯因病住院,手术费为a 元,其他费用为b 元.由于参加农村合作医疗,若手术费报销85%,其他费用报销60%,则张大伯此次住院可报销_______元.(用代数式表示)
10.观察下列一组图形:
它们是按照一定规律排列的,依照此规律,第n 个图形中共有_______个★.
11.若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为_______.
12.如果一个关于x 的二次三项式,其二次项系数为2,常数项为-5,一次项系数为3,那么这个二次三项式应是_______.
13.若a +b =2,ab =-1,则3a +-ab +3b =_______.
14.若x =1时,2ax 2+bx =3,则当x =2时,ax 2+bx =_______.
15.有一数值转换器,其转换原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是_______,…,依次继续下去,第2013次输出的结果是_______.
16.扑克牌游戏,
小明背对小亮,让小亮按下列四个步骤操作:
第一步,分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;
第二步,从左边一堆拿出两张,放入中间一堆;
第三步,从右边一堆拿出一张,放入中间一堆;
第四步,左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.
这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是_______.
17.甲、乙、丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%.此时顾客要购买这种商品,最划算的超市是_______.
18.已知2222233+=⨯,2333388
+=⨯,244441515+=⨯,….若288a a b b +=⨯(a ,b 为正整数),则a +b =_______.
三、解答题(共56分)
19.(本题6分)用字母表示图中阴影部分的面积.
20.(本题6分)已知(a-3)x2y b+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.
21.(本题10分)化简求值:
(1)3x2+2xy-4y2-2(3xy-y2-2x2),其中x=1,y=-2;
(2)4(x2-3x)-5(2x2-5x),其中x=-1.
22.(本题10分)一个三角形一边长为a+b,另一边长比这条边长b,第三边长比这条边短a-b.
(1)求这个三角形的周长;
(2)若a=5,b=3,求三角形的周长.
23.(本题10分)某位同学做一道题:已知两个多项式A,B,求A-B的值.他误将A-B 看成A+B,求得结果为3x2-3x+5,已知B=x2-x-1.
(1)求多项式A;
(2)求A-B的正确答案.
24.(本题12分)某公司在甲、乙两仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,设从甲仓库调往A县农用车x辆.
(1)甲仓库调往B县农用车_______辆,乙仓库调往A县农用车_______辆.(用含x的代
数式表示)
(2)写出公司从甲、乙两仓库调往农用车到A,B两县所需要的总运费.(用含x的代数式表示)
(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少.
25.(本题10分)观察下列等式:
第1个等式:a1=
111
1
1323
⎛⎫
=-

⨯⎝⎭
;第2个等式:a2=
1111
35235
⎛⎫
=-

⨯⎝⎭

第3个等式:a3=
1111
57257
⎛⎫
=-

⨯⎝⎭
;第4个等式:a4=
1111
79279
⎛⎫
=-

⨯⎝⎭


请回答下列问题:
(1)按以上规律列出第5个等式:a5=_______=_______;
(2)用含n的代数式表示第n个等式:a n=_______=_______(n为正整数);
(3)求a1+a2+a3+a4+…+a100的值.
26.(本题12分)
(1)已知A=2x2+ax-y+6,B=bx2-3x+5y-1,且A-B中不含有x的项,求a+b3的值;
(2)已知a2+2ab=-10,b2+2ab=16,求3a2+2ab-2b2的值.
参考答案
一、选择题
1.D
2.C
3.A
4.D
5.A
6.C
7.C
8.D
二、填空题
9.(85%a +60%b) 10.3n +1 11.3 12.2x 2+3x -5 13.5 14.6 15.3 3 16.5
17.乙 18.71
三、解答题
19.(1)ab -bx (2)2214
r r π-
20.-5
21.(1)7 (2)-19
22.(1)2a +5b (2)25
23.(1)A =2x 2-2x +6 (2)A -B =x 2-x +7
24.(1)12-x 10-x (2)760-30x (3)980 25.(1)1112911⎛⎫⨯- ⎪⎝⎭ (2)11122121n n ⎛⎫⨯- ⎪-+⎝⎭ (3)100201
26.(1) 5 (2)-62。

相关文档
最新文档