初中数学知识点总结-中考数学知识点归纳

合集下载

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇

中考数学复习知识点归纳总结7篇篇1一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

中考中可能会涉及自然数的连续性及自然数的个数等问题。

复习时需要注意对自然数概念的理解及运用。

2. 整数的认识:整数包括正整数、零和负整数。

在中考复习中,需要掌握整数的性质、运算规则以及与分数的区别等知识点。

(二)代数式与方程1. 代数式的认识:代数式是由数字、字母和数学符号组成的一种数学表达式。

在中考复习中,需要掌握代数式的简化、代入计算等知识点。

同时还需要加强对代数式在实际问题中应用的能力培养。

如与面积计算、路程问题等结合出题的情况很常见。

例如“给出多边形的一条边长为a米,与其相邻的两边之差的代数式是:______________”。

因此类题目较为灵活,需要考生具备一定的数学思维和解题技巧。

(三)数的运算与性质篇2一、数与代数(一)数的认识1. 自然数的认识:自然数是指用以计量事物的件数或表示事物次序的数。

即用数码0,1,2,3,4……所表示的数。

2. 整数的认识:整数是自然数中的一部分,包括正整数和负整数。

它们在日常生活中的应用非常广泛。

3. 小数、分数与百分数的认识:熟练掌握小数、分数与百分数的概念及其相互转化,对于数学计算和应用题的解答至关重要。

(二)代数知识1. 代数式的认识与运算:掌握代数式的概念、性质及运算规则,能够熟练进行代数式的化简、求值等。

2. 方程与不等式的应用:掌握一元一次方程、不等式及其解法,能够灵活运用方程与不等式解决实际问题。

二、几何知识(一)平面几何1. 图形的认识:熟练掌握各种基本图形的性质、分类及相互之间的关系。

2. 图形的测量:掌握各种图形的周长、面积等测量方法,能够熟练计算图形的面积和周长。

3. 图形的变换:了解图形的平移、旋转、翻折等变换方式,掌握其性质和应用。

(二)立体几何1. 长方体与正方体的认识:掌握长方体与正方体的性质、体积和表面积的计算方法。

中考必备初中数学知识点归纳总结

中考必备初中数学知识点归纳总结

中考必备初中数学知识点归纳总结初中数学是中考必备的科目之一,理解和掌握初中数学知识点是顺利通过中考的关键。

下面是初中数学知识点的归纳总结,供中考复习使用。

一、整数1.整数概念与表示法2.整数之间的比较与排序3.整数的加法、减法、乘法、除法运算4.整数的绝对值与相反数5.整数的混合运算6.整数运算的特殊性质:交换律、结合律、分配律等二、有理数1.有理数概念与表示法2.有理数的加法、减法、乘法、除法运算3.有理数之间的比较与排序4.有理数的乘方运算5.有理数的混合运算6.有理数运算的特殊性质:交换律、结合律、分配律等三、代数与方程式1.代数式的概念与运算2.代数式的化简与展开3.一元一次方程求解4.一元一次方程的应用5.一元一次不等式的解集表示6.带有绝对值的方程与不等式四、平面图形与空间几何1.平面图形的基本概念:点、线、线段、角等2.三角形的分类与性质3.四边形的分类与性质4.圆的基本概念与性质5.平行线与平行四边形的性质6.立体图形的基本概念:体、面、棱、顶点等五、数列与函数1.数列的基本概念与表示2.等差数列与等比数列的性质3.数列的通项公式与前n项和公式4.函数的概念与表示5.直线函数与反比例函数的性质6.函数图象与函数的应用六、比例与相似1.比例的基本概念与表示2.比例的性质与应用3.相似图形的基本概念与性质4.相似比的计算与应用5.相似三角形的判定与性质6.相似三角形的应用七、概率与统计1.实验与事件的概念2.概率的意义与表示3.事件的几何概率与频率4.事件的组合与计算5.统计图表的读取与制作6.统计指标的计算与分析八、三角函数1.弧度制与角度制的相互转换2.任意角的三角函数定义与计算3.三角函数的诱导公式与恒等变换4.三角函数与三角恒等式的应用5.向量的基本概念与运算6.向量的数量积与夹角的关系以上是初中数学知识点的归纳总结,中考复习时可以按照这个大纲进行整体梳理与复习。

希望对中考复习有所帮助!。

中考数学初中知识点归纳

中考数学初中知识点归纳

中考数学初中知识点归纳中考数学是初中阶段学生的重要考试,它涵盖了初中三年所学的数学知识,主要包括代数、几何、统计与概率等部分。

以下是中考数学初中知识点的归纳:一、数与代数1. 数的认识:包括自然数、整数、有理数、无理数、实数等概念。

2. 数的运算:加减乘除、乘方、开方、绝对值等基本运算。

3. 代数式:整式、分式、多项式的加减乘除、因式分解等。

4. 方程与不等式:一元一次方程、一元二次方程、分式方程、不等式组的解法。

5. 函数:一次函数、二次函数、反比例函数的图象与性质。

二、几何1. 平面图形:线段、角、三角形、四边形、圆的性质和计算。

2. 立体图形:长方体、正方体、圆柱、圆锥、球的体积和表面积。

3. 图形的变换:平移、旋转、反射等。

4. 相似与全等:相似三角形、全等三角形的判定与性质。

5. 圆的性质:圆周角、切线、弧长、扇形面积等。

三、统计与概率1. 数据的收集与处理:数据的收集、整理、描述。

2. 统计图表:条形图、折线图、饼图的绘制与解读。

3. 平均数、中位数、众数:计算方法及意义。

4. 方差与标准差:衡量数据的离散程度。

5. 概率:事件的概率计算,包括古典概型和几何概型。

四、解题技巧与策略1. 审题:仔细阅读题目,理解题目要求。

2. 画图:在几何题中,画出图形有助于理解问题。

3. 列方程:在代数题中,列出方程是解决问题的关键。

4. 分类讨论:对于复杂问题,进行分类讨论可以简化问题。

5. 检查:解题后,检查答案是否符合所有条件。

结束语:中考数学的知识点广泛,但只要掌握好基础知识,理解每个知识点的内涵和联系,结合适当的解题技巧,就能在考试中取得优异的成绩。

希望以上的归纳能够帮助同学们更好地复习和准备中考数学,祝大家考试顺利!。

初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初三数学中考知识点总结【优秀10篇】面对着中考,对于数学要想拿高分离不开平时的刻苦,以及大量的试题训练,当然也少不了一些备考的技巧。

中考数学知识点总结完整版

中考数学知识点总结完整版

第一讲 数与式第1课时 实数的有关概念考点一、实数的概念及分类 〔3分〕正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数〔π〕、开方开不尽的数 负无理数凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;考点二、实数的倒数、相反数和绝对值 〔3分〕2、数轴:数轴是规定了原点、正方向、单位长度的一条直线.3、相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 绝对值的问题经常分类讨论;5、倒数假设ab =1⇔ a 、b 互为倒数;假设ab =-1⇔a 、b 互为负倒数。

倒数等于本身的数是1和-1。

零没有倒数。

11a a-=考点三、平方根、算数平方根和立方根 〔3—10分〕 6、平方根①如果一个数的平方等于a ,那么这个数就叫做a 的平方根〔或二次方跟〕。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±〞。

②算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a 〞。

正数和零的算术平方根都只有一个,零的算术平a ,2a =;注意a 的双重非负性:0≥a a ≥07、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根〔或a 的三次方根〕。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

二、圆的各元素1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。

3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

中考必备初中数学知识点归纳总结

中考必备初中数学知识点归纳总结

中考必备初中数学知识点归纳总结初中数学知识点的总结:一、整数及其运算1.正整数、负整数、零的概念2.整数的比较大小3.整数的加减法运算4.整数的乘除法运算5.整数的绝对值6.乘方和开方的基本概念和性质7.实数的概念及其表示二、分数和有理数1.分数的基本概念和性质2.常见分数的化简和比较大小3.分数的加减乘除运算4.分数的四则混合运算5.各种数的开方和在数轴上的位置6.有理数的性质和比较大小7.有理数的加减乘除运算三、代数式和方程式1.代数式的基本概念和性质2.代数式的合并同类项和提取公因式3.一元一次方程的解法4.二元一次方程组的解法5.二次方程的基本性质和解法6.绝对值方程和绝对值不等式的解法7.分数方程和分数不等式的解法四、平面几何1.点、线、面的基本概念2.直线和平面的关系3.角的基本概念和性质4.平行线和垂直线的判别法5.三角形的分类和性质6.直角三角形和等腰三角形的性质7.三角形中的角平分线和高的性质8.直角三角形的勾股定理和正弦定理、余弦定理9.平行四边形和梯形的性质10.圆的基本概念和性质11.直角三角形和圆的应用五、空间几何1.空间图形的名称和基本概念2.点、线、面的位置关系3.直线与平面的交线的判别和性质4.空间几何体的名称和性质5.立体几何体的面积和体积计算6.中心投影和平行投影的性质7.空间几何的应用六、数据与图表1.数据的搜集和整理2.统计图表的绘制和分析3.数据的描述性统计指标和数据的分析4.概率的基本概念和性质5.事件的概率计算和概率模型的应用6.简单随机事件的概率计算七、函数1.函数的概念、性质和表示法2.一元一次函数的图像和性质3.二次函数的图像和性质4.反比例函数的图像和性质5.函数的应用八、解析几何1.坐标系的建立和基本性质2.点、线、面在坐标系中的表示3.直线和圆的方程的表示和性质4.函数的图像在坐标系中的性质表示九、复数1.虚数单位i和复数的概念和性质2.复数的运算法则和复数的表示形式3.复数在平面上的表示和解析几何中的应用这些是初中数学的主要知识点的总结。

中考数学知识点总结初中

中考数学知识点总结初中

中考数学知识点总结初中一、数与代数1. 整数和有理数- 整数的概念:正整数、零、负整数及其运算(加、减、乘、除)。

- 有理数的概念:整数和分数统称为有理数,包括正有理数、零、负有理数。

- 有理数的运算:加法、减法、乘法、除法、乘方、开方。

2. 代数表达式- 单项式:数字与字母的积,只含有一个项。

- 多项式:由若干个单项式相加或相减组成的代数式。

- 同类项:所含字母相同,且相同字母的指数也相同的项。

- 合并同类项:将多项式中的同类项相加或相减。

3. 等式与不等式- 等式的性质:等式两边同时加上或减去同一个数,等式仍然成立。

- 不等式的性质:不等式两边同时加上或减去同一个数,不等号方向不变。

- 解一元一次方程:通过移项、合并同类项、系数化为1求解。

- 解一元一次不等式:依据不等式的性质进行求解。

4. 函数- 函数的概念:描述变量间依赖关系的数学表达式。

- 函数的表示:用x和y表示自变量和因变量,f(x)表示函数关系。

- 线性函数:形如y=kx+b的函数,其中k和b是常数。

- 反比例函数:形如y=k/x的函数,k为常数。

5. 应用题- 列方程解应用题:根据题意建立等式关系,求解未知数。

- 列不等式解应用题:根据题意建立不等式关系,求解满足条件的取值范围。

二、几何1. 平面图形- 点、线、面的概念:点无大小,线有长度无宽度,面有长度和宽度。

- 角的概念:两条射线的夹角,包括邻角、对顶角、同位角等。

- 三角形:分类(锐角三角形、直角三角形、钝角三角形)、性质、内角和定理。

- 四边形:分类(平行四边形、矩形、菱形、正方形)、性质、对角线关系。

2. 圆- 圆的概念:平面上所有与给定点(圆心)距离相等的点的集合。

- 圆的性质:半径、直径、弦、弧、切线、圆周角等。

- 圆的计算:圆的周长、面积公式。

3. 几何变换- 平移:图形沿直线移动,大小和形状不变。

- 旋转:图形绕一点转动一定角度,大小和形状不变。

- 轴对称:图形关于某条直线对称,称为轴对称图形。

初中中考常考数学知识点归纳总结(8篇)

初中中考常考数学知识点归纳总结(8篇)

初中中考常考数学知识点归纳总结(8篇)掌握中考常考数学知识点是我们提高成绩的关键!在平时的学习中,不管我们学什么,都需要掌握一些知识点,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

下面是小编给大家整理的初中中考常考数学知识点归纳总结,仅供参考希望能帮助到大家。

初中中考常考数学知识点归纳总结篇11.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。

几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如=x,=│x│等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看;5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a的正的'平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

初中数学中考必考知识点汇总盘点

初中数学中考必考知识点汇总盘点

初中数学中考必考知识点汇总盘点一、代数部分1 .科学记数法:设N>0,则N=aX10"(比中lWa<10, n 为整数)。

2、有效数字:,个近似数,从左边第•个不是0的数.到精确到的数位为止,所仃的数字.叫做这个数的仃效数 字。

格确度的形式1两种:⑴精确到那字:(2)保印几个有效数字,3、代数式的分类:无理式4、整式的乘除:系的运算法则:其中m 、n 都是正整数 同底数州相乘:代数式有理式整代分式单项式多项式 席的乘方: ST =L 积的乘力:5、乘法公式: 平方差公式:(a + b)(a -b) = a 2 -b 2:完全平方公式:(a + b)2=a 2+2ab+b\ (a-b)2 =a 2-2ab + b 26,因式分解的股步骤:(1)如果多项式的各项有公因式,那么先提公因式:(2)提出公因式或无公因式可提,再号虑可否运用公式或卜字相乘法:7、分式定义:形呜的式门叫分式,其中A 、B 是脍式,II.R 中含勺字明<1)分式无意义:B=”时,分式无意义:BWO 时,分式仃意义. (2)分式的值为0: A=0, BWO 时,分式的值等「00 X 、分式的基本性质:<1)人=土也也是W (购整式):(2)B B • M从二次根式的性质:13(M 是关。

的箱式)(1) (4a)2 =a(a>0);(3) 7ab = & , b ya2O, b 》O); 10、二次根式的运算:(1) .次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根(2)二次根式的乘法:yjTi - \ib = 4ab (a^O, b>0)o(3):次根式的除法:二产= 4h二次根式运算的最终结果如果是根式,要化成坡简二次根式”11、一元一次方程(1)•儿,次方程的标准形式:ax+b=O (其中x)未知数,a、b是已知数,aWO)(2)•元•次方程的最简形式:ax=b (其中x是未知数,a、b是已知数,,壬0)12、一元二次方程(3)•几二次方程的般形式:ax2 + bx + c = 0 ( 11:中x是未知数,a、b、c是已知数,a^O)(4)•元.次力程的解法:■按开平方法、配方法、公式法、因式分解法(5)一元(次方界解法的选择顺序是:先特殊后一般,如没有要求.一般不用配方法。

初中数学知识点归纳完整版免费

初中数学知识点归纳完整版免费

初中数学知识点归纳完整版免费中考数学重点知识点梳理1有理数1.有理数的加法运算同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

“大”减“小”是指绝对值的大小。

2.有理数的减法运算减正等于加负,减负等于加正。

有理数的乘法运算符号法则。

同号得正异号负,一项为零积是零。

3.有理数混合运算的四种运算技巧转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。

凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

2圆1.圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2.垂径定理(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3.圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4.在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5.夹在平行线间的两条弧相等。

(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。

)6.直线与圆的位置关系。

d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

初中数学中考知识点总结归纳完整版

初中数学中考知识点总结归纳完整版

初中数学中考知识点总结归纳完整版一、数的基本运算1.整数的加减乘除运算及应用2.分数的加减乘除运算及应用3.小数的加减乘除运算及应用二、数的性质与计算1.数的整除关系与最大公约数、最小公倍数2.约分与通分3.数的相反数、绝对值及其性质三、代数式与方程式1.字母代数式与值的计算2.解方程与方程的应用3.利用代数式解决实际问题的能力四、平面图形的认识与计算1.平面图形的名称与性质2.几何体的名称与性质3.平移、旋转、对称变换的认识与应用五、分析与统计1.折线图与旋转对称图形2.数据的收集与整理3.数据的分析与应用六、空间与三维图形1.几何体与其中特殊点的认识2.几何体间的位置关系及刻画3.解决空间问题的应用能力七、比例、百分数与利率1.比例与比例的应用2.百分数与百分数的应用3.利率与利率的应用总结:初中数学中考要求学生掌握数的基本运算、数的性质与计算、代数式与方程式、平面图形的认识与计算、分析与统计、空间与三维图形、比例、百分数与利率等知识点。

在数的基本运算方面,要熟练掌握整数、分数和小数的四则运算及其应用;在数的性质与计算方面,要理解数的整除关系,掌握最大公约数和最小公倍数的求解方法;在代数式与方程式方面,要能够理解字母代数式的含义,掌握解方程和利用代数式解决实际问题的能力;在平面图形的认识与计算方面,要了解各种平面图形的名称和性质,掌握平移、旋转和对称变换的应用;在分析与统计方面,要能够收集和整理数据,分析并应用数据解决问题;在空间与三维图形方面,要熟悉几何体的名称和性质,掌握解决空间问题的应用能力;在比例、百分数与利率方面,要理解比例和百分数的概念,能够应用比例和百分数解决问题。

数学中考知识点归纳2023

数学中考知识点归纳2023

数学中考知识点归纳2023
数学中考知识点:
(一)初中数学基础知识
1. 数的性质:自然数、整数、有理数、无理数、实数
2. 数的运算:加、减、乘、除、乘方、开方
3. 数的表示法:分数、百分数、比例、数列、代数式
4. 数的变化规律:倍数、百分率、利率、增长率、减少率
(二)初中数学基本概念
1. 数学中的图形:点、线、面、体、多面体
2. 图形的性质:角、边、对称、相似、恒等、平行、垂直
3. 圆的相关概念:圆心、半径、直径、圆周、弧、扇形、面积
(三)初中代数基础知识
1. 代数式的基本概念:变量、常量、系数、项、幂
2. 代数式的拆分、合并与系数分离等基本操作
3. 一元一次方程及其解法:加减消去法、配方法、公式法等
4. 简单的函数的概念和表示:自变量、函数值、函数的图像等
(四)初中几何基础知识
1. 基本几何图形的面积:矩形、平行四边形、三角形、梯形、圆
2. 三角形的相关概念:高、中线、角平分线、外心、内心、垂心
3. 几何证明:数学思想、证明方法、证明过程等
(五)初中统计与概率基础知识
1. 双变量统计:统计图表、相关系数等
2. 概率的基本概念:事件、样本空间、概率、条件概率等
3. 简单的排列组合问题:阶乘、组合数、排列等
以上是数学中考知识点的基本归纳,掌握这些知识点能够提高学生的数学基本素养,有利于顺利应对中考中的数学题目。

初中中考数学知识点总结

初中中考数学知识点总结

初中中考数学知识点总结数学作为初中阶段的重要学科之一,在中考中占据着重要的地位。

为了帮助同学们更好地复习和掌握初中数学知识,以下是对中考数学知识点的全面总结。

一、数与式1、有理数有理数包括整数和分数。

整数包括正整数、零和负整数;分数包括正分数和负分数。

有理数的运算规则包括加法、减法、乘法、除法和乘方。

2、实数实数包括有理数和无理数。

无理数是无限不循环小数,如π、√2 等。

实数的运算规则与有理数类似,但要注意无理数的运算。

3、代数式代数式包括整式、分式和二次根式。

整式包括单项式和多项式,整式的运算包括加减乘除和乘方。

分式是指分母中含有字母的式子,分式的运算要注意分母不能为零。

二次根式是指形如√a(a≥0)的式子,二次根式的运算要注意根号下的数必须是非负数。

4、因式分解因式分解是把一个多项式化成几个整式乘积的形式。

常用的方法有提公因式法、公式法(平方差公式和完全平方公式)和十字相乘法。

二、方程与不等式1、一元一次方程一元一次方程的一般形式为 ax + b = 0(a ≠ 0),通过移项、合并同类项、系数化为 1 等步骤求解。

2、二元一次方程组二元一次方程组的一般形式为{a1x + b1y = c1, a2x + b2y = c2},通过消元法(代入消元法或加减消元法)求解。

3、一元二次方程一元二次方程的一般形式为 ax²+ bx + c = 0(a ≠ 0),求解方法有配方法、公式法和因式分解法。

其中,求根公式为 x =b ± √(b²4ac) /(2a)。

4、不等式不等式的性质包括对称性、传递性和加减乘除法则。

解不等式的步骤与解方程类似,但要注意不等式两边乘以或除以负数时,不等号方向要改变。

三、函数1、一次函数一次函数的一般形式为 y = kx + b(k ≠ 0),其图像是一条直线。

当 k > 0 时,函数单调递增;当 k < 0 时,函数单调递减。

2、反比例函数反比例函数的一般形式为 y = k / x(k ≠ 0),其图像是双曲线。

初中数学知识点总结-中考数学知识点归纳

初中数学知识点总结-中考数学知识点归纳

初中数学知识点总结-中考数学知识点归纳㈠、数与代数、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

初中数学知识点整理大全中考数学所有知识点总结

初中数学知识点整理大全中考数学所有知识点总结

初中数学知识点整理大全中考数学所有知识点总结一、整数与有理数1.整数的概念与运算2.整数的加法与减法3.整数的乘法与除法4.整数的混合运算5.有理数的概念与运算6.有理数的加法与减法7.有理数的乘法与除法8.有理数的混合运算二、比例与消费税1.比例的概念与性质2.比例的等价性质3.比例的四则运算4.比例与图形5.比与比例6.相似形与比例7.比例的应用8.消费税的概念与计算三、代数基础1.代数式的概念与运算2.代数式的加减法与混合运算3.同类项与合并同类项4.代数式的乘法与乘法公式5.代数式的除法与除法公式6.代数式的开方与乘方7.代数方程的概念与解法8.代数方程的应用四、图形的认识1.平面图形的基本概念2.三角形的分类与性质3.三角形的周长与面积4.四边形的分类与性质5.矩形、正方形与平行四边形6.五边形、六边形与圆7.图形的变换8.图形的相似与全等五、分数与百分数1.分数的意义与表示2.分数的化简与约分3.分数的加法与减法4.分数的乘法与除法5.分数与整数的混合运算6.分数与小数的相互转换7.百分数的概念与表示8.百分数的相互转化与运算六、数据的分析1.统计图的认识与应用2.统计图的制作与解读3.数据的集中趋势与分散程度4.数据的描摹与预测5.概率的概念与计算6.概率的实际应用7.信息的收集与处理8.统计的思想与方法七、线性方程组1.一元一次方程和一元一次不等式2.一元一次方程和一元一次不等式的应用3.线性方程组的概念与解法4.线性方程组的应用5.二元一次方程组与不等式组的概念与解法6.二元一次方程组与不等式组的应用7.二元一次方程组与不等式组的图像与性质8.多个线性方程组与不等式组的解法和应用八、几何运动与不等式1.坐标系与平面直角坐标系2.二次函数与直线3.不等式的解法与应用4.不等式系统的解法与应用5.几何运动的基本概念与性质6.几何运动的应用7.速度与加速度8.解直线方程与几何运动的应用九、角与三角函数1.角的概念与度量2.角的几何关系3.角的平分线与垂直线4.角的合角与差角5.三角函数的概念与计算6.三角函数的应用7.三角恒等变换与证明8.三角函数的图象与性质十、平面向量与解析几何1.平面向量的概念与运算2.平面向量的线性运算3.平面向量的共线与垂直4.平面向量的坐标表示与加法5.平面向量与三角形的关系6.平面向量与中点、向量积7.解析几何基础知识8.解析几何的应用。

初中数学知识点总结中考重点

初中数学知识点总结中考重点

中考数学重难点知识点归纳1、知识网络结构2、知识要点(1)在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

(2)在同一平面内,不相交的两条直线叫平行线。

如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

(3)两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

邻补角的性质:邻补角互补。

如图1所示,与互为邻补角,与互为邻补角。

+=180°;+=180°;+=180°;+=180°。

3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。

对顶角的性质:对顶角相等。

如图1所示,与互为对顶角。

=; =。

4、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。

如图2所示,当=90°时,⊥。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当a⊥b时,====90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

5、同位角、内错角、同旁内角基本特征:在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。

图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。

在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。

图3中,共有对内错角:与是内错角;与是内错角。

在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。

图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

中考数学知识整理及总结1、实数的分类(1)按定义分类:(2)按性质符号分类:注:0既不是正数也不是负数.2、实数的相关概念(1)相反数①代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.②几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.③互为相反数的两个数之和等于0.a、b互为相反数a+b=0.(2)绝对值|a|≥0.(3)倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.(4)平方根①如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.②一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.(5)立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.3、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.4、实数大小的比较(1)对于数轴上的任意两个点,靠右边的点所表示的数较大.(2)正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.(3)无理数的比较大小:初中数学知识点口诀1、初中数学知识点口诀人说几何很困难,难点就在辅助线。

初中中考数学知识点总结

初中中考数学知识点总结

初中中考数学知识点总结一、数与代数1. 整数和有理数- 整数的概念、性质和运算规则- 有理数的概念、性质和运算规则- 绝对值的含义和性质- 正数和负数的概念及其运算2. 代数表达式- 单项式和多项式的定义和运算- 合并同类项、配方法- 因式分解的基本概念和方法3. 一元一次方程与不等式- 一元一次方程的解法- 解含有字母系数的方程- 不等式的性质和解法- 用不等式解决实际问题4. 二元一次方程组- 代入法和消元法解二元一次方程组- 三元一次方程组的解法5. 函数的基本概念- 函数的定义和表示方法- 常见函数(一次函数、二次函数、反比例函数)的图像和性质 - 函数的基本运算和性质二、几何1. 平面图形- 点、线、面的基本性质- 角的概念和分类- 三角形、四边形的性质和计算- 圆的基本性质和计算2. 空间图形- 空间直线和平面的位置关系- 简单几何体(如棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 图形的变换- 平移、旋转、对称(轴对称、中心对称)的概念和性质- 坐标系中的图形变换4. 相似与全等- 全等三角形的判定和性质- 相似三角形的判定和性质- 相似多边形的判定和性质5. 解析几何- 坐标系中点的坐标表示- 直线和曲线的方程表示- 点、线、面之间的位置关系三、统计与概率1. 统计- 数据的收集、整理和描述- 统计图表(如条形图、折线图、饼图)的绘制和解读- 统计量(如平均数、中位数、众数、方差、标准差)的计算和意义2. 概率- 随机事件的概念和分类- 概率的计算方法(如经典概率、相对频率概率)- 概率公式的应用四、综合应用题1. 数列的基本概念和简单数列的求和2. 应用题的解题策略,如列方程解应用题3. 探索性问题,如图形的变化规律、最优化问题4. 开放性问题,如存在性问题、推理证明五、解题技巧与策略1. 审题技巧:准确把握题目要求和条件2. 画图技巧:利用图形辅助解题3. 转化技巧:将复杂问题转化为简单问题4. 检验技巧:解题后的结果验证以上是初中中考数学的主要知识点总结,学生在复习时应重点掌握每个部分的核心概念、性质和计算方法,并结合实际题目进行练习,以提高解题能力和应试技巧。

初中数学中考知识点总结归纳完整版

初中数学中考知识点总结归纳完整版

初中数学中考知识点总结归纳完整版中考数学知识点总结归纳一、数与式(100字)1.自然数、整数、有理数、实数等的概念和性质;2.分数、百分数、比例等的概念和运算规则;3.代数式的概念、运算规则与计算。

二、代数式的化简与计算(200字)1.代数式的加减法、乘法及相关的方法;2.分配律、结合律、交换律等运算法则;3.整式的因式分解与提公因式;4.代数式的合并同类项、合并同类项的计算。

三、方程与不等式(200字)1.一元一次方程与一元一次不等式;2.图解法、等式法、代入法等解方程和不等式的方法;3.解二元一次方程组。

四、几何基本概念和运算(200字)1.点、直线、线段、角、平行线、垂线等的基本概念;2.各种平行线间的性质和判定方法;3.同位角、内错角、同旁内角等角的性质;4.各种角的度量与角平分线、角的外角等概念;5.直角、钝角、锐角、双曲线的概念;6.垂心、外心、内心、重心等的概念和特点。

五、三角形的性质与计算(200字)1.三角形的周长、面积的计算;2.等腰三角形、等边三角形、直角三角形的特征;3.角平分线、中线、高线的性质和作图;4.同弧对应角、同旁内角等角的性质;5.正弦定理、余弦定理的应用。

六、比例与相似(200字)1.比例、比例尺及比例的性质与应用;2.相似三角形的性质、判定及应用;3.黄金比例及其应用。

七、数列的概念与运算(150字)1.等差数列与等比数列的概念及性质;2.数列的通项公式、求和公式的推导与应用;3.递推求解与递推数列。

八、平面坐标系与坐标计算(150字)1.平面直角坐标系的建立与性质;2.平面图形的坐标及其变化;3.坐标中点、斜率计算与应用。

九、统计与概率(150字)1.统计数据的整理、分析与表示;2.概率的基本概念与计算;3.实际问题的统计与概率应用。

总结起来,中考数学涉及的知识点主要包括:数与式、代数式的化简与计算、方程与不等式、几何基本概念和运算、三角形的性质与计算、比例与相似、数列的概念与运算、平面坐标系与坐标计算、统计与概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点总结-中考数学知识点归纳初中数学知识点总结-中考数学知识点归纳㈠、数与代数、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A 的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。

4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。

③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。

那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。

也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。

在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a也可以表示为x1+x2=-b/a,x1x2=c/a。

利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元一次方程根的情况利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况:I当△>0时,一元二次方程有2个不相等的实数根;II当△=0时,一元二次方程有2个相同的实数根;III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)2、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C (C>0)在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C<B*C(C<0)如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;3、函数变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

㈡空间与图形A、图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

相关文档
最新文档