七年级数学第四章《图形认识初步》教案
七年级数学上第四章平面图形的初步认识单元教学计划
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
新北师大版四年级数学(下册)人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
七年级数学上第四章图形的初步认识单元教学计划
七年级数学上第四章图形的初步认识单元教学计划第四章:图形认识初步本章介绍了多种图形,包括立体图形和平面图形。
其中,点、线、角等是最基本的图形。
通过自主探究和实例,我们可以探索“两点确定一条直线”和“两点间线段最短”的性质,认识角以及角的表示方法、度量、画法、比较、余角和补角等。
此外,我们还可以探索比较线段长短的方法和线段中点。
这些概念都是认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。
本章涉及到的主要数学思想和方法包括分类讨论思想、方程的思想和由特殊到一般的思想。
分类讨论思想可以解决直线上的点点位置不确定的问题,或者从公共端点出发的一条射线在角内或角外的不确定问题。
方程的思想则可以用于涉及线段和角度的计算中,通过列方程求解,可以清楚简捷地表示出几何图形中的数量关系。
由特殊到一般的思想则主要体现在依靠图形寻找规律的题中。
本章的教学重点包括角的比较与度量、余角和补角的概念和性质,以及直线、射线、线段和角的概念和性质。
教学难点则在于正确表达概念和性质的几何语言,以及建立空间观念。
本章的教学目标包括体验、感受和认识以生活中的事物为原型的几何图形,初步了解从具体事物中抽象出几何概念的方法,以及特殊与一般的辩证关系。
我们还可以画出从不同方向看一些基本几何体以及它们的简单组合得到的平面图形,了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象和制作立体模型。
通过丰富的实例,我们可以进一步认识点、线、面、体,理解它们之间的关系,并在平面图形和立体图形相互转换的过程中,初步建立空间观念,发展几何直觉。
此外,我们还可以逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形。
四、主要教学方法、手段、选用的教学媒体本章教学采用小组合作、讲授法和练法相结合的教学方法。
在教学过程中,将使用小黑板和班班通等多种教学媒体辅助教学。
五、课时安排本章教学时间约为16课时,具体分配如下:4.1几何图形约4课时,主要介绍基本几何图形的定义、性质及分类。
初中数学《第四章 图形认识初步》教学设计
初中数学《第四章图形认识初步》教学设计第四章图形认识初步单元要点分析教学内容本章主要内容有多姿多彩的图形,直线、射线、线段,角的度量,角的比较与运算.教材从生活中常见的立体与平面图形入手,通过实例,在丰富的现实情境中,使学生经历对几何体的研究的数学活动过程,认识一些常见的几何体及点、线、面的一些特征和性质;通过裁剪、展开、制作及从不同方向看等活动,在几何体与平面图形的转换过程中发展学生的空间观念;通过实例,在丰富的现实情境中,使学生经历对简单的平面图形直线、射线、线段与角的研究的数学活动过程,通过动手画图、线段的大小比较及角的度量、比较与运算等活动过程,理解并掌握这些图形的一些简单性质,感受丰富多彩的图形世界,并为今后进一步学习平面几何知识奠定基础.三维目标1.知识与技能(1)经历探究物体的形状与几何体的关系过程,•能从现实物体中抽象得出立体图形.(2)经历立体图形与平面图形的转换过程,•掌握一些简单的立体图形与平面图形的互相转化的技能.(3)经历对点、线、面、体关系的研究的数学活动过程,•建立平面图形与立体图形的联系.(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、•射线、线段和角的表示方法;掌握角的度量方法.(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,•探索线段与线段之间、角与角之间的数量关系.(6)认识线段的等分点,角的平分线、角角和补角的概念.2.过程与方法(1)会用掌握的几何体知识描述现实物体的形状,•在探索立体图形与平面图形的关系中,发展空间观念.(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理.(3)学会在解决问题的过程中,进行合理的想象,进行简单的、•有条理的思考.(4)能在现实物体中,发现立体图形和平面图形.(5)能在具体的现实情境中,发现并提出一些数学问题.(6)通过小组合作、动手操作、实验验证的方法解决数学问题.3.情感态度与价值观.(1)积极参与数学活动的过程,敢于面对数学活动中的困难,•并能独立地或通过小组合作的方法,运用数学知识克服困难,解决问题.(2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,•体验数学活动中探索性和创造性,感受丰富多彩的图形世界.重、难点与关键1.重点:(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;•初步建立空间观念.(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,•会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义.(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,•理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.2.难点:(1)立体图形与平面图形之间的互相转化.(2)从现实情境中,抽象概括出图形的性质,•用数学语言对这些性质进行描述.3.关键:(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,•激发学生学习的兴趣.(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.课时划分4.1 多姿多彩的图形 2课时4.2 直线、射线、线段 2课时4.3 角 4课时数学活动 1课时回顾与思考 2课时教学设计4.1 多姿多彩的图形4.1.1 几何图形1.知识与技能(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系.2.过程与方法(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.3.情感态度与价值观(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.重、难点与关键1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.2.难点:立体图形与平面图形之间的转化是难点.3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键.教学过程一、引入新课1.打开电视,播放一个城市的现代化建筑,学生认真观看.2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?二、新授1.学生在回顾刚才所看的电视片后,充分发表自己的意见,•并通过小组交流,补充自己的意见,积累小组活动经验. 2.指定一名学生回答问题,并能正确说出这些几何图形的名称.学生回答:有圆柱、长方体、正方体等等.教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图).(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.5.立体图形和平面图形的转化.(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看.(2)提出问题.从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法.①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.②进行小组交流,评价各自获得的结论,得出正确结论.③指定三名学生,板书画出的图形.6.思考并动手操作.(1)学生活动:在小组中独立完成课本第119页的探究课题,然后进行小组交流,评价.(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,•并对学生给予鼓励,激发学生的探索热情.7.操作试验.(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,•并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?•再把展开的纸板复原为包装,体会立体图形与平面图形的关系.三、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;•可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充.四、作业布置1.课本第123页至第124页习题4.1第1~6题.2.选用课时作业设计.课时作业设计一、填空题.1.如下图所示,这些物体所对应的立体图形分别是:___________.二、选择题.2.如下图所示,每个图片都是由6个大小相同的正方形组成的,其中不能折成正方体的是().A B C D3.如下图所示,经过折叠能围成一个棱柱的是().A.①② B.①③ C.①④ D.②④三、解答题.4.桌上放着一个圆柱和一个长方体[如下图(1)],请说出下列三幅图[如下图(2)]分别是从哪个方向看到的.5.如下图,用4个小正方体搭成一个几何体,分别画出从正面、•左面和上面看该几何体所得的平面图形.6.如下图,动手制作:用纸板按图画线(长度单位是mm),沿虚线剪开,做成一个像装墨水瓶纸盒那样的长方体模型.答案:一、1.正方体、圆柱、圆锥、球、棱柱二、2.C 3.D三、4.分别是从左面、上面和正面看到的. 5~6.略4.1.1几何图形一、教学目标知识与技能通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.过程与方法:(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.情感态度与价值观:从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识。
2023七年级数学上册第4章图形的初步认识4.5最基本的图形——点和线1点和线教案(新版)华东师大版
3. 随堂测试:
- 学生在随堂测试中能够准确回答问题和完成题目,表明他们对点和线的基本概念和性质有扎实的掌握。
- 学生能够运用所学的点和线的基本概念和性质解决实际问题,显示出良好的应用能力和解决问题的能力。
- 学生在测试中表现出良好的时间管理和答题策略,能够有效地完成题目。
4. 作业完成情况:
- 学生能够按时完成作业,作业质量符合要求,表明他们对课堂所学的内容有深入的理解和掌握。
- 学生在作业中能够正确运用点和线的基本概念和性质,解决实际问题,显示出良好的应用能力和解决问题的能力。
2. 对于难点内容,可以采取以下策略:
- 通过引导学生观察和分析实际问题,让学生亲身体验和感知点和线的性质,从而更好地理解和运用。
- 提供一些典型的例题和练习题,让学生通过动手操作和思考,逐步掌握解决实际问题的方法和技巧。
- 鼓励学生积极参与讨论和交流,引导学生运用逻辑推理和数学思维来解决问题,提高其解决问题的能力。
本节课的内容与学生的日常生活紧密相关,便于学生理解和接受。教学过程中,教师需要结合课本中的例题和练习题,让学生通过观察、思考、动手操作等方式,掌握点、线的基本概念和性质。同时,教师还需注意引导学生运用所学的知识解决实际问题,提高学生的数学应用能力。
在教学过程中,教师应注重培养学生的观察能力、思考能力和动手操作能力。通过本节课的学习,学生应能掌握点、线的基本概念和性质,并能在实际问题中运用这些知识。
设计课堂互动环节,提高学生学习点和线的积极性和主动性。
(二)课堂导入(预计用时:3分钟)
激发兴趣:
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入点和线的学习状态。
人教版七年级数学上册第四章几何图形初步章节起始课教学设计
(二)过程与方法
1.通过观察生活中的几何图形,引导学生发现几何图形的美和实用性,培养学生的观察能力和动手操作能力。
2.利用问题驱动的教学方法,激发学生的探究欲望,让学生在解决问题的过程中掌握几何图形的基本知识和技能。
2.每个小组进行汇报,分享他们的发现和讨论成果,其他小组进行评价和补充。
3.鼓励学生提出疑问,并引导他们通过小组讨论解决问题,培养学生的合作意识和解决问题的能力。
(四)课堂练习
在课堂练习环节,我将设计以下练习题:
1.基础题:针对本章所学几何图形的性质和判定方法,设计一些基础题目,让学生巩固所学知识。
本章的学情分析如下:
1.学生在认知方面,对于几何图形的认识还停留在直观阶段,对于图形的性质和判定方法理解不够深入,需要通过具体实例和实际操作来加深理解。
2.在技能方面,学生的尺规作图能力有待提高,对于几何图形的推理和证明能力尚需培养,需要通过课堂讲解和课后练习来逐步提升。
3.在情感态度方面,学生对几何图形的兴趣和好奇心较浓,但部分学生可能对难度较大的几何问题产生恐惧感,需要教师关注并适时给予鼓励和支持。
b.与同学合作,探讨几何图形在科技领域中的应用,如机器人设计、航空航天等,以小组形式提交一份研究报告。
4.思考题:
a.比较三角形、四边形和圆的性质,归纳它们之间的联系和区别。
b.思考如何运用几何图形知识解决实际问题,如城市规划、环境保护等。
作业要求:
1.作业应在规定的时间内完成,要求书写工整、条理清晰。
3.引导学生在解决几何问题的过程中,养成勇于探索、善于思考的良好学习习惯,培养学生的自主学习能力。
七年级数学第4章图形的初步认识4.1生活中的立体图形教案华东师大版
第4章图形的初步认识4.1 生活中的立体图形【基本目标】1。
能从现实背景中抽象出立体图形;2。
认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球;3。
认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征.【教学重点】1。
感受图形世界的丰富多彩;2。
认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球。
【教学难点】认识立体图形中的圆柱、圆锥、正方体、长方体、棱柱、球,并能用自己的语言描述它们得到某种特征。
一、创设情境,导入新课1.一幅幅精美的图片带领同学们一起神游大地,去领略祖国的美景.出示图片:北京天坛、故宫、鸟巢、水立方.千姿百态的建筑物美化了我们的生活.展示了建筑师的聪明才智,在这些实物中有没有大家熟悉的立体图形?2.学生观察图片回答。
【教学说明】通过欣赏图片导入本节课的学习,创设愉悦、宽松的氛围,让学生在完全放松的情绪下感知我们生活中处处存在着数学知识,产生学习立体图形的兴趣。
二、合作探究,探索新知1.我们生活中的很多物体都是立体的,而这些物体中有一部分是较有规则的,如:【教学说明】让学生识别常见的具体图形,从中抽象出立体图形,经历从具体到抽象的思维过程,培养学生抽象思维的能力,使学生研究问题的意识由具体到抽象转变.2。
常见的立体图形如下图:在上面的图形中:(1)图1所表示的立体图形是柱体(圆柱体);(2)图2所表示的立体图形是柱体(棱柱体);(3)图3所表示的立体图形是锥体(圆锥体);(4)图4所表示的立体图形是球体;(5)图5所表示的立体图形是锥体(棱锥体).【教学说明】教师及时对常见的立体图形进行归纳总结,并让学生叙述它们的特征,找到它们的相同点和不同点,为后面的分类奠定基础。
3。
多面体的概念观察上图2、5与图1、3、4,它们有什么区别?小结:如上图2、5,围成立体图形的每一个面都是平的,像这样的立体图形又称为多面体.【教学说明】让学生对比找到不同点,教师归纳总结多面体的概念。
人教版七年级数学上册第四章《几何图形初步》教学设计
人教版七年级数学上册第四章《几何图形初步》教学设计一. 教材分析人教版七年级数学上册第四章《几何图形初步》是学生学习几何的入门章节,主要内容包括:平面图形的性质、相交线、平行线、垂直、角的度量等。
本章节的目的是让学生掌握一些基本的几何图形和概念,培养学生观察、思考、动手操作的能力。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们对平面图形有一定的认识。
但部分学生可能对一些几何概念和性质的理解还不够深入,因此在教学过程中需要注重引导学生从实际操作中理解和掌握知识。
三. 教学目标1.知识与技能:使学生掌握平面图形的性质,学会用直尺和圆规作图,理解相交线、平行线、垂直的概念。
2.过程与方法:培养学生观察、思考、动手操作的能力,提高空间想象能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.教学重点:平面图形的性质,相交线、平行线、垂直的概念及性质。
2.教学难点:相交线、平行线、垂直的判断和证明。
五. 教学方法1.情境教学法:通过实物、模型等引导学生直观地认识几何图形。
2.动手操作法:让学生通过实际操作,加深对几何概念和性质的理解。
3.讨论法:引导学生分组讨论,培养学生的合作精神和沟通能力。
4.讲解法:教师针对重难点进行讲解,帮助学生理解和掌握知识。
六. 教学准备1.教具:直尺、圆规、模型、实物等。
2.课件:制作与本章节内容相关的课件,以便进行直观教学。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的几何图形,如教室里的桌子、窗户等,引导学生关注平面图形,激发学生学习兴趣。
2.呈现(10分钟)教师通过课件展示平面图形的性质,如三角形、矩形的性质,引导学生直观地认识和理解。
3.操练(10分钟)教师布置一些实际操作题,如用直尺和圆规作图,让学生动手操作,加深对几何概念的理解。
4.巩固(10分钟)教师针对本节课的重点知识进行提问,检查学生对知识的理解和掌握程度。
七年级上册数学第四章《图形认识》教案
七年级上册数学第四章《图形认识》教案七年级上册数学第四章《图形认识》教案4.1 多姿多彩的图形4.1.1 几何图形一、教学目标1、知识与技能(1)初步了解立体图形和平面图形的概念.(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.2、过程与方法(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.3、情感、态度、价值观(1).形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.二、教学重点、难点:教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.三、教学过程1.创设情境,导入新课.(1)同学们,不知你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你会发现我们生活在一个多姿多彩的图形世界里.引导学生观察08年奥运村模型图,你能从中找到一些你熟悉的图形吗?(2)用幻灯片展示一些实物图片并引导学生观察.从城市宏伟的建筑到江南水乡的小桥流水,从高科技产品到日常小玩意,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的雕塑,从自然界形态各异的动物到北京的申奥标志……图形的`世界是丰富多彩的.2直观感知,识别图形(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.。
2022年人教版七年级上册数学第四章几何图形初步单元教案
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。
华师大版数学七年级上册《 第4章 图形的初步认识 》教学设计
华师大版数学七年级上册《第4章图形的初步认识》教学设计一. 教材分析华东师范大学版数学七年级上册《第4章图形的初步认识》是学生在小学阶段对图形学习的基础上,进一步深化对图形性质和图形变换的理解。
本章主要内容有:图形的平移、旋转,视图,以及相交线和平行线。
这些内容在日常生活和进一步学习数学中都有广泛的应用。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,他们可以通过观察、操作、思考来进一步理解图形的性质和图形变换。
但同时,学生的空间想象力还需要进一步培养,他们对于一些抽象的图形变换的理解可能还存在一定的困难。
三. 教学目标1.了解平移、旋转的概念,能进行简单的图形变换。
2.能通过观察、操作、思考,进一步理解图形的性质。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:图形平移、旋转的性质,视图的概念。
2.教学难点:图形变换的理解和应用,空间想象能力的培养。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考来理解图形的性质和图形变换。
2.利用多媒体辅助教学,提供丰富的图形资源,帮助学生直观地理解图形变换。
3.采用小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.多媒体教学设备。
2.图形素材。
3.练习题。
七. 教学过程1.导入(5分钟)通过展示一些生活中的图形变换,如旋转门、滑滑梯等,引导学生思考:这些现象的本质是什么?它们有什么共同的特点?2.呈现(10分钟)介绍平移、旋转的概念,并通过多媒体展示一些图形的平移、旋转实例,让学生直观地理解这两个概念。
3.操练(10分钟)让学生通过实际操作,尝试进行图形的平移、旋转,并观察、分析平移、旋转前后的图形有什么变化,进一步理解平移、旋转的性质。
4.巩固(10分钟)通过一些练习题,让学生运用所学的平移、旋转知识,解决实际问题,巩固所学内容。
5.拓展(5分钟)引导学生思考:除了平移、旋转,还有哪些图形变换?它们之间有什么联系和区别?6.小结(5分钟)对本节课的主要内容进行小结,强调平移、旋转的性质和应用。
七年级数学上册 第四章《图形初步认识》教案2 (新版)新人教版
⎧⎨⎩⎧⎨⎩图形初步认识活动目标及重难点教学目标 知识与技能1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章全部知识; 2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识; 过程与方法经历相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法 情感、态度、价值观在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验 教学重难点重点是理解本章的知识结构,掌握本章的全部定理和公理; 难点是理解本章的数学思想方法.教具准备量角器、时钟、四棱锥等,及多媒体教学设备和课件。
一、引导学生画出本章的知识结构框图二、具体知识点梳理 (一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形 平面图形:三角形、四边形、圆等.主(正)视图---------从正面看2、几何体的三视图 侧(左、右)视图-----从左(右)边看 俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. (2)能根据三视图描述基本几何体或实物原型. 3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型. 4、点、线、面、体(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形:符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向(2)北(南)偏东(西)方向(3)东(西)北(南)方向四、练习1、下列说法中正确的是()A、延长射线OPB、延长直线CDC、延长线段CDD、反向延长直线CD2、下面是我们制作的正方体的展开图,每个平面内都标注了字母,请根据要求回答问题:(1)和A面所对的会是哪一面?(2)和B面所对的会是哪一面?(3)面E会和哪些面相交?3、两条直线相交有几个交点?三条直线两两相交有几个交点?四条直线两两相交有几个交点?思考:n条直线两两相交有几个交点?4、已知平面内有四个点A、B、C、D,过其中任意两点画直线,最少可画多少条直线,最多可画多少条直线?画出图来.5、已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD的长各为多少?6、已知线段AB=4厘米,延长AB到C,使B C=2AB,取AC的中点P,求PB的长.五、作业设计。
华东师大版七年级数学上册第四章图形的初步认识优秀教案
华东师大版七年级数学上册第四章图形的初步认识优秀教案华东师大版七年级数学上册第四章图形的初步认识优秀教案4.1生活中的立体图形教学目标知识技能目标能把生活中的空间与图形转化为数学问题,初步认识图形的分类.过程性目标1.通过观察,使学生对身边的立体图形有初步的感受;2.提高空间想象力,培养好奇心和求知欲,激发学习几何的热情.教学过程一.创设情境师: 同学们, 不知你们有没有认真地观察过我们生活的周围,如果你认真观察的话,你会发觉我们周围的物体的形状是千姿百态的.其实这些美好的事物,跟我们的数学有很大的联系,因为它包含着许多图形的知识.我们生活在三维的世界中,随时随地看到的和接触到的物体都是立体的.有些物体,像石头、植物等呈现出极不规则的奇形怪状;同时也有许多物体具有较为规则的形状.师: 请同学举出一些生活中的立体图形.比一比谁想出的图形最多〔由学生答复,教师总结〕.生: 橙子、苹果、西瓜、菠萝等;其它,还有人类制造的:中国传统建筑、钟楼、书、蛋筒冰湛淋等等.二.归纳探究师: 请同学认真观察上面的图形,想一想,你能发觉这些物体与以下图中的立体图形的关系吗?请学生答复:比拟一下这些图形,看看这些图形有什么相同的地方,有什么不相同的地方?教师归纳:如图1.图2所表示的立体图形我们把它叫做柱体;图3.图5所表示的立体图形我们把它叫做锥体, 图4所表示的立体图形我们把它叫做球体.图1和图2.图3和图5之间还有肯定的差异.图1表示的图形我们把它叫做圆柱.图2表示的图形叫做棱柱,棱柱按棱数分类又可以分为三棱柱、四棱柱、五棱柱、六棱柱等等〔如以下图〕.图3所表示的图形叫做圆锥,图5表示的图形叫做棱锥.棱锥按棱数分类又可以分为三棱锥、四棱锥、五棱锥、六棱锥等等〔如上图〕.同学们请思考一下,上图中的图形有什么共同的特征吗?请学生自己探讨总结:生: 上图中的立体图形都有一个共同的特征,就是它们的面都是平的.师: 如果一个立体图形的面都是平的,像这样的立体图形,我们把它叫做多面体.三.实践应用写出以下立体图形的名称.〔1〕〔2〕〔3〕〔4〕.(答案)〔1〕四棱柱;〔2〕圆柱;〔3〕长方体;〔4〕圆锥.4.1生活中的立体图形教学目标:知识与技能目标:通过本节课的学习,让学生直观认识规则的立体图形,正确识别各类立体图形。
人教版数学七年级上册第四章《几何图形初步》教学设计
人教版数学七年级上册第四章《几何图形初步》教学设计一. 教材分析《几何图形初步》是人教版数学七年级上册第四章的内容,主要包括平面几何图形的性质和判定,以及几何图形的对称性、中心对称性和旋转对称性。
本章是学生初步接触几何图形的开始,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
通过本章的学习,学生将掌握几何图形的的基本性质和判定方法,为后续的学习打下基础。
二. 学情分析七年级的学生刚刚接触几何图形,对于图形的性质和判定方法可能感到陌生。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出几何图形,并通过观察、操作、思考等活动,逐步理解和掌握几何图形的性质和判定方法。
同时,七年级学生的学习习惯和思维方式还在形成中,因此在教学过程中,需要注重培养学生的学习兴趣和学习方法,引导学生主动参与课堂活动,提高课堂效果。
三. 教学目标1.知识与技能:使学生掌握平面几何图形的性质和判定方法,了解几何图形的对称性、中心对称性和旋转对称性。
2.过程与方法:通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习几何图形的兴趣,培养学生的团队合作意识和创新精神。
四. 教学重难点1.重点:平面几何图形的性质和判定方法,几何图形的对称性、中心对称性和旋转对称性。
2.难点:几何图形的判定方法,对称性的理解和应用。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引导学生从实际中抽象出几何图形,激发学生的学习兴趣。
2.启发式教学法:通过提问、讨论等方式,引导学生主动思考,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组合作,共同探讨几何图形的问题,培养学生的团队合作意识。
六. 教学准备1.教学用具:黑板、粉笔、多媒体设备等。
2.教学素材:几何图形的相关图片、实例等。
3.教学设计:本节课的教学设计,包括导入、呈现、操练、巩固、拓展、小结等环节。
七. 教学过程1.导入(5分钟)通过生活实例和实际问题,引导学生从实际中抽象出几何图形,激发学生的学习兴趣。
2022年人教版七年级数学上册第四章几何图形初步教案 直线、射线、线段(第1课时)
第四章几何图形初步4.2 直线、射线、线段第1课时一、教学目标【知识与技能】1.知道直线的两个基本特征,会用两种方法表示一条直线.2.知道点和直线的两种位置关系,会按照语句画出点和直线位置关系的图形.3.知道两条直线相交及交点的意义,会按照语句画出直线相交的图形.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度与价值观】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】射线,线段的概念及表示法.【教学难点】射线的表示法和直线,射线,线段之间的区别与联系.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规、铅笔。
六、教学过程(一)导入新课同学们,你们注意过吗,建筑工人在砌墙时经常会在墙的两头分别固定两根木桩,然后在木桩之间拉一条细绳,沿着细绳砌砖.这样做有什么道理呢?(出示课件2)(二)探索新知1.师生互动,探究直线、线段、射线的概念教师问1:过一点O可以画几条直线?过两点A,B可以画几条直线?(出示课件4)学生回答:过一点可以画无数条直线;过两点只能画一条直线.教师讲解:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线.教师问2:如果你想将一根木条固定在墙上并使其不能转动,至少需要几个钉子?你知道这样做的依据是什么吗?学生回答:至少需要两个钉子;依据;两点确定一条直线。
教师问3:如图,有哪些方法可以表示下列直线?(出示课件9)师生共同探究:我们可以用一条直线上的两点来表示这条直线.譬如,直线上一点是点C,直线上另一点是点E,这条直线可以记作直线CE或者直线EC.需要强调的是,点必须用大写字母表示,所以这里的A、B都是大写字母.教师问4:表示直线还有第二种方法.如何表示呢?师生共同解答如下:在这条直线的旁边写上小写字母m,这条直线可以记作直线m。
七年级数学上册第四章 几何图形初步教案
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形【教学目标】1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.一、自主预习阅读教材P114~116,完成下列内容.1.几何图形包括平面图形和立体图形.2.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.3.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.二、例题精讲知识点1认识平面图形例1(教材P115“思考”)图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.解:答案见图中连线.【跟踪训练1】(《名校课堂》4.1.1第1课时习题)请写出图中的立体图形的名称.(1)(2)(3)(4)(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.知识点2认识平面图形例2(教材P116“思考”) 如图,下列各图中包含哪些简单平面图形?请再举出一些平面图形的例子.解:第①个图形包含长方形、五角星;第②个图形包含圆;第③个图形包含正方形、长方形、三角形、圆;第④个图形包含正方形、三角形;第⑤个图形包含长方形、正方形、三角形;第⑥个图形包含圆、长方形、正方形、梯形.举例:【跟踪训练2】(《名校课堂》4.1.1第1课时习题)下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.三、巩固训练1.下面几种几何图形中,属于平面图形的是(A)①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥2.下面的几何体中,属于棱柱的有(C)A.1个B.2个C.3个D.4个3.如图是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形第3题图第4题图4.如图所示,电镀螺杆呈现出了两个几何体的组合,则这两个几何体分别是圆柱体,六棱柱.5.观察图中的立体图形,分别写出它们的名称.,球),圆锥),正方体),圆柱体),长方体) 四、课堂小结1.知道常见的立体图形,平面图形.2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形【教学目标】1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.一、自主预习阅读教材P117~118,思完成列内容.1.从三个方向看立体图形包括哪三种?解:从三个方向看立体图形:从正面看,从左面看,从上面看.2.什么是立体图形的展开图?解:将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.二、例题精讲知识点1从不同方向观察立体图形例1(教材P117“探究”)如图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?解:从正面看从左面看从上面看【跟踪训练1】(《名校课堂》4.1.1第2课时习题)下列基本几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2立体图形的展开与折叠例2(教材P118“探究”)你还记得长方体和圆柱的展开图吗?下图是一些立体图形的展开图,用它们能围成什么样的立体图形?把它们画在一张硬纸片上,剪下来,折叠、粘贴,看看得到的图形和你想象的是否相同.解:第一个图形能围成正方体;第二个图形能围成圆柱(含上、下底面);第三个图形能围成三棱柱(含上、下底面);第四个图形能围成圆锥(含底面);第五个图形能围成四棱柱(或长方体).【跟踪训练2】(《名校课堂》4.1.1第2课时习题)下列图形中,不可以作为一个正方体的展开图的是(C)A B C D三、巩固训练1.如图是书桌上放的一本书,则从上面看得到的平面图形是(A)A B C D2.在下面的四个几何体中,从左面和正面看得到的图形不相同的几何体是(B)A B C D3.下面形状的四张纸板,按图中线经过折叠可以围成一个三棱柱的是(C)A B C D4.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中,和“值”字相对的字是(A)A.记B.观C.心D.间5.请分别指出与图中表面展开图相应的立体图形的名称.(1)(2)(3)(4)解:(1)三棱柱.(2)圆柱.(3)四棱锥.(4)圆锥.四、课堂小结1.知道常见立体图形从三个方向看得到的图形.2.学会简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会动手实践,与同学合作.4.不是所有立体图形都有平面展开图.4.1.2点、线、面、体【教学目标】1.了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面.2.了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.3.激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.一、自主预习阅读教材P119~120,完成下列问题.1.几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.2.体是由面组成,面与面相交成线,线与线相交成点.3.点没有大小之分,线没有粗细之分.二、例题精讲知识点1点、线、面、体例1(《名校课堂》4.1.2习题)如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.【跟踪训练1】给出下列结论:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个面是平的,1个面是曲的;③球仅由1个面围成,这个面是曲的;④长方体由6个面围成,这6个面都是平的.其中正确的是(B)A.①②③B.②③④C.①③④D.①②④知识点2由平面图形旋转而成的立体图形例2(教材P120练习T2)如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,把有对应关系的平面图形与立体图形连接起来.解:答案见图中连线.【跟踪训练2】下列图形绕着它的一边所在的直线旋转一周,能得到圆柱的是(B)A.三角形B.长方形C.五边形D.半圆三、巩固训练1.笔尖在纸上写字说明点动成线;车轮旋转时看起来像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.2.如图的几何体有4个面,6条棱,4个顶点.3.围成下面这些立体图形的各个面中,哪些面是平的,哪些面是曲的?解:球的表面、圆柱和圆锥的侧面都是曲面.其余的面都是平面.4.用第一行的平面图形绕轴旋转一周,便得到第二行中的某个几何体,用线连一连.解:如图.四、课堂小结1.多姿多彩的图形是由点、线、面、体组成.点是构成图形的基本元素.2.点无大小,线有直线和曲线,面有平面和曲面.3.体由面围成,面与面相交成线,线与线相交成点.4.点动成线,线动成面,面动成体.4.2直线、射线、线段第1课时直线、射线、线段【教学目标】1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质.2.会用字母表示直线、射线、线段,会根据语言描述画出图形.掌握三者的联系和区别.3.培养学生的基本画图能力.一、自主预习阅读教材P125~126,回忆直线、射线、线段的一些基本概念和基本知识,并认真总结下列问题,体会直线的公理.1.直线、射线、线段的联系与区别.图形表示方法端点个数延伸方向线段线段AB或线段a 两个不向任何一方延伸射线射线AB或射线a 一个向一方无限延伸直线直线AB或直线a 0 向两方无限延伸2.直线公理:两点确定一条直线.【点拨】(1)表示线段、射线、直线的时候,都要在字母前注明“线段”“射线”“直线”.(2)用两个大写字母表示直线或线段时,两个字母可以交换位置,表示射线的两个大写字母不能交换位置,必须把端点字母放在前面.二、例题精讲例1(教材P126练习T2)按下列语句画出图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a,b,c;(4)线段AB,CD相交于点B.解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:【跟踪训练】(《名校课堂》4.2第1课时习题)下列表示方法正确的是(B)①②③④A.①②B.②④C.③④D.①④三、巩固训练1.下列语句:①点a在直线l上;②直线的一半就是射线;③延长直线AB到C;④射线OA与射线AO是同一条射线.其中正确的语句有(A)A.0句B.1句C.2句 D.3句2.如图给出的直线、射线、线段,根据各自的性质,能相交的是(D)A B C D3.下列事实可以用“经过两点有且只有一条直线”来说明的是(B)A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线4.线段有2个端点,射线有1个端点,直线没有端点.5.如图,图中共有6条线段,8条射线.6.平面上有三点A、B、C,①连接其中任意两点,共可得线段3条;②经过任意两点画直线,共可得到直线1条或3条.7.如图,已知平面上四点A、B、C、D.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.解:略四、课堂小结1.掌握直线、射线、线段的表示方法.2.理解直线、射线、线段的联系和区别. 3.知道直线的性质.4.经过两点有一条直线,并且只有一条直线.第2课时 比较线段的长短及线段的性质【教学目标】1.掌握线段比较的两种方法,会表示线段的和差.2.理解线段中点的意义及表示方法,理解两点的距离的意义. 3.会运用“两点之间,线段最短”的性质解决生活中的实际问题. 一、自主预习阅读教材P126~129,完成下列内容.1.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图. 2.点M 把线段AB 分成相等的两条线段AM 与MB ,点M 叫做线段AB 的中点. 3.两点的所有连线中,线段最短,简单说成:两点之间,线段最短. 4.连接两点间的线段的长度,叫做这两点的距离. 二、例题精讲知识点1 线段的中点及等分点例1 (《名校课堂》4.2第2课时习题)如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长; (2)若AC =30,BD =10,求AB 的长. 解:(1)因为点D 是线段BC 的中点, 所以CD =12BC.因为AB =10,AC =6, 所以BC =AB -AC =10-6=4. 所以CD =12BC =2.(2)因为点D 是线段BC 的中点, 所以BC =2BD. 因为BD =10, 所以BC =2×10=20. 因为AB =AC +BC , 所以AB =30+20=50.【跟踪训练1】 如图,在直线上顺次取A ,B ,C 三点,使AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,求线段OB 的长度.解:因为AB =4 cm ,BC =3 cm , 所以AC =AB +BC =7 cm. 因为点O 是线段AC 的中点, 所以OC =12AC =3.5 cm.所以OB =OC -BC =3.5-3=0.5(cm). 知识点2 线段的性质例2 如图,这是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出,并说明你的理由.解:如图所示,连接AB.理由:两点的所有连线中,线段最短.【跟踪训练2】 如图,平面上有A 、B 、C 、D 四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P 的位置,使它与4个村庄的距离之和最小.解:连接AC 、BD 的交点即为P 点的位置,如图. 三、巩固训练1.下列说法正确的是(D)A .连接两点的线段就叫做两点间的距离B .在所有连接两点的线中直线一定最短C .线段AB 就是表示点A 到点B 的距离D .线段AB 的长度是点A 到点B 的距离 2.如图,下列关系式中与图不符合的式子是(C)A .AD -CD =AB +BC B .AC -BC =AD -BD C .AC -BC =AC +BD D .AD -AC =BD -BC3.为比较两条线段AB 与CD 的大小,小明将点A 与点C 重合使两条线段在一条直线上,点B 在CD 的延长线上,则(B)A.AB<CD B.AB>CDC.AB=CD D.以上都有可能4.如图,从A到B有4条路径,最短的路径是③,理由是(D)A.因为③是直的B.两点确定一条直线C.两点间距离的定义D.两点之间线段最短5.已知线段AB=6,若C为AB的中点,则AC=3.6.若线段AB=5 cm,BC=2 cm,且A,B,C三点在同一条直线上,则点C可能在AB上,也可能在AB的延长线上,则AC的长等于3__cm或7__cm.7.如图,已知线段a和b,且a>b,用直尺和圆规作一条线段,使它等于2a+b.解:图略.8.已知,如图,AB=16 cm,C是AB上一点,且AC=10 cm,D是AC的中点,E是BC的中点,求线段DE 的长.解:因为D是AC的中点,AC=10 cm,所以DC=12AC=5 cm.又因为AB=16 cm,所以BC=AB-AC=6 cm.因为E是BC的中点,所以CE=12BC=3 cm.所以DE=DC+CE=8 cm.四、课堂小结线段⎩⎪⎨⎪⎧线段的大小比较⎩⎪⎨⎪⎧度量法叠合法线段的中点线段的性质:两点之间,线段最短4.3角4.3.1角【教学目标】1.理解角的两种定义,识别角的符号.2.知道角的几种表示方法,并能够正确表示.3.掌握角的度量单位及度、分、秒的进位制,能够熟练的进行转换.一、自主预习阅读教材P132,知道角的定义、角的表示方法、周角、平角,完成下列内容.1.角是由两条具有公共端点的射线组成的图形,角也可以看作一条射线绕端点旋转而形成的图形.2.如果一个角的终边旋转到与始边成一条直线时,所成的角叫做平角.继续旋转,当终边旋转到与始边重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.(1)用三个大写字母表示;(2)用表示角的顶点的字母表示;(3)用一个数字或一个希腊字母(α、β、γ、θ)表示.(4)度、分、秒是角的基本度量单位:1°的角等分成60份就是1′的角;1′的角等分成60份就是1″的角.角度制:1°=60′,1′=(160)°,1′=60″,1″=(160)′,1°=3__600″.【点拨】度、分、秒是60进制的.二、例题精讲知识点1角的定义和表示方法例1(《名校课堂》4.3.1习题)如图,∠1,∠2表示的角可分别用大写字母表示为∠ABC,∠BCN;∠A也可表示为∠BAC,还可以表示为∠MAN.【跟踪训练1】如图,能用∠1,∠ACB ,∠C三种方法表示同一个角的是(C)A B C D知识点2角的度量例2(教材P134练习T2)(1)35°等于多少分?等于多少秒?(2)38°15′和38.15°相等吗?如不相等,哪一个大?解:(1)35°=35×60=2 100×60=126 000秒.(2)38.15°=38.15×60=2 289分.38°15′=38×60+15=2 295分.所以38°15′>38.15°.【跟踪训练2】已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A)A.∠1=∠3 B.∠1=∠2C.∠1<∠2 D.∠2=∠3三、巩固训练1.下列关于角的说法正确的个数是(A)①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边的延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1 B.2 C.3 D.42.若∠A=20°20′,∠B=20.20°,∠C =20.5°,则下面的结论正确的是(D)A.∠A=∠B B.∠A=∠CC.∠C=∠B D.∠A,∠B,∠C两两不等3.如图,能用一个字母表示的角有∠B,用三个大写字母表示∠1为∠MCB,∠2为∠AMC.第3题图第4题图4.如图,A,O,D三点在一条直线上,写出图中小于平角的角:∠AOC,∠AOE,∠COE,∠COD,∠EOD.5.如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于135°.(1)以B 为顶点的角有几个?把它们表示出来; (2)指出以射线BA 为边的角;(3)以D 为顶点,DC 为一边的锐角有几个?分别表示出来.解:(1)以B 为顶点的角有3个,分别是∠ABD 、∠ABC 、∠DBC. (2)以射线BA 为边的角有2个,分别是∠ABD 和∠ABC. (3)以D 为顶点,DC 为一边的锐角有1个,是∠CDE.7.如图,在∠AOB 的内部,从顶点O 引出1条射线,此图中共有几个角?如果引出2条?引出3条呢?依此规律,引出n 条可得到多少个角?解:从顶点O 引出1条射线,图中共有3个角;引出2条射线,图中共有6个角;引出3条射线,图中共有10个角;引出n 条射线,可得到(n +1)(n +2)2个角.四、课堂小结 角⎩⎪⎨⎪⎧角的概念角的表示方法角的度量与换算4.3.2 角的比较与运算【教学目标】1.会用量角器度量角,并会比较两个角的大小. 2.会根据图形判断角的和差倍分. 3.记住角平分线的定义. 一、自主预习阅读教材P134~136,完成下列内容.1.比较两个角的大小,我们可以用量角器量出角的度数,然后比较它们的大小,也可以把它们叠合在一起比较它们的大小,这两种方法分别叫度量法和叠合法.2.角平分线的定义:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.如:如图,若OB 是∠AOC 的平分线,则∠AOC =2∠AOB =2∠BOC ,∠AOB =∠BOC =12∠AOC .二、例题精讲知识点1 角的大小比较例1 (教材补充例题)如图,点A ,O ,B 在一条直线上,OD 平分∠AOB ,回答下列问题:(1)试比较∠AOB 、∠AOD 、∠AOE 、∠AOC 的大小; (2)找出图中的三个等量关系.解:(1)因为点A ,O ,B 在一条直线上, 所以∠AOB 是平角. 因为OD 平分∠AOB , 所以∠AOD =12∠AOB =90°.由图知∠AOC 是钝角、∠AOD 是直角、∠AOE 是锐角, 所以∠AOB >∠AOC >∠AOD >∠AOE. (2)等量关系有:∠COE =∠EOD +∠COD , ∠AOB =2∠AOD =∠AOE +∠BOE , ∠DOB =∠COD +∠BOC. 【点拨】 角的大小比较的方法:(1)如果已知角是锐角、直角、周角、平角、钝角,就可以直接由它们之间的关系比较大小; (2)可以通过量角器量角度来比较大小;(3)可以根据各角在同一图中的位置关系比较角的大小.【跟踪训练1】 在∠AOB 的内部任取一点C ,作射线OC ,则一定存在(A) A .∠AOB >∠AOC B .∠AOB <∠BOC C .∠BOC >∠AOC D .∠AOC >∠BOC 知识点2 角度的运算 例2 计算: (1)90°-36°12′15″ (2)32°17′53″+42°42′7″ (3)25°12′35″×5;(4)53°÷6.解:(1)90°-36°12′15″=53°47′45″. (2)32°17′53″+42°42′7″=74°59′60″=75°.(3)25°12′35″×5=125°60′175″=126°2′55″. (4)53°÷6=8°50′.【点拨】 度、分、秒的运算方法:(1)在进行角度的加法运算时,先算秒,再算分,最后算度,满60″时,把60″化为1′,满60′时,把60′化为1°; (2)进行角度的减法时,不够减,借1°化为60′,借1′化为60″;(3)关于度、分、秒的乘法运算,把度、分、秒分别乘乘数,满60″时,把60″化为1′,满60′时,把60′化为1°; (4)关于度、分、秒的除法运算,把度的余数化成分或把分的余数化为秒后再进行除法运算. 知识点3 与角平分线有关的计算例3 如图,OC 是∠AOD 的平分线,OE 是∠DOB 的平分线. (1)如果∠AOB =130°,那么∠COE 是多少度?(2)在(1)的条件下,如果∠COD =20°,那么∠BOE 是多少度?解:(1)因为OC 是∠AOD 的平分线, 所以∠COD =12∠AOD.因为OE 是∠BOD 的平分线, 所以∠DOE =12∠BOD.所以∠COD +∠DOE =12∠AOD +12∠BOD =12(∠AOD +∠BOD).因为∠COD +∠DOE =∠COE ,∠AOD +∠BOD =∠AOB , 所以∠COE =12∠AOB.因为∠AOB =130゚, 所以∠COE =65°.(2)因为∠COE =65°,∠COD =20°, 所以∠DOE =∠COE -∠COD =45°. 又因为OE 平分∠DOB , 所以∠BOE =∠DOE =45°. 【跟踪训练2】如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,则∠MON 等于135°.三、巩固训练1.射线OC在∠AOB内部,下列四个选项不能判定OC是∠AOB的平分线的是(C)A.∠AOB=2∠AOC B.∠AOC=12∠AOBC.∠AOC+∠BOC=∠AOB D.∠AOC=∠BOC2.如图,在横线上填上适当的角:(1)∠BOD=∠BOC+∠COD=∠AOD-∠AOB;(2)∠AOB=∠AOC-∠COB=∠AOD-∠BOD;(3)∠BOC=∠AOC-∠AOB=∠AOD-∠COD-∠AOB.第2题图第3题图3.如图,若OC平分∠AOB,∠AOB=60°,则∠1=30°.4.已知∠AOB=80°,∠AOC=40°,则∠BOC的度数为120°或40°.5.计算:(1)15°37′+42°51′;(2)90°-68°17′50″;(3)5°26′×3; (4)178°53′÷5.解:(1)原式=58°28′.(2)原式=21°42′10″.(3)原式=16°18′.(4)原式=35°46′36″.6.如图,已知O是直线CD上的点,OA平分∠BOC,∠AOC=35°,求∠BOD的度数.解:因为O是直线CD上的点,OA平分∠BOC,∠AOC=35°,所以∠BOC=2∠AOC=70°.所以∠BOD=180°-∠BOC=110°.四、课堂小结角的大小比较和运算⎩⎪⎨⎪⎧角的大小比较⎩⎪⎨⎪⎧度量法叠合法角的运算角平分线4.3.3 余角和补角【教学目标】1.了解两个角互余或互补的意义.2.掌握同角或等角的余角相等,同角或等角的补角相等. 3.理解方位角的概念,会用角描述方向,解决实际问题. 一、自主预习阅读教材P137~138,完成下列内容.1.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.一般地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角. 3.性质:等角(同角)的余角相等,等角(同角)的补角相等. 4.判断题:(1)90度的角叫余角,180度的角叫补角.(×)(2)若∠1+∠2+∠3=90°,则∠1,∠2,∠3互为余角.(×) (3)如果一个角有补角,那么这个角一定是钝角.(×) (4)互补的两个角不可能相等.(×) (5)钝角没有余角,但一定有补角.(√)(6)互余的两个角一定都是锐角,两个锐角一定互余.(×) (7)如果∠A =25°,∠B =75°,那么∠A 与∠B 互为余角.(×) (8)如果∠A =x°,∠B =(90-x)°,那么∠A 与∠B 互余.(√) 二、例题精讲 知识点1 余角、补角例1 如图,点O 在直线AB 上,OD 平分∠COA ,OE 平分∠COB.(1)∠COB+∠AOC=180°,∠EOD=90°;(2)图中互余的角有4对,互补的角有5对.【跟踪训练】1.若∠1+∠2=180°,∠2+∠3=180°,则∠1=∠3.理由是同角的补角相等.2.已知一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°-x,余角为90°-x,所以3(90°-x)=180°-x,整理,得2x=90°,解得x=45°,即这个角的度数为45°.知识点2方位角例2如图1,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上.同时,在它北偏东40°、南偏西10°、西北(即北偏西45°)方向上又分别发现了客轮B、货轮C和海岛D.仿照表示灯塔A方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.图1图2画法:以点O为顶点,表示正北方向的射线为角的一边,画40°的角,使它的另一边OB落在东与北之间.射线OB 的方向就是北偏东40°(图2),即客轮B所在的方向.请你在图2上画出表示货轮C和海岛D方向的射线.解:略.【跟踪训练】3.(《名校课堂》习题)如图,根据点A,B,C,D,E在图中的位置填空.(1)射线OA 表示东北方向; (2)射线OB 表示北偏西30°;(3)射线OC 表示南偏西60°;(4)射线OD 表示正南方向;(5)射线OE 表示南偏东50°.三、巩固训练1.若∠1=40°,则∠1的余角的度数是(C)A .20°B .40°C .50°D .60°2.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为(C)A .69°B .111°C .141°D .159° 3.下列结论正确的个数为(C)①互余且相等的两个角是45°;②锐角的补角是钝角;③锐角没有余角,钝角没有补角;④两个钝角不可能互补.A .1B .2C .3D .44.如图,OD 平分∠BOC ,OE 平分∠AOC.若∠BOC =70°,∠AOC =50°.(1)求出∠AOB 及其补角的度数;(2)请求出∠DOC 和∠AOE 的度数,并判断∠DOE 与∠AOB 是否互补,并说明理由.解:(1)∠AOB =∠BOC +∠AOC =70°+50°=120°,其补角为180°-∠AOB =180°-120°=60°.(2)∠DOC =12∠BOC =35°,∠AOE =12∠AOC =25°.∠DOE 与∠AOB 互补.理由:∠DOE =∠DOC +∠COE =35°+25°=60°,∠DOE +∠AOB =60°+120°=180°,故∠DOE 与∠AOB 互补.四、课堂小结1.余角、补角的概念:(1)和为90°的两个角互为余角;(2)和为180°的两个角互为补角.2.余角、补角的性质:(1)等角(同角)的余角相等;(2)等角(同角)的补角相等.。
人教版数学七年级上册第四章图形认识初步复习优秀教学案例
(三)学生小组讨论
1.将学生分成若干小组,每组提供一些实际问题或图形,让学生讨论并尝试解决。
2.引导学生运用所学知识进行分析、讨论和交流,培养他们的团队协作能力和沟通能力。
3.教师巡回指导,解答学生的疑问,给予个别化的帮助和指导。
(四)总结归纳
1.邀请学生代表汇报小组讨论的结果,总结他们在解决问题过程中遇到的主要问题和解决方法。
3.小组合作学习:我将学生分成若干小组,鼓励他们相互讨论、交流和合作,共同解决问题。这种教学方式不仅能够培养学生的团队协作能力和沟通能力,还能够激发他们的学习动力和自信心。
4.反思与评价:在教学过程中,我引导学生对自己的学习过程进行反思,总结学习经验和方法,提高自我认知能力。同时,组织学生进行互评和自评,培养他们的评价能力和批判性思维。这种教学方式能够帮助学生更好地掌握知识,提高他们的学习效果。
3.教师对学生的学习情况进行全面评价,关注他们的进步和优点,激发他们的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1.利用图片或实物模型展示各种几何图形,如线段、射线、直线、角等,引导学生观察和描述这些图形的特征。
2.提出问题:“你们已经学习了哪些几何概念和性质?它们之间有什么联系?”让学生回顾已学知识,为新课的学习做好铺垫。
3.通过本章节的学习,使学生能够形成积极的情感态度,树立自信心,培养良好的学习习惯和团队合作精神。
三、教学策略
(一)情景创设
1.利用实物模型、图片等教学资源,为学生提供丰富的几何图形实例,激他们的学习兴趣和空间想象力。
人教版数学七年级上册第四章几何图形初步(教案)
3.培养学生的逻辑思维和推理能力,能够运用所学几何知识进行严密的论证和解决问题。
4.培养学生的创新意识和实践能力,通过平面图形的密铺等实际应用,激发学生将几何知识应用于现实生活的兴趣,提高解决实际问题的能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解线段、射线、直线等基本概念。线段是有两个端点的有限长度的部分,射线是一个端点出发无限延伸的部分,直线则是无端点无限延伸的部分。它们是构成各种几何图形的基础,也是我们研究几何学的重要起点。
2.案例分析:接下来,我们来看一个具体的案例。比如,我们教室的黑板边缘可以看作是一条直线,而黑板擦则可以看作是一个线段。这些实际例子能帮助我们更好地理解几何图形的概念。
-多边形的内角和与外角和定理:理解并掌握多边形内角和与外角和的计算方法,能够应用于实际计算。
-举例:三角形的内角和为180度,外角和为360度;四边形的内角和为360度,外角和为360度。
2.教学难点
-线段、射线、直线的区分与应用:学生容易混淆线段、射线、直线的概念,需通过实例讲解和练习加强理解。
-举例:线段AB与射线AB的区别在于射线无限延伸,而线段有限定长度。
3.重点难点解析:在讲授过程中,我会特别强调线段、射线、直线的区别和多边形的内角和与外角和的计算。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与几何图形相关的实际问题,如三角形和四边形的性质和应用。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和量角器测量角的度数,或用几何图形拼图来理解平面图形的密铺。
人教版七年级数学上册《 第四章 几何图形初步 》教案
人教版七年级数学上册《第四章几何图形初步》教案一. 教材分析《第四章几何图形初步》是人教版七年级数学上册的一章重要内容,主要介绍了平面几何图形的性质和分类,包括线段、角、三角形、四边形等基本几何图形的性质和判定。
本章内容是学生进一步学习几何的基础,对于培养学生的空间观念和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于图形的认知也有一定的了解。
但是,学生对于几何图形的性质和分类还不够清晰,对于证明和推理的能力还有待提高。
因此,在教学过程中,需要注重引导学生从直观到抽象的思维过程,培养学生的空间想象能力和逻辑推理能力。
三. 教学目标1.了解和掌握基本几何图形的性质和分类。
2.能够运用几何知识解决一些实际问题。
3.培养学生的空间观念和逻辑思维能力。
四. 教学重难点1.重点:基本几何图形的性质和分类。
2.难点:对于几何图形的证明和推理。
五. 教学方法1.情境教学法:通过实际问题,引导学生思考和探索,激发学生的学习兴趣。
2.直观教学法:通过实物模型和图形,帮助学生直观地理解几何图形的性质。
3.推理教学法:引导学生运用逻辑推理的方法,证明几何图形的性质。
六. 教学准备1.准备相关的实物模型和图形,如线段、角、三角形等。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量线段长度、计算角度等,引导学生思考和探索,激发学生的学习兴趣。
2.呈现(10分钟)教师通过实物模型和图形,向学生介绍线段、角、三角形等基本几何图形的性质。
引导学生通过观察和操作,发现和总结几何图形的性质。
3.操练(10分钟)教师给出一些练习题,让学生运用所学的几何知识进行解答。
教师可以通过多媒体教学设备,展示学生的解答过程,并进行讲解和指导。
4.巩固(10分钟)教师通过一些实际问题,让学生运用所学的几何知识进行解决。
教师可以引导学生进行小组讨论和交流,帮助学生巩固所学的知识。
华师版七年级数学上册(HS)教案 第4章 图形的初步认识 角
4.6 角1. 角1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量单位:度、分、秒,及它们之间的换算关系,并会进行简单的换算. (重、难点)一、情境导入观察了下面实物,你发现这些实物给我们共同的形象是什么?二、合作探究探究点一:角的定义及表示方法【类型一】角的定义下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1个 B.2个 C.3个 D.4个解析:①角是由有公共端点的两条射线组成的图形,错误;②角的大小与开口大小有关,角的边是射线,没有长短之分,错误;③角的边是射线,不能延长,错误;④角可以看作由一条射线绕着它的端点旋转而形成的图形,说法正确.所以只有④正确.故选A.方法总结:本题主要是对角的定义的考查,正确理解角的定义是解题的关键:有公共端点的两条射线组成的图形叫做角,需要熟练掌握.【类型二】角的表示方法下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( )A. B. C.D.解析:在角的顶点处有多个角时,用一个字母表示这个角,这种方法是错误的.所以A、C、D错误,故选B.方法总结:角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.解题时要善于排除一些似是而非的说法的干扰,选出能准确描述“角”的说法.用三个大写字母表示角,表示角顶点的字母在中间.【类型三】判断角的数量如图所示,在∠AOB的内部有3条射线,则图中角的个数为( )A .10B .15C .5D .20解析:可以根据图形依次数出组成角的个数;或者根据公式求图中角的个数是:12×5×(5-1)=10.故选A. 方法总结:若从一点发出n 条射线,则构成12n(n -1)个角. 探究点二:角的度量(1)用度、分、秒表示48.26°;(2)用度表示37°24′36″.解析:(1)度、分、秒是常用的角的度量单位.根据1度=60分,即1°=60′,1分=60秒,即1′=60″把大单位化成小单位乘以60即可;(2)根据度分秒之间60进制的关系计算.解:(1)48.26°=48°+0.26×60′=48°15′+0.6×60″=48°15′36″;(2)根据1°=60′,1′=60″得36″÷60=0.6′,24.6′÷60=0.41°,所以37°24′36″用度来表示为37.41°.方法总结:用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位,乘以进率;而小单位化大单位要除以进率.探究点三:方位角M地是海上观测站,从M地发现两艘船A、B的方位如图所示,下列说法中正确的是( )A.船A在M的南偏东30°方向B.船A在M的南偏西30°方向C.船B在M的北偏东40°方向D.船B在M的北偏东50°方向解析:船A在M的南偏西90°-30°=60°方向,故A、B选项错误;船B在M的北偏东90°-50°=40°方向,故C正确,D错误.故选C.方法总结:用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.三、板书设计1.角的概念(1)有公共端点; (2)两条射线.2.角的表示方法(1)三个大写字母,端点字母在中间;(2)一个大写字母;(3)数字或希腊字母.3.度、分、秒的换算1°=60′,1′=60″.4.方位角本节的教学从学生熟悉的实物出发,点出课题,引导学生明确角的初步概念.课中给学生提供了主动探索的时间、空间、能让学生表述的要让学生自己去表述,能让学生总结的要让学生自己推导出结论,能让学生思考的要让学生自己去思考,能让学生观察的要让学生自己去观察.有针对性的设计例题、习题,从而完成教学目标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章图形认识初步4.1.1 几何图形(1)主备人:吕惠洁审核人:张延峰授课时间:教学内容:几何图形(1)课时:1学习目标:1.观察生活中的实物或图片,认识以生活中的事物为原型的几何图形;认识一些简单几何体的基本特性,能识别这些简单几何体.2.能由实物形状想象出几何图形,由几何图形想象出实物形状;初步理解立体图形与平面图形.学习重点:识别简单几何体.学习难点:从具体事物中抽象出几何图形.教学过程:一、自学指导:1.阅读课本P115-P118;2.尝试完成教材P118的两组思考的问题;小组内交流展示.3.观察P115本章的章前图:(1)知道这是什么地方吗?你对它了解多少?(2)你能从中找到我们熟悉的图形吗?找找看.二、自学检测:1.观察P116的9张多姿多彩的图片,你能从中看出哪些熟悉的几何图形,与同学交流你观察到的图形.【老师提示】:对于一个物体,如果我们考虑它的颜色、材料和重量等,而只考虑它的形状(如方的、圆的)、大小(如长度、面积、体积)和位置(如平行、垂直、相交),所得到的图形就称为几何图形.如:我们学习过的长(正)方体、圆柱(锥)体、长(正)方形、圆、三角形、四边形等都是几何图形.2.立体图形:各部分不都在同一平面内的图形,叫做立体图形.①长方体、正方体、圆柱、圆锥、球等都是立体图形,棱柱、棱锥也是常见的立体图形.找一找生活中有哪些物体的形状类似于这些立体图形?(小组交流)②观察P117图4.1-3,你能由实物想到几何图形及其形状吗?③完成P118思考的问题(上),并与你的同学交流.【老师提示】:常见..的立体图形大致分为:柱体(圆柱、棱柱)、锥体(圆锥、棱锥)、球体三类.3.平面图形:各部分都在同一平面内的图形,叫做平面图形.①长方形、正方形、三角形、四边形、圆等都是平面图形.找一找生活中的平面图形,与同学交流.②完成P118思考的问题(下)4.立体图形与平面图形是两类不同的几何图形,但他们是互相联系的.任何一个立体图形图形是由一个或几个平面图形围成的.看看下面的几个立体图形是由怎样的平面图形围成的?5.下面都是生活中的物体:粉笔盒、茶杯、文具盒、砖、铅垂仪、乒乓球、黑板面.你能说出类似于这些物体的几何图形吗?三、学习小结:本节课你学会了什么?四、当堂检测:1.P119练习题.2.用两条线段、两个三角形、两个圆拼成图案.试着画几个,并取一个恰当的名字.机器人两盏电灯稻草人五、作业:P123习题4.1第1、2、3、7、8题.(有条件的同学可准备10个正方体形状的积木,下课时备用)板书:反思4.1.1 几何图形(2)主备人:吕惠洁审核人:张延峰授课时间:教学内容:几何图形(2)课时:1学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.一、自学指导:1.阅读课本P1192.尝试完成教材P120练习第1题;小组内交流展示.3.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?二、自学检测:下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.三:当堂检测1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理.3.P120练习第1题.三、学习小结:四、作业:P123习题4.1第4、9、10、13题.板书:反思4.1.2 点、线、面、体主备人:吕惠洁审核人:张延峰授课时间:教学内容:点、线、面、体课时:1学习目标:1.认识立体图形和它的展开图,体验平面图形和立体图形相互转换的过程.2.通过实例,认识点、线、面、体的几何特征,感受它们之间的关系.学习重点:1.了解基本几何体与其展开图之间的关系.2.认识点、线、面、体的几何特征.学习难点:正确判断一个平面图形能否可以折叠为立体图形.一、自学指导:1.阅读课本P120—P1222.尝试完成教材P121练习第2题,P122练习第1、2题;小组内交流展示.二、自学检测:1.立体图形是由平面图形围成的.观察你身边的长方体形状的包装盒,看一看它有几个面,每个面分别是怎样的平面图形,给每个面作上记号(如前、后等).右边是一个圆柱体,想一想它有几个面?2.把你刚才观察用的长方体形状的包装盒沿它的某几棱剪开铺平,观察展开后的平面图形形状,再观察你作上记号,看看它们之间有怎样的位置关系.【老师提示】①剪开之前最好先把它的包装口用胶水粘好.②不用把棱全部都剪开,只要能铺平就行了.3.再找几个长方体形状的包装盒,沿与上次不一样的方向剪开铺平,看一看你展开后的平面图形与上次展开后的平面图形是否有所不同?你能得出几种不同形状的平面展开图.4.观察一个长方体,面与面相交的地方形成了____,线与线相交的地方形成了___.5.长方体、圆柱体、球、圆锥等都是几何体.几何体也简称体.(1)包围着体的是面.面分为平面和曲面两种.如图的圆锥体有两个面,一个是平面,另一个是曲面.如图的六棱柱有_____个面,分别都是什么面?如图的圆柱有_______个面,分别都是什么面?(2)面与面相交的地方形成线.线分为直线和曲线两种.圆锥体的两个面相交形成_______线.(3)线与线相交形成点.6.(1)如果把笔尖可能看作一个点,笔尖在纸上运动会形成什么_______.如果把星星看作一个点,夜空中流星形成什么________.(2)我们可以把汽车的雨刷看成一条线,汽车的雨刷在挡风玻璃上运动形成____. 生活中还有这样的例子吗?由此我们可以得出:点动成_____,线动成______.想一想,面动会成什么?生活中有没有这样的例子?【老师提示】:几何图形都是由点、线、面、体组成的,点是构成图形的最基本元素. 三、学习小结:四、当堂检测:1.P120的探究.(小组合作.先判断是什么样的立体图形,后动手实验验证) 2.P121练习第2题. 3.P122练习第1、2题.4.一个立方体的六个面上分别标有1、2、3、4、5、6中的一个数字,下面是这个立方体的三种不同放法,则三种放法中各个立方体下面的数字分别是____、___、____.左左左下下上上上下242625516四、作业:P123习题4.1第5、6、11、12、14题.板书:正方体展开图,共11种图形。
反思4.2 直线、射线、线段(1)主备人:吕惠洁 审核人: 张延峰 授课时间: 教学内容: 直线、射线、线段(1) 课时:1学习目标:1.了解直线、射线、线段的联系和区别,掌握它们的表示方法. 2.了解两点确定一条直线的性质,并能初步应用.3.会用几何语句描述几何图形,能根据几何语句画出相应的几何图形. 学习重点:1.直线、射线、线段的表示方法.2.建立几何语句与几何图形之间的联系. 学习难点:建立几何语句与几何图形之间的联系. 一、自学指导:1.阅读课本P128-P129;2.尝试完成教材P129练习题(小组内交流展示).二、自主探究:1.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级10个班,问至少需要买几颗钉子?你能帮总务处的老师算一算吗?2.P128的探究.(1)在墙上固定一根木条,至少要几个钉子?动手试一试. (2)动手作图试试:① 过一点O 可以作________直线.② 过A 、B 两点________(能或不能)作直线,能作_________直线. 再过下面的C 、D 以及E 、F 两点作直线试试看注意: 直线没有端点,是向两方无限延伸的,画直线时要画出向两方无限延伸的部分. 3.直线公理:直线公理在生活中有广泛的应用,你能举出几个例子吗?三、自学检测: 1.直线有几种表示方法? (1)如图的直线可记作直线______或记作直线_______. (2)用几何语言描述右面的图形,我们可以说:点P 在直线AB______,点A 、B 都在直线AB_____. (3)如图,点O 既在直线m 上,又在直线n 上,我们称直线m 、n 相交,交点为O . 想一想,如果两条直线相交,会有几个交点,作图试试.(4)读下面的几何语句,画出图形.① 点A 在直线a 外 ② 直线AB 、CD 相交于点B ,点E 在直线CD 上.mma2.在直线上取点O ,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如图就是一条射线,记作射线OM 或记作射线a . 注意:射线有一个端点,向一方无限延伸.在下面的图中画射线AB 、射线EFE3.在直线上取两个点A 、B ,把直线分成三个部分,去掉两边的部分,保留点A 、B 和中 间的一部分就得到一条线段. 如图就是一条线段,记作线段AB 或记作线段a .注意:线段有两个端点.4.能不能把一条线段变成一条射线?能不能把一条线段变成一条直线?作图试试.四、课堂小结:这节课你学会了什么? 五、当堂检测 1.P129练习.2.如图,分别有几条线段.2.已知A 、B 、C 三点,过其中的每两个点画直线,可画几条?作业:P132习题4.2第1、2、3、4、11题. 板书a4.2 直线、射线、线段(2)主备人:吕惠洁审核人:张延峰授课时间:教学内容:直线、射线、线段(2)课时:1学习目标:1.会画一条线段等于已知线段,会比较两条线段的大小.2.通过实例体会两点之间线段最短的性质,并能初步应用.3.了解两点间的距离、线段的中点以及线段的三等分点的意义.学习重点:线段比较大小以及线段的性质.学习难点:线段的中点、三等分点及其应用.一、自学指导:1.阅读课本P129-P132;2.尝试完成教材P131的练习题(小组内交流展示).二、知识回顾:1.画直线AB、画射线CD、画线段EF.2.任意画线段a.你能不能再画一条线段AB正好等于你先前所画的线段a.你是怎样画的?你想到了几种方法?三、自学检测:1.如何比较两位同学的身高?①如果已知身高,我们如何比较?②如果不知身高,我们又如何比较?2.如何比较两根木条的长短?3.如何比较两条线段的大小?①任意画两条线段AB, CD.我们如何比较AB、CD的大小?动手试试.②任意两条线段比较大小,其结果有几种可能性?比较线段的常用方法有两种:①度量法②圆规截取法4.试试身手:P131练习第1题.先估计大小关系看看我们的观察能力,再动手检验.5.①线段的中点:如图点M是线段AB上一点,并且AM=BM我们称点M是线段AB的中点.②怎样找出一条线段AB的中点M?③线段的三等分点、线段的四等分点.(观察P131图4.2-12)6.(1)P131思考.(2)有些人要过马路到对面,为什么不愿走人行横道呢?(3)从A 地架设输电线路到B地,怎样架设可以使输电线路最短?7.(1)线段的性质:(2)两点间的距离:8.画线段的和与差:a 如图,已知两条线段a、b(a>b)(1)画线段a+b画法:①画射线AM;②在射线AN上顺次截取线段AB=a,BC=b.线段AC就是所要求作的线段a+b.记作AC=a+b.(2)画线段a-b四、学习小结:这节课你收获了什么?作业:1.P132练习第2题.2.P126习题3.2第5、10题.板书反思4.3.1 角主备人:吕惠洁 审核人: 张延峰 授课时间: 教学内容:角 课时:1学习目标:1.认识角,掌握角的两种定义形式及四种表示方法. 2.认识角度的单位;会初步进行角度的度、分互化运算. 学习重点:1.角的概念与角的表示方法. 2.角度的计算. 学习难点:对角的概念的理解.一、自学指导:1.阅读课本P136-P137;2.尝试完成教材P138的练习题(小组内交流展示). 二、自学检测:1.下面的图形,你有怎样的认识?2.角是一种基本的几何图形,画出一个角试试.3.生活中有形如“∠”这种形状的图形吗?试举出一个例子. 4.角的概念.(1)有公共端点的两条射线组成的图形叫做角.这个公共端点是角的顶点,这两条射线是角的两条边.如图,角的顶点是O ,两边分别是射线OA 、OB .(2)角有以下的表示方法:① 用三个大写字母及符号“∠”表示. 三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.如上图的角,可以记作∠AOB 或∠BOA .② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作∠O .注意:当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示. ③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线,写上希腊字母或数字. 如图的两个角,分别记作∠α、∠15.想一想P136“小贴示”中的问题.图中有几个角?(3)P136思考.(这是角的另一种定义方式)用你的圆规为工具,体会角的这种定义方式. 三、当堂检测:1.角度的单位:度、分、秒及其表示方法.把圆周角等分成360等分,每一份就是什么是1度的角,记作1°. 把1度的角等分成60等分,每一份就是什么是1分的角,记作1′. 把1分的角等分成60等分,每一份就是什么是1秒的角,记作1″. 由此我们可以得出:① 1°=60′,1′=60″O B Aα1② 1周角=360°,1平角=180°若∠α是51度26分37秒,则记作∠α=____________(用符号表示) 注意:以度、分、秒为单位的角的度量制叫做角度制. 另外还有以弧度为单位的弧度制,1弧度=πο180=57°17′44″,1密位=ο)503(60001=周角 2.用量角器画角与角的度量(1)用量角器画50°、90°、140°的角.26【提示】用量角器度量角分三步:对中、重合、读数.(2)估计画一个70°的角,然后度量比较判断,看看你的判断能力. (3)用三角尺画特殊30°、45°、60°等特殊角. 3.上午7时整,时针与分针成几度角?上午7时15分呢? 4.35.40°与35°40′相等吗?为什么?5.如图,有几个角?分别表示这几个角.四、学习小结:这节课你收获了什么?作业:1.P138练习题第1、2、3题. 2.P143习题4.3第1、2、题. 板书 反思AB OC D4.3.2 角的比较与运算(1)主备人:吕惠洁 审核人: 张延峰 授课时间: 教学内容: 角的比较与运算(1) 课时:1学习目标:1.通过观察与操作,体会角的大小,会比较角的大小,能估计一个角的大小. 2.在图形中认识角的和、差关系,在操作中认识角的平分线. 学习重点:比较角的大小的方法.学习难点:在图形中观察角的和、差关系. 一、自学指导:1.阅读课本P138-P140;2.尝试完成教材P140的练习第1题(小组内交流展示). 二、自学检测:1.已知线段AB 和线段CD (如图),你如何比较这两条线段的大小?ABCD2.如图,图中共有几个角?如何表示这些角? 这些角之间有什么关系?3.下面的三组图形,每组中都有两个角,你能判断它们的大小吗?说说你的方法.ABCDEFBAC D EFABCDE F(1)(2)(3)【提示】如果你不会,可以参考我们前面对两条线段是如何比较大小的.三、当堂检测1.P140练习第1题.2.P138思考:3.想一想,你还能用三角尺可以画30°、45°、60°、90°这些特殊角吗?(1)我们能不能用三角尺画出15°的角呢?怎样画?试试看.(2)能用三角尺能画75°的角吗?(3)你还能用三角尺画哪些度数的角?试着画画看.4.角的平分线.(1)任意画一个角,取名叫∠AOB .你能否从角的顶点作出一条射线,把∠AOB 分成两个相等的角?ABCO如果能,试说出你的方法.(2)角的平分线:如图,射线OP是∠AOB的角平分线,那么图这几个角有怎样的大小关系?6.我们知道线段有三等分点、四等分点,那么一个角会不会有三等分线或四等分线呢?如图,给你一个角,你能作出它的三等分线吗?试试看.7.如图,已知OB、OC是∠AOB的三等分线,试说出几个你能得到的正确结论:四、学习小结:这节课你收获了什么?作业:P143习题4.3第4、6题板书反思ABCDOPOBA4.3.2 角的比较与运算(2)主备人:吕惠洁 审核人: 张延峰 授课时间: 教学内容: 角的比较与运算(2) 课时:1学习目标:1.会进行度、分、秒的互化及角度的简单运算. 2.会进行角度的“加、减、乘、除”运算. 学习重点:度、分、秒的互化及角度的计算. 学习难点:角度的“除法”运算.一、自学指导:1.阅读课本P140例1、例2;2.尝试完成教材P140练习第2、3题(小组内交流展示).二、自学检测:1.任意画两个角(一个小于90°,一个大于90°)先估计这两个角的度数,然后再用角器量出这两个角的度数,试试你的判断能力. 2.什么是1°的角?什么是1′的角?什么是1″的角?还记得吗?如果不记得了,没关系,先看看书再完成下面的问题. (1)35°15′与35.15°相等吗?为什么?)4135(与35°15′相等吗?为什么?(2)32平角=________度, 51周角=_______度. (3)3.32°=______度_______分_______秒. 12°9′36″=_______度. (完成上面的问题如果有困难,不妨与同学交流) 三、当堂检测: 1.计算:(1)46°55′+23°35′ (2)46°55′-23°35′(3)68°21′-32°48′ (4)23°35′×3 (5)15°23′18″×42.例1:如图∠AOC =53°17′,求∠BOC3.例2:把一个周角6等分,每一份是多少度的角?A B C O那么把一个周角7等分,每一份的角度是多少?4.例3:如图,∠AOC =50°,OD 平分∠AOC ,OE 平分∠BOC ,求∠DOE5.P140练习第2、3题. 6.计算:122°48′÷3四、拓展提高:在上面的例3中,如果去掉“∠AOC =50°”这个条件,还能不能求出∠DOE 呢?五、学习小结:这节课你收获了什么? 作业:P143习题4.3第3、5、题. 板书 反思ED C O BA4.3.3 余角与补角(1)主备人:吕惠洁审核人:张延峰授课时间:教学内容:余角与补角(1)课时:1学习目标:1.在具体情境中了解余角、补角的概念.2.了解等角的余角与补角的性质,能运用这个性质解决简单的实际问题.3.学习进行简单的推理,学习有条理的表达.学习重点:等角的余角与补角的性质.学习难点:推导“等角的余角与补角的性质”的过程.一、自学指导:1.阅读课本P141—P142;2.尝试完成教材P141练习第1、2、3题(小组内交流展示).二、自学检测:1.①如果∠1=35°,∠2=55°,那么∠1+∠2=_______.如果∠A=42°,那么当∠B=_______时,∠A+∠B=90°.②三角尺中,有一个角是直角(90°),那么另两个角的和是________度.③度量P141图4.3-13的两个角,∠3=____,∠4=____,计算:∠3+∠4=_____.一般地,如果两个角的和等于90°(直角),我们就说这两个角互为余角,称其中的一个角是另一个角的余角.2.(1)在上面的这些角中,哪两个角是互为余角的?(2)已知∠A=72°,那么∠A的余角是______度.(3)已知∠A的余角是∠A的两倍,你能求出∠A的度数吗?说说你的想法.3.度量P141图4.3-14的两个角,∠1=____,∠2=____,计算:∠1+∠2=_____.一般地,如果两个角的和等于180°(平角),我们就说这两个角互为补角,称其中一个角是另一个角的补角.(1)上面的∠1与∠2互为补角吗?(2)试举出两个互为补角的例子.(3)①已知∠A=72°,则∠A的补角=______度.②如果∠α=62°23′,则∠α的余角=______,则∠α的补角=______.③已知∠A的补角是∠A的两倍,你还能求出∠A的度数吗?④已知一个角的补角是这个角的余角的3倍,求这个角的度数.三、当堂检测:P141练习第1、2、3题.1.如果∠1与∠2互余,∠1与∠3互余,那么∠2与∠3相等吗?为什么?2.如果∠1与∠2互补,∠1与∠3互补,那么∠2与∠3相等吗?为什么?3.如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2与∠4相等吗?4.如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,那么∠2与∠4相等吗?5.余角的性质:补角的性质:四、学习小结:这节课你收获了什么?作业:P143习题4.3第7、8、题.板书缉私艇可疑船AB4.3.3 余角与补角(2)主备人:吕惠洁 审核人: 张延峰 授课时间: 教学内容:余角与补角(2) 课时:1学习目标:1.了解用于表现方向的角——方位角的意义.,.2.初步掌握方位角的判别,体会方位角在生活中的应用. 学习重点:方位角的判别与应用. 学习难点:方位角的判别与应用.一、自学指导:阅读课本P142—P143(小组内交流展示).二、自学检测:1.海上缉私艇发现离它50海里处停着一艘可疑船只(如图),缉私艇要立即赶往检查. (1)试画出缉私艇的航线.(2)如果是真在海面上,你能确定船的航向吗?2.在航行、测绘等日常生活中,我们经常会碰到上述类似的问题,即如何描述一个物体的方位.描述一个物体的方位,通常要用到表示方位的角——方位角.方位角的表示习惯上以正北、正南方向为基准来描述物体的方向.即用“北偏东多少度”、“北偏西多少度”或者“南偏东多少度”、“南偏西多少度”来表示方向.如图,(1)射线OA 的方向是南偏西40°,或者说点A 在点O 的南偏西40°方向.(2)射线OB 的方向是北偏东45°,或者说点B 在点O 的________方向. 注:北偏东45°的方向又称为“东北方向”.所以,我们也可以称点B 在点O 的________方向.(3)在图中画出北偏西50°方向射线OC .3.在第1个问题中,我们规定“上北下南,左西右东”,试确定缉私艇的航向. 4.P142例4.三、当堂检测:1.已知点O 在点A 的南偏东65°方向,那么点A 应在点O 的______________方向.2.某同学参观展览馆A 后,想去景点B ,但他不知道如何走,你能借助右图,告诉他去景点B 应朝什么方向,大约走多远吗? (图中1厘米代表1千米)3.如图,A 、B 、C 三点分别代表邮局、商店和学校.邮局和商店分别在学校的北偏西方向,邮局又在商店的北偏东方向.那么,图中A 点应该是 ,B 点应该是 ,C点应该是______.北B北A4.考察队从P地出发,沿北偏东60°前进5千米到达A地,再沿东南方向前进到达C地,C恰好在P地的正东方.(1)用1㎝代表2千米,画出考察队的行进路线图.(2)量得∠PAC=________,∠ACP=_______.(精确到1°)5.灯塔A在灯塔B的南偏西60°,距离20海里,轮船C在灯塔B的西北方向,距离40海里.用1㎝表示10海里画出示意图,试确定货船C在灯塔A的什么方向,距A多远?四、学习小结:这节课你收获了什么?作业:P143习题3.4第9、12题.板书反思小结与复习(1)学习目标:1.进一步熟悉常见几何体的基本特征,能正确识别常见的几何体.2.进一步熟悉和了解常见几何体的平面展开图以及简单几何体的三视图. 3.进一步认识点、线、面、体及其相互关系. 学习重点:能正确识别常见的几何体及其平面展开图. 学习难点:正确作出简单几何体的三视图. 一、自学指导:1.阅读课本P151小结;2.尝试完成教材P152复习题4第1、2、3题;3.限时25分钟完成本导学案(合作或独立完成均可); 4.课前在小组内交流展示.二、知识回顾:1.什么是几何图形?几何图形可分为_______和________两大类. 2.常见的立体图形: 常见..的立体图形大致可分为:柱体、锥体和球体三类. (1)下面的几何体都我们生活中常见的,你能不能找到生活中的实例以及想象其图形. 长方体、正方体、球、圆柱、圆锥、棱柱、棱锥、棱台、圆台等. (2)完成教材P152复习题4第1题. 3.常见的平面图形:试写几个常见的平面图形,找一找生活中的实例,想一想其图形的形状. 4.点、线、面、体及其相互间的关系. 5.简单几何体的三视图.从正面看从左面看从上面看按要求画出这个几何体从正面、左面、上面观察所得到的三视图. 6.常见几何体的平面展开图(1)圆柱的展开图与圆锥的展开图.圆柱及其展开图圆锥及其展开图(2)你能画出下面这个几何体的展开图吗?试一试.三、当堂检测:1.如图,左边这个几何体的展开图可以是()A B C D【老师提示】当我们不能正确判断时,最好动手折一折.2.如图,把左边的图形折叠起来,它会变为( )A B C D3.下面是水平放置的四个几何体,从正面观察不是长方形的是()A B C D4.如图,5个边长都为1㎝的正方体摆在桌子上,则露在表面的部分的面积是_______.5.P152复习题4第2、4题.四、学习小结:这节课你收获了什么?作业:P152复习题3第3题.板书反思。