2019-2020学年江苏省徐州市邳州市九年级上学期期末数学试卷及答案解析
2019—2020年新苏教版九年级数学上册(第一学期)期末模拟测试卷及答案解析(试题).doc
苏教版九年级上学期期末模拟考试数学试题一、选择题(每题3分,共24分.每小题有四个选项,其中只有一个选项是正确的) 1.一元二次方程x x 22=的解为( ▲ ).A 0=x .B 2=x.C 0=x 或2=x .D 0=x 且2=x2. 体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的( ▲ ).A 平均数 .B 频数分布 .C 中位数 .D 方差3. 用圆心角为︒120,半径为3的扇形纸片围成一个圆锥的侧面,则这个圆锥的底圆半径是( ▲ ).A 1 .B 23.C2 .D3 4. 如图,DE//BC ,则下列比例式错误..的是( ▲ ) .ABC DE BD AD = .B ECAE BD AD =.CEC AC BD AB = .D ACAEAB AD = 5. 下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( ▲ )AEDCB6. 如图,A D 、是⊙O 上的两个点,BC 是直径,若35D ∠=,则A C B ∠的度数是( ▲ ) .A ︒35 .B ︒55 .C ︒65 .D ︒707. 如图,在梯形ABCD 中,BC AD //,90A ∠=,1=AD ,4=BC ,6=AB ,若点P 在AB 上,且PAD ∆与PBC ∆相似,则这样的P 点的个数为( ▲ ).A 1 .B 2 .C 3 .D 48. 如图,二次函数c bx ax y ++=2)0(>a 图象的顶点为D ,其图象与x 轴的交于点B A 、,与y 轴负半轴交于点C ,且方程02=++c bx ax 的两根是1-和3. 在下面结论中:①0>abc ;②0<++c b a ;③03=+a c ;④若点),2(m M 在此抛物线上,则m 小于c .正确的个数是( ▲ ).A 1个 .B 2个 .C 3个 .D 4个二、填空题(每小题3分,共30分)PD CBA第7题图 第8题图第6题图9. 扬州12月某日的最高气温是10C ,最低气温1C ,则这天的日温差是 ▲ C . 10.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是 ▲ .11. 图中△ABC 外接圆的圆心坐标是 ▲ .12. 已知方程092=++kx x 有两个相等的实数根,则=k ▲ .13. 如图,在△ABC 中,D 、E 分别是边AC AB 、上的点,BC DE //,:1:2AD DB =,1ADE S ∆=,则BCED S 四边形的值为 ▲ .14.如图,△ABC 中,︒=∠︒=∠8525B C ,, 过点B A 、的圆交边BC AC 、分别于点D E 、, 则 =∠EDC ▲ °.15. 如图,将半径为2的圆形纸片沿 着弦AB 折叠,翻折后的弧AB 恰好 经过圆心O ,则弦AB = ▲ .16.如图,抛物线2(0)y mx nx m =+<和直线y ax =()0≠a ,其中抛物线nx mx y +=2 的第14题图第15题图第13题图第10题图顶点在直线y ax =上,且与x 轴的一个交点为(6,0),则不等式的ax nx mx >+2解集是 ▲ .17.如图,⊙O 的半径为1cm ,正六边形ABCDEF 内接于⊙O ,则图中阴影部分面积为 ▲ 2cm .(结果保留π)18. 如图,一段抛物线24(04)y x x x =-+≤≤,记为1C ,它与x 轴交于点O 、1A ;将1C 绕点1A 旋转180得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180得3C ,交x 轴于点3A ...如此进行下去,直至得抛物线2015C .若点(,3)P m 在第2015段抛物线2015C 上,则m = ▲ .三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)解方程: (1) 9)12(2=-x(2)5)5(-=-x x x第17题图第18题图第16题图20.(本题满分8分)先化简,再求值:a a a a 291312+-÷--,其中a 是方程02142=-+x x 的根.21.(本题满分8分)某品牌汽车销售公司有营销员14名,销售部为制定营销人员月销售汽车定额,统计了这14人某月的销售量如下(单位:辆)(1)这14位营销员该月销售该品牌汽车的平均数是 ▲ 辆,众数 是 ▲ 辆,中位数是 ▲ 辆.(2) 销售部经理把每位营销员月销量定位9辆,你认为合理吗?若不合理,请你设计一个较为合理的销售定额,并说明理由.22.(本题满分8分)现有两个不透明的乒乓球盒,甲盒中装有1个白球和1个红球,乙盒中装有2个白球和若干个红球,这些小球除颜色不同外,其余均相同.若从乙盒中随机摸出一个球,摸到红球的概率为53. (1)求乙盒中红球的个数;(2)若先从甲盒中随机摸出一个球,再从乙盒中随机摸出一个球,请用树形图或列表法求两次摸到不同颜色的球的概率.23.(本题满分10分)如图,抛物线c bx ax y ++=2与x 轴交于B A 、两点,交y 轴于点C ,且)3,0(),0,3(--C A ,对称轴为直线1-=x .(1)求抛物线的函数关系式.(2)若点P 是抛物线上的一点(不与点C 重合)PAB ∆与△ABC 的面积相等,求点P 的坐标.24.(本题满分10分)如图,在等边△ABC 中,点E D 、分别是边AC BC 、上的点,且CE BD =,连接AD BE 、,相交于点F .(1)求证:△ABD ≌△BCE(2)图中共有 ▲ 对相似三角形(全等除外). 并请你任选其中一对加以证明.你选择的是 ▲ .25.(本题满分10分)某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1元其销售量就减少20件.(1)当售价定为12元时,每天可售出 ▲ 件; (2)要使每天利润达到640元,则每件售价应定为多少元?(3) 当每件售价定为多少元时,每天获得最大利润?并求出最大利润.26.(本题满分10分) 如图,△ABC 的边AB 为⊙O 的直径,BC 与圆交于点D ,D 为BC 的中点,过D 作AC DE ⊥于E . (1)求证:DE 为⊙O 的切线;(2)若13=AB ,5=CD ,求CE 的长.27. (本题满分12分)对于一个三角形,设其三个内角的度数分别为︒x 、︒y 和︒z ,若x 、y 、z 满足222z y x =+,我们定义这个三角形为美好三角形.(1)△ABC 中,若︒=∠50A ,︒=∠70B ,则△ABC ▲ (填“是”或“不是” )美好三角形;(2)如图,锐角△ABC 是⊙O 的内接三角形,︒=∠60C ,4=AC , ⊙O 的直径是24, 求证:△ABC 是美好三角形; (3)已知△ABC 是美好三角形,︒=∠30A ,求∠C 的度数.28.(本题满分12分)如图,抛物线322++-=x x y 与x 轴交于A 、B 两点,与y 轴交于C 点,对称轴与抛物线相交于点M ,与x 轴相交于点N .点P 是线段MN 上的一动点,过点P 作CP PE ⊥交x 轴于点E .(1) 直接写出抛物线的顶点M 的坐标是 ▲ . (2) 当点E 与点O (原点)重合时,求点P 的坐标.(3) 点P 从M 运动到N 的过程中,求动点E 的运动的路径长.AB CO∙九年级数学参考答案及评分标准一、选择题(每题3分,共24分.每小题有四个选项,其中只有一个选项是正确的)题号 1 2 3 4 5 6 7 8答案 C D A A B B C D二、填空题(每小题3分,共30分)9. 9 10. 11. (5,2) 12. 13. 814. 70 15. 16. 0<x<3 17. 18. 8057或8059三、解答题(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤)19. (1) x=2,或x=-1 ---------4分(2) x=5 或x=1 ---------8分20 . (本题满分8分)= -------4分方法一:解,得-----6分当x=-7时,原式=18 -----8分方法二:由,可得原式=18 -----8分21. (本题满分8分)(1)这位营销员该月销售该品牌汽车的平均数是9 辆,众数是8 辆,中位数是8 辆. -------每空2分(2) 言之有理即可给分---------8分22. (本题满分8分)(1)设乙盒中红球的个数为x,根据题意得,解得x=3经检验,x=2是方程的根。
江苏省邳州市2019-2020学年度第一学期期末抽测九年级数学试题
2019~2020学年度第一学期期末抽测九年级数学试题一、选择题(本大题共8小题,每小题3分,共24分。
在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.如果一个一元二次方程的根是x=x=1,那么这个方程是A.x2=1B.x2+1=0C.(x-1)2=0D.(x+1)2=02.抛物线y=-2(x-2)2+3的顶点坐标是A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)3.下列说法正确的是A.弦是直径B.弧是半圆C.直径是圆中最长的弦D.半圆是圆中最长的弧4.小丽参加学校“庆元旦,迎新年演唱比赛,赛后小丽把七位评委所合的分数进行处理,得到平均数、中位数,众数,方差,如果把这七个数据去掉一个最高分和一个最低分,则数据一定不发发生变化的是A.平均数B.众数C.方差D.中位数5.由3x=2y(x≠0),可得比例式为A.x y =32B.x3=y2C.x2=y3D.x2=3y6.如图,四边形ABCD内接于⊙0,四边形ABCO是平行四边形,则∠ADC的度数为A.30°B.45°C.60°D.75°7如图在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC相似的条件是A.∠AED=∠BB. ∠ADE=∠CC.AEAB =DEBCD.ADAC=AEAB8.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为A.2√3B. 2√5C.4D.6二、填空题(本大题共10小题,每小题3分,共30分。
不需写出解管过程,请将答案直接填写在答题卡相应位置)9. 若a b =34,则2a−b b = .10.若△ABC ≌△DEF,,且相似比为1:2,则△ABC 与△DEF 面积比 .11.已知X 1、X 2互是一元二次方程X 2-2X-3=0的两个实数根,则X 1+X 2= .12.函数y=—(x-1)2+2图像上有两点A(3,y 1)、B (—4,y ,),则y 1 y 2(填“<”、“>”或“=”).13.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是 .14.为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本 (填“具有”或“不具有”)代表性。
2019—2020年新苏教版九年级上学期数学期末模拟检测卷及答案解析(试题).doc
上学期期末学业质量测试九年级数学试卷(考试用时:120分钟 满分:150分)一、选择题(本大题共有6小题,每小题3分,共18分)1. 一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( ▲ ). A .6 B .7C .8D .92.掷一个骰子时,点数小于2的概率是( ▲ ).A .61 B .31 C .21D .03. 下列说法中,正确的是( ▲ ).A .长度相等的弧叫等弧 B.直角所对的弦是直径 C .同弦所对的圆周角相等 D.等弧所对的弦相等4. 如图,坡角为30的斜坡上两树间的水平距离AC 为2m ,则 两树间的坡面距离AB 为( ▲ ). A .4m BCD. 5. 若两个相似多边形的面积之比为1:4,则它们的周长之比为( ▲ ). A . 1:2B .1:4C .2:1D .4:16. 如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为( ▲ ).A .2B .4C .8D .16二、填空题(本大题共10小题,每小题3分,共30分,请把答案直接写在相应的位置上)第6题图第4题图7. 在比例尺为1:10000000的地图上,量得甲、乙两地的距离是30厘米,则两地的实际距离是▲千米.8. 已知x :y =2 :3,则(x+y) :y 的值为▲.9. 一个不透明的袋中装有2枚白色棋子和n枚黑色棋子,它们除颜色不同外,其余均相同.若小明从中随机摸出一枚棋子,多次实验后发现摸到黑色棋子的频率稳定在80%.则n很可能是▲枚.10. 在△ABC中,∠C=90°,BC=2,2sin3A=,则边AC的长是▲.11. 某居民小区为了了解本小区100户居民家庭平均月使用塑料袋的数量情况,随机调査了10户居民家庭月使用塑料袋的数量,结果如下:(単位:只)65 70 85 74 86 78 74 92 82 94根据统计情况,估计该小区这100户家庭平均使用塑料袋▲只.12. 在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为▲m.13. 如图,抛物线的对称轴是直线1=x,与x轴交于A、B两点,若B点坐标是3(,0)2,则A点的坐标是▲.DA第13题图第14题图第16题图14. 如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在⌒AB上,若PA长为2,则△PEF的周长是▲.15. 若粮仓顶部是圆锥形,且这个圆锥的高为2m,母线长为2.5m,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是▲m2.16. 如图,△ABC中,∠ACB=90°,AC=8cm,BC=6cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<15),连接DE,当△BDE是直角三角形时,t的值为▲.三、解答题(本大题共有10小题,共102分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:3sin30°-2cos45°+tan2600;(2)在Rt△ABC中,∠C=90°, c=20,∠A=30°, 解这个直角三角形.18.(8分)甲、乙两人在相同的条件下各射靶10次,每次命中的环数如下:甲:9,7,8,9,7,6,10,10,6,8;乙:7,8,8,9,7,8,9,8,10,6 (1)分别计算甲、乙两组数据的方差;(2)根据计算结果比较两人的射击水平.19. (8分)在一个不透明的布口袋中装有只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲、乙两人进行摸球游戏:甲先从袋中摸出一球,看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为甲胜,问谁在游戏中获胜的可能性更大些?20.(8分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000名九年级考生中随机抽取部分考生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a和b所表示的数分别为a= ,b= ;(2)请在图中补全频数分布直方图;(3)如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的考生约有多少名?21. (10分)如图,某居民小区有一朝向为正南方向的居民楼,•该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼的前面24米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为︒32时.(1)问超市以上的居民住房采光是否有影响,为什么? (2)若要使超市采光不受影响,两楼应相距多少米? (参考数据:sin ︒32≈53100,cos ︒32≈,125106︒32tan ≈85.)22.(10分) 如图,已知二次函数y=ax 2+bx+c 的图像过A (2,0),B (0,﹣1)和C (4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图像与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.第22题图第21题图23.(10分)一块直角三角形木版的一条直角边AB 为3m ,面积为62m ,要把它加工成一个面积最大的正方形桌面,小明打算按图①进行加工,小华准备按图②进行裁料,他们谁的加工方案符合要求?A图① 图②第23题图24.(10分))如图,在△ABC 中,AB=AC ,以AB 为直径作半圆⊙0,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙0的切线;(2)如果⊙0的半径为9,sin ∠ADE=79,求AE 的长.第24题图25. (12分)如图所示,E 是正方形ABCD 的边AB 上的动点,正方形的边长为4, EF ⊥DE 交BC 于点F .(1)求证:△ADE ∽△BEF ;(2)AE=x ,B F=y .当x 取什么值时,y 有最大值? 并求出这个最大值; (3) 已知D 、C 、F 、E 四点在同一个圆上,连接CE 、DF ,若sin ∠C EF =第25题图 备用图26. (14分)如图,二次函数223y x bx c =++的图像交x 轴于A 、C 两点,交y 轴于B 点,已知A 点坐标是(2,0),B 点的纵坐标是8. (1)求这个二次函数的表达式及其图像的顶点坐标;(2)作点A 关于直线BC 的对称点A ’ ,求点A ’的坐标;(3)在y 轴上是否存在一点M ,使得∠AMC =30°,如存在,直接写出点M 的坐标,如不存在,请说明理由.第26题图 备用图九年级数学试卷参考答案(下列答案仅供参考........,如有其它解法......,请参照标准给分.......,如有输入错误......,请以正确答案给分........) 一.选择题(本大题共有6小题,每小题3分,共18分) 1. C; 2.A; 3.D; 4.C; 5.A; 6.B.二、填空题(本大题共10小题,每小题3分,共30分)7. 3000; 8.53; 9. 8; ;12. 15; 13. 1(,0)2;14. 4; 15. 154π;16. 5或8.2或11.8(少一解扣1分,多解不扣分) 三、解答题(本大题共有10小题,共102分)17.(12分)(1)1.53(3分)=4.53分);(2)a=10(2分),b=(2分),∠B =60°(2分)18.(8分)(1)甲、乙的平均数分别是8, 8(2分); .甲、乙的方差分别是2,1.2(4分); (2)∵S 2甲>S 2乙,∴乙的射击水平高(2分).19. (8分)(1)树状图如下或列表如下:(4分);(2)乙摸到与甲相同颜色的球有三种情况,乙能取胜的概率为13,所以甲在游戏中获胜的可能性更大(4分)。
2019学年江苏省九年级上学期期末考试数学试卷【含答案及解析】
2019学年江苏省九年级上学期期末考试数学试卷【含答案及解析】2019学年江苏省九年级上学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________⼀、选择题1. -元⼆次⽅程x2-x=0的解为A.此⽅程⽆实数解 B.0 C.1 D.0或12. 在抛物线y=x2-4x-4上的⼀个点是A.(4,4) B.(-,-) C.(-2,-8) D.(3,-1)3. △ABC中,∠C=90°,BC=3,AB=5,则sinA的值为A. B. C. D.4. 在⼀副扑克牌(54张,其中王牌两张)中,任意抽取⼀张牌是“王牌”的概率是A. B. C. D.5. ⽤配⽅法解⽅程x2+x-1=0,配⽅后所得⽅程是A. B. C. D.6. 已知⼆次函数y=2+1,以下对其描述正确的是A.其图像的开⼝向下B.其图像的对称轴为直线x=-3C.其函数的最⼩值为1D.当x<3时,y随x的增⼤⽽增⼤7. 在半径为1的⊙O中,弦AB=1,则的长是A. B. C. D.8. 如图,在⊙O中,直径CD垂直弦AB,连接OA,CB,已知⊙O的半径为2,AB=2,则∠BCD等于A.20° B.30° C.60° D.70°9. 某校研究性学习⼩组测量学校旗杆AB的⾼度,如图在教学楼⼀楼C处测得旗杆顶部的仰⾓为60°,在教学楼三楼D处测得旗杆顶部的仰⾓为30°,旗杆底部与教学楼⼀楼在同⼀⽔平线上,已知CD=6⽶,则旗杆AB的⾼度为A.9⽶ B.9(1+)⽶ C.12⽶ D.18⽶10. 已知⼆次函数y=ax2+bx+c的图像如图所⽰,对称轴为直线x=1.有位学⽣写出了以下五个结论:(1)ac>0; (2)⽅程ax2+bx+c=0的两根是x1=-1,x2=3;(3)2a-b=0;(4)当x>1时,y随x的增⼤⽽减⼩;(5)3a+2b+c>0则以上结论中不正确的有A.1个 B.2个 C.3个 D.4个⼆、填空题11. cos30°的值为.12. 正⽅体的表⾯积S(cm2)与正⽅体的棱长a(cm)之间的函数关系式为.13. 如图,PA是⊙O的切线,A为切点,PO交⊙O于点B,PB=4,OB=6,则tan∠APO的值是.14. 圆⼼⾓为120°,弧长为12π的扇形半径为.15. 点A(2,y1)、B(3,y2)是⼆次函数y=x2-2x+1的图像上两点,则y1与y2的⼤⼩关系为y1 y2(填“>”、“<”、“=”).16. 某电动⾃⾏车⼚三⽉份的产量为1000辆,由于市场需求量不断增⼤,五⽉份的产量提⾼到1210辆,则该⼚四、五⽉份的⽉平均增长率为.17. 如图,⊙O与正⽅形ABCD的两边AB、AD相切,且DE与⊙O相切于E点.若正⽅形ABCD的周长为44,且DE=6,则sin∠ODE=___ .18. 如图,直线y=x-2与x轴、y轴分别交于M、N两点,现有半径为1的动圆圆⼼位于原点处,并以每秒1个单位的速度向右作平移运动.已知动圆在移动过程中与直线MN有公共点产⽣,当第⼀次出现公共点到最后⼀次出现公共点,这样⼀次过程中该动圆⼀共移动秒.三、计算题19. (本题满分5分)解⽅程:x2-6x-7=0.20. (本题满分5分)计算:2sin60°+cos60°-3tan30°.四、解答题21. (本题满分6分)如图,AC是△ABD的⾼,∠D=45°,∠B=60°,AD=10.求AB的长.22. (本题满分6分)已知关于x的⽅程x2-6x+m2-3m=0的⼀根为2.(1)求5m2-15m-100的值; (2)求⽅程的另⼀根.23. (本题满分6分)已知⼆次函数y=ax2+bx+1的图像经过(1,2),(2,4)两点.(1)求a、b值;(2)试判断该函数图像与x轴的交点情况,并说明理由.24. (本题满分6分)如图,△ABC是⊙O的内接三⾓形,AE是⊙O的直径,AF是⊙O的弦,且AF⊥BC于D点.求证:(1)△ADC∽△ABE; (2)BE=CF.25. (本题满分6分)在⼀个⼝袋中有4个完全相同的⼩球,把它们分别标号为1,2,3,4.随机地摸取⼀个⼩球后放回,再随机地摸出⼀个⼩球,请⽤列举法(画树状图或列表)求下列事件的概率:(1)两次取得⼩球的标号相同;(2)两次取得⼩球的标号的和等于4.26. (本题满分8分)已知关于x的⼀元⼆次⽅程x2-2x+m=0有两个不相等的实数根.(1)求实数m的最⼤整数值;(2)在(1)的条件下,⽅程的实数根是x1,x2(x1>x2),求代数式x1+2x2的值.27. (本题满分9分)如图,折叠矩形ABCD的⼀边AD使点D落在BC边上的E处,已知折痕AF=10cm,且tan∠FEC=.(1)求矩形ABCD的⾯积;(2)利⽤尺规作图求作与四边形AEFD各边都相切的⊙O的圆⼼O(只须保留作图痕迹),并求出⊙O的半径.28. (本题满分9分)如图,在平⾯直⾓坐标系xOy中,⊙C经过点O,交x轴的正半轴于点B (2,0),P是上的⼀个动点,且∠OPB=30°.设P点坐标为(m,n).(1)当n=2,求m的值;(2)设图中阴影部分的⾯积为S,求S与n之间的函数关系式,并求S的最⼤值;(3)试探索动点P在运动过程中,是否存在整点P(m,n)(横、纵坐标都为整数的点叫整点)?若存在,请求出;若不存在,请说明理由.29. (本题满分10分)如图,⼆次函数y=-x2+nx+n2-9(n为常数)的图像经过坐标原点和x轴上另⼀点A,顶点在第⼀象限.(1)求n的值和点A坐标;(2)已知⼀次函数y=-2x+b(b >0)分别交x轴、y轴于M、N两点.点P是⼆次函数图像的y轴右侧部分上的⼀个动点,若PN⊥NM于N点,且△PMN与△OMN相似,求点P坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】第29题【答案】。
江苏省徐州市2019-2020学年九年级(上)期末数学模拟检测卷(三)PDF解析版
九年级(上)数学期末检测卷(三)一、选择题(每小题3分,共30分)1.(3分)下列函数关系式中,y是x的反比例函数的是()A.y=3x B.y=3x+1C.D.y=3x22.(3分)若如图所示的两个四边形相似,则∠α的度数是()A.75°B.60°C.87°D.120°3.(3分)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)4.(3分)如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于()A.3:2B.3:1C.1:1D.1:25.(3分)如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=30°,=.则∠DAC等于()A.70°B.45°C.30°D.25°6.(3分)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°7.(3分)已知反比例函数y=(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A.a=b B.a=﹣b C.a<b D.a>b8.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.89.(3分)在正方形网格中,△ABC在网格中的位置如图,则cos B的值为()A.B.C.D.210.(3分)如图,两个全等的等腰直角三角板(斜边长为2)如图放置,其中一块三角板45°角的顶点与另一块三角板ABC的直角顶点A重合.若三角板ABC固定,当另一个三角板绕点A旋转时,它的直角边和斜边所在的直线分别与边BC交于点E、F.设BF=x,CE=y,则y关于x的函数图象大致是()A.B.C.D.二、填空题(每小题4分,共24分)11.(4分)△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为.12.(4分)△ABC中,∠A、∠B都是锐角,若sin A=,cos B=,则∠C=.13.(4分)如图在Rt△OAB中∠AOB=20°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=.14.(4分)如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离出发点的水平距离为m.15.(4分)若二次函数y=(a﹣1)x2﹣4x+2a(a≠1)的图象与x轴有且只有一个交点,则a的值为.16.(4分)双曲线y1、y2在第一象限的图象如图,,过y1上的任意一点A,作x轴的平行线交y2=1,则y2的解析式是.于B,交y轴于C,若S△AOB三、解答题(每题6分,共18分)17.(6分)计算:18.(6分)在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的,在网格内画出一个符合条件的△A1E1F1.19.(6分)如图,在凯里市某广场上空飘着一只气球P,A、B是地面上相距90米的两点,它们分别在气球的正西和正东,测得仰角∠P AB=45°,仰角∠PBA=30°,求气球P的高度.(精确到0.1米,=1.732)四、解答题(每题7分,共21分)20.(7分)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数y=的图象经过点P,求m的值.21.(7分)已知:AB⊥BC于B,CD⊥BC于C,AB=4,CD=6,BC=14,点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,求PB的长?22.(7分)某校一课外活动小组为了了解学生最喜欢的球类运动况,随机抽查了本校九年级的200名学生,调查的结果如图所示,请根据该扇形统计图解答以下问题:(1)图中x的值是;(2)被查的200名生中最喜欢球运动的学生有人;(3)若由3名最喜欢篮球运动的学生(记为A1、A2、A3),1名最喜欢乒乓球运动的学生(记为B),1名最喜欢足球运动的学生(记为C)组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.五、解答题(每小题9分,共27分)23.(9分)如图,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(﹣1,0),点C的坐标为(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.24.(9分)如图,已知CE是圆O的直径,点B在圆O上由点E顺时针向点C运动(点B不与点E、C 重合),弦BD交CE于点F,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求圆心O到弦CD的距离;(2)在(1)的条件下,当DF•DB=CD2时,求∠CBD的大小;(3)若AB=2AE,且CD=12,求△BCD的面积.25.(9分)如图,在△ABC中,∠A=30°,∠C=90°,AB=12,四边形EFPQ是矩形,点P与点C 重合,点Q、E、F分别在BC、AB、AC上(点E与点A、点B均不重合).(1)当AE=8时,求EF的长;(2)设AE=x,矩形EFPQ的面积为y.①求y与x的函数关系式;②当x为何值时,y有最大值,最大值是多少?(3)当矩形EFPQ的面积最大时,将矩形EFPQ以每秒1个单位的速度沿射线CB匀速向右运动(当点P到达点B时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t 的函数关系式,并写出t的取值范围.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、y=3x是正比例函数,故此选项不合题意;B、y=3x+1是一次函数,故此选项不合题意;C、y=是反比例函数,故此选项符合题意;D、y=3x2是二次函数,故此选项不合题意;故选:C.2.【解答】解:根据相似多边形的特点可知对应角相等,所以∠α=360°﹣60°﹣138°﹣75°=87°.故选C.3.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.4.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.5.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠BAC=90°﹣30°=60°,∴∠D=180°﹣∠B=120°,∵=,∴AD=CD,∴∠DAC=∠DCA=(180°﹣120°)=30°.故选:C.6.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣80°)=50°,∴∠BOC=180°﹣50°=130°.故选:A.7.【解答】解:∵k>0,∴当x>0时,反比例函数y随x的增大而减小,∵1<3,∴a>b,故选:D.8.【解答】解:∵AD∥BE∥CF,∴=,∵AB=1,BC=3,DE=2,∴=,解得EF=6,故选:C.9.【解答】解:在直角△ABD中,BD=2,AD=4,则AB===2,则cos B===.故选:A.10.【解答】解:由题意得∠B=∠C=45°,∠G=∠EAF=45°,∵∠AFE=∠C+∠CAF=45°+∠CAF,∠CAE=45°+∠CAF,∴∠AFB=∠CAE,∴△ACE∽△ABF,∴∠AEC=∠BAF,∴△ABF∽△CAE,∴,又∵△ABC是等腰直角三角形,且BC=2,∴AB=AC=,又BF=x,CE=y,∴=,即xy=2,(1<x<2).故选:C.二、填空题(每小题4分,共24分)11.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4.故答案为:1:4.12.【解答】解:∵△ABC中,∠A、∠B都是锐角sin A=,cos B=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.13.【解答】解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∴∠A1OA=100°,∵∠AOB=20°,∴∠A1OB=∠A1OA﹣∠AOB=80°.故答案为:80°.14.【解答】解:∵AB=10米,tan A==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故答案为4.15.【解答】解:∵二次函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,故答案为:﹣1或2.16.【解答】解:∵,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×4=2,=1,∵S△AOB∴△CBO面积为3,∴k=xy=6,∴y2的解析式是:y2=.故答案为:y2=.三、解答题(每题6分,共18分)17.【解答】解:=×﹣1+2﹣×=1﹣1+2﹣1=2﹣118.【解答】解:(1)如图,△AEF为所作,E(3,3),F(3,﹣1);(2)如图,△A1E1F1为所作.19.【解答】解:作PC⊥AB于C点,设PC=x米.在Rt△PAC中,tan∠PAB=,∴AC==PC=x.在Rt△PBC中,tan∠PBA=,∴BC==x.又∵AB=90,∴AB=AC+BC=x+x=90,∴,∴PC=45(1.732﹣1)=32.9.答:气球P的高度为32.9米.四、解答题(每题7分,共21分)20.【解答】解:(1)∵点A(2,0),∴OA=2,∵tan∠OAB=,∴OB=1,∴点B的坐标为(0,1),直线l过点A和点B,设直线l的表达式为y=kx+b,,得,即直线l的表达式为y=﹣0.5x+1;(2)∵直线l上的点P位于y轴左侧,且到y轴的距离为1.∴点P的横坐标为﹣1,将x=﹣1代入y=﹣0.5x+1,得y=1.5,∴点P的坐标为(﹣1,1.5),∵反比例函数y=的图象经过点P,∴1.5=,得m=﹣1.5,即m的值是﹣1.5.21.【解答】解:(1)当△ABP∽△PCD时,=,则=,解得BP=2或BP=12;(2)当△ABP∽△DCP时,=,则=,解得BP=5.6.综合以上可知,当BP的值为2,12或5.6时,两三角形相似.22.【解答】解:(1)由题得:x%+5%+15%+45%=1,解得:x=35;故答案为:35(2)最喜欢乒乓球运动的学生人数为200×95%=190(人);故答案为:190;(3)用A1,A2,A3表示3名最喜欢篮球运动的学生,B表示1名最喜欢乒乓球运动的学生,C表示1名喜欢足球运动的学生,则从5人中选出2人的情况有:(A1,A2),(A2,A1),(A1,A3),(A3,A1),(A1,B),(B,A1),(A1,C),(C,A1),(A2,A3),(A3,A2),(A2,B),(B,A2),(A2,C),(C,A2),(A3,B),(B,A3),(A3,C),(C,A3),(B,C),(C,B)共计20种;选出的2人都是最喜欢篮球运动的学生的有(A1,A2),(A2,A1),(A1,A3),(A3,A1),(A2,A3)(A3,A2)共计6种,则选出2人都最喜欢篮球运动的学生的概率为=.五、解答题(每小题9分,共27分)23.【解答】解:(1)由题意,解得,∴二次函数的解析式为y=﹣x2+x+2.(2)存在.如图1中,∵C(0,2),D(,0),∴CD==,当CP=CD时,P1(,4),当DP=DC时,P2(,),P3(,﹣).综上所述,满足条件的点P坐标为(,4)或(,)或(,﹣).(3)如图2中,作CM⊥EF于M,∵B(4,0),C(0,2),∴直线BC的解析式为y=﹣,设E(a,﹣+2),F(a,﹣a2+a+2),∴EF=﹣a2+a+2﹣(﹣+2)=﹣a2+2a,(0≤a≤4),∵S四边形CDBF=S△BCD+S△CEF+S△BEF=•BD•OC+•EF•CM+•EF•BN=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a)=﹣a2+4a+=﹣(a﹣2)2+,∴a=2时,四边形CDBF的面积最大,最大值为,∴E(2,1).24.【解答】解:(1)如图,过O作OH⊥CD于H,∵点D为弧EC的中点,∴弧ED=弧CD,∴∠OCH=45°,∴OH=CH,∵圆O的半径为2,即OC=2,∴OH=;(2)∵当DF•DB=CD2时,,又∵∠CDF=∠BDC,∴△CDF∽△BDC,∴∠DCF=∠DBC,由(1)可得∠DCF=45°,∴∠DBC=45°;注:也可以由点D为弧EC的中点,可得弧ED=弧CD,即可得出∠DCF=∠DBC=45°;(3)如图,连接BE,BO,DO,并延长BO至H点,∵BD=BC,OD=OC,∴BH垂直平分CD,又∵AB∥CD,∴∠ABO=90°=∠EBC,∴∠ABE=∠OBC=∠OCB,又∵∠A=∠A,∴△ABE∽△ACB,∴,即AB2=AE×AC,∴AC=,设AE=x,则AB=2x,∴AC=4x,EC=3x,∴OE=OB=OC=,∵CD=12,∴CH=6,∵AB∥CH,∴△AOB∽△COH,∴,即,解得x=5,OH=4.5,OB=7.5,∴BH=BO+OH=12,∴△BCD的面积=×12×12=72.25.【解答】解:(1)在Rt△ABC中,∵AB=12,∠A=30°,∴BC=AB=6,AC=BC=6,∵四边形EFPQ是矩形,∴EF∥BC,∴=,∴=,∴EF=4.(2)①∵AB=12,AE=x,点E与点A、点B均不重合,∴0<x<12,∵四边形CDEF是矩形,∴EF∥BC,∠CFE=90°,∴∠AFE=90°,在Rt△AFE中,∠A=30°,∴EF=x,AF=cos30°•AE=x,在Rt△ACB中,AB=12,∴cos30°=,∴AC=12×=6,∴FC=AC﹣AF=6﹣x,∴S=FC•EF=x(6﹣x)=﹣x2+3x(0<x<12);②S=x(12﹣x)=﹣(x﹣6)2+9,当x=6时,S有最大值为9;(3)①当0≤t<3时,如图1中,重叠部分是五边形MFPQN,S=S 矩形EFPQ﹣S△EMN=9﹣t2=﹣t2+9.②当3≤t≤6时,重叠部分是△PBN,S=(6﹣t)2,综上所述,S=.。
2019-2020学年度徐州市人教版九年级期末数学试题(PDF版含答案)
2019-2020学年度第一学期末抽测九年级数学参考答案9. 8 10.511.2)1(22-+=x y 12.48 13 . 0.5 14. 216 15. 54 16. 2 17. 55 18.)1010,1010(2- 19.(1)解:原式=112+- = ....................4分(2)解:∵1=a 4-= b 3=, c4314)4(422=⨯⨯--=-ac b∴224124)4(±=⨯±--=x ∴31=x ,12=x .....................8分20.解:(1)260÷52%=500(户); .....................2分(2)500-260-80-40=120(户), .....................4分如图: .....................6分21.解:用树状图分析如下:...............................5分图7∴圆O 的半径为2. .................3分(或者设x CO =,x OE 2=,在直角三角形OEF 中利用勾股定理求解)(2)连接OF .在Rt △DCP 中,∵∠DPA=45°,∴∠D =90°-45°=45°. ...................4分∴S 阴影=S 扇形OEF - S Rt △OEF =π-2. .............8分24.解:(1)由题意:四边形ABED 是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt △DEH 中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古树BH 的高度为8.5米. ....................................3分(2)作HJ ⊥CG 于G .则△HJG 是等腰直角三角形,四边形BCJH 是矩形,设HJ=GJ=BC=x .在Rt △EFG 中,tan60°=EF GF 7x x +== ....................................5分 ∴)13(27+=x , ∴GF=x 3≈16.45 ∴CG=CF+FG=1.5+16.45≈17.95≈18.0米. 答:教学楼CG 的高度为18.0米....................................8分25.解:(1)y=-2x+260 ; .................2分(2)由题意得:(x-50)(-2x+260)=3000 .................4分化简得:2x —180x+8000=0解得:x 1=80,x 2=100 ....................5分 ∵x≤50×(1+90%)即x ≤95∴x 2=100(不符合题意,舍去)答:销售单价为80元. ....................6分(3)设每天获得的利润为w 元,由题意得w=(x-50)(-2x+260) .................8分=-22x +360x-13000=3200)90(22+--x .................9分 ∵x 2的系数a =-2<0,∴函数的图像是开口向下的抛物线,∴当x=90时,w 有最大值,w 最大值=3200答:销售单价为90元时,每天获得的利润最大,最大利润是3200元. .................10分26.解:(1)抛物线的表达式为:y =﹣2x +2x+8, 直线AB 的表达式为:y =2x ﹣1; ....................2分(2)存在,理由:∵二次函数对称轴为:x =1,∴点C (1,1),过点D 作y 轴的平行线交AB 于点H ,设点D (x ,﹣x 2+2x +8),点H (x ,2x ﹣1),∵S △DAC =2S △DCM ,∴(﹣x 2+2x +8﹣2x +1)(1+3)=(9﹣1)(1﹣x )×2,解得:x =﹣1或5,∵31x -<<∴舍去x=5故点D (﹣1,5); ...............................6分(3)设点Q(m,0)、点P(s,﹣s2+2s+8),①当AM是平行四边形的一条边时,∵点M向左平移4个单位向下平移16个单位得到A,∴点Q(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,即:﹣6=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);.........................................................8分②当AM是平行四边形的对角线时,由中点公式得:2=﹣s2+2s+8,解得:s=1,故点P(1,2)或(1﹣,2);综上,点P(6,﹣16)或(﹣4,﹣16)或(1,2)或(1﹣,2). .....10分。
江苏省徐州市九年级(上)期末数学试卷(含答案)
江苏省徐州市九年级(上)期末数学试卷(含答案)一、选择题1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .32.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1 B .54-≤b ≤1C .94-≤b ≤12D .94-≤b ≤1 3.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm πB .290cm πC .2130cm πD .2155cm π4.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C 2D .225.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④B .①③C .②③④D .①③④6.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 7.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .168.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6 B .这组数据的中位数是1 C .这组数据的众数是6 D .这组数据的方差是10.2 9.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .1:2B .1:2C .1:3D .1:410.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.411.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1212.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2 B .中位数是2,众数是3 C .中位数是4,众数是2D .中位数是3,众数是413.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°14.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x 15.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题16.已知∠A =60°,则tan A =_____. 17.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.18.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.19.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .20.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)21.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.22.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.23.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 24.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD =5,∠BPD =90°,则点A 到BP 的距离等于_____.25.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).26.把函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.27.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.28.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.29.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.30.已知234x y z x z y+===,则_______ 三、解答题31.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.32.某商店销售一种商品,经市场调查发现:该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x 、月销售量y 、月销售利润w (元)的部分对应值如下表: 售价x (元/件) 40 45 月销售量y (件) 300 250 月销售利润w (元)30003750注:月销售利润=月销售量×(售价-进价) (1)①求y 关于x 的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.33.如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设 AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.34.已知二次函数y=x2+bx+c的函数值y与自变量x之间的对应数据如表:x…﹣101234…y…1052125…(1)求b、c的值;(2)当x取何值时,该二次函数有最小值,最小值是多少?35.如图,C是直径AB延长线上的一点,CD为⊙O的切线,若∠C=20°,求∠A的度数.四、压轴题36.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从A开始折线A——B——C——D以4cm/秒的速度移动,点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动的时间t(秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 37.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<). (1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.38.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)39.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【解析】 【分析】根据题干可以明确得到p,q是方程230x -=的两根,再利用韦达定理即可求解. 【详解】解:由题可知p,q是方程230x -=的两根, ∴, 故选B. 【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.2.B解析:B 【解析】 【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PANA NC=,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围. 【详解】解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN . 在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN ∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA , ∴PB PANA NC =, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54,x =3时,y 有最小值0,此时b =1, ∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.3.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.4.C解析:C 【解析】 【分析】如图,连接BD ,根据圆周角定理可得BD 为⊙O 的直径,利用勾股定理求出BD 的长,进而可得⊙O 的半径的长. 【详解】 如图,连接BD ,∵四边形ABCD 是正方形,边长为2, ∴BC=CD=2,∠BCD=90°, ∴2222+2,∵正方形ABCD 是⊙O 的内接四边形, ∴BD 是⊙O 的直径,∴⊙O的半径是1222=2,故选:C.【点睛】本题考查正方形的性质、圆周角定理及勾股定理,根据圆周角定理得出BD是直径是解题关键.5.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.6.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 7.D解析:D【解析】【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案.【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4,∴△ABC 的面积为:16,故选D .【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.8.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=;方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】 本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.9.D解析:D【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D .【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.10.D解析:D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c ∴AB DE BC EF= 即1.5 1.82EF = 解得:EF=2.4 故答案为D .【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.11.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.12.A解析:A【解析】【分析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.【详解】解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.13.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D =180°﹣∠ACB =50°,∴∠AOB =2∠D =100°,故选:C .【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.14.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 15.D解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题16.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A=tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.17.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.18.y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为解析:y=2(x-2)2+3【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.19.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=.147考点:概率公式.20.∠B=∠1或【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可. 【详解】此题答案不唯解析:∠B=∠1或AE AD AC AB=【解析】【分析】此题答案不唯一,注意此题的已知条件是:∠A=∠A,可以根据有两角对应相等的三角形相似或有两边对应成比例且夹角相等三角形相似,添加条件即可.【详解】此题答案不唯一,如∠B=∠1或AD AE AB AC=.∵∠B=∠1,∠A=∠A,∴△ADE∽△ABC;∵AD AEAB AC=,∠A=∠A,∴△ADE∽△ABC;故答案为∠B=∠1或AD AE AB AC=【点睛】此题考查了相似三角形的判定:有两角对应相等的三角形相似;有两边对应成比例且夹角相等三角形相似,要注意正确找出两三角形的对应边、对应角,根据判定定理解题. 21.40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°22.【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的解析:410 3【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,242xx=-,解得:x=4 3∴22410AD DF+=故答案为3. 点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,23.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm 2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积是20πcm 2, 根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm . 故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.24.或【解析】【分析】由题意可得点P 在以D 为圆心,为半径的圆上,同时点P 也在以BD 为直径的圆上,即点P 是两圆的交点,分两种情况讨论,由勾股定理可求BP ,AH 的长,即可求点A 到BP 的距离.【详解】解析:2或2【解析】【分析】由题意可得点P在以D为圆心,5为半径的圆上,同时点P也在以BD为直径的圆上,即点P是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH的长,即可求点A到BP 的距离.【详解】∵点P满足PD=5,∴点P在以D为圆心,5为半径的圆上,∵∠BPD=90°,∴点P在以BD为直径的圆上,∴如图,点P是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH2+(3AH)2,∴AH 335+AH335-,若点P在CD的右侧,同理可得AH=3352,综上所述:AH 335+335-.【点睛】本题是正方形与圆的综合题,正确确定点P是以D BD为直径的圆的交点是解决问题的关键.25.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm2).故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).26.y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y=2(x﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y=2(x﹣3)2﹣2,故答案为y=2(x﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.27.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 ,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.28.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键. 29.30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O沿着△ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,∴DG∥EP,EQ∥FN,FM∥DH,∵⊙O的半径为1∴DG=DH=PE=QE=FN=FM=1,则有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°, PE=QE=1∴四边形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:5,设DE=3k(k>0),则EF=4k,DF=5k,∵DE+EF+DF=18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB =AH +HM +BM =x +152+y =x +y +7.5, ∵AC :BC :AB =3:4:5, ∴(x +5.5):(y +7):(x +y +7.5)=3:4:5,解得x =2,y =3,∴AC =7.5,BC =10,AB =12.5,∴AC +BC +AB =30.所以△ABC 的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O 的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.30.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.三、解答题31.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、255,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ 是直径,E 在圆上,∴∠PEQ=90°,∴PE ⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP ,∵∠QPB=2∠AQP . \②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ ∽△QBA,∴BP BQ BQ BA , ∴336BP , ∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .。
2019-2020学年江苏省徐州市九年级(上)期末数学试卷
江苏省徐州市九年级(上)期末数学试卷一、选择题(本大题有8小题,每小题3分,共24分)1.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.2.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A.B.C.D.3.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6B.这组数据的中位数是1C.这组数据的平均数是6D.这组数据的方差是104.已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2﹣2x+d=0有实根,则点P()A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O的内部5.如图,△ABC内接于⊙O,若∠A=α度,则∠OBC的度数为()A.αB.90﹣αC.90+αD.90+2α6.将函数y=x2的图象用下列方法平移后,所得图象不经过点A(1,4)的是()A.向左平移1个单位B.向下平移1个单位C.向上平移3个单位D.向右平移3个单位7.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.B.2C.D.8.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D,一直角三角板的直角顶点与点D重合,这块三角板绕点D旋转,两条直角边始终与AC、BC边分别相交于G、H,则在运动过程中,△ADG与△CDH 的关系是()A.一定相似B.一定全等C.不一定相似D.无法判断二、填空题(本大题有8小题,每小题4分,共32分)9.若x2﹣9=0,则x=.10.某一时刻,测得身高1.6m的同学在阳光下的影长为2.8m,同时测得教学楼在阳光下的影长为25.2m,则教学楼的高为m.11.若,则的值为.12.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为cm.13.已知关于x的方程x2+mx+3m=0的一个根为﹣2,则方程另一个根为.14.点P在线段AB上,且.设AB=4cm,则BP=cm.15.如图,⊙O的直径AB与弦CD相交于点E,AB=5,AC=3,则tan∠CDA=.16.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为.三、解答题(本大题有9小题,共84分)17.(1)计算:()﹣2+tan60°﹣(π﹣3)0;(2)解方程:x2﹣3x+2=0.18.现有三张分别标有数字﹣1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.(用树状图或列表法求解)19.某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):用电量9093102113114120天数112312(1)该校这10天用电量的众数是度,中位数是度;(2)估计该校这个月的用电量(按30天计算).20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(6,4),B(4,0),C(2,0).(1)在y轴左侧,以O为位似中心,画出△A1B1C1,使它与△ABC的相似比为1:2;(2)根据(1)的作图,tan∠C1A1B1=.21.如图,在一块长8m、宽6m的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.22.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w元.据此规律,解决下列问题:(1)降价后每件商品盈利元,超市日销售量增加件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?23.如图,已知△ABC中,∠ABC=30°,∠ACB=45°,AB=8.求△ABC的面积.24.如图,⊙O为△ABC的外接圆,∠ACB=90°,AB=12,过点C的切线与AB的延长线交于点D,OE交AC于点F,∠CAB=∠E.(1)判断OE和BC的位置关系,并说明理由;(2)若tan∠BCD=,求EF的长.25.如图,矩形OABC中,O为原点,点A在y轴上,点C在x轴上,点B的坐标为(4,3),抛物线y=﹣x2+bx+c与y轴交于点A,与直线AB交于点D,与x轴交于C,E两点.(1)求抛物线的表达式;(2)点P从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动,与此同时,点Q从点A出发,在线段AC上以每秒个单位长度的速度向点C运动,当其中一点到达终点时,另一点也停止运动.连接DP、DQ、PQ,设运动时间为t(秒).①当t为何值时,△DPQ的面积最小?②是否存在某一时刻t,使△DPQ为直角三角形?若存在,直接写出t的值;若不存在,请说明理由.2019-2020学年江苏省徐州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题有8小题,每小题3分,共24分)1.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意.故选:A.2.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A.B.C.D.【解答】解:100件某种产品中有4件次品,从中任意取一件,恰好抽到次品的概率.故选:D.3.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6B.这组数据的中位数是1C.这组数据的平均数是6D.这组数据的方差是10【解答】解:数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.4.故选:A.4.已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2﹣2x+d=0有实根,则点P()A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O的内部【解答】解:∵关于x的方程x2﹣2x+d=0有实根,∴根的判别式△=(﹣2)2﹣4×d≥0,解得d≤1,∴点在圆内或在圆上,故选:D.5.如图,△ABC内接于⊙O,若∠A=α度,则∠OBC的度数为()A.αB.90﹣αC.90+αD.90+2α【解答】解:如图,连接OC∵∠A=α度,∠BOC=2∠A∴∠BOC=2α度∵OB=OC∴∠OBC==(90﹣α)度故选:B.6.将函数y=x2的图象用下列方法平移后,所得图象不经过点A(1,4)的是()A.向左平移1个单位B.向下平移1个单位C.向上平移3个单位D.向右平移3个单位【解答】解:A、向左平移1个单位后,得y=(x+1)2,图象经过A点,故A不符合题意;B、向下平移1个单位后,得y=x2﹣1图象不经过A点,故B符合题意;C、向上平移3个单位后,得y=x2+3,图象经过A点,故C不符合题意;D、向右平移3个单位后,得y=(x﹣3)2,图象经过A点,故D不符合题意;故选:B.7.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.B.2C.D.【解答】解:如图(二),∵圆内接正六边形边长为1,∴AB=1,可得△OAB是等边三角形,圆的半径为1,∴如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°=×1=,故BC=2BD=.OD=OB=,∴圆的内接正三角形的面积==,故选:C.8.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为点D,一直角三角板的直角顶点与点D重合,这块三角板绕点D旋转,两条直角边始终与AC、BC边分别相交于G、H,则在运动过程中,△ADG与△CDH 的关系是()A.一定相似B.一定全等C.不一定相似D.无法判断【解答】解:∵CD⊥AB,∴∠ADC=∠EDF=∠ACB=90°,∴∠ADG=∠CDH,∵∠DCH+∠ACD=90°,∠ACD+∠A=90°,∴∠A=∠DCH,∴△ADG∽△CDH,故选:A.二、填空题(本大题有8小题,每小题4分,共32分)9.若x2﹣9=0,则x=±3.【解答】解:∵x2﹣9=0,∴x2=9,∴x=±3.故答案为:±3.10.某一时刻,测得身高1.6m的同学在阳光下的影长为2.8m,同时测得教学楼在阳光下的影长为25.2m,则教学楼的高为14.4m.【解答】解:设此教学楼的高度是hm,则=,解得h=14.4(m).故答案为:14.4.11.若,则的值为.【解答】解:∵,∴=.12.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为4cm.【解答】解:∵圆锥的母线长是5cm,侧面积是20πcm2,∴圆锥的侧面展开扇形的弧长为:l===8π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===4cm.故答案为4.13.已知关于x的方程x2+mx+3m=0的一个根为﹣2,则方程另一个根为6.【解答】解:将x=﹣2代入x2+mx+3m=0,∴4﹣2m+3m=0,∴m=﹣4,设另外一个根为x,由根与系数的关系可知:﹣2x=3m,∴x=6,故答案为:614.点P在线段AB上,且.设AB=4cm,则BP=(6﹣2)cm.【解答】解:∵.∴P点为AB的黄金分割点,∴AP=AB=×4=2﹣2,∴BP=4﹣(2﹣2)=(6﹣2)cm.故答案为(6﹣2).15.如图,⊙O的直径AB与弦CD相交于点E,AB=5,AC=3,则tan∠CDA=.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵AB=5,AC=3,∴BC===4,∵∠CDA=∠B,∴tan∠CDA=tan∠B==,故答案为:.16.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为(,2).【解答】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4﹣x,在RT△ABE中,∵EA2+AB2=BE2,∴(4﹣x)2+22=x2,∴x=,∴BE=ED=,AE=AD﹣ED=,∴点E坐标(,2).故答案为(,2).三、解答题(本大题有9小题,共84分)17.(1)计算:()﹣2+tan60°﹣(π﹣3)0;(2)解方程:x2﹣3x+2=0.【解答】解:(1)原式=4+×﹣1=4+3﹣1=6;(2)∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,则x﹣1=0或x﹣2=0,解得x=1或x=2.18.现有三张分别标有数字﹣1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀.(1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;(2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率.(用树状图或列表法求解)【解答】解:(1)∵有三张分别标有数字﹣1,0,3的卡片,∴从中任意抽取一张卡片,抽到标有数字3的卡片的概率为;故答案为:;(2)根据题意画图如下:共有6种等情况数,其中两张卡片上的数字之和为负数的有2种,则两张卡片上的数字之和为负数的概率=.19.某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):用电量9093102113114120天数112312(1)该校这10天用电量的众数是113度,中位数是113度;(2)估计该校这个月的用电量(按30天计算).【解答】解:(1)113度出现了3次,最多,故众数为113度;第5天和第6天的用电量均是13度,故中位数为113度;故答案为:113,113.(2)平均用电量为:(90+93+102×2+113×3+114+120×2)÷10=108度;总用电量为108×30=3240度.20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(6,4),B(4,0),C(2,0).(1)在y轴左侧,以O为位似中心,画出△A1B1C1,使它与△ABC的相似比为1:2;(2)根据(1)的作图,tan∠C1A1B1=.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:连接BD,tan∠C1A1B1=tan A===.故答案为:.21.如图,在一块长8m、宽6m的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.【解答】解:设花圃四周绿地的宽为xm,依题意,得:(8﹣2x)(6﹣2x)=×8×6,整理,得:x2﹣7x+6=0,解得:x1=1,x2=6(不合题意,舍去).答:花圃四周绿地的宽为1m.22.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x元时,日盈利为w元.据此规律,解决下列问题:(1)降价后每件商品盈利(30﹣x)元,超市日销售量增加10x件(用含x的代数式表示);(2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元?【解答】解:(1)故答案为:(30﹣x),10x;(2)设每件商品降价x元时,利润为w元.根据题意得:w=(30﹣x)(100+10x)=﹣10x2+200x+3000=﹣10(x﹣10)2+4000,∵﹣10<0,∴w有最大值,当x=10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,超市日盈利最大,最大值是4000元.23.如图,已知△ABC中,∠ABC=30°,∠ACB=45°,AB=8.求△ABC的面积.【解答】解:作AD⊥BC于点D,在Rt△ABD中,∠ABC=30°,∴AD=AB=4,BD=AB•cos∠ABC=4,在Rt△ACD中,∠ACB=45°,∴CD=AD=4,∴BC=BD+CD=4+4,∴△ABC的面积=×BC×AD=×(4+4)×4=8+8.24.如图,⊙O为△ABC的外接圆,∠ACB=90°,AB=12,过点C的切线与AB的延长线交于点D,OE交AC于点F,∠CAB=∠E.(1)判断OE和BC的位置关系,并说明理由;(2)若tan∠BCD=,求EF的长.【解答】解:(1)OE∥BC,理由如下:∵∠CAB=∠E,∠AFO=∠CFE,∴∠ECA=∠AOF,∵DE是⊙O的切线,∴∠BCD=∠CAB,∠ECA=∠ABC,∴∠AOF=∠ABC,∴OE∥BC;(2)∵∠BCD=∠CAB,∴tan∠CAB==tan∠BCD=tan∠CAB=,设BC=3x,则AC=4x,∵∠ACB=90°,∴AC2+BC2=AB2,即(4x)2+(3x)2=(5x)2,解得:x=,∴AC=4x=,∵OE∥BC,AC⊥BC,∴OF⊥AC,∴CF=AC=,∵∠CAB=∠E,∴tan∠CAB=tan∠E==,∴EF=CF=×=.25.如图,矩形OABC中,O为原点,点A在y轴上,点C在x轴上,点B的坐标为(4,3),抛物线y=﹣x2+bx+c与y轴交于点A,与直线AB交于点D,与x轴交于C,E两点.(1)求抛物线的表达式;(2)点P从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动,与此同时,点Q从点A出发,在线段AC上以每秒个单位长度的速度向点C运动,当其中一点到达终点时,另一点也停止运动.连接DP、DQ、PQ,设运动时间为t(秒).①当t为何值时,△DPQ的面积最小?②是否存在某一时刻t,使△DPQ为直角三角形?若存在,直接写出t的值;若不存在,请说明理由.【解答】解:(1)点A(0,3),点C(4,0),将点A、C的坐标代入抛物线表达式并解得:b=,c=3,故抛物线的表达式为:y=﹣x2+x+3;(2)y=﹣x2+x+3=﹣(x﹣4)(x+2),故点E(﹣2,0);抛物线的对称轴为:x=1,则点D(2,3),由题意得:点Q(t,3﹣t),点P(4,t),①△DPQ的面积=S△ABC﹣(S△ADQ+S△PQC+S△BPD)=3×4﹣[2×t+2(3﹣t)+(5﹣)×t×]=t2﹣2t.∵>0,故△DPQ的面积有最小值,此时,t=;②点D(2,3),点Q(t,3﹣t),点P(4,t),(Ⅰ)当PQ是斜边时,如图1,过点Q作QM⊥AB于点M,则MQ=t,MD=2﹣t,BD=4﹣2=2,PB=3﹣t,则tan∠MQD=tan∠BDP,即,解得:t=(舍去);(Ⅱ)当PD为斜边时,过点Q作y轴的平行线交AB于点N,交过点P于x轴的平行线于点M,则ND=2﹣t,QN=t,MP=4﹣t,QM=3﹣t﹣t=3﹣2t,同理可得:,解得:t=或;(Ⅲ)当QD为斜边时,同理可得:故t=;综上,t=或或或.。
江苏省徐州市部分初中2019-2020学年九年级上学期期末数学试题(解析版)
3.关于 2,6,1,10,6 这组数据,下列说法正确的是(
)
A. 这组数据的平均数是 6 C. 这组数据的众数是 6
B. 这组数据的中位数是 1 D. 这组数据的方差是 10.2
【答案】 C
【解析】 【分析】 先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众 数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.
【详解】解:数据从小到大排列为: 1, 2 , 6, 6 ,10 ,
中位数为: 6 ;
众数为: 6;
1
平均数为:
5 1
方差 :
5
1 2 6 6 10
2
2
15 2 5
5;
2
65
故选: C.
2
65
2
10 5
10.4 .
【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题 的关键.
2019-2020 学年度第一学期期末检测
九年级数学试题
一、选择题:本大题共 8 个小题 ,每小题 3 分 ,共 24 分.在每小题给出的四个选项中,只有一项 是符合题目要求的 .
1. 下列图形,是轴对称图形,但不是中心对称图形的是(
)
A.
B.
C.
D.
【答案】 A 【解析】 【分析】 根据轴对称图形与中心对称图形的概念求解. 【详解】解: A. 是轴对称图形,不是中心对称图形,符合题意;
1
A.
2
1
B.
3
1
C.
4
【答案】 D
)
1
D.
5
【解析】
【分析】
江苏省徐州市部分初中2019-2020学年九年级上学期期末数学试题(解析版)
2019-2020学年度第一学期期末检测九年级数学试题一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形,是轴对称图形,但不是中心对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.2.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是()A. 12B.13C.14D.15【答案】D 【解析】【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21 105.【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.3.关于2,6,1,10,6这组数据,下列说法正确的是( )A. 这组数据的平均数是6B. 这组数据的中位数是1C. 这组数据的众数是6D. 这组数据的方差是10.2 【答案】C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6; 平均数为:()112661055⨯++++=;方差:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.4.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A. 在⊙O 的内部B. 在⊙O 的外部C. 在⊙O 上D. 在⊙O 上或⊙O 内部【答案】D【解析】【分析】先根据条件x2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x2 -2x+d=0有实根,∴根的判别式△=(-2)2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.5.如图,△ABC内接于⊙O,若∠A=α,则∠OBC等于()A. 180°﹣2αB. 2αC. 90°+αD. 90°﹣α【答案】D【解析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.6.将函数图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A. 向左平移1个单位B. 向右平移3个单位C. 向上平移3个单位D. 向下平移1个单位【答案】D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.7.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A. B. C.4D.【答案】C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,的∵△ABC 为正三角形,AO=1,CD AB ⊥,AD=BD ,AO=CO , ∴1DO 2=,3CD 2=,∴AD 2==,∴AB =∴1322ABC S =⨯=V . 故选:C .【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.8.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A. 一定相似B. 一定全等C. 不一定相似D. 无法判断 【答案】A【解析】【分析】根据已知条件可得出A DCB ∠∠=,ADG CDH ∠∠=,再结合三角形的内角和定理可得出AGD CHD ∠∠=,从而可判定两三角形一定相似.【详解】解:由已知条件可得,ADC EDF CDB C 90∠∠∠∠====︒,∵A ACD ACD DCH 90∠∠∠∠+=+=︒,∴A DCH ∠∠=,∵ADG EDC EDC CDH 90∠∠∠∠+=+=︒,∴ADG CDH ∠∠=,继而可得出AGD CHD ∠∠=,∴ADG ~CDH V V .故选:A .【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键.二、填空题(本大题有8小题,每小题4分,共32分)9.方程290x -=的解为________.【答案】3x =±【解析】【分析】这个式子先移项,变成x 2=9,从而把问题转化为求9的平方根.【详解】解:移项得x 2=9,解得x =±3.故答案为3x =±.【点睛】本题考查了解一元二次方程-直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.注意:(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.10.某一时刻,测得身高1.6m 的同学在阳光下的影长为2.8m ,同时测得教学楼在阳光下的影长为25.2m ,则教学楼的高为__________m .【答案】14.4【解析】【分析】 根据题意可知, 1.62.8=身高教学楼高影长教学楼影长,代入数据可得出答案.【详解】解:由题意得出:1.62.8=身高教学楼高影长教学楼影长,即,1.62.825.2=教学楼高解得,教学楼高=14.4.故答案为:14.4.【点睛】本题考查的知识点是相似三角形的应用以及平行投影,熟记同一时刻物高与影长成正比是解此题的关键.11.若32xy=,则x yy+的值为_____,【答案】52,【解析】分析】根据比例的合比性质变形得:325.22 x yy++==【详解】∵32 xy=,∴325.22 x yy++==故答案为5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.12.已知圆锥的侧面积为20πcm2,母线长为5cm,则圆锥底面半径为______cm.【答案】4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【【详解】解:由圆锥的母线长是5cm ,侧面积是20πcm 2, 根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm . 故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.13.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________.【答案】6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键. 14.点P 在线段AB 上,且BP AP AP AB =.设4AB cm =,则BP =__________cm .【答案】(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±∴16x =-264x =+>(舍去).故答案为:6-.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.15.如图,O e 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.【答案】34【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC ,即可由tan∠ADC=tan∠ABC=AC BC 求得所求的值了. 详解:∵AB 是O e 的直径,,,ACB=90°,又,AC=3,AB=5,4=, ,tan,ABC=34AC BC =, 又,,ADC=,ABC, ,tan,ADC=34. 故答案为34.点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.16.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.【答案】(32,2).【解析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.三、解答题(本大题共9小题,共84分)17.计算:(1)()2016032π-⎛⎫+︒-- ⎪⎝⎭; (2)解方程:2320x x -+=. 【答案】(1)6;(2)x 1=1,x 2=2 【解析】 【分析】(1)根据负整数指数幂,特殊角的三角函数值以及零次幂的相关知识求解即可; (2)用分解因式的方法求解即可.【详解】解:(1)原式=41+=4+3-1=6 (2)将原方程因式分解可得:(x-1)(x-2)=0, 即x-1=0或x-2=0 解得,x=1或x=2,所以方程的解为:11x =,22x =.【点睛】本题考查的知识点是实数的运算以及解一元二次方程,掌握负整数指数幂、零次幂、特殊角的三角函数值以及解一元二次方程的方法等知识点是解此题的关键.18.现有三张分别标有数字-1,0,3的卡片,它们除数字外完全相同,将卡片背面朝上后洗匀. (1)从中任意抽取一张卡片,抽到标有数字3的卡片的概率为 ; (2)从中任意抽取两张卡片,求两张卡片上的数字之和为负数的概率. 【答案】(1)13;(2)13. 【解析】 【分析】(1)利用概率公式求解即可;(2)利用画树状图得出全部可能的情况,再找出符合题意的情况,即可得出所求概率. 【详解】解:(1)()1P 33=, ∴抽到标有数字3的卡片的概率为13;(2)解:用树状图列出所有可能出现结果:共有6种等可能结果,其中2种符合题意.∴P(数字之和为负数)=13.【点睛】本题考查的知识点是用树状图法求事件的概率,根据题意找出全部可能的情况,再找出符合题意的情况是解此题的关键.19.某校为了解每天的用电情况,抽查了该校某月10天的用电量,统计如下(单位:度):(1)该校这10天用电量的众数是度,中位数是度;(2)估计该校这个月的用电量(用30天计算).【答案】(1)113;113;(2)3240度.【解析】【分析】(1)分别利用众数、中位数的定义求解即可;(2)根据平均数的计算方法计算出平均用电量,再乘以总用电天数即可得解.【详解】解:(1)113度出现了3此,出现的次数最多,故众数为113度;将数据按从小到大的顺序排列,共10个数据,位于第5,6的数均为113,故中位数为113度;(2)130(9093204339114240)3240 10⨯+++++=(度).答:估计该校该月的用电量为3240度.【点睛】本题考查的知识点是中位数、众数的概念定义以及算数平均线的计算方法,属于基础题目,易于理解掌握.20.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为A (6,4),B (4,0),C (2,0). (1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .【答案】(1)见解析;(2)-2 【解析】 【分析】(1)连接AO 并延长至1A ,使1AO 2AO =,同理作出点B ,C 的对应点,再顺次连接即可; (2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可. 【详解】(1)如图;(2)根据题意可得出()13,2A --,()12,0B -,()11,0C -, 设11A B 与x 轴的夹角为α,∴()111tan tan 180αtan α2A BC ∠=-=-=-.【点睛】本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键. 21.如图,在一块长8m 、宽6m 的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.【答案】花圃四周绿地的宽为1 m 【解析】 【分析】设花圃四周绿地的宽为x 米,根据矩形花圃的面积=矩形绿地面积的一半列方程求解即可. 【详解】解:设花圃四周绿地的宽为x m , 由题意,得:(6-2x )(8-2x )=12⨯6×8, 解方程得:x 1=1,x 2=6(舍), 答:花圃四周绿地的宽为1 m .【点睛】本题考查的知识点是一元二次方程的实际应用,根据题意找出题目中的等量关系式是解此题的关键.22.某超市销售一种书包,平均每天可销售100件,每件盈利30元.试营销阶段发现:该商品每件降价1元,超市平均每天可多售出10件.设每件商品降价x 元时,日盈利为w 元.据此规律,解决下列问题: (1)降价后每件商品盈利 元,超市日销售量增加 件(用含x 的代数式表示); (2)在上述条件不变的情况下,求每件商品降价多少元时,超市的日盈利最大?最大为多少元? 【答案】(1)(30-x );10x ;(2)每件商品降价10元时,商场日盈利最大,最大值是4000元. 【解析】 【分析】(1)降价后的盈利等于原来每件的盈利减去降低的钱数;件降价1元,超市平均每天可多售出10件,则降价x 元,超市平均每天可多售出10x 件;(2)等量关系为:每件商品的盈利×可卖出商品的件数=利润w ,化为一般式后,再配方可得出结论. 【详解】解:(1)降价后每件商品盈利(30-x)元;,超市日销售量增加10x 件; (2)设每件商品降价x 元时,利润为w 元根据题意得:w =(30-x )(100+10x )= -10x 2+200x +3000=-10(x -10)2+4000 ∵-10<0,∴w 有最大值,当x =10时,商场日盈利最大,最大值是4000元;答:每件商品降价10元时,商场日盈利最大,最大值是4000元.【点睛】本题考查的知识点是二次函数的实际应用,根据题意找出等量关系式列出利润w 关于x 的二次函数解析式是解题的关键.23.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.【答案】【解析】 【分析】过点A 作AD ⊥BC ,垂足为点D ,构造直角三角形,利用三角函数值分别求出AD 、BD 、CD 的值即可求三角形面积.【详解】解:过点A 作AD ⊥BC ,垂足为点D , 在Rt △ADB 中,∵sin ADABC AB∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BDABC AB∠=,∴cos 8BD AB ABC =⋅∠== 在Rt △ADC 中,∵45ACB ︒∠=, ∴45CAD ︒∠=, ∴AD =DC =4∴ 111()(448222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.24.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE 与BC 的位置关系,并说明理由; (2)若3tan 4BCD ∠=,求EF 的长. 【答案】(1)OE ∥BC .理由见解析;(2)125【解析】 【分析】(1)连接OC ,根据已知条件可推出E ACO ∠∠=,进一步得出AFO EFC 90ACB ∠∠∠==︒=结论得以证明;(2)根据(1)的结论可得出∠E =∠BCD ,对应的正切值相等,可得出CE 的值,进一步计算出OE 的值,在Rt △AFO 中,设OF =3x ,则AF =4x ,解出x 的值,继而得出OF 的值,从而可得出答案. 【详解】解:(1) OE ∥BC .理由如下: 连接OC ,∵CD 是⊙O 的切线, ∴OC ⊥CD , ∴∠OCE =90︒ , ∴∠OCA +∠ECF =90︒, ∵OC =OA , ∴∠OCA =∠CAB . 又∵∠CAB =∠E , ∴∠OCA =∠E , ∴∠E +∠ECF =90︒,∴∠EFC =180O -(∠E +∠ECF ) =90︒. ∴∠EFC =∠ACB=90︒ , ∴OE ∥BC .(2)由(1)知,OE ∥BC , ∴∠E =∠BCD .在Rt △OCE 中,∵AB =12, ∴OC =6,∵tan E =tan ∠BCD =OCCE , ∴468tan 3OC CE DCB ==⨯=∠. ∴OE 2=O C 2+CE 2=62+82, ∴OE =10又由(1)知∠EFC =90︒, ∴∠AFO =90︒.在Rt △AFO 中,∵tan A =tan E =34, ∴设OF =3x ,则AF =4x .∵OA 2=OF 2+AF 2,即62=(3x )2+(4x )2,解得:65x =∴185OF =,∴18321055EF OE OF =-=-=.【点睛】本题是一道关于圆的综合题目,涉及到的知识点有切线的性质,平行线的判定定理,三角形内角和定理,正切的定义,勾股定理等,熟练掌握以上知识点是解此题的关键.25.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒).①当t何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.【答案】(1)233384y x x =-++;(2)① 32t =;②1234531724,3,,,2617t t t t t =====【解析】 【分析】(1)根据点B 的坐标可得出点A ,C 的坐标,代入抛物线解析式即可求出b ,c 的值,求得抛物线的解析式;(2)①过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,推出△QF A ∽△CBA ,△CGP ∽△CBA ,用含t 的式子表示OF ,PG ,将三角形的面积用含t 的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可. 【详解】解:(1)由题意知:A (0,3),C (4,0), ∵抛物线经过A 、B 两点,∴3316408c b c =⎧⎪⎨-⨯++=⎪⎩,解得,343b c ⎧=⎪⎨⎪=⎩,∴抛物线的表达式为:233384y x x =-++. (2)① ∵四边形ABCD 是矩形, ∴∠B =90O , ∴AC 2=AB 2+BC 2=5;由2333384x x -++=,可得120,2x x ==,∴D (2,3). 过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G , ∵∠F AQ =∠BAC , ∠QF A =∠CBA , ∴△QF A ∽△CBA .∴AQ QF AC BC=, ∴5335AQ QF BC t t AC =⋅=⋅=. 同理:△CGP ∽△CBA ,∴PG CP AB AB =∴CP PG AB AB =⋅,∴45PG t =, 1154162(5)2(3)22352DPQ ABC QAD PQC PBD S S S S S t t t t ∆∆∆∆∆=---=-⨯⨯-⨯-⨯-⨯⨯-222229323323(3)3()3342322t t t t t =-+=-+-+=-+ 当32t =时,△DPQ 的面积最小.最小值为32.② 由图像可知点D 的坐标为(2,3),AC=5,直线AC 的解析式为:3y 34x =-+.三角形直角的位置不确定,需分情况讨论: 当DPG 90∠=︒时,根据勾股定理可得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理,解方程即可得解;当DGP 90∠=︒时,可知点G 运动到点B 的位置,点P 运动到C 的位置,所需时间为t=3; 当PDG 90∠=︒时,同理用勾股定理得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-=-++-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 整理求解可得t 的值.由此可得出t 的值为:132t =,23t =,3176t =,42417t =,5176t =.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.。
江苏省徐州市九年级上学期期末数学试卷 (解析版)
江苏省徐州市九年级上学期期末数学试卷 (解析版)一、选择题1.如图,已知AB 为O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=( )A .72︒B .56︒C .62︒D .52︒2.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-33.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .44.已知OA ,OB 是圆O 的半径,点C ,D 在圆O 上,且//OA BC ,若26ADC ∠=︒,则B 的度数为( )A .30B .42︒C .46︒D .52︒5.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74 B .44 C .42 D .40 6.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1 B .m≤1 C .m >1 D .m <1 7.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( ) A .-2B .2C .-1D .18.一元二次方程x 2﹣3x =0的两个根是( )A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣39.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是( )A .13B .14C .15D .1610.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-11.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm12.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )A .20°B .40°C .70°D .80°13.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个14.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( )A.-2 B.2 C.-3 D.3 15.下列方程中,是一元二次方程的是()A.2x+y=1 B.x2+3xy=6 C.x+1x=4 D.x2=3x﹣2二、填空题16.如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB=______m.17.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.18.已知小明身高1.8m,在某一时刻测得他站立在阳光下的影长为0.6m.若当他把手臂竖直举起时,测得影长为0.78m,则小明举起的手臂超出头顶______m.19.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是2200.5s t t=-,飞机着陆后滑行______m才能停下来.20.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.21.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.22.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.23.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.24.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.25.如图,△ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.26.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 27.抛物线()2322y x =+-的顶点坐标是______.28.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.29.如图,1ABB △,12AB B ,△A 2B 2B 3 是全等的等边三角形,点 B ,B 1,B 2,B 3 在同一条 直线上,连接 A 2B 交 AB 1 于点 P ,交 A 1B 1 于点 Q ,则 PB 1∶QB 1 的值为___.30.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题31.已知二次函数216y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.32.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值. 33.解下列一元二次方程. (1)x 2+x -6=0; (2)2(x -1)2-8=0.34.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F 是DC 的中点. (2)求证:AE=4CE. (3)求图中阴影部分的面积. 35.解方程: (1)x 2-3x+1=0;(2)x (x+3)-(2x+6)=0.四、压轴题36.阅读理解:如图,在纸面上画出了直线l 与⊙O ,直线l 与⊙O 相离,P 为直线l 上一动点,过点P 作⊙O 的切线PM ,切点为M ,连接OM 、OP ,当△OPM 的面积最小时,称△OPM 为直线l 与⊙O 的“最美三角形”.解决问题:(1)如图1,⊙A 的半径为1,A(0,2) ,分别过x 轴上B 、O 、C 三点作⊙A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与⊙A 的“最美三角形”的是 .(填序号)①ABM ;②AOP ;③ACQ(2)如图2,⊙A 的半径为1,A(0,2),直线y=kx (k≠0)与⊙A 的“最美三角形”的面积为12,求k 的值. (3)点B 在x 轴上,以B 为圆心,3为半径画⊙B ,若直线y=3x+3与⊙B 的“最美三角形”的面积小于32,请直接写出圆心B 的横坐标B x 的取值范围.37.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.38.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.39.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB 及线段AB 外一点C ,我们称∠ACB 为点C 关于线段AB 的视角. 如图2,点Q 在直线l 上运动,当点Q 关于线段AB 的视角最大时,则称这个最大的“视角”为直线l 关于线段AB 的“视角”.(1)如图3,在平面直角坐标系中,A (0,4),B (2,2),点C 坐标为(﹣2,2),点C 关于线段AB 的视角为 度,x 轴关于线段AB 的视角为 度;(2)如图4,点M 是在x 轴上,坐标为(2,0),过点M 作线段EF ⊥x 轴,且EM =MF =1,当直线y =kx (k ≠0)关于线段EF 的视角为90°,求k 的值;(3)如图5,在平面直角坐标系中,P 3,2),Q 3,1),直线y =ax +b (a >0)与x 轴的夹角为60°,且关于线段PQ 的视角为45°,求这条直线的解析式. 40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F .(1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】连接AD,根据同弧所对的圆周角相等,求∠BAD 的度数,再根据直径所对的圆周角是90°,利用内角和求解. 【详解】解:连接AD,则∠BAD=∠BCD=28°, ∵AB 是直径, ∴∠ADB=90°,∴∠ABD=90°-∠BAD=90°-28°=62°.故选:C. 【点睛】本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.2.D解析:D 【解析】 【分析】先移项,然后利用因式分解法求解. 【详解】 解:(1)x 2=-3x , x 2+3x=0, x (x+3)=0, 解得:x 1=0,x 2=-3. 故选:D . 【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.3.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.4.D解析:D 【解析】 【分析】连接OC ,根据圆周角定理求出∠AOC ,再根据平行得到∠OCB ,利用圆内等腰三角形即可求解. 【详解】 连接CO , ∵26ADC ∠=︒∴∠AOC=252ADC ∠=︒ ∵//OA BC ∴∠OCB=∠AOC=52︒ ∵OC=BO , ∴B =∠OCB=52︒故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.5.C解析:C 【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C. 考点:众数.6.D解析:D 【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2240m =-->, 解得:m <1. 故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.7.D解析:D 【解析】 【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可. 【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.8.B解析:B【解析】【分析】利用因式分解法解一元二次方程即可.【详解】x2﹣3x=0,x(x﹣3)=0,x=0或x﹣3=0,x1=0,x2=3.故选:B.【点睛】本题考查了解一元二次方程−因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).9.A解析:A【解析】【分析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有6个球,红球有2个,所以,取出红球的概率为2163 P==,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.10.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=3BD=3,∴△ABC的面积为12BC•AD=1232⨯⨯=3,S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3=2π﹣23,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.11.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.12.C解析:C【解析】【分析】连接OD,根据∠AOD=2∠ACD,求出∠AOD,利用等腰三角形的性质即可解决问题.【详解】连接OD.∵∠ACD=20°,∴∠AOD=2∠ACD=40°.∵OA=OD,∴∠BAD=∠ADO=12(180°﹣40°)=70°.故选C.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.13.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得BC=512AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 14.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.15.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.二、填空题16.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.17.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.18.54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,,解得x=0.54即举起的手臂超出头顶0.54m解析:54【解析】【分析】在同一时刻,物体的高度和影长成比例,根据此规律列方程求解.【详解】解:设小明举起的手臂超出头顶xm,根据题意得,1.8 1.80.60.78x , 解得x=0.54即举起的手臂超出头顶0.54m.故答案为:0.54.【点睛】本题考查同一时刻物体的高度和影长成比例的投影规律,根据规律列比例式求解是解答此题的关键.,19.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.20.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x -5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x 1,x 2是关于 x 的方程x 2+3x -5=0的两个根,根据根与系数的关系,得,x 1+x 2=-3,x 1x 2=-5,则 x 1+x 2-x 1x 2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x 1+x 2=-3,x 1x 2=-5是解题的关键.21.y =-5(x+2)2-3【解析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.22.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB=6,∠AOB=90°,且OA=OB,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB=,∠AOB=90°,且OA=OB,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.23.40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC 中,OC=OQ ,∴∠OQC=∠OCQ ,在△OPQ 中,QP=QO ,∴∠QOP=∠QPO ,又∵∠QPO=∠OCQ+∠AOC ,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°24.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红解析:58 【解析】 【分析】 根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55538=+ 故答案为:58. 【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 25.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.26.4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm ,侧面积是20πcm 2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm ,侧面积是20πcm 2, 根据圆锥的侧面展开扇形的弧长为:2405S l r π===8π, 再根据锥的侧面展开扇形的弧长等于圆锥的底面周长, 可得822l r πππ===4cm . 故答案为:4.【点睛】 本题考查圆锥的计算,掌握公式正确计算是解题关键.27.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .28.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC =. 【详解】解:这个条件为:∠B=∠P∵∠PAB =∠QAC ,∴∠PAQ=∠BAC∵∠B=∠P ,∴△APQ ∽△ABC ,故答案为:∠B=∠P 或∠C=∠Q 或AP AQ AB AC=. 【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键. 29.【解析】【分析】根据题意说明PB1∥A2 B3,A1B1∥A2B2,从而说明△BB1P∽△BA2 B3,△BB1Q∽△BB2A2,再得到PB1 和A2B3的关系以及QB1和A2B2的关系,根据 解析:23【解析】【分析】根据题意说明PB 1∥A 2 B 3,A 1B 1∥A 2B 2,从而说明△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2,再得到PB 1 和A 2B 3的关系以及QB 1和A 2B 2的关系,根据A 2B 3=A 2B 2,得到PB 1和QB 1的比值.【详解】解:∵△ABB 1,△A 1B 1B 2,△A 2B 2B 3是全等的等边三角形,∴∠BB 1P=∠B 3,∠A 1B 1 B 2=∠A 2B 2B 3,∴PB 1∥A 2B 3,A 1B 1∥A 2B 2,∴△BB 1P ∽△BA 2 B 3,△BB 1Q ∽△BB 2A 2, ∴112331==3PB BB A B BB ,112221==2QB BB A B BB ,∴1231=3PB A B ,1221=2QB A B , ∵2322=A B A B , ∴PB 1∶QB 1=13A 2B 3∶12A 2 B 2=2:3. 故答案为:23. 【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,平行线的判定,正确的识别图形是解题的关键. 30.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题31.x 1=2,x 2=8.【解析】【分析】把已知两点坐标代入二次函数解析式求出a 与b 的值,代入方程计算即可求出解.【详解】解:将点(-2,40)和点(6,-8)代入二次函数得,404216836616a b a b =-+⎧⎨-=++⎩解得:110a b =⎧⎨=-⎩∴求得二次函数关系式为21016y x x =-+,当y=0时,210160x x -+=,解得x 1=2,x 2=8.【点睛】此题考查了抛物线与x 轴的交点,抛物线与x 轴的交点与根的判别式有关:根的判别式大于0,有两个交点;根的判别式大于0,没有交点;根的判别式等于0,有一个交点.32.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得, 2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500,当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000,∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径.33.(1)123;2x x =-=;(2)123;1x x ==-【解析】【分析】(1)利用因式分解法解一元二次方方程;(2)用直接开平方法解一元二次方程.【详解】解:(1)x 2+x -6=0;(3)(2)0x x +-=∴123;2x x =-=(2)2(x -1)2-8=0.22(1)8x -=2(1)4x -=12x -=±∴123;1x x ==-【点睛】本题考查直接开平方法和因式分解法解一元二次方程,掌握解题技巧正确计算是本题的解题关键.34.(1)见解析;(2)见解析;(3【解析】【分析】(1)易求DF 长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF ,EF=2CE 即可得;(3)先证明△OFG 为等边三角形,△OPG 为等边三角形,即可确定扇形圆心角∠POG 和∠GOF 的大小均为60°,所以两扇形面积相等, 通过割补法得出最后阴影面积只与矩形OPDH 和△OGF 有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=∴DF=3,∴CF=DF=3,∴F 是CD 的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP ,OG,作OH ⊥FG,∵∠AFD=60°,OF=OG,∴△OFG 为等边三角形,同理△OPG 为等边三角形,∴∠POG=∠FOG=60°,OH=33OG ,∴S 扇形OPG =S 扇形OGF , ∴S 阴影=(S 矩形OPDH -S 扇形OPG -S △OGH )+(S 扇形OGF -S △OFG )=S 矩形OPDH -32S △OFG =3132323222 , 即图中阴影部分的面积3.【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.35.(1)x 135+x 235-2)x 1=-3,x 2=2. 【解析】试题分析:(1)直接利用公式法求出x 的值即可;(2)先把原方程进行因式分解,再求出x 的值即可.试题解析:(1)∵一元二次方程x 2-3x+1=0中,a=1,b=-3,c=1,∴△=b 2-4ac=(-3)2-4×1×1=5.∴x=24(3)5352212b b ac a -±---±±==⨯. 即x 135+x 235- (2)∵因式分解得 (x+3)(x-2)=0,∴x+3=0或x-2=0,解得 x 1=-3,x 2=2.考点:1.解一元二次方程-因式分解法;2.解一元二次方程-公式法.四、压轴题36.(1)②;(2)±1;(3)23<B x <33或733-<B x <23-【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【详解】(1)如下图所示:∵PM是⊙O的切线,∴∠PMO=90°,当⊙O的半径OM是定值时,22PM OP OM=-,∵1=2PMOS PM OM••,∴要使PMO△面积最小,则PM最小,即OP最小即可,当OP⊥l时,OP最小,符合最美三角形定义.故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.故选:②.(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.则由已知可得:111=1222AEFS AE EF EF••=⨯⨯=,故EF=1.在△AEF中,根据勾股定理得:22AF AE==。
2019-2020学年九年级数学上学期期末试题(含解析) 苏科版
2019-2020学年九年级数学上学期期末试题(含解析) 苏科版一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选項的字母代号填涂在答题卡相应位置上)1.二次函数y=﹣(x﹣2)2﹣1的图象的顶点坐标是()A.(2,﹣1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,1)2.两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数 B.中位数C.方差 D.以上都不对3.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:44.一元二次方程x2+x﹣3=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根5.如图,点A、B、C是⊙O上的三点,若∠BOC=80°,则∠A的度数是()A.30° B.40° C.50° D.100°6.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A. B.2 C. D.7.已知二次函数y=x2+bx+c的图象如图所示,若y>0,则x的取值范围是()A.﹣1<x<3 B.﹣1<x<4 C.x<﹣1或x>3 D.x<﹣1或x>48.如图,在平面直角坐标系xOy中,直线AB过点A(﹣3,0),B(0,3),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A. B.2 C.3 D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.二次函数y=x2+bx+1的图象的对称轴是过点(1,0)且平行于y轴的一条直线,则b= .10.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为.11.把抛物线y=(x﹣1)2+2先向下平移2个单位,再向左平移1个单位后得到的抛物线是.12.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.13.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=28°,则∠C的度数是.14.如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D,AC=6,则OD的长为.15.若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2016﹣a﹣b的值是.16.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果=,那么= .17.如图,平行四边形ABCD中,E、F分别为AB、AD上的点,且BE=2AE,AF=3DF,连结EF、AC,交于点G,则的值为.18.长为1,宽为a的矩形纸片(0.5<a<l),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作):再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作),如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a的值为.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答.解答时应写出文字说明、推理过程或演算步骤)19.(1)计算:﹣23+﹣|2﹣3|(2)解方程:x2﹣4x﹣2=0.20.在慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图,(1)这50名同学捐款的众数为元,中位数为元;(2)求这50名同学捐款的平均数;(3)该校共有800名学生参与捐款,请估计该校学生的捐款总数.21.一个不透明袋子中有1个红球和n个白球,这些球除颜色外无其他差别.(1)当n=l时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同?(填“相同”或“不相同”)(2)从袋中随机摸出1个球,记录其颜色,然后放回,大量重复该实验,发现摸到红球的频率稳定于0.25,则n的值是;(3)当n=2时,请用列表或画树状图的方法求两次摸出的球颜色不同的概率(摸出一个球,不放回,然后再摸一个球).22.如图,在由边长为1的小正方形组成的网格图中有△ABC,建立平面直角坐标系后,点O的坐标是(0,0).(1)以O为位似中心,作△A′B′C′∽△ABC,相似比为1:2,且保证△A′B′C′在第三象限;(2)点B′的坐标为(,);(3)若线段BC上有一点D,它的坐标为(a,b),那么它的对应点D′的坐标为(,).23.已知关于x的一元二次方程mx2﹣(m+2)x+2=0(1)若方程的一个根为3,求m的值及另一个根;(2)若该方程根的判别式的值等于1,求m的值.24.2013年,盐城市某楼盘以每平方米6000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米4860元.(1)求平均每年下调的百分率;(2)假设的均价仍然下调相同的百分率,王刚准备在购买一套100平方米的住房,他持有现金25万元,可以在银行贷款20万元,王刚的愿望能否实现?(房价每平方米按照均价计算,不考虑其他因素)25.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.26.盐阜人民商场经营某种品牌的服装,购进时的单价是40元,根据市场调查:在一段时间内,销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装.(1)设该种品牌服装的销售单价为x元(x>50),销售量为y件,请写出y与x之间的函数关系式;(2)若商场获得了6000元销售利润,该服装销售单价x应定为多少元?(3)在(1)问条件下,若该商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少?27.如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)28.如图,在平面直角坐标系中,抛物线y=ax2﹣3ax﹣4a的图象经过点C(0,2),交x轴于点A、B(A点在B点左侧),顶点为D.(1)求抛物线的解析式及点A、B的坐标;(2)将△ABC沿直线BC对折,点A的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P,使∠BPC=∠BAC?若存在,求出点P的坐标;若不存在,请说明理由.江苏省盐城市盐都区2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选項的字母代号填涂在答题卡相应位置上)1.二次函数y=﹣(x﹣2)2﹣1的图象的顶点坐标是()A.(2,﹣1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,1)【考点】二次函数的性质.【分析】根据二次函数的顶点式解析式写出即可.【解答】解:∵二次函数y=﹣(x﹣2)2﹣1为顶点式,∴图象的顶点坐标是(2,﹣1).故选:A.【点评】本题主要考查了二次函数的性质,掌握y=a(x﹣h)2+k的顶点坐标为(h,k)是解决问题的关键.2.两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数 B.中位数C.方差 D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.【点评】本题考查方差的意义以及对其他统计量的意义的理解.它是反映一组数据波动大小,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.3.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为()A.2:3 B.3:2 C.4:9 D.9:4【考点】相似三角形的性质.【分析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【解答】解:∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:9.故选C.【点评】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.4.一元二次方程x2+x﹣3=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【专题】计算题.【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【解答】解:∵△=12﹣4×(﹣3)=13>0,∴方程有两个不相等的两个实数根.故选A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.如图,点A、B、C是⊙O上的三点,若∠BOC=80°,则∠A的度数是()A.30° B.40° C.50° D.100°【考点】圆周角定理.【分析】直接根据圆周角定理进行解答即可.【解答】解:∵所对的圆心角是∠BOC,圆周角是∠BAC,又∵∠BOC=80°,∴∠A=∠BOC=×80°=40°.故选:B.【点评】本题考查了圆周角定理;熟记同弧所对的圆周角等于它所对圆心角的一半是解题的关键.6.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A. B.2 C. D.【考点】平行线分线段成比例.【分析】根据AH=2,HB=1求出AB的长,根据平行线分线段成比例定理得到=,计算得到答案.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.【点评】本题考查平行线分线段成比例定理,掌握定理的内容、找准对应关系列出比例式是解题的关键.7.已知二次函数y=x2+bx+c的图象如图所示,若y>0,则x的取值范围是()A.﹣1<x<3 B.﹣1<x<4 C.x<﹣1或x>3 D.x<﹣1或x>4【考点】二次函数与不等式(组).【分析】求y>0时x的取值范围,就是二次函数的图象在x轴下方时对应的x的范围.【解答】解:根据图象可得x的范围是x<﹣1或x>3.故选C.【点评】本题考查了二次函数与不等式的关系,理解求y>0时x的取值范围,就是二次函数的图象在x轴下方时对应的x的范围是关键.8.如图,在平面直角坐标系xOy中,直线AB过点A(﹣3,0),B(0,3),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A. B.2 C.3 D.【考点】切线的性质;坐标与图形性质.【分析】连接OP.根据勾股定理知PQ2=OP2﹣OQ2,当OP⊥AB时,线段OP最短,即线段PQ最短.【解答】解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∵当PO⊥AB时,线段PQ最短;又∵A(﹣3,0),B(0,3),∴OA=OB=3,∴AB==6,∴OP=AB=3,∴PQ==2.故选B.【点评】本题考查了切线的判定与性质、坐标与图形性质以及矩形的性质等知识点.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角来解决有关问题.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.二次函数y=x2+bx+1的图象的对称轴是过点(1,0)且平行于y轴的一条直线,则b= ﹣2 .【考点】二次函数的性质.【分析】首先根据题意确定对称轴,然后根据对称轴方程﹣=1,直接求得b值即可.【解答】解:∵二次函数y=x2+bx+1的图象的对称轴是过点(1,0)且平行于y轴的一条直线,∴﹣=1,∵a=1,∴b=﹣2.故答案为﹣2.【点评】本题考查了二次函数的性质,根据题意确定二次函数的对称轴及熟记二次函数的对称轴方程是解答本题的关键.10.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共8个数,大于6的有2个,∴P(大于6)==,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.把抛物线y=(x﹣1)2+2先向下平移2个单位,再向左平移1个单位后得到的抛物线是y=x2.【考点】二次函数图象与几何变换.【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标间,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵抛物线y=(x﹣1)2+2的顶点坐标为(1,2),∴向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(0,0),∴所得抛物线解析式是y=x2.故答案为:y=x2.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定抛物线解析式的变化更简便.12.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为3π.【考点】弧长的计算.【分析】根据弧长公式L=求解.【解答】解:L===3π.故答案为:3π.【点评】本题考查了弧长的计算,解答本题的关键是掌握弧长公式L=.13.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=28°,则∠C的度数是34°.【考点】切线的性质.【分析】首先利用等腰三角形的性质以及三角形外角的性质求得∠COB的度数,然后根据切线的性质可得△OBC是直角三角形,然后根据三角形的内角和定理求解即可.【解答】解:∵OA=OB,∴∠A=∠ABO=28°,∴∠COB=∠A+∠ABO=56°,又∵BC是切线,∴OB⊥BC,则∠OBC=90°,∴∠C=90°﹣∠COB=90°﹣56°=34°.故答案为34°.【点评】本题考查了切线的性质,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.14.如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D,AC=6,则OD的长为 3 .【考点】三角形中位线定理;垂径定理;圆周角定理.【分析】根据直径所对的圆周角是直角可得∠C=90°,然后求出OD∥AC,从而判断出OD是△ABC的中位线,再根据【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥BC于点D,∴OD∥AC,又∵AO=BO,∴OD是△ABC的中位线,∴OD=AC=×6=3.故答案为:3.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,垂径定理和圆周角定理,熟记各定理并判断出OD是三角形的中位线是解题的关键.15.若关于x的一元二次方程ax2+bx+5=0(a≠0)的一个解是x=1,则2016﹣a﹣b的值是2021 .【考点】一元二次方程的解.【专题】计算题.【分析】先根据一元二次方程的解的定义把x=1代入ax2+bx+5=0得a+b=﹣5,再变形2016﹣a﹣b得到2016﹣(a+b),然后利用整体代入的方法计算.【解答】解:把x=1代入ax2+bx+5=0得a+b+5=0,所以a+b=﹣5,所以2016﹣a﹣b=2016﹣(a+b)=2016﹣(﹣5)=2021.故答案为2021.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.16.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果=,那么= .【考点】相似三角形的判定与性质.【分析】由已知先证△ABC∽△ADB,得出==,再根据=,求出AB,最后根据=,即可求出答案.【解答】解:∵∠A=∠A,∠ABD=∠C,∴△ABC∽△ADB,∴==,∵=,设AD=1,则CD=3,AC=4,∴=,∴AB=2,∴===2,∴=.故答案为:.【点评】本题考查了相似三角形的判定和性质,识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,关键是求出AB.17.如图,平行四边形ABCD中,E、F分别为AB、AD上的点,且BE=2AE,AF=3DF,连结EF、AC,交于点G,则的值为.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】延长FE,CB交于H,根据已知条件得到=,=,于是得到=,根据平行四边形的性质得到AD=BC,AD∥BC,推出△AEF∽△HBE,由相似三角形的性质得到=,由于△AFG∽△CHG,根据相似三角形的性质即可得到结论.【解答】解:延长FE,CB交于H,∵BE=2AE,AF=3DF,∴=,=,∴=,在平行四边形ABCD中,∵AD=BC,AD∥BC,∴△AEF∽△HBE,∴=,∵AD∥CH,∴△AFG∽△CHG,∴=.故答案为:.【点评】本题考查了相似三角形的判定和性质,平行四边形的性质,熟练掌握相似三角形的判定和性质是解题的关键.18.长为1,宽为a的矩形纸片(0.5<a<l),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作):再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作),如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a的值为或.【考点】翻折变换(折叠问题).【分析】根据所给的图形可以看出每一次操作时所得正方形的边长都等于原矩形的宽,第一次操作后剩下的矩形的长为a,宽为1﹣a,同理得出第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边的长分别是1﹣a和2a﹣1,第三次操作分两种情况进行讨论:①当1﹣a>2a﹣1时,第三次操作后,剩下的长方形两边长分别是(1﹣a)﹣(2a﹣1)和2a﹣1;②当1﹣a<2a﹣1时,第三次操作后,剩下的长方形两边长分别是(2a﹣1)﹣(1﹣a)和1﹣a,并且剩下的长方形恰好是正方形,即可求出a的值.【解答】解:当n=3时,即第三次操作,∵长为1,宽为a的长方形纸片(<a<1),∴第一次操作后剩下的矩形的长为a,宽为1﹣a,同理,第二次操作时正方形的边长为1﹣a,第二次操作以后剩下的矩形的两边分别为1﹣a,2a﹣1,第三次操作分两种情况进行讨论:①当1﹣a>2a﹣1时,由题意得:(1﹣a)﹣(2a﹣1)=2a﹣1,解得:a=,当a=时,1﹣a>2a﹣1,∴a=是所求的一个值;②当1﹣a<2a﹣1时,由题意得:(2a﹣1)﹣(1﹣a)=1﹣a,解得:a=,当a=时,1﹣a<2a﹣1,∴a=是所求的一个值;故答案为:或.【点评】本题考查了折叠问题、矩形的性质、正方形的性质、一元一次方程的应用等知识;解题的关键是分别求出每次操作后剩下的矩形的两边的长度.三、解答题(本大题共有10小题,共96分,请在答题卡指定区域内作答.解答时应写出文字说明、推理过程或演算步骤)19.(1)计算:﹣23+﹣|2﹣3|(2)解方程:x2﹣4x﹣2=0.【考点】实数的运算;解一元二次方程-配方法.【分析】(1)先进行乘方、二次根式的化简、绝对值的化简等运算,然后合并;(2)利用配方法求解.【解答】解:(1)原式=﹣8+3+2﹣3=﹣6;(2)整理得:(x﹣2)2=6,开方得:x﹣2=±,解得:x1=2+,x2=2﹣.【点评】本题考查了实数的运算以及利用配方法求解一元二次方程,掌握各知识点的运算法则是解答本题的关键.20.在慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图,(1)这50名同学捐款的众数为15 元,中位数为15 元;(2)求这50名同学捐款的平均数;(3)该校共有800名学生参与捐款,请估计该校学生的捐款总数.【考点】条形统计图;用样本估计总体;加权平均数;中位数;众数.【分析】(1)根据众数的定义即出现次数最多的数据进而得出即可,再利用中位数的定义得出即可;(2)利用条形统计图得出各组频数,再根据加权平均数的公式计算即可;(3)利用样本估计总体的思想,用总数乘以捐款平均数即可得到捐款总数.【解答】解:(1)数据15元出现了20次,出现次数最多,所以众数是15元;数据总数为50,所以中位数是第25、26位数的平均数,即(15+15)÷2=15(元).故答案为15,15;(2)50名同学捐款的平均数=(5×8+10×14+15×20+20×6+25×2)÷50=13(元);(3)估计这个中学的捐款总数=800×13=10400(元).【点评】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.21.一个不透明袋子中有1个红球和n个白球,这些球除颜色外无其他差别.(1)当n=l时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同?相同(填“相同”或“不相同”)(2)从袋中随机摸出1个球,记录其颜色,然后放回,大量重复该实验,发现摸到红球的频率稳定于0.25,则n的值是 3 ;(3)当n=2时,请用列表或画树状图的方法求两次摸出的球颜色不同的概率(摸出一个球,不放回,然后再摸一个球).【考点】列表法与树状图法;利用频率估计概率.【专题】计算题.【分析】(1)n=1,袋子中有1个红球和1个白球,则从袋中随机摸出1个球,摸到红球与摸到白球的概率都为;(2)利用频率估计概率得到摸到红球的概率为0.25,则根据概率公式得到=0.25,然后解方程即可;(3)当n=2时,即不透明袋子中有1个红球和2个白球,画树状图展示所有6种等可能的结果数,找出两次摸出的球颜色不同的结果数,然后根据概率公式求解.【解答】解:(1)当n=l时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性相同;(2)根据题意,估计摸到红球的概率为0.25,所以=0.25,解得n=3;故答案为:相同,3;(3)当n=2时,即不透明袋子中有1个红球和2个白球,画树状图为:共有6种等可能的结果数,其中两次摸出的球颜色不同的结果数为4,所以两次摸出的球颜色不同的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了利用频率估计概率.22.如图,在由边长为1的小正方形组成的网格图中有△ABC,建立平面直角坐标系后,点O的坐标是(0,0).(1)以O为位似中心,作△A′B′C′∽△ABC,相似比为1:2,且保证△A′B′C′在第三象限;(2)点B′的坐标为(﹣2 ,﹣1 );(3)若线段BC上有一点D,它的坐标为(a,b),那么它的对应点D′的坐标为(﹣,﹣).【考点】作图-位似变换.【分析】(1)利用位似图形的性质进而得出△A′B′C′各顶点的位置,进而得出答案;(2)利用所画图形,得出点B′的坐标;(3)利用位似图形的性质得出点的坐标变化规律即可.【解答】解:(1)如图所示:△A′B′C′即为所求;( 2)点B′的坐标为:(﹣2,﹣1);故答案为:﹣2,﹣1.(3)若线段BC上有一点D,它的坐标为(a,b),那么它的对应点D′的坐标为:(﹣,﹣).故答案为:﹣,﹣.【点评】此题主要考查了位似图形画法,得出对应点位置是解题关键.23.已知关于x的一元二次方程mx2﹣(m+2)x+2=0(1)若方程的一个根为3,求m的值及另一个根;(2)若该方程根的判别式的值等于1,求m的值.【考点】根的判别式;一元二次方程的解.【分析】(1)根据一元二次方程的解的定义,将x=3代入一元二次方程mx2﹣(m+2)x+2=0,求得m 值,然后将m值代入原方程,利用根与系数的关系求另一根;(2)只要让根的判别式△=b2﹣4ac=1,求得m的值即可.【解答】解:(1)设方程的另一根是x2.∵一元二次方程mx2﹣(m+2)x+2=0的一个根为3,∴x=3是原方程的解,∴9m﹣(m+2)×3+2=0,解得m=;又由韦达定理,得3×x2=,∴x2=1,即原方程的另一根是1;(2)∵△=(m+2)2﹣4×m×2=1∴m=1,m=3.【点评】本题考查了一元二次方程的解、根与系数的关系.另外,本题也可以设方程的另一根是x2.然后利用根与系数的关系来求另一个根及m的值.24.2013年,盐城市某楼盘以每平方米6000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米4860元.(1)求平均每年下调的百分率;(2)假设的均价仍然下调相同的百分率,王刚准备在购买一套100平方米的住房,他持有现金25万元,可以在银行贷款20万元,王刚的愿望能否实现?(房价每平方米按照均价计算,不考虑其他因素)【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设平均每年下调的百分率为x,根据题意得到6000(1﹣x)2=4860,然后可求得下调的百分比;(2)计算出下调后每平方米的价格,然后求得住房的总价,然后与45元进行比较可得到答案.【解答】解:(1)设平均每年下调的百分率为x,依题意得:6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9=190%(不合题意,应舍去).答:平均每年下调的百分率为10%.(2)王刚的愿望能够实现.理由如下:购买的住房费用:4860×(1﹣10%)×100=437400(元)现金及贷款为:20+25=45(万元).∵45万元>437400元,∴王刚的愿望能够实现.【点评】本题主要考查的是一元二次方程的应用,根据2013年和2015年每平方米的价格列出方程是解题的关键.25.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上一点O为圆心,OB为半径作⊙O,交AC于点E,交AB于点D,且∠BEC=∠BDE.(1)求证:AC是⊙O的切线;(2)连接OC交BE于点F,若,求的值.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接OE,证得OE⊥AC即可确定AC是切线;(2)根据OE∥BC,分别得到△AOE∽△ACB和△OEF∽△CBF,利用相似三角形对应边的比相等找到中间比即可求解.【解答】解:(1)证明:连接OE,∵OB=OE,∴∠OBE=∠OEB,∵∠ACB=90°,∴∠CBE+∠BEC=90°,∵BD为⊙O的直径,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠CBE=∠DBE,∴∠CBE=∠OEB,∴OE∥BC,∴∠OEA=∠ACB=90°,即OE⊥AC,∴AC为⊙O的切线;(2)∵OE∥BC,∴△AOE∽△ABC,∴,∵,∴,∴,∵OE∥BC,∴△OEF∽△CBF,∴.【点评】本题考查了切线的性质及判断,在解决切线问题时,常常连接圆心和切点,证明垂直或根据切线得到垂直.26.盐阜人民商场经营某种品牌的服装,购进时的单价是40元,根据市场调查:在一段时间内,销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装.(1)设该种品牌服装的销售单价为x元(x>50),销售量为y件,请写出y与x之间的函数关系式;(2)若商场获得了6000元销售利润,该服装销售单价x应定为多少元?(3)在(1)问条件下,若该商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少?【考点】二次函数的应用.【分析】(1)直接利用销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装得出y与x值间的关系;(2)利用销量×每件利润=6000,进而求出答案;(3)利用销量×每件利润=总利润,再利用该商场要完成不少于350件的销售任务得出x的取值范围,进而得出二次函数最值.【解答】解:(1)由题意可得:y=400﹣10(x﹣50)=900﹣10x;(2)由题意可得:(900﹣10x)(x﹣40)=6000,整理得:﹣10x2+1300x﹣3600=6000,解得:x1=60,x2=70,答:服装销售单价x应定为60元或70元时,商场可获得6000元销售利润;(3)设利润为W,则。
江苏省徐州市九年级上学期期末数学试卷 (解析版)
江苏省徐州市九年级上学期期末数学试卷(解析版)一、选择题1.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°2.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(14,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.14-≤b≤1 B.54-≤b≤1 C.94-≤b≤12D.94-≤b≤13.若25xy=,则x yy+的值为()A.25B.72C.57D.754.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐5.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确...的是( )A.12DE BC=B.AD AEAB AC=C.△ADE∽△ABCD .:1:2ADEABCSS=6.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+D .()2241y x =++7.下列方程是一元二次方程的是( ) A .2321x x =+ B .3230x x --C .221x y -=D .20x y +=8.sin60°的值是( ) A .B .C .D .9.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°10.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D 211.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6 B .7 C .8 D .912.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +13.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( ) A .12×108B .1.2×108C .1.2×109D .0.12×10914.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 15.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断二、填空题16.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.17.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.18.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.19.某一时刻身高160cm 的小王在太阳光下的影长为80cm ,此时他身旁的旗杆影长10m ,则旗杆高为______.20.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正切值为_____.21.如图,由边长为1的小正方形组成的网格中,点,,,A B C D为格点(即小正方形的顶点),AB与CD相交于点O,则AO的长为_________.22.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是.23.已知 x1、x2是关于 x 的方程 x2+4x-5=0的两个根,则x1+ x2=_____.24.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接CP,以 CP 为边,在 PC 的右侧作等边△CPQ,连接 AQ 交 BD 延长线于 E,当△CPQ 面积最小时,QE=____________.25.已知3a=4b≠0,那么ab=_____.26.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.27.如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.28.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图像上部分点的横坐标x和纵坐标y的对应值如下表x … -1 0 1 2 3 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.29.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。
江苏省徐州市邳州市九年级上学期期末模拟数学试题(1)
江苏省徐州市邳州市九年级上学期期末模拟数学试题(1)一、选择题1.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ) A .B .2C .D .2.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .103.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm4.一元二次方程x 2-x =0的根是( ) A .x =1B .x =0C .x 1=0,x 2=1D .x 1=0,x 2=-15.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+D .()2241y x =++6.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .27.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程2(1)(1)0a x b x c -+-+=的解为( )A .120,2x x ==B .122,4x x =-=C .120,4x x ==D .122,2x x =-=8.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .103π D .π9.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130° 10.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定11.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm12.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +13.二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表: x…134…y…242﹣2…则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=﹣1时y>0 D.方程ax2+bx+c=0的负根在0与﹣1之间14.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50°B.60°C.65°D.75°15.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)二、填空题16.如图,边长为2的正方形ABCD,以AB为直径作⊙O,CF与⊙O相切于点E,与AD交于点F,则△CDF的面积为________________17.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l 将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.18.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.A B C D为格点(即小正方形的顶19.如图,由边长为1的小正方形组成的网格中,点,,,点),AB与CD相交于点O,则AO的长为_________.20.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解_____.21.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm,则较小的三角形的周长为__________cm.22.方程290x的解为________.23.圆锥的底面半径是4cm,母线长是6cm,则圆锥的侧面积是______cm2(结果保留π).24.将抛物线 y=(x+2)2-5向右平移2个单位所得抛物线解析式为_____.25.如图,点G为△ABC的重心,GE∥AC,若DE=2,则DC=_____.26.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径=,扇形的圆心角120r cm2θ=,则该圆锥的母线长l为___cm.x+x这样的方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=27.233,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x1=39=3满足题意;当x2=﹣1时,1=﹣1不符合题意;所以原方程的解是x=3.运用以上x =1的解为_____.经验,则方程x+528.在一块边长为30 cm的正方形飞镖游戏板上,有一个半径为10 cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.29.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF 的最小值是_____.30.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题31.在矩形ABCD中,AB=3,AD=5,E是射线..DC上的点,连接AE,将△ADE沿直线AE 翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.32.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对应点),且位似比为2:1;(2)△A′B′C′的面积为个平方单位;(3)若网格中有一格点D′(异于点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、D n′标出)33.如图,在ABC ∆中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动(到达点C ,移动停止).(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于210cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.34.如图,二次函数22y ax ax c =-+ (a < 0) 与 x 轴交于 A 、C 两点,与 y 轴交于点 B ,P 为 抛物线的顶点,连接 AB ,已知 OA :OC=1:3. (1)求 A 、C 两点坐标;(2)过点 B 作 BD ∥x 轴交抛物线于 D ,过点 P 作 PE ∥AB 交 x 轴于 E ,连接 DE , ①求 E 坐标; ②若 tan ∠BPM=25,求抛物线的解析式.35.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探究).四、压轴题36.如图,在平面直角坐标系中,直线l:y=﹣13x+2与x轴交于点B,与y轴交于点A,以AB为斜边作等腰直角△ABC,使点C落在第一象限,过点C作CD⊥AB于点D,作CE⊥x轴于点E,连接ED并延长交y轴于点F.(1)如图(1),点P为线段EF上一点,点Q为x轴上一点,求AP+PQ的最小值.(2)将直线l进行平移,记平移后的直线为l1,若直线l1与直线AC相交于点M,与y轴相交于点N,是否存在这样的点M、点N,使得△CMN为等腰直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.37.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).38.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(13D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M 沿x 轴向右以每秒2个单位长度的速度平移,菱形ABCD 沿x 轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t (秒),当⊙M 与AD 相切,且切点为AD 的中点时,连接AC ,求t 的值及∠MAC 的度数;(3)在(2)的条件下,当点M 与AC 所在的直线的距离为1时,求t 的值.39.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为2m为负数,最大值为2n为正数.将最大值为2n分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)2+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=n时y取最大值,即2n=﹣(n﹣1)2+5,解得:n=2或n=﹣2(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即2m=﹣(m﹣1)2+5,解得:m=﹣2.当x=1时y 取最大值,即2n=﹣(1﹣1)2+5, 解得:n=52, 或x=n 时y 取最小值,x=1时y 取最大值, 2m=-(n-1)2+5,n=52, ∴m=118, ∵m <0,∴此种情形不合题意, 所以m+n=﹣2+52=12. 2.A解析:A 【解析】 【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可. 【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2, ∵弦AB CD ⊥, ∴AE=BE=4,由勾股定理得出:()22242r r =+-, 解得:r=5, 故答案为:A. 【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.3.B解析:B 【解析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.4.C解析:C【解析】【分析】利用因式分解法解方程即可解答.【详解】x2-x=0x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.5.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 6.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 7.C解析:C【解析】【分析】设方程2(1)(1)0a x b x c -+-+=中,1t x =-,根据已知方程的解,即可求出关于t 的方程的解,然后根据1t x =-即可求出结论.【详解】解:设方程2(1)(1)0a x b x c -+-+=中,1t x =-则方程变为20at bt c ++=∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴关于t 的方程20at bt c ++=的解为11t =-,23t =, ∴对于方程2(1)(1)0a x b x c -+-+=,11x -=-或3解得:10x =,24x =,故选C .【点睛】此题考查的是根据已知方程的解,求新方程的解,掌握换元法是解决此题的关键.8.C解析:C【解析】【分析】【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:2210AD CD+=又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为601010π⨯=.故选C.9.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.11.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.12.D解析:D【解析】【分析】先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.D解析:D【解析】【分析】根据表中的对应值,求出二次函数2y ax bx c =++的表达式即可求解.【详解】解:选取02(,),14(,),32(,)三点分别代入2y ax bx c =++得 24932c a b c a b c =⎧⎪++=⎨⎪++=⎩解得:132a b c =-⎧⎪=⎨⎪=⎩∴二次函数表达式为232y x x =-++∵1a =-,抛物线开口向下;∴选项A 错误;∵2c =函数图象与y 的正半轴相交;∴选项B 错误;当x=-1时,2(1)3(1)220y =--+⨯-+=-<;∴选项C 错误;令0y =,得2320x x -++=,解得:132x +=,232x =∵10-,方程20ax bx c ++=的负根在0与-1之间; 故选:D .【点睛】本题考查二次函数图象与性质,掌握性质,利用数形结合思想解题是关键.14.C解析:C【解析】【分析】根据切线的性质,由PD 切⊙O 于点C 得到∠OCD =90°,再利互余计算出∠DOC =50°,由∠A =∠ACO ,∠COD =∠A +∠ACO ,所以1252A COD ∠=∠=︒,然后根据三角形外角性质计算∠PCA 的度数.【详解】解:∵PD 切⊙O 于点C ,∴OC ⊥CD ,∴∠OCD =90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.15.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题16.【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵C解析:3 2【解析】【分析】首先判断出AB、BC是⊙O的切线,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:∵∠DAB=∠ABC=90°,∴AB、BC是⊙O的切线,∵CF是⊙O的切线,∴AF=EF,BC=EC,∴FC=AF+DC,设AF=x,则,DF=2-x,∴CF=2+x,在RT△DCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=12,∴DF=2-12=32,∴113322222 CDFS DF DC=⋅=⨯⨯=,故答案为:3 2 .【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键.17.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。
苏科版2019-2020学年九年级上期末数学试卷及答案解析
苏科版2019-2020学年九年级上期末数学试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于()A.B.C.D.无法确定2.(3分)如果==(b+d≠0),则=()A.B.C.D.或﹣13.(3分)A,B,C,D,E五名同学在一次数学测验中的平均成绩是80分,而A,B,C 三人的平均成绩是78分,下列说法一定正确的是()A.D,E两人的平均成绩是83分B.D,E的成绩比其他三人都好C.五人成绩的中位数一定是80分D.五人的成绩的众数一定是80分4.(3分)关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0C.k≥﹣D.k≥﹣且k≠0 5.(3分)已知点C是线段AB的黄金分割点(AC>BC),AB=4,则线段AC的长是()A.B.C.D.6.(3分)如图▱ABCD,F为BC中点,延长AD至E,使DE:AD=1:3,连结EF交DC 于点G,则S△DEG:S△CFG=()A.2:3B.3:2C.9:4D.4:97.(3分)如图,小正方形的边长均为1,扇形OAB是某圆锥的侧面展开图,则这个圆锥的底面周长为()A.πB.πC.2πD.3π8.(3分)在平面直角坐标系中,△ABO一个顶点的坐标分别为A(﹣2,4),B(4,0),O(0,0).以原点O为位似中心,把这个三角形缩小为原来的.得到△CDO,则点A 的对应点C的坐标是()A.(﹣4,8)B.(﹣4,8)或(4,﹣8)C.(﹣1,2)D.(﹣1,2)或(1,﹣2)二.填空题(共8小题,满分24分,每小题3分)9.(3分)小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.10.(3分)二次函数y=x2﹣bx+c的图象上有两点A(3,﹣8),B(﹣5,﹣8),则此抛物线的对称轴是直线x=.11.(3分)已知2,3,5,m,n五个数据的方差是2,那么8,9,11,m+6,n+6五个数据的方差是.12.(3分)将抛物线y=x2﹣6x+21先向左平移2个单位,再向上平移2个单位后,得到的新抛物线的解析式为.13.(3分)如图所示是某斜拉索大桥,主索塔呈抛物线,主索塔底部在水面部分的宽度AB =50米,主索塔的最高点E距水面的垂直距离为100米,桥面CD距水面的咨度为36米,则桥的宽度CD米.14.(3分)如图,将一块含30°角的直角三角板ABC和半圆形量角器按图中方式叠放,三角板的直角边BC与量角器的零刻度线所在直线重合,斜边与半圆相切于点D,若圆心O 对应的刻度为2cm,量角器的边缘E对应的刻度为9.5cm,则线段BD的长度为cm.。
2019-2020学年九年级数学上学期期末考试试题(含解析)苏科版
2019-2020学年九年级数学上学期期末考试一试题(含解析)苏科版一、填空题(本题共 8 小题,每题 3 分,共24 分)1. 一元二次方程x 2x 的根为(▲ )A . x 1B. x 1C. x 1 1,x 2 0D. x 1 1,x 2 0【考点】解一元二次方程 【试题解析】 x(x-1)=0 解得: x=0 或 x=1 选 C 【答案】 C2 .将抛物线 yx 2 向左平移 1 个单位,所得抛物线解析式是(▲ )A.y (x1)2 B. y ( x 1)2 C.y x 2 1D.y x 21【考点】二次函数图像的平移【试题解析】依照左加右减,上加下减,选B【答案】 B3. 给甲乙丙三人打电话,若打电话的序次是任意的,则第一个打电话给甲的概率 为 ( ▲ )A.1B.1 C.1 D.2 6323【考点】概率及计算【试题解析】打电话一共有 3 种可能,第一次给甲打占了一种,所以是【答案】 B4.下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差 s 2:甲 乙 丙 丁平均数 ( cm )561 560 561 56022方差 s ( cm )依照表中数据,要从中选择一名成绩好又发挥牢固的运动员参加比赛,应入选择(▲ )A. 甲B.乙C.丙D.丁【考点】极差、方差、标准差【试题解析】成绩好,要求均分数高,牢固要求方差小,所以选甲选手, 选 A 【答案】 A5. 在相同时辰太阳光辉 是平行的, 若是高 1.5 米的测杆影长 3 米,那么此时影长 30 米的旗杆的高度为(▲) A .18米B.12米C.15米 D.20米【考点】相似三角形的应用【试题解析】依照题意,设旗杆长为 x 米,1. 5:3=x : 30解得: x=15所以选 C【答案】 C6.以下四个命题:①直径是弦;②经过三个点必然能够作圆;③正六边形是轴对称图形.其中正确的有(▲)A.0个B.1个C.2个D.3个【考点】与圆相关的看法及性质【试题解析】①对,②经过不在同一条直线上的三点才能作圆,错③对选 C【答案】 C7. 已知一元二次方程x24x 30 两根为x1、x2,则 x1 x2的值为(▲ )A. 4B.- 3C.- 4D. 3【考点】一元二次方程的根与系数的关系【试题解析】两根的积 =A=1, c=3,所以选D【答案】 D8. 已知极点为 (-3 , -6) 的抛物线y ax2bx c 经过点(-1,-4),以下结论中错误的选项是(▲)A.b24acB.若点 (-2 ,m ) , (-5 ,n )在抛物线上,则 m nC.ax2bx c6D.关于 x 的一元二次方程ax2bx c4 的两根为-5和-1【考点】二次函数的图像及其性质【试题解析】对称轴为x=-3 ,-5 离-3 比-2 离-3 远所以 m< n选 B【答案】 B二、填空题(本题共10 小题,每题 3 分,共 30 分)9.已知x3 ,则x y的值为▲ _.y y【考点】代数式及其求值【试题解析】原式=【答案】 210.在今年“全国助残日”捐款活动中,某班级第一小组7 名同学捐款的数额分别是(单位:元)50, 20, 50, 30, 25, 50, 55,这组数据的中位数是▲ _.【考点】平均数、众数、中位数【试题解析】中位数是值把一组数据从小到大排列,中间的那一个数也许是中间两个数的平均数所以 20,25,30,50,50,50,55中位数是50【答案】 5011.抛物线y=2x2- bx+3 的对称轴是直线x= 1,则b的值为▲ _.【考点】二次函数的图像及其性质【试题解析】x=B=4【答案】 412. 如图, AD∥ BE∥ CF,直线 l 1、 l 2这与三条平行线分别交于点A、B、 C 和点 D、 E、F.已知 AB=1,BC=3,DE=2,则 EF 的长为▲_ .【考点】比率线段的相关看法及性质【试题解析】∵ AD∥BE∥ CF,∴ AB:AC=DE:EF,∵ AB=1, BC=3,DE=2,∴ 1:3=2 : EF,解得 EF=6.【答案】 613. 将量角器按以下列图的方式放置在三角形纸板上,使极点 C 在半圆上,点 A 、 B 的读数分别为1000、 1500,则ACB 的大小为___▲___度.第 12题图第13题图第14题图【考点】圆周角定理及推论【试题解析】连接 OA,OB那么∠ AOB=150° -100 ° =50°∠ACB= ∠ AOB=25°【答案】 2514. 如图,圆锥体的高h3cm,底面半径r1cm ,则圆锥体的侧面积为▲ _cm2.【考点】圆锥、圆柱的相关计算【试题解析】依照勾股定理得:;则圆锥的侧面积为πrl= π ×2× 4=8π.【答案】 8π15.四边形ABCD是⊙ O的内接四边形,且∠A=∠ C,则∠ A=___▲ ___度.CDOAB第15题第17题【考点】圆周角定理及推论【试题解析】∵∠ A+∠ C=180°∠A=∠C∴∠ A=90°【答案】 9016. 设 A ( 2, y1), B(1, y2), C(2, y3)是抛物线y x22x m 上的三点,则y1, y2 , y3的大小关系为▲ _ .【考点】二次函数的图像及其性质【试题解析】把 A,B,C 的横坐标依次代入得:∴【答案】17.如图,△ ABC中,D为BC上一点,∠ BAD=∠C,AB=6,BD=4,则 CD的长为▲ _.【考点】相似三角形的应用【试题解析】∵∠ BAD=∠ C∠B=∠B∴△ ABD∽△ ABC∴AB:BD=BC:AB解得: BC=9∴CD=5【答案】 518. 等腰△ ABC中,BC=3,AB、AC的长是关于x 的方程x210 x m 0 两个根,则m的值是▲ _.【考点】一元二次方程的根与系数的关系【试题解析】若 AB=3, AC=7,不吻合题意∴ AB=AC=5∴m=AB× AC=25【答案】 25三、解答题(本题共10 小题,共96 分)19.(本题满分 8 分)解方程:( 1)x22x 9(2)(2x3)2x20【考点】解一元二次方程【试题解析】(1)a=1 , b=2, c=-9△=4+36=40(2) (2x-3+x)(2x-3-x)=0(3x-3)(x-3)=0解得: x=1 或 3【答案】见解析20.(本题满分 8 分)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.( 1)若由甲挑一名选手打第一场比赛,选中乙的概率是多少?(直接写出答案)( 2)任选两名同学打第一场,请用树状图或列表法求恰好选中甲、乙两位同学的概率。
2019—2020年新苏教版九年级数学上册(第一学期)期末考试模拟试题及答案解析(试题).doc
第一学期期末调研测试卷初三数学注意事项:1.本试卷共6页,全卷共三大题29小题,满分130分,考试时间120分钟;2.答题前,考生先将自己的学校、班级、姓名、考试号填写在答题卷密封线内相应的位置上;3.选择题、填空题、解答题必须用黑色签字笔答题,答案填在答题卷相应的位置上;4.在草稿纸、试卷上答题无效;5.各题必须答在黑色答题框内,不得超出答题框,一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内)1.计算a 4·21a ⎛⎫ ⎪⎝⎭的结果是 A . a 2B .21aC .a 3D .31a 2.要使分式43x -有意义,则x 的取值范围是 A .x>3B .x<3C .x ≠3D .x ≠-3 3.用配方法解方程x 2-2x -1=0时,配方后得的方程为A .(x +1)2=0B .(x -1)2=0C .(x +1)2=2D .(x -1)2=24.抛物线y =2(x -2)2+3的顶点坐标是A .(-2,3)B .(2,3)C .(-1,3)D .(1,3)5.在Rt △ABC 中,∠C =90°,tanA =43,BC =8,则△ABC 的面积为 A .12 B .18 C .24 D .486.如果⊙O 的半径为3cm ,其中一弧长2cm ,则这弧所对圆心角度数是A.150°B.120°C.60°D.45°7.已知二次函数y=ax2+bx+c,若a<0,c>0,那么它的图象大致是8.某机械厂七月份生产零件50万个,第三季度生产零件196万个,设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x)2=196 B.50+50(1+x)2=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1969.如图,半圆O的直径AB=10,弦AC=6,AD平分∠BAC,则AD的长为A.B.C.D.2010.已知两点(-2,y1)、(3,y2)均在抛物线y=ax2+bx+c上,点C(x0,y0)是该抛物线的顶点,若y1<y2≤y0,则x0的取值范围是A.x0>3 B.x0>12C.-2<x0<3 D.-1<x0<32二、填空题:(本大题共8小题,每小题3分,共24分,把你的答案填在答题卷相应的横线上)11.-3的相反数是▲.12.分解因式:xy-y2=▲13,若a-b=3,a+b=7,则ab=▲.14.若x1=-1是关于x的方程x2+mx-5=0的一个根,则方程的另一个根x2=▲.15.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为▲.16.如图,在⊙O 中,∠CBO =45°,∠CAO =15°,则∠AOB 的度数是 ▲ °.17.若13t t-=,则1t t +的值为 ▲ . 18.已知二次函数y =ax 2+bx +c 与一次函数y =x 的图象如图所示,给出以上结论:①b 2-4ac>0;②a +b +c =1;③当1<x<3时,ax 2+(b -1)x +c<0;④二次函数y =ax 2+(b -1)x +c 的图象经过点(1,0)和(3,0).其中正确的有: ▲ (把你认为正确结论的序号都填上).三、解答题:(本大题共11小题,共76分,把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分5分)计算()2222sin 60-+-︒+20.(本题满分5分)解不等式组:()212333x x x+≥⎧⎪⎨+->⎪⎩21.(本题满分5分)已知x 2-2x -4=0,求代数式(x -3)2+(x -2)(x +2)+2x 的值.22.(本题满分6分)如图,已知反比例函数y 1=k x 的图象与一次函数y 2=ax +b 的图象交于点A(1,4)和点B (m ,-2).(1)求这两个函数的关系式;(2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.23.(本题满分6分) 解方程:()3222x x x x--=-24.(本题满分6分)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.已知AB=8,CD=2.(1)求⊙O的半径;(2)求sin∠BCE的值.25.(本题满分8分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若周长为16的等腰△ABC的两边AB,AC的长是方程的两个实数根,求k的值.26.(本题满分8分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1AB:BC=1B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测角器的高度忽略不计).27.(本题满分8分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为1,∠CBD=30°,则图中阴影部分的面积为▲;(3)过点B作⊙O的切线交CD的延长线于点E若BC=12,tan∠CDA=2,求BE的长.328.(本题满分9分)如图,已知抛物线y=-x2+bx+c与x轴交于点A(-1,0)和B(3,0),与y轴交于点C.设抛物线的顶点为D,连结CD、DB、AC.(1)求此抛物线的解析式;(2)求四边形ABDC的面积;(3)设Q是抛物线上一点,连结BC、QB、QC,把△QBC沿直线BC翻折得到△Q'BC,若四边形QBQ'C为菱形,求此时点Q的坐标.29.(本题满分10分)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个动点到达终点时,另一个动点也随之停止运动.(1)AC=▲cm,BC=▲cm;(2)当t=5(s)时,试在直线PQ上确定一点M,使△BCM的周长最小,并求出该最小值.(3)设点P的运动时间为t(s),△PBQ的面积为y(cm2),当△PBQ存在时,求y与t的函数关系式,并写出自变量t的取值范围;(4)探求(3)中得到的函数y有没有最大值?若有,求出最大值;若没有,说明理由.参考答案。
2019-2020学年江苏省徐州市邳州市九年级(上)期末数学试卷含解析
2019-2020学年江苏省徐州市邳州市九年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.如果一个一元二次方程的根是x1=x2=1,那么这个方程是()A.x2=1B.x2+1=0C.(x﹣1)2=0D.(x+1)2=02.抛物线y=﹣2(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)3.下列说法正确的是()A.弦是直径B.弧是半圆C.直径是圆中最长的弦D.半圆是圆中最长的弧4.小丽参加学校“庆元旦,迎新年演唱比赛,赛后小丽把七位评委所合的分数进行处理,得到平均数、中位数,众数,方差,如果把这七个数据去掉一个最高分和一个最低分,则数据一定不发发生变化的是()A.平均数B.众数C.方差D.中位数5.由3x=2y(x≠0),可得比例式为()A.B.C.D.6.如图,四边形ABCD内接于⊙O,四边形ABCO是平行四边形,则∠ADC的度数为()A.30°B.45°C.60°D.75°7.如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC相似的条件是()A.∠AED=∠B B.∠ADE=∠C C.D.8.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为()A.2B.2C.4D.6二、填空题(本大题共10小题,每小题3分,共30分.不需写出解管过程,请将答案直接填写在答题卡相应位置)9.若,则=.10.若△ABC∽△DEF,且相似比为1:2,则△ABC与△DEF面积比.11.若x1、x2是关于x的一元二次方程x2﹣2x﹣3=0的两个实数根,则x1+x2=.12.函数y=﹣(x﹣1)2+2图象上有两点A(3,y1)、B(﹣4,y2),则y1y2(填“<”、“>”或“=”).13.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是.14.为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本(填“具有”或“不具有”)代表性.15.正六边形的边长是6,那么这个正六边形的面积是.16.如图,在△ABC中,∠C=90°,AC=3,若cos A=,则BC的长为.17.如图,圆锥的底面半径r为4,沿着一条母线l剪开后所得扇形的圆心角ɵ=90°,则该圆锥的母线长是.18.如图,在矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=8,DF=3FC,则BC=.三、解答题(本大题共10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:3﹣1+2sin30°﹣20200;(2)解方程:x2+3x﹣4=0.20.某学校举行冬季“趣味体育运动会”,在一个箱内装入只有标号不同的三颗实心球,标号分别为1,2,3.每次随机取出一颗实心球,记下标号作为得分,再将实心球放回箱内.小明从箱内取球两次,若两次得分的总分不小于5分,请用画树状图或列表的方法,求发生“两次取球得分的总分不小于5分”情况的概率.21.某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表34567及以上文章阅读的篇数(篇)人数(人)1014m86请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数.22.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,4),B(4,4),C(6,0).(1)△ABC的面积是.(2)请以原点O为位似中心,画出△A'B'C',使它与△ABC的相似比为1:2,变换后点A、B的对应点分别为点A'、B',点B'在第一象限;(3)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P'的坐标为.23.某市政府高度重视教育工作,财政资金优先保障教育,2017年新校舍建设投入资金8亿元,2019年新校舍建设投入资金11.52亿元.求该市政府从2017年到2019年对校舍建设投入资金的年平均增长率.24.某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE 处,测得顶点A的仰角为75°.(1)求∠CAE的度数;(2)求AE的长(结果保留根号);(3)求建筑物AO的高度(精确到个位,参考数据:~1.4,~1.7).25.如图,AG是∠P AQ的平分线,点E在AQ上,以AE为直径的⊙O交AG于点D,过点D作AP的垂线,垂足为点C,交AQ于点B.(1)求证:直线BC是⊙O的切线;(2)若⊙O的半径为6,AC=2CD,求BD的长.26.某学校打算用篱笆围成矩形的生物园饲养小兔.(1)若篱笆的长为16m,怎样围可使小兔的活动范围最大?(2)求证:当矩形的周长确定时,则一边长为周长的时,矩形的面积最大.27.如图1,AD、BD分别是△ABC的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.(1)求证:∠E=∠C;(2)如图2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值.(3)如果∠ABC是锐角,且△ABC与△ADE相似,求∠ABC的度数,并直接写出的值.(sin15°=,sin22.5°=).28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,OA=1,OB=3,抛物线的顶点坐标为D(1,4).(1)求A、B两点的坐标;(2)求抛物线的表达式;(3)过点D做直线DE∥y轴,交x轴于点E,点P是抛物线上A、D两点间的一个动点(点P不于A、D 两点重合),P A、PB与直线DE分别交于点G、F,当点P运动时,EF+EG的值是否变化,如不变,试求出该值;若变化,请说明理由.2019-2020学年江苏省徐州市邳州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.【解答】解:A.x2=1的根为x1=1,x2=﹣1;B.x2+1=0无实数根;C.(x﹣1)2=0的根为x1=x2=1;D.x+1)2=0的根为x1=x2=﹣1;故选:C.2.【解答】解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴y=﹣2(x﹣2)2+3的顶点坐标是(2,3).故选:D.3.【解答】解:A、直径是弦,但弦不一定是直径,故错误,不符合题意;B、半圆是弧,但弧不一定是半圆,故错误,不符合题意;C、直径是圆中最长的弦,正确,符合题意;D、半圆是小于优弧而大于劣弧的弧,故错误,不符合题意,故选:C.4.【解答】解:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选:D.5.【解答】解:∵3x=2y,∴=或=.故选:C.6.【解答】解:∵四边形ABCO是平行四边形,∴∠AOC=∠B,∵∠B+∠D=180°,∠AOC=2∠D,∴2∠D+∠D=180°,∴∠D=60°.故选:C.7.【解答】解:由题意得,∠A=∠A,A、当∠ADE=∠B时,△ADE∽△ABC;故本选项不符合题意;B、当∠ADE=∠C时,△ADE∽△ABC;故本选项不符合题意;C、当时,不能推断△ADE与△ABC相似;故选项符合题意;D、当时,△ADE∽△ACB;故本选项不符合题意.故选:C.8.【解答】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,∴BD===2,故选:B.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解管过程,请将答案直接填写在答题卡相应位置)9.【解答】解:∵,∴设a=3k,b=4k,∴===.故答案为.10.【解答】解:∵△ABC∽△DEF,相似比为1:2,∴△ABC与△DEF的面积的比为(1:2)2=1:4.故答案为:1:4.11.【解答】解:∵一元二次方程x2﹣2x﹣3=0的两个实数根分别为x1和x2,∴根据韦达定理,x1+x2=2,故答案为:2.12.【解答】解:∵二次函数y=﹣(x﹣1)2+2的图象的开口向下,对称轴为直线x=1,∴点A(3,y1)离对称轴的距离比点B(﹣4,y2)要近,∴y1>y2.故答案为>.13.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小丽能一次支付成功的概率是,故答案为.14.【解答】解:估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,不具有代表性.故答案为:不具有.15.【解答】解:连接正六变形的中心O和两个顶点D、E,得到△ODE,因为∠DOE=360°×=60°,又因为OD=OE,所以∠ODE=∠OED=(180°﹣60°)÷2=60°,则三角形ODE为正三角形,∴OD=OE=DE=6,∴S△ODE=OD•OE•sin60°=×6×6×=9.正六边形的面积为6×9=54.故答案为54.16.【解答】解:∵∠C=90°,AC=3,cos A=,∴cos A==,∴AB=5,则BC的长为:=4.故答案为:4.17.【解答】解:扇形的弧长=2×4π=8π,=8π解得:l=16.故答案为:16.18.【解答】解:延长EF和BC,交于点G,∵3DF=4FC,∴,∵矩形ABCD中,∠ABC的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=7,∴直角三角形ABE中,BE==8,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF,∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=8,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC,∴,设CG=x,DE=3x,则AD=8+3x=BC,∵BG=BC+CG,∴8+3x+x=8.解得x=2.故答案为:2.三、解答题(本大题共10小题,共86分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.【解答】解:(1)原式=+2×﹣1=+1﹣1=;(2)∵x2+3x﹣4=0,∴(x+4)(x﹣1)=0,则x+4=0或x﹣1=0,解得x=﹣4或x=1.20.【解答】解:根据题意画图如下:共有9种等情况数,其中发生“两次取球得分的总分不小于5分”情况3种,则发生“两次取球得分的总分不小于5分”情况的概率是=.21.【解答】解:8÷16%=50人,m=50﹣10﹣14﹣8﹣6=12,答:被抽查的学生人数50人,m的值为12;(2)学生阅读文章篇数出现次数最多的是4篇,出现14次,因此众数是4篇,将学生阅读篇数从小到大排列处在第20、21位都是4篇,因此中位数是4篇,(3)1200×=420人,答:该校1200名学生中在这一周内文章阅读的篇数为4篇的有420人.22.【解答】解:(1)△ABC的面积是:×6×4=12;故答案为:12;(2)如图所示:△A'B'C'即为所求;(3)若P(a,b)为线段BC上的任一点,则变换后点P的对应点P'的坐标为:(,).故答案为:(,).23.【解答】解:设该市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x,依题意,得:8(1+x)2=11.52,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%.24.【解答】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.∵∠ACE=30°,∠AEG=75°,∴∠CAE=45°;(2)由题意可知:∠ACG=30°,∠AEG=75°,CE=40,∴∠EAC=∠AEG﹣∠ACG=45°,∵EF=CE×Sin∠FCE=20,∴AE==20,∴AE的长度为20m;(3)∵CF=CE×cos∠FCE=20,AF=EF=20,∴AC=CF+AF=20+20,∴AG=AC×Sin∠ACG=10+10,∴AO=AG+GO=10+10+1.5≈29,∴高度AO约为29m.25.【解答】(1)证明:连接OD,∵AG是∠P AQ的平分线,∴∠CAD=∠BAD,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC,∵∠ACD=90°,∴∠ODB=∠ACD=90°,即OD⊥CB,∵D在⊙O上,∴直线BC是⊙O的切线;(2)解:在Rt△ACD中,设CD=a,则AC=2a,AD=a,连接DE,∵AE是⊙O的直径,∴∠ADE=90°,由∠CAD=∠BAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴,∴,解得a=.由(1)知:OD∥AC,∴,∴.∴BD=8.26.【解答】解:(1)设围成长方形的生物园的长为xm,则宽为(8﹣x)m,围成长方形的生物园的面积为Sm2,S=x(8﹣x)=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,S取得最大值,此时S=16,∴围成边长为4米的正方形,可使小兔的活动范围最大.(2)设矩形的周长为a,矩形的一边长为x,则其邻边为(a﹣2x),则S=x(a﹣2x)=﹣x2+ax=﹣(x+a)2+a2,∴当矩形的周长确定时,则一边长为周长的时,矩形的面积最大27.【解答】(1)证明:如图1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°﹣∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°﹣∠C,∴∠ADE=(∠ABC+∠BAC)=90°﹣∠C,∴∠E=90°﹣(90°﹣∠C)=∠C.(2)解:延长AD交BC于点F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC=.(3)∵△ABC与△ADE相似,∠DAE=90°,∴∠ABC中必有一个内角为90°∵∠ABC是锐角,∴∠ABC≠90°.①当∠BAC=∠DAE=90°时,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°,此时=2﹣.②当∠C=∠DAE=90°时,∠E=∠C=45°,∴∠EDA=45°,∵△ABC与△ADE相似,∴∠ABC=45°,此时=2﹣.综上所述,∠ABC=30°或45°,=2﹣或2﹣.28.【解答】解:(1)∵OA=1,OB=3,且点A在x轴负半轴,点B在x轴正半轴上,∴A(﹣1,0),B(3,0);(2)∵顶点坐标为D(1,4),∴可设抛物线的解析式为y=a(x﹣1)2+4,将点A(﹣1,0)代入y=a(x﹣1)2+4,得,0=4a+4,∴a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(3)EF+EG的值不发生变化,理由如下:设点P(a,﹣a2+2a+3),设直线AP的解析式为y=kx+b,将点A(﹣1,0),(a,﹣a2+2a+3)代入,得,,解得,,∴直线AP的解析式为y=(3﹣a)x+3﹣a,∵抛物线y=﹣(x﹣1)2+4的对称轴为x=1,点G在对称轴上,∴G(1,6﹣2a),∴EG=6﹣2a,设直线BP的解析式为y=mx+n,将点B(3,0),(a,﹣a2+2a+3)代入,得,,解得,,∴直线BP的解析式为y=﹣(a+1)x+3(a+1),∵点F在对称轴上,∴F(1,2a+2),∴EF=2a+2,∴EF+EG=2a+2+6﹣2a=8,∴当点P运动时,EF+EG的值不变化,值为8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年江苏省徐州市邳州市九年级上学期期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)
1.如果一个一元二次方程的根是x1=x2=1,那么这个方程是()
A.x2=1B.x2+1=0C.(x﹣1)2=0D.(x+1)2=0 2.抛物线y=﹣2(x﹣2)2+3的顶点坐标是()
A.(﹣2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(2,3)
3.下列说法正确的是()
A.弦是直径B.弧是半圆
C.直径是圆中最长的弦D.半圆是圆中最长的弧
4.小丽参加学校“庆元旦,迎新年演唱比赛,赛后小丽把七位评委所合的分数进行处理,得到平均数、中位数,众数,方差,如果把这七个数据去掉一个最高分和一个最低分,则数据一定不发发生变化的是()
A.平均数B.众数C.方差D.中位数
5.由3x=2y(x≠0),可得比例式为()
A.x
y =
3
2
B.
x
3
=
y
2
C.
x
2
=
y
3
D.
x
2
=
3
y
6.如图,四边形ABCD内接于⊙O,四边形ABCO是平行四边形,则∠ADC的度数为()
A.30°B.45°C.60°D.75°
7.如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,不一定能使△ADE与△ABC 相似的条件是()
第1 页共22 页。