连铸工艺、设备03连铸坯凝固与传热.pptx

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热量,以LP表示; ⑶显热:从固相线温度TS冷却到环境温度TO放出的
热量,CS(TS-TO)。
2.连铸机的三个传热冷却区 ① 一次冷却区。 钢水在水冷结晶器中形成足够厚均匀的坯
壳,以保证铸坯出结晶器不拉漏; ② 二次冷却区。 向铸坯表面喷水以加速铸坯内部热量的传
递,使铸坯完全凝固; ③ 三次冷却区。 铸坯向空气中辐射传热,使铸坯内外温度
均匀化。
连铸坯冷凝示意图:
3.连铸机热平衡
① 钢水从结晶器→二冷区→辐射区大约有60 %热量放出来铸坯才能完全凝固。这部分 热量的放出速度决定了铸机生产率和铸坯 质量
② 铸机范围内主要依靠结晶器和二次冷却系 统散热,其中二冷区散出热量最多。
③ 通过结晶器在一分钟内要散出的热量,最 高时可占总需散热量的20%左右。可见保证 结晶器有足够的冷却能力十分重要,它对 初期坯壳的形成具有决定性的影响。
由于坯壳温度的回升,其强度降低,在钢 水静压力作用下使其再次帖紧铜壁,传热 条件有所改善,坯壳增厚,于是又产生冷 凝收缩,牵引坯壳再次离开铜壁,这样周 期性的离合2~3次,坯壳达到一定厚度并完 全脱离铜壁,气隙稳定形成。
结晶器角部区域,由于是二维传热,最先 形成坯壳,收缩力大,随后形成的气隙也 最大。由于钢水的静压力无法将角部的坯 壳压向铜壁,因而角部一开始就形成了永 久性的气隙。所以初生坯壳形成后,角部 区域地方传热变得比边部更差,角部成了 坯壳最薄弱的部位。
④ 铸坯切割后大约还有40%热量放出来,为 了利用这部分热量,节约能源,成功地开 发了铸坯热装和连铸—连轧等工艺。
二.连铸坯凝固是沿液相穴在凝固温度区间把 液体转变为固体的加工过程
铸坯在运动中的凝固,实质上是沿液相穴 固—液交界面潜热的释放和传递过程。也 可看成是在凝固温度区间(TL→TS)把液体 转变为固体的加工过程。在固—液交界面 附近,存在一个凝固脆化区:
钢液与铜壁弯月面的形成:
在弯月面的根部,钢液与水冷铜壁接触, 立即受到铜壁的激冷作用,初生坯壳迅速 形成。良好稳定的弯月面可确保初生坯壳 的表面质量和坯壳的均匀性。当钢水中上 浮的夹杂物被保护渣吸附时,会降低钢液 表面张力,弯月面半径减小,从而破坏了 弯月面的薄膜性能,弯月面破裂,这时夹 杂物随同钢液在破裂处和铜壁形成新的凝 固层,夹杂物牢牢地粘附在这层凝固层上 而形成表面夹渣。带有夹渣的坯壳是薄弱 部位,易发生漏钢。
3.紧密接触区
弯月面下部的初生坯壳由于不足以抵抗钢液 静压力的作用,与铜壁紧密接触。在该区域 坯壳以传导传热的方式将热量传输给铜壁, 愈往接触区的下部,坯壳也愈厚。
来自百度文库
4.气隙的形成、稳定及角部气隙
已凝固的高温坯壳发生δ→γ的相变,引起坯 壳收缩,收缩力牵引坯壳离开铜壁,气隙 开始形成。由于气隙的热阻很大,气隙的 形成使坯壳向铜壁的传热迅速减少,离开 铜壁的坯壳回热升温,甚至凝固前沿部分 初生坯壳重新熔化。
铸坯在连铸机中从上到下运行,在二 冷区接受喷水冷却,已凝固的坯壳不 断进行线收缩,坯壳温度分布的不均 匀性,以及坯壳的鼓胀和夹辊的不完 全对中等,使凝固壳容易受到机械和 热负荷的间隙性的突变,也易使凝固 坯壳产生裂纹。
为了保证得到良好的铸坯质量,应从 铸机的设计和维护方面,尽可能保证 铸坯在运行过程中凝固壳不变形原则; 从传热方面,就是要控制铸坯在不同 冷却区热量导出速度和坯壳的热负荷 适应于钢高温性能的变化,因此,控 制铸坯的传热是获得良好铸坯质量的 关键操作
在液相穴下部液体的流动主要是坯壳的收 缩和晶体下沉所引起的自然对流,或者是 由于铸坯鼓肚所引起的液体流动。
液相穴内液体流动对铸坯结构、夹杂物分 布、溶质元素的偏析和坯壳的生长有重要 作用。
四.在连铸机内运行的已凝固坯壳的冷却可看 成是经历“形变热处理”过程
1.从受力的方面看,铸坯承受热应力和机械应 力的作用,使坯壳发生不同程度的变形;
一.结晶器内坯壳的形成 1.坯壳表面与铜壁之间的接触状况 ⑴钢液弯月面区; ⑵坯壳与铜壁紧密接触区; ⑶坯壳收缩与铜壁脱开产生的气隙区。
2.弯月面的形成 由于钢液与结晶器铜壁的润湿作用,钢液与铜
壁接触形成了一个半径很小的弯月面。其半径:
r =5.43×10-2 m
m
式中 σm—钢液表面张力; ρm—钢水密度。
2.从冶金方面看,随着温度的下降,坯壳发生 δ→γ→α的相变,特别是二冷区,坯壳温度 的反复下降和回升,使铸坯组织发生变化, 就相当于“热处理”过程。同时由于溶质 元素的偏析作用,可能发生硫化物、氮化 物质点在晶界沉淀,增加了钢的高温脆性, 对铸坯质量有重要影响。
§3—2 钢液在结晶器内的凝固与传热
零强度温度TRN:强度σ=0的温度。 零塑性温度TDN:断面收缩率φ=0的温度。 在TRN和TDN温度区间是一个裂纹敏感区。
钢高温性能示意图:
TRN =TS+(20 ~30℃) TDN =TS-(30 ~50℃)
固—交界面的糊状区晶体强度和塑性 都非常小,(临界强度1~ 3N∕mm2,,由变形至断裂的临界应 变为0.2% ~0.4%)。当作用于凝固 坯壳的外部应力(如热应力、鼓肚力、 矫直力)使其变形超过上述临界值时, 铸坯就在固—交界面产生裂纹,形成 偏析线裂纹。
第三章 连铸坯凝固与传热 §3—1 连铸坯凝固与传热特点
一.连铸坯凝固过程实质上是热量传递过程,也是一 个强制快速冷凝的过程。
钢水从液态转变为固态放出的热量: 钢液→固体+Q
1.单位重量钢水放出的热量Q包括: ⑴过热:从浇注温度TC冷却到液相线温度TL放出的热
量,Cl(TC - TL); ⑵潜热:从液相线温度TL冷却到固相线温度TS放出的
三.铸坯凝固是分阶段的凝固过程 在连铸机内铸坯的凝固经历三个阶段: 1.钢水在结晶器内形成初生坯壳,出结晶器下
口的铸坯安全厚度应足以抵抗钢液的静压 力的作用; 2.带有液芯的坯壳在二冷区稳定生长; 3.临近凝固末期的坯壳加速增长。
液相穴上部为强制对流循环区,循环区高 度决定于注流方式、浸入式水口类型和铸 坯断面。
相关文档
最新文档