数学七年级下册第六章教案
7 年级数学北师 大版下册教案第6章《感受可能性》
教学设计感受可能性课题:感受可能性学科:数学适用年级:七年级下教材版本:北师大版【教材分析】在小学阶段,学生对确定性现象与不确定性现象已经有了初步的体验,通过具体实例感受了简单的随机现象,本节课明确了必然事件、不可能事件、随机事件的概念,然后,通过游戏让学生体会随机事件发生的可能性有大有小。
【学情分析】学生已具备了一定的学习能力,能对生活中的常见现象发生的可能性进行一定的分析和判断,但缺乏系统知识来规范.教学过程中创设的问题情境应生动活泼、直观形象,且贴近生活。
由于学生概括能力较弱,推理能力还有待不断发展,所以在教学时,可让学生分组合作与交流,帮助他们通过直观形象地感知来理解抽象逻辑关系,体会不确定事件的特点。
【教学目标】1)知识目标:通过猜测与游戏的方式,让学生进入问题情境,切身感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事件发生的可能性是有大小的。
2)能力目标:使学生在教师的指导下自主地发现问题、探究问题,获得结论,感受数学和实际生活的联系,进一步发展学生合作交流的能力和数学表达能力。
3)情感目标:通过创设游戏情景,使学生主动参与,做数学实验,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯。
【教学重难点】教学重点:体会事件发生的确定性与不确定性。
教学难点:理解生活中不确定现象的特点,不确定事件发生的可能性大小,树立一定的随机观念。
【教学策略设计】①在教师的组织下,以学生为主体,探索性教学。
②让学生在经历猜测、试验、探究、交流与分析过程中获得结论。
【教学过程】【板书设计】感受可能性确定事件事先能肯定它一定会发生的事件叫必然事件事件事先能肯定它一定不会发生的事件叫不可能事件不确定事件——事先无法肯定它会不会发生的事件叫随机事件随机事件发生的可能性有大有小。
南江县第二中学七年级数学下册 第六章 实数 6.2 立方根教案 新人教版
[答案]烧杯内部的底面半径约是4.6cm,铁块的棱长约是3.4cm.
[教学说明]引导学生完成上述问题后 , 指导学生用计算器求立方根 , 并用实际训练形成应用能力.
例1.计算以下各题
例2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.
A.开启计算器 B.关闭计算器
C.清除全部内容或清除刚输入的内容 D.计算乘方
知能点2 输入方法
8.输入-3的方法是先输入_____, 然后按_____ 键; 或先按______ 键, 后输入_______.
9.用计算器计算26,按键顺序是________,结果是________.
10.用计算器计算38-546,按键顺序是_________,结果是________.
解 : (1)-8;(2) ;(3)-0.2;(4)6.
[教学说明]以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.
例3 求以下各式中的x.
分析 :
可根据立方根的定义求得x的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.
17.将本金22 250元存三年期,三年后的本息和是多少元?(年利率为2.88%)
【开放探索创新】
18.利用计算器探索规律:任选1,2,3,…,9中的一个数字,将这个数字乘以7, 再将结果乘以15 873,你发现了什么规律?能解释一下理由吗?
19.(1)用计算器计算下列各式:
七年级数学下册第六章概率初步回顾与思考教案新版北师大版
第六章概率初步回顾与思考一、学生知识状况分析在本单元中,学生了解了不确定现象的特点,通过具体情境体会概率的意义,在丰富的实际问题中认识到概率是刻画不确定现象的数学模型,同时学习了一些计算概率的方法,并通过概率帮助自己作出合理的决策。
七年级学生具有求知欲较强的特点,学生间相互评价、小组间的竞争能够激起学生的好胜心,因此,参与本节课的热情应该是比较高的。
二、教学任务分析本节主要是复习本章内容,测试并总结学生的学习情况。
本节是从知识结构图入手,使学生进一步加深本章所学知识点。
组内,通过“生教生”的方法展开例题的学习,努力做到全员参与。
组间,通过竞赛的形式做到进一步的能力提升。
增强学生互帮互助精神,激发学习兴趣。
三、教学过程分析本节课设计了五个教学环节:知识回顾;复习思考;课堂小结;博弈竞技;课后作业。
第一环节:知识回顾内容:以“提问——补充”的方法复习本章内容。
目的:通过学生抢答,小组加分的活动,激发学生学习兴趣。
效果:激发了学生的求知欲,激起学生的学习兴趣。
第二环节:复习思考内容:组内互帮互助完成例题的学习,教师提问后统一答案。
例1 下列事件中,哪些是确定的?哪些是不确定的?请说明理由。
(1)随机开车经过某路口,遇到红灯;(2)两条线段可以组成一个三角形;(3)400人中有两人的生日在同一天;(4)掷一枚均匀的骰子,掷出的点数是质数。
例2 如图所示有9张卡片,分别写有1至9这九个数字。
将它们背面朝上洗匀后,任意抽出一张。
(1)P(抽到数字9)= ;(2)P (抽到两位数)= ;(3)P(抽到的数大于6)= ,P(抽到的数字小于6)= ;(4)P(抽到奇数)= ,P(抽到偶数)= 。
数字。
转动转盘,当转盘停止后,指针指向的数字即为转出的数字。
两人参与游戏:一人转动转盘,另一人猜数,若所猜数字与转出的数字相符,则猜数的人获胜,否则转动转盘的人获胜。
猜数的方法从下面三种中选一种:(1)猜“是奇数”或“是偶数”;(2)猜“是3的倍数”或“不是3的倍数”;(3)猜“是大于6的数”或“不是大于6的数”。
人教版七年级下册第六章实数平方根、立方根(教案)
1.理论介绍:首先,我们要了解平方根和立方根的基本概念。平方根是一个数的平方等于给定数的非负数解,立方根则是一个数的立方等于给定数的解。它们在解决实际问题,如面积、体积计算中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。假设我们需要计算一个边长为2的正方形的面积,这时我们就需要用到平方根的概念,即√(2^2)=2。
2.探索与问题解决:引导学生自主探究平方根、立方根的性质和求法,培养他们发现、分析和解决问题的能力。
3.空间观念与几何直观:将平方根、立方根与图形结合,培养学生的空间观念,提高几何直观能力。
4.数据观念与推理能力:通过实际问题的解决,让学生掌握数据处理方法,培养合情推理和演绎推理的能力。
5.数学交流与反思:鼓励学生在学习过程中积极与他人交流,分享解题思路,培养反思和总结的学习习惯。
五、教学反思
今天我们在课堂上探讨了实数平方根和立方根的概念及其应用。整体来看,学生们对这两个概念的理解有了明显的提升,但在教学过程中我也注意到了一些需要改进的地方。
首先,我发现部分学生在理解平方根和立方根的定义时存在困难。在今后的教学中,我需要更加注重从直观和生活实例出发,让学生们更好地感受到这两个概念的实际意义。例如,可以多举一些与面积、体积相关的例子,让学生在实际问题中体会平方根和立方根的应用。
-立方根的求法:学会计算简单实数的立方根。
举例:讲解平方根时,强调正数平方根的互为相反数性质,如√9=3和√9=-3,但通常情况下我们默认平方根为正数。在立方根方面,举例计算∛8,得出∛8=2,强调立方根的结果唯一性。
2.教学难点
-平方根的理解:学生容易混淆平方根与算术平方根的概念,难以理解负数没有平方根。
3.重点难点解析:在讲授过程中,我会特别强调平方根和立方根的概念及其求法这两个重点。对于难点部分,我会通过具体例子和图形来帮助大家理解。
新课标人教版数学七年级下册第六章教案
如图,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4)。
类似地,请你根据课本41面图6.1-4,写出点B、C、D的坐标.
B(-3,4)、C(0,2)、D(-3,0).
注意:写点的坐标时,横坐标在前,纵坐标在后。
七年级数学教研组集体备课教案
主备人
课题
6.1.1有序数对
课时
1课时
教学
目标
1.理解有序数对的应用意义,了解平面上确定点的常用方法;
2.培养学生用数学的意识,激发学生的学习兴趣。
教学
重点
有序数对及平面内确定点的方法。.
教学
难点
利用有序数对表示平面内的点。
课前
准备
教师
准备
直尺、三角板
学生
准备
三角板,
直尺
学
过
程
一、情景导入.
如果下节课要用多媒体上课,学生们,你们进入多媒体教室的过程中,老师给出一个要求,请同学们按照在教室的座位坐好。
抛出问题:你是怎么找到自己的座位的。
引导学生说出第几排第几列确定了自己的座位,并请几名同学说出自己的位置。
抛出第二个问题:如果把座位表中的“3排5列”简记作(3,5),你们每个人都能确定自己的座位和其他同学的座位的记法吗?
请几个同学试着说出自己的座位的代号(记法)。
问题三:
把(3,5)中的两个数据的位置调换一下,是否还指原来的位置呢?你发现了什么?
归纳:确定一个座位,你用了几个数据?
我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
七年级下册数学第六章教案
这篇关于《七年级下册数学第六章教案》,是特地为⼤家整理的,希望对⼤家有所帮助!复习⽬标:1、复习基本概念形成知识体系;2、会利⽤图形的分割法求图形的⾯积。
复习过程:⼀、板书课题,出⽰⽬标:同学们,今天,我们⼀起来复习第六章,本节课的学习⽬标是:⼆、指导检测:复习⽬标达到,从认真做检测题开始,下⾯,请看检测要求:检测指导1.认真审题,细⼼计算;2. 把字写端正,步骤写完整;3. 在⼗五分钟内完成。
预祝⼤家出⾊完成任务!三、学⽣检测,教师巡视A:P58“知识结构图”,完成P60 4、5B:学⽣检测,教师巡视,搜集学⽣出现的错误,进⾏第⼆次备课。
四、板演、更正答案:A:分别让2名学⽣上堂板演,有错误,⿎励其他同学更正。
B:对改(下⾯,⽐谁能在2分钟内对改完,不出错)五、讨论:1.独⽴更正:2.⼩组讨论:(⾃⼰不能独⽴更正的题,⼩组解疑)3.可能出现错误,需要集体讨论:(会了的⼩组帮助不会的⼩组解疑,若没有不同答案的且正确的,肯定答案,不讨论。
如果有不同意见的,让同学讨论。
)可能出现错误需讨论的有:评:第4题(1)坐标对吗?(估计问题不⼤)(2)他路上经过的地⽅对吗?(估计问题不⼤)(3)图形对吗?(估计问题不⼤)第5题(1)红⾊图形平移的对吗?为什么?引导学⽣说出:可以有两种平移的⽅法:第⼀种⽅法:先向上平移6个单位,再向右平移3个单位;第⼆种⽅法:先向右平移3个单位,再向上平移6个单位。
(2)略归纳总结:同学们,通过本节课的学习,你有哪些收获?引导学⽣说⼀说解类似题时该注意哪些问题?六、课堂作业必做题:P60 6、8思考题:P61 10。
七年级数学下册 第6章 一元一次方程电子课本 华东师大版 教案
第6章一元一次方程 (2)§6.1 从实际问题到方程 (2)§6.2 解一元一次方程 (4)1. 方程的简单变形 (4)2. 解一元一次方程 (6)阅读材料 (10)方程史话 (10)§6.3 实践与探索 (10)阅读材料 (14)2=3? (14)小结 (14)复习题 (15)第6章一元一次方程一队师生共328人,乘车外出旅游,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租多少辆客车?44×?+64=328§6.1 从实际问题到方程问题1某校初中一年级328名师生乘车外出春游,已有2辆校车可乘坐64人,还需租用44座的客车多少辆?回忆小学里已经学过列方程的解法,我们不妨回顾一下:设需租用客车x 辆,共可乘坐44x 人,加上乘坐校车的64人,就是全体 328人.可得44x +64=328.①解这个方程,就能得到所求的结果.问题2在课外活动中,X 老师发现同学们的年龄大多是13岁.就问同学:“我 今年45岁,几年以后你们的年龄是我年龄的三分之一?”“三年!”小敏同学很快发现了答案.他是这样算的:1年后,老师的年龄是46岁,同学的年龄是14岁,不是老师年龄的31; 2年后,老师的年龄是47岁,同学的年龄是15岁,也不是老师年龄的 31; 3年后,老师的年龄是48岁,同学的年龄是16岁,恰好是老师年龄的31. 也有的同学说,我们可以列出方程来解:设x 年后同学的年龄是老师年龄的31,而x 年后同学的年龄是(13+x ) 岁,老师的年龄是(45+x )岁,可得13+x =31(45+x ). ② 这个方程不像问题1中的方程①那样容易求出它的解.但小敏同学的方法 启发我们,可以用尝试、检验的方法找出方程②的解,即只要将x =1,2,3, 4,…代入方程②的左右两边,看哪个数能使两边的值相等.这样得到x =3是 方程的解.思 考如果未知数可能取到的数值较多,或者不一定是整数,该从何试起?如果 试验根本无法入手又该怎么办?练 习根据题意设未知数,并列出方程(不必求解):1. 某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将第一组人数调整为第二组人数的一半,应从第一组调多少人到第二组去?2. 小明的爸爸三年前为小明存了一份3000元的教育储蓄.今年到期时取出,得到的本息和为3243元.请你帮小明算一算这种储蓄的年利率.1. 检验下列方程后面大括号内所列各数是否为相应方程的解:2. (1) 1815-=+x x ,⎭⎬⎫⎩⎨⎧-3,23; 3. (2) 2(y -2)-9(1-y )=3(4y -1), {-10,10}.4. 根据班级内男、女同学的人数编一道应用题,和同学交流一下.5. 小赵去商店买练习本,回来后问同学:“店主告诉我,如果多买一些就给我八折优惠.我就买了20本,结果便宜了 1.60元.你猜原来每本价格多少?”你能列出方程吗?§6.2 解一元一次方程1. 方程的简单变形联 想测量一些物体的质量时,我们经常将它们放在天平的左盘内,在右盘内放 上砝码,使天平处于平衡状态,这时两边的质量相等,我们就可测得该物体的 质量.如果我们在两边盘内同时添上(或取下)相同质量的物体,可以发现天平 依然平衡;如果我们将两边盘内物体的质量同时扩大到原来相同的倍数(或同时缩小到原来的几分之一),也会看到天平依然平衡.图~3反映了由天平联想到的几个方程的变形.x+2=5 ⇒x=5-2图3x=2x+2 ⇒3x-2x=2图2x=6 ⇒x=6÷2图归纳我们可以看到,方程能够这样变形:方程两边都加上或都减去同一个数或同一个整式,方程的解不变.方程两边都乘以或都除以同一个不为零的数,方程的解不变.通过对方程进行适当的变形,可以求得方程的解.例1解下列方程:(1)x-5=7;(2)4x=3x-4.解(1)由x-5=7,两边都加上5,得x=7+5 ,即x=12.(2)由4x=3x-4,两边都减去3x ,得 4x -3x =-4,即x =-4.概 括像这样,将方程中的某些项改变符号后,从方程的一边移到另一边的变形 叫做移项(transposition ).例2 解下列方程:(1) -5x =2; (2)23x =31. 解 (1) 方程两边都除以-5,得x =52-. (2) 方程两边都除以23(或乘以32),得 x =31×32 , 即 x =92. 这里的变形通常称作“将未知数的系数化为1”.概 括以上例1和例2解方程的过程,都是对方程进行适当的变形,得到x =a 的 形式.练 习1.列方程的变形是否正确?为什么?(1) 由3+x =5,得x =5+3; (2)由7x =-4,得x =-47; (3) 由021=y ,得y =2; (4)由3=x -2,得x =-2-3. 2. (口答)求下列方程的解:(1)x -6=6; (2)7x =6x -4;(3)-5x =60; (4)2141=y .§6.1中问题1所列出的方程.做一做利用方程的变形,求方程2x +3=1的解,并和同学讨论与交流.例3 解下列方程:(1) 8x =2x -7; (2) 6=8+2x ;(3) 321212-=-y y 解 (1) 8x =2x -7,8x -2x =-7,6x =-7,x =67-. (2) 6=8+2x ,8+2x =6,2x =-2,x =-1.(3) 321212-=-y y , 213212+-=-y y 2523-=y , y =35- 练 习解下列方程:1. 3x +4=0 .2. 7y +6=-6y3. 5x +2=7x +84. 3y -2=y +1+6y .5.x x 2.041852-=-. 6. 1-21x =x +31习题1. 解下列方程:(1)18=5-x ; (2)x x 413243-=+; (3)3x -7+4x =6x -2; (4)10y +5=11y -5-2y ;(5)a -1=5+2ax +1.2-2xx .2. 解下列方程:(1)2y +3=11-6y (2)2x -1=5x +7(3)31x -1-2x =-1; (4)21x -3=5x +41 3. 已知y 1=3x +2,y 2=4-x .(1)当x 取何值时,y 1=y 2? (2)当x 取何值时,y 1比y 2大4?2. 解一元一次方程前面我们遇到的一些方程,例如44x +64=328,13+x =31(45+x ) 等等,有一个共同特点,它们都只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程(linearequationwithoneunknown ).我们再一起来解几个一元一次方程.例4 解方程: 3(x -2)+1=x -(2x -1).解 原方程的两边分别去括号,得3x -6+1=x -2x +1,3x -5=-x +1,3x +x =1+5,4x =6, x =23. 练 习1.解下列方程:(1)5(x +2)=2(5x -1);(2)(x +1)-2(x -1)=1-3x ;(3)2(x -2)-(4x -1)=3(1-x ).2.列方程求解:(1)当x 取何值时,代数式3(2-x )和2(3+x )的值相等?(2)当y 取何值时,2(3y +4)的值比5(2y -7)的值3?3.解§6.1中问题2所列出的方程.例5 解方程:解 由原方程得3(x -3)-2(2x +1)=6,3x -9-4x -2=6,3x -4x =6+9+2,-x =17,x =-17.在上述解方程的过程中,第一步是方程的两边都乘以同一个数6,使方程中的系数不出现分数.这样的变形通常称为“去分母”.讨 论在以上各例解一元一次方程时,主要进行了哪些变形?如何灵活运用这些变形合理、简洁地解一元一次方程?练 习1.指出下列方程求解过程中的错误,并给予纠正:(1)解方程:1524213-+=-x x (2)解方程:246231x x x -=+-- 解: 15x -5=8x +4-1, 解: 2x -2-x +2=12-3x15x -8x=4-1+5, 2x-x +3x =12+2+27x =8 4x =1687=x x =4.2.解下列方程:(1);47815=-a (2)15334--=-x x 例6 如图,天平的两个盘内分别盛有51 g 、45 g 盐,问应该从盘A 内拿出多少盐放到盘B 内,才能使两者所盛盐的质量相等?图6.2.4分析 设应从盘A 内拿出盐xg ,可列出表.表6.2.1解 设应从盘A 内拿出盐x g 放到盘B 内,则根据题意,得 51-x =45+x .解这个方程,得x =3.经检验,符合题意.答: 应从盘A 内拿出盐3 g 放到盘B 内.例7 学校团委组织65名新团员为学校建花坛搬砖.女同学每人搬6块,男同学每人搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析 设新团员中有x 名男同学,可列出表.解设新团员中有x名男同学,则根据题意,得32x+24(65-x)=1800.解这个方程,得x=30.经检验,符合题意.答:新团员中有30名男同学.练习1. 学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多少时间?2. 将上题的分析和列得的方程与例7相比较,看看是否相似.将你的想法和同学交流一下.3.第1题中,若问“小刚在离终点多远时开始冲刺”,你该如何求解?归纳用一元一次方程解答实际问题,关键在于抓住问题中有关数量的相等关系,列出方程.求得方程的解后,经过检验,就可得到实际问题的解答.这一过程也可以简单地表述为:其中分析和抽象的过程通常包括:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出能表示问题含义的一个主要的等量关系;(3)对这个等量关系中涉及的量,列出所需的表达式,根据等量关系,得 到方程.在设未知数和解答时,应注意量的单位.习题1.解下列方程:(1))4(213x +-=; (2)1)34(2)52(3++=+x x2.解下列方程:(1)353235x x -=-; (2)x x 613211-=-; (3)161242=--+y y . 3.(1)在等式S =2)(b a n +中,已知S =279,b =7,n =18,求a 的值. (2)已知梯形上底a =3,高h =5,面积S =20,根据梯形的面积公式S =h b a )(21+,求下底b 的长. 4.球的表面是由一些呈多边形的黑、白皮块缝合而成的,共计有32块,已知黑色块数比白色块数的一半多2,问两种皮块各有多少?5.学校大扫除,某班原分成两个小组,第一组26人打扫教室,第二组22人打扫包干区.这次根据工作需要,要使第二组人数是第一组人数的2倍,那么应从第一组调多少人到第二组去?6.学校所在地的出租车计价规则如下:行程不超过3千米李老师和三位学生去探望一位病假的学生,坐出租车付了17.60元,他们共乘坐了多少路程?阅读材料方程史话你知道吗?现存世界上最古老的方程出现在英国考古学家兰德1858年找到的一份古埃及人的“纸草书”“啊哈,它的全部,它的71,是19”;“一堆,它的71,21,32,居然是33”.译得更明白一点就是:.33712132;1971=+++=+x x x x x x 在我国,“方程”一词最早出现于东汉初年(公元前后)的数学经典著作《九章算术》的第八章“方程”“天元术”解题,从设未知数到列方程都和现代数学十分相似.也就是在这段时期,方程的知识从中国传入日本.古希腊数学家丢番图(Diophantus ),是以研究一类方程(不定方程)著称于世的数学家.在他的墓碑上,刻写着这样一段墓志铭:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一,又过十二分之一,两颊长胡,再过七分之一,点燃起结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.请你列出方程算一算,丢番图去世时的年龄.§6.3 实践与探索问题1用一根长60厘米的铁丝围成一个长方形.(1) 使长方形的宽是长的32,求这个长方形的长和宽. (2) 使长方形的宽比长少4厘米,求这个长方形的面积.(3) 比较(1)、(2)所得两个长方形面积的大小.还能围出面积更大的 长方形吗?讨 论每小题中如何设未知数?在第(2)小题中,能不能直接设面积为x 平方 厘米?如不能,该怎么办?探 索将题(2)中的宽比长少4厘米改为3厘米、2厘米、1厘米、0厘米(即 长与宽相等),长方形的面积有什么变化?练 习1.一块长、宽、高分别为4厘米、3厘米、2厘米的长方体橡皮泥,要用它来捏一个底面半径为的圆柱,它的高是多少?(精确到,π取3.14)2.在一个底面直径5厘米、高18厘米的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离.读一读本节问题1中,通过探索我们发现,长方形的周长一定的情况下,它的长 和宽越接近,面积就越大.当长和宽相等,即成为正方形时,面积最大,通过以后的学习,我们就会知道其中的道理.有趣的是:若把这根铁丝围成任何封闭的平面图形(包括随意七凹八凸的不规则图形),面积最大的是圆.这里面的道理需要较为高深的学问.将来你有兴趣去认识它吗?小常识本章§6.1练习中讨论过的教育储蓄,是我国目前暂不征收利息税的一种储蓄.国家对其他储蓄所产生的利息,征收20%的个人所得税,即利息税.问题2小明爸爸前年存了年利率为2.43%的二年期定期储蓄.今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.60元的计算器.问小明爸爸前年存了多少元?讨论扣除利息的20%,那么实际得到利息的多少?你能否列出较简单的方程?练习填空:1. (1)学校图书馆原有图书a册,最近增加了20%,则现在有图书_______册;(2)某煤矿预计今年比去年增产15%,达到年产煤60万吨,设去年产煤x万吨,则可列方程__________________;(3)某商品按定价的八折出售,售价14.80元,则原定价是_________元.2.肖青的妈妈前年买了某公司的二年期债4500元,今年到期,扣除利息税后,共得本利和约4700元.问这种债券的年利率是多少(精确到0.01%)?习题1. 一个角的余角比这个角的补角的一半小40°,求这个角的度数.2. 一X覆盖在圆柱形罐头侧面的商标纸,展开是一个周长为88厘米的正方形(不计接口部分),求这个罐头的容积(精确到1立方厘米,π取3.14).3. 有一批截面是长11厘米、宽10厘米的长方形铁锭,现要铸造一个42. 9千克的零件,应截取多长的铁锭(铁锭每立方厘米重)?4. 某市去年年底人均居住面积为11平方米平方米.求今年的住房年增长率(精确到0.1%).5. 某银行设立大学生助学贷款,分3~4年期,5~7年期两种.贷款年利率分别为6.03%、6.21%,贷款利息的50%由国家财政贴补.某大学生预计6年 后能一次性偿还2万元,问他现在大约可以贷款多少(精确到0.1万元)?问题3小X 和父亲预定搭乘家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小X 向司机询问行车时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议小X 和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开车前15分钟到达火车站.已知公共汽车的平均速度是30千米/时,问小X 家到火车站有多远?吴小红同学给出了一种解法:设小X 家到火车站的路程是x 千米,由实际乘车时间比原计划乘公共汽车提前了41小时,可列出方程 4160230230=⎪⎪⎪⎪⎭⎫ ⎝⎛+-x x x 解这个方程:411206030=--x x x , 4x -2x -x =30,x =30.经检验,它符合题意.答: 小X 家到火车站的路程是30千米.X 勇同学又提出另外一种解法:设实际上乘公共汽车行驶了x 千米,则从小X 家到火车站的路程是2x 千米,乘出租车行驶了x 千米.注意到提前的41小时是由于乘出租车而少用的,可列出方程416030=-x x 解这个方程,得x =15.2x =30.所得的答案与解法一相同.讨 论试比较以上两种解法,它们各是如何设未知数的?哪一种比较方便?是不是还有其他设未知数的方法?试试看.练 习加制作,每天制作40面.完成了三分之一以后,全班同学一起参加,结果比原计划提前一天半完成任务,假设每人的制作效率相同,问共制作小旗多少面?2. 将上题与问题3比较,你发现了什么?3. 编一道联系实际的数学问题,使所列的方程是3x +4(45-x )=150.并与同学交流、比较一下.习题1. 师徒两人检修一条长180米的自来水管道,师傅每小时检修15米,徒弟每小时检修10米.现两人合作,多少时间可以完成整条管道的检修?2. 学校准备添置一批课桌椅,原订购60套,每套100元.店方表示:如果多购,可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.3. 师徒两人检修一条煤气管道,师傅单独完成要10小时,徒弟单独完成要15小时.现两人合作,需多少小时完成?4. 中国民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.一名旅客带了35千克行李乘机,机票连同行李费共付1 323元,求该旅客的机票价.5. 小王每天去体育场晨练,都见到一位田径队的叔叔也在锻炼.两人沿400米跑道跑步,每次总是小王跑2圈的时间,叔叔跑3圈.一天,两人在同地反向而跑,小明看了一下记时表,发现隔了32秒钟两人第一次相遇.求两人的速度.第二天小王打算和叔叔在同地同向而跑,看叔叔隔多少时间再次与他相遇.你能先给小王预测一下吗?问题4课外活动时李老师来教室布置作业,有一道题只写了“学校校办厂需制作一块广告牌,请来两名工人.已知师傅单独完成需4天,徒弟单独完成需6天”,就因校长叫他听一个而离开教室.调皮的小X说:“让我试一试.”上去添了“两人合作需几天完成?”有同学反对:“这太简单了!”但也引起了大家的兴趣,于是各自试了起来:有添上一人先做几天再让另一人做的,有两人先合作再一人离开的,有考虑两人合作完成后的报酬问题的……李老师回教室后选了两位同学的问题,合起来在黑板上写出:现由徒弟先做1天,再两人合作,完成后共得到报酬450元.如果按各人完成的工作量计算报酬,那么该如何分配?试解答这一问题,并与同学们一起交流各自的做法.习题1.试将下题内容改为与我们日常生活、学习有关的问题,使所列得的方程相同或相似:食堂存煤若干吨,原来每天烧煤3吨,用去15吨后,改进设备,耗煤量改为原来的一半,结果多烧了10天,求原存煤量.2.试对以下情境提出问题,并讨论解答(必要时可对情境作适当补充):3.某班级组织去风景区春游,大部分同学先坐公共汽车前往,平均速度为24千米/时;4名负责后勤的同学晚半小时坐校车出发,速度为60千米/时,同时到达山脚下.到达后发现乘坐缆车上山费用较大,且不能游览沿途风景.于是商定:大部队步行上山,4名后勤改为先遣队,乘缆车上山,做好在山顶举行活动的准备.缆车速度是步行的3倍,步行同学中途在一个景点逗留了10分钟,到达山顶时比先遣队晚了半小时.阅读材料2=3?小红和小兵一起讨论方程2+xx的解法.=332+小红说,移项求解:+xx=22+33-xx=322-3-x1-=x=1小兵边听边想,只见他写下了如下的式子:+x=x3232+-x3=x2-32-xx=(3)1)1(2-2=3小红一看,怎么,2=3?!你能帮助他们解开这个谜吗?小结一、知识结构二、注意事项1.对一元一次方程的认识,要联系生活实际,在学习中体会:方程是反映现实世界中数量相等关系的一个有效的数学模型.2.解一元一次方程时,要注意合理地进行方程的变形,也要注意根据方程的特点灵活运用.3.意,将实际问题转化为数学问题,特别是寻求主要的数量相等关系,列出方程.求得方程的解后,要注意检验所得结果是否符合实际问题的要求.复习题A组1.解下列方程:(1);321132+=-x x (2);0)12(2)5(5=-+-x x (3)4x +3=2(x -1)+1; (4);3221y y -=+ (5);232)73(72x x -=+ (6).1823652=--+x x 2.(1)x 取何值时,代数式4x -5与3x -6的值互为相反数?(2)k 取何值时,代数式31+k 的值比213+k 的值小1? 3.课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组.问这些学生共有多少人?4.一种药品现在售价每盒56.10元,比原来降低了15%,问原售价多少元?5.用一根直径12厘米的圆柱形铅柱,铸造10只直径12厘米的铅球,问应截取多长的铅柱(球的体积为π34R 3)? 6.一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1 171,求这个三位数.7.一年级三个班为希望小学捐赠图书.1班捐了152册,2班捐书数是三个班级的平均数,3班捐书数是年级总数的40%,三个班共捐了多少册?B 组8.(1);532)21(223x x =⎥⎦⎤⎢⎣⎡+- (2);5174732+-=--x x (3);535.244.2x x =--(4).22)141(34=---x x 9.已知x =32是方程x x x m 523)43(3=+-的解,求m 的值. 10.当k 取何值时,方程2(2x -3)=1-2x 和 8-k =2(x +1)的解相同?11.(1) 阅读以下例题:解方程 |3x |=1.解:① 当3x ≥0时,原方程可化为一元一次方程3x =1,它的解是 31=x ; ② 当3x <0时,原方程可化为一元一次方程-3x =1,它的解是 31-=x . 所以原方程的解是311=x ,312-=x . (2) 解下列方程:① |x -3|=2; ② |2x +1|=5.12.学校在植树活动中种了杨树和杉树两类树种,已知种植杨树的棵数比总数的一半多56棵,杉树的棵数比总数的三分之一少14棵.两类树各种了多少棵?13.一家商店将某型号彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投诉后,执法部门按已得非法收入的10倍处以每台2 700元的罚款.求每台彩电的原售价.C 组14.从甲地到乙地公共汽车原需行驶7个小时,开通高速公路后,路程近了30千米,而车速平均每小时增加了30千米,只需4个小时即可到达。
人教版七年级数学下册第六章《实数》单元复习教案设计
⼈教版七年级数学下册第六章《实数》单元复习教案设计⼈教版七年级下册《实数》单元复习教案教学⽬标:【知识与技能】掌握本章基本概念与运算,能⽤本章知识解决实际问题.【过程与⽅法】梳理本章知识点,挖掘知识点间的联系,并应⽤于实际解题中.【情感态度】领悟分类讨论思想,学会类⽐学习的⽅法.【教学重点】本章知识梳理及掌握基本知识点.【教学难点】应⽤本章知识解决实际与综合问题.【教学⽅法】演⽰法、类⽐法教学过程:⼀、作业回顾,提出错点【教学说明】将前⼀天的作业问题进⾏反馈,及时化解存在的问题。
⼆、课前⼩测,竞争⿎励1.下列说法正确的是()A.1的平⽅根是1B.1是1的算术平⽅根C. 22)(- 的平⽅根是2 D.0没有算术平⽅根 2.下列运算正确的是() A.31-=-31- B. 31-= 31 C. 31-= 31- D.31-=-313.化简:2242)()(-+-= . 4.6-的相反数是,倒数是,绝对值是 .5.绝对值⼩于7的正数有,它们的和是 .【教学说明】1.通过简单知识⼩测,让学⽣体会成就感的同时回顾本章知识.2.利⽤⼩组竞争提⾼学⽣的数学学习兴趣.三、知识要点,整体把握【教学说明】1.通过构建框图,帮助学⽣回忆本节所有基本概念和基本⽅法.2.帮助学⽣找出知识间联系,如平⽅与开平⽅,平⽅根与⽴⽅根,有理数与实数等等.四、类⽐精讲,释疑解惑【教学说明】在例题的分析讲解后,学⽣马上进⾏相关练习训练,通过师⽣互动形式,达到学以致⽤的效果。
例1.在实数21,3-,-3.14,0,π,2.161161161…,316中,⽆理数有() A.1个 B.2个 C.3个 D.4个分析:准确地进⾏实数的分类,能将各个数落相应类别的位置上.类⽐精练1.下列实数中,⽆理数是() A.4 B.2π C.2.161161116 D. 722 例2.若(a+1)2+02-b =,则a ,b 的值为 .【教学说明】本题由两个⾮负数的和为0,得到两个⾮负数为0,求出a,b 的值. 类⽐精练2.若x,y 为实数,且︱x+2︱+2-y =0,则2017)(y x 的值为() A.1 B.-1 C.2 D. -2 例3.计算(1)328163+-)((2)361535-++-【教学说明】实数的有关运算律及运算顺序、相反数、绝对值等与有理数的运算基本相同.有理数的运算律及运算顺序对实数同样适⽤.在进⾏实数混合运算时,⾸先要观察算式的特点,选择合适的⽅法进⾏计算.⼀般按照先乘⽅,后乘除,再加减的顺序计算,另外还要注意符号.类⽐精练3.(1)2325276)()(-+- (2)32274123-++-)(五、随堂练习,巩固要点4.下列等式正确的是()A. 13169±=B.552--=)(C. 327-D.1251253=--5.在10,3,325,-4中,最⼤的⼀个是()A. 10B.3C. 325D.-46.设a 为整数,若a 在数轴上的对应点如图所⽰,则a 的取值范围是()A.2﹤a ﹤3B. 4﹤a ﹤9C. -2﹤a ﹤3D. -4﹤a ﹤97.若1.1001.102=,则±0201.1=8.若10的纯⼩数是a ,则a =9.若a a --332=)(,则a 与3的⼤⼩关系是 .11.如果⼀个数的两个平⽅根分别是 2a-3和a+9,求这个数.【教学说明】结合中考考点,有针对性地进⾏训练,提⾼学⽣解题能⼒.六、拓展训练,能⼒提升14.已知a,b,c 为实数,且它们在数轴上的对应点位置如图所⽰:化简:a c a c b a b 2)(222---++-)(【教学说明】多块知识点相关结合,为中等能⼒的学⽣提升知识运⽤能⼒.七、作业布置:1.布置作业:课本P61 3.8.92.完成优化设计的课时的练习.教学反思:1.本课时教学可应⽤不同形式的练习引导学⽣认识相关的基本概念,强化对基本概念的理解以利于进⾏运算与判断.2.注重分类思想的认识与理解,强调实数计算能⼒的训练,打下坚实的运算能⼒的基础.。
第六章实数教案
人教版七年级数学下册第六章《实数》教案执教七年级数学集体备课组2013。
3。
8第六章实数6.1平方根【第一课时】教学目标:【知识与技能】了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
【过程与方法】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示.【教具准备】小黑板科学计算器【教学过程】一、导入1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣.2、板书:实数 1.1 平方根二、新授(一)探求新知1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?(,)、、1/3是无理数吗?4、有理数和无理数统称为实数。
(二)知识归纳:1、板书:1。
1平方根2、李老师家装修厨房,铺地砖10。
8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)3、怎么算?每块地砖的面积是:10。
8120=0。
09平方米。
由于0.32=0。
09,因此面积为0。
09平方米的正方形,它的边长为0.3米。
4、练习:由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。
人教版七年级数学下册教案第6章 实 数1 平方根(3课时)
第六章实数教材简析本章的内容包括:平方根、立方根、实数.在学习了有理数的基础上,加强与实际的联系,从现实世界中抽象出一种不同于有理数的数,即无理数,开平方运算与开立方运算也是实际中经常用到的两种运算;注意将新旧知识进行联系与类比,数的范围由有理数扩充到实数,与有理数有关的运算法则、运算律、运算顺序在实数范围内都仍然适用.在中考中,本章的考点有平方根、立方根的定义及运算,实数的运算及大小比较等,考查基本概念及基本计算.教学指导【本章重点】平方根、算术平方根、立方根、无理数、实数的有关概念和运算.【本章难点】对无理数意义的理解、用有理数估计无理数的方法及实数与数轴上点的对应关系.【本章思想方法】1.体会分类的数学思想,如:对实数进行分类.2.掌握分类讨论思想,如:由于一个正数的平方根有两个,且这两个数互为相反数,因此与平方根有关的题目往往需要进行分类讨论.3.掌握转化思想,如:学习了平方根和立方根后,运用转化思想将某些二次方程、三次方程转化为求平方根、立方根的问题求解.4.体会数形结合思想,如:数的范围由有理数扩充到实数,实数与数轴上的点建立了一一对应关系,这样可以通过观察“形”的特点,解答一些关于实数的比较抽象的问题.课时计划6.1平方根3课时6.2立方根1课时6.3实数1课时6.1 平方根第1课时算术平方根教学目标一、基本目标【知识与技能】1.了解算术平方根的概念,会用根号表示一个数的算术平方根. 2.根据算术平方根的概念求出非负数的算术平方根. 3.了解算术平方根的性质. 【过程与方法】加强概念形成过程的教学,提高学生的思维水平,鼓励学生进行探索和交流,培养他们的创新意识和合作精神.【情感态度与价值观】通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣.二、重难点目标 【教学重点】 算术平方根的概念. 【教学难点】根据算术平方根的概念正确求出非负数的算术平方根. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P40的内容,完成下面练习. 【3 min 反馈】1.一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.2.规定:0的算术平方根是0.3.算术平方根具有双重非负性:(1)a ≥0;(2)a ≥0. 4.求下列各数的算术平方根: (1)81; (2)0.25; (3)23. 解:(1)9. (2)0.5. (3)23. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】求下列各数的算术平方根: (1)64; (2)0.36; (3)214; (4)412-402.【互动探索】(引发学生思考)如何根据算术平方根的定义求非负数的算术平方根?【解答】(1)∵82=64,∴64的算术平方根是8. (2)∵0.62=0.36,∴0.36的算术平方根是0.6. (3)∵⎝⎛⎭⎫322=94=214,∴214的算术平方根是32. (4)∵412-402=81,92=81,∴81=9. ∵32=9,∴412-402的算术平方根是3.【互动总结】(学生总结,老师点评)(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.活动2 巩固练习(学生独学) 1.5的算术平方根为( A ) A.5 B .25 C .±25D .±52.一个数的算术平方根是34,这个数是( C )A.32 B .34C.916D .不能确定3.要切一块面积为0.81 m 2的正方形钢板,它的边长是0.9m. 4.4的算术平方根是 2.5.已知3+a 的算术平方根是5,求a 的值.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 活动3 拓展延伸(学生对学)【例2】已知x 、y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.【互动探索】算术平方根和平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得出什么结论?【解答】由题意,得x -1=0,y -2=0, 所以x =1,y =2. 所以x -y =1-2=-1.【互动总结】(学生总结,老师点评)算术平方根、绝对值和平方式都具有非负性,即a ≥0,|a |≥0,a 2≥0,当几个非负数的和为0时,各数均为0.环节3 课堂小结,当堂达标 (学生总结,老师点评)算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a性质:双重非负性⎩⎨⎧a ≥0a ≥0练习设计请完成本课时对应练习!第2课时 估算算术平方根教学目标 一、基本目标 【知识与技能】1.会比较两个数的算术平方根的大小.2.会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识. 3.会用计算器求一个数的算术平方根. 【过程与方法】体验“无限不循环小数”的含义,感受存在着不同于有理数的一类新数. 【情感态度与价值观】培养学生的探究能力和归纳问题的能力. 二、重难点目标 【教学重点】夹值法及估计一个(无理)数的大小. 【教学难点】夹值法及估计一个(无理)数的大小的思想. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P41~P44的内容,完成下面练习. 【3 min 反馈】1.无限不循环小数是指小数位数无限,且小数部分不循环的小数.实际上,许多正有理数的算术平方根(例如3,5,7)都是无限不循环小数.2.被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律:当被开方数扩大(或缩小)到原来的100倍⎝⎛⎭⎫1100,10000倍⎝⎛⎭⎫110000…时,其算术平方根相应地扩大(或缩小)到原来的10倍⎝⎛⎭⎫110,100倍⎝⎛⎭⎫1100…3.用计算器求一个正有理数的算术平方根的方法:大多数计算器都有键,用它可以求出任意一个正有理数的算术平方根(或其近似值).先按ON键开机,再按键、“被开方数”、=,即可显示“算术平方根”.4.与37最接近的整数是(B)A.5B.6C.7D.8环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】通过估算比较下列各组数的大小:(1)5与1.9;(2)6+12与1.5.【互动探索】(引发学生思考)(1)估算5的大小,或先求1.9的平方,再比较5与1.92的大小;(2)先估算6的大小,再比较6与2的大小,从而进一步比较6+12与1.5的大小.【解答】(1)(方法一)因为5>4,所以5>4,即5>2,所以5>1.9. (方法二)因为1.92=3.61,3.61<5,所以5>1.9.(2)因为6>4,所以6>4,所以6>2,所以6+12>2+12=1.5,即6+12>1.5.【互动总结】(学生总结,老师点评)比较两个数的大小常用方法有:①作差比较法;②作商比较法;③移因数于根号内,再比较大小;④利用平方法比较无理数的大小等.比较无理数与有理数的大小时要先估算无理数的近似值,再比较它与有理数的大小.活动2巩固练习(学生独学)1.估计5+1的值,应在(C)A.1和2之间B.2和3之间C.3和4之间D.4和5之间2.估算19-2的值(B)A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间3.计算:(1)1225;(2)36.42(精确到0.001);(3)13(精确到0.001).解:(1)1225=35.(2)36.42≈6.035.(3)13≈3.606.活动3拓展延伸(学生对学)【例2】全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓开始在岩石上生长.每个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,则冰川约是在多少年前消失的?【互动探索】(1)根据题意可知是求当t=16时d的值,直接把对应数值代入关系式即可求解;(2)根据题意可知是求当d=35时t的值,直接把对应数值代入关系式即可求解.【解答】(1)当t=16时,d=7×16-12=7×2=14.即冰川消失16年后苔藓的直径是14厘米.(2)当d=35时,即7×t-12=35,所以t-12=25,解得t=37.即冰川约是在37年前消失的.【互动总结】(学生总结,老师点评)本题考查算术平方根的实际应用,注意实际问题中涉及开平方通常取算术平方根.环节3课堂小结,当堂达标(学生总结,老师点评)1.夹值法及估计一个(无理)数的大小.2.用计算器求一个正数的算术平方根.练习设计请完成本课时对应练习!第3课时平方根教学目标一、基本目标【知识与技能】掌握数的开方的意义、平方根的意义、平方根的表示方法.【过程与方法】通过带领学生探究一个数的平方根,使学生理解数的开方、平方根的概念.【情感态度与价值观】培养学生的探究能力和归纳问题的能力.二、重难点目标 【教学重点】 平方根的概念. 【教学难点】 求一个数的平方根. 教学过程环节1 自学提纲、生成问题 【5 min 阅读】阅读教材P44~P46的内容,完成下面练习. 【3 min 反馈】1.一般地,如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根或叫二次方根.也就是说,如果x 2=a ,那么x 叫做a 的平方根.2.一个正数有两个平方根,且它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.3.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. 4.下列说法不正确的是( C ) A .-2是2的平方根 B.2是2的平方根 C .2的平方根是 2 D .2的算术平方根是 2 5.求下列各数的平方根: 16,0,49,242.解:16的平方根是±4. 0的平方根是0. 49的平方根是±23. 242的平方根是±24. 环节2 合作探究,解决问题 活动1 小组讨论(师生对学) 【例1】求下列各数的平方根: (1)12425; (2)0.0001;(3)(-4)2; (4)81.【互动探索】(引发学生思考)把带分数化为假分数,含有乘方运算先求出它的幂.注意正数有两个互为相反数的平方根.【解答】(1)∵12425=4925,⎝⎛⎭⎫±752=4925,∴12425的平方根是±75,即±12425=±75. (2)∵(±0.01)2=0.0001,∴0.0001的平方根是±0.01,即±0.0001=±0.01. (3)∵(±4)2=(-4)2,∴(-4)2的平方根是±4,即±(-4)2=±4. (4)∵(±3)2=9=81,∴81的平方根是±3.【互动总结】(学生总结,老师点评)正确理解平方根的概念,明确是求哪一个数的平方根.如(4)中就是求9的平方根.【例2】已知一个正数的两个平方根分别是2a +1和a -4,求这个数.【互动探索】(引发学生思考)一个正数的平方根有两个,它们之间有什么关系呢? 【解答】由于一个正数的两个平方根分别是2a +1和a -4,则有2a +1+a -4=0. 即3a -3=0,解得a =1.所以这个数为(2a +1)2=(2+1)2=9.【互动总结】(学生总结,老师点评)一个正数的平方根有两个,它们互为相反数,即它们的和为零.活动2 巩固练习(学生独学)1.关于平方根,下列说法正确的是( B ) A .任何一个数有两个平方根,并且它们互为相反数 B .负数没有平方根C .任何一个数只有一个算术平方根D .以上都不对2.如果a 、b 分别是16的两个平方根,那么ab =-16. 3.若25x 2=16,则x 的值为±45.4.求下列各数的平方根:(1)196; (2)10-4; (3)144169; (4)3625.解:(1)±14. (2)±10-2. (3)±1213. (4)±95.活动3 拓展延伸(学生对学) 【例3】求下列各式中x 的值. (1)x 2=361; (2)81x 2-49=0; (3)(3x -1)2=(-5)2.【互动探索】上述方程都可以化成一个数或代数式的平方的形式,结合平方根的定义,你能算出x 的值吗?【解答】(1)∵x 2=361,∴开平方,得x =±361=±19. (2)整理,得x 2=4981,∴开平方,得x =±4981=±79. (3)∵(3x -1)2=(-5)2,∴开平方,得3x -1=±5. 当3x -1=5时,x =2;当3x -1=-5时,x =-43.综上所述,x =2或-43.【互动总结】(学生总结,老师点评)利用平方根的定义进行开平方解方程,从而求出未知数的值,一个正数的平方根有两个,它们互为相反数;开平方时,不要漏掉负平方根.环节3 课堂小结,当堂达标 (学生总结,老师点评) 平方根⎩⎪⎨⎪⎧平方根的概念平方根的性质开平方及相关运算练习设计请完成本课时对应练习!。
新人教版七年级数学下册第六章全部教案
七年级数学学科(第七册)6.1.1 有序数对七年级数学(下册)6.1.2 平面直角坐标系七年级数学(下册)6.2.1 用坐标表示地理位置尝试应用春天到了,七年级(13)班组织同学到人民公园春游,张明、王丽、李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师告诉了他们的位置.张明:“我这里的坐标是(300,300)”.王丽:“我这里的坐标是(200,300)”.李华:“我在你们东北方向约420米处”.实际上,他们所说的位置都是正确的.你知道张明和王丽同学是如何在景区示意图上建立的坐标系吗?你理解李华同学所说的“东北方向约420米处”吗?用他们的方法,你能描述公园内其他景点的位置吗?让学生分别画出直角坐标系,标出其他景点的位置.学生能在小组内经过讨论、交流,得出结论:一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度.补偿提高出示问题,巡回指导根据以下条件画一幅示意图,标出某一公园的各个景点.菊花园:从中心广场向北走150米,再向东走150米;湖心亭:从中心广场向西走150米,再向北走100米;松风亭:从中心广场向西走100米,再向南走50米;育德泉:从中心广场向北走200米.学生动手画图,标出景点位置完善反思教师引导学生完成本节课的小结并适当的强调有关的知识点:有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.学生能由教师的引导完成本节课的小结:本节课学习了哪些知识和方法?你认为应该注意哪些问题呢?你有什么收获呢? 并能归纳说出如何利用坐标表示地理位置.布置作业习题6.2第1,2题. 记录作业达标检测题1.利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程为:(1)建立坐标系,选择一个适当的______为原点,确定x轴、y轴的_______;(2)确定适当的_______,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的_______和各个地点的________.2.小亮同学利用暑假参观了花峪村果树种植基地(如图).他从苹果园出发,沿(1,3),(-3,3),(-4,0),(-4,-3),(2,-2),(6,-3),(6,0),(6,4)的路线进行了参观,写出他路上经过的地方,并用线段依次连接他经过的地点,看看能得到什么图形?思考、解答,交流答案七年级数学(下册)6.2.2 用坐标表示平移尝试应用如图,菱形ABCD,四个顶点分别是A(-2,1),B(1,-3),C(4,-1),D(1,1).将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为多少?将它沿y轴正方向平移4个单位长度呢?分别画出平移后的图形.学生结合探究收获,完成题目再次探究让学生认真思考,解答,探究规律。
人教版数学七年级下册第6章第3课实数实数(教案)
-直观教学:利用数轴模型,将实数与数轴上的点进行对应,通过动画或实物演示,帮助学生建立直观的几何概念。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如足球的面积计算)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
课堂上,我尝试了多种教学方法,比如小组讨论和实验操作,让学生们动手动脑,这样可以提高他们的参与度和兴趣。从学生的反馈来看,这种互动式的学习方式效果不错,他们能够更直观地理解实数与数轴的关系。
然而,我也注意到,在实数的运算环节,尤其是涉及无理数的计算时,学生们还是感到有些困惑。我意识到,我需要提供更多的例题和练习,特别是那些能够逐步引导他们理解无理数运算规则的问题。
人教版数学七年级下册第6章第3课实数实数(教案)
一、教学内容
人教版数学七年级下册第6章第3课实数。本节课将涵盖以下内容:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无理数。
2.无理数的理解:介绍无理数的概念,如π、√2等,并解释其与有理数的区别。
3.实数的性质:探讨实数的封闭性、可比较性、可运算性等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的近似计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用剪刀和直尺制作一个π的近似计算模型。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(人教版)七年级数学下册第六章第2节《立方根》教案(2套)
|l3. 2立方権C")1. 了解立方根的概念,初歩学会用根号表示一个数的立方粮.2s 了解开立方与立芳互为逆运算,会用立方运算求某些数的立方恨3、让学生悴会一个数的立方根的惟一性•4、分漬一个数的立方桐与平方棍K)区别.。
教学重点:立方根的概念和求法。
教学难点:立方根与平方根的区别教学过程设计:3(4)因为 00 ,所以8的立方根是(0 )因为8,所以8的立方根是( 2)因为-,所以8的立方根是( 2) 273c 一个正数有一个正的立方根【总结归纳】0有一个立方根,是它本身V —个负数有一个负的立方根、任何数都有唯一的立方根一个数a 的立方根,记作3a ,读作:“三次根号a ”,其 中a 叫被开方数,3叫根指数, 不能省略,若 省略表示平方。
例如:3 27表示27的立方根, 3 27 3 ; 3_27表示27的立 方根,3一27 3. 3、探究: 因为3;8,38 ,所以3_8 38 因为3 一27 ,所以3 27=327利用开立方和立方互为逆运 算关系,求一个数的立方 根, 就可以利用这种互逆关系,检验其正确性,求负数的立方根, 可以先求出这个负数的绝对值的立方根,再取其相反数,即 4、 例 求下列各式的值: (1)3 64 ; (2 27 ; (3)N0 ; (5)64 ; ( 6) 64三、练习:课本P79练习1、2、3教学反思: 17Is使学性了解数的立方棍旳概念.茲便学生自胡申艮号表示一个数的立期艮.3. 使学畧備立肓运算求某数的立方^4、使学生能了解开立方的概念.J使学生理解开立方与立方互为逆运算■.6>通过性庞推导过程培养学生的粪比思想和推理旨fcfch教学分析重点:立方根的概念与性质及求法。
难点:求一个数的立方根的方法。
源:学_科_网]教学过程一、复习1、请同学们回忆一下,平方根是如何定义的?2、平方根有哪些性质?二、新授1、你能否由平方根的定义说出立方根的定义呢?立方根的概念:如果一个数的立方等于a,这个数就叫做a的立方根。
《平面直角坐标系》的教案(精选5篇)
《平面直角坐标系》的教案(精选5篇)《平面直角坐标系》的教案(精选5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
那么你有了解过教案吗?下面是小编收集整理的《平面直角坐标系》的教案(精选5篇),欢迎大家借鉴与参考,希望对大家有所帮助。
《平面直角坐标系》的教案1[教学目标]1、认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位2、渗透对应关系,提高学生的数感。
[教学重点与难点]重点:平面直角坐标系和点的坐标。
难点:正确画坐标和找对应点。
[教学设计][设计说明]一、利用已有知识,引入1.如图,怎样说明数轴上点A和点B的位置,2.根据下图,你能正确说出各个象棋子的位置吗?二、明确概念平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system)。
水平的数轴称为x轴(x—axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y—axis)或纵轴,取向上方向为由数轴的表示引入,到两个数轴和有序数对。
从学生熟悉的物品入手,引申到平面直角坐标系。
描述平面直角坐标系特征和画法正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。
表示方法为(a,b)。
a是点对应横轴上的数值,b是点在纵轴上对应的数值。
例1 写出图中A、B、C、D点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例1中各点在第几象限吗?例2 在平面直角坐标系中描出下列各点。
()A(3,4);B(—1,2);C(—3,—2);D(2,—2)问题1:各象限点的坐标有什么特征?练习:教材49页:练习1,2、三。
深入探索教材48页:探索:识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
最新新课标人教版初中数学七年级下册第六章《平面直角坐标系》教材分析名师优秀教案
新课标人教版初中数学七年级下册第六章《平面直角坐标系》教材分析新课标人教版初中数学七年级下册第六章《平面直角坐标系》教材分析一、教材解读:本单元的教学内容是平面直角坐标系的有关概念和点与坐标的对应关系,以及用坐标表示地理位置和用坐标表示平移等内容。
要求学生理解并掌握点和坐标的对应关系,提高数学思维能力,通过合作交流和小组探讨,发现生活中的数学问题,了解数学的应用价值。
由于学生的年龄特点和认知结构,教师在教学过程中,引导学生回顾数轴知识,然后结合现实生活中的具体位置,让学生直观的感受有序实数对的应用,同时要采用多媒体等教学用具,生动形象地展现知识,让学生在轻松愉快的气氛中,掌握知识,提高技能。
(1)知识点上?本章主要研究平面直角坐标系及有关概念,坐标方法的简单应用。
本章是今后学习函数图象、函数与方程和不等式的基础,也是用代数方法研究几何问题的有力工具。
?本章内容与生活密切相关,利用平面直角坐标系可以解决生活中确定位置、平移等实际问题,通过学习可以让学生体会到平面直角坐标系在生活中的作用,培养学生“用数学”的意识。
?思想方法上平面直角坐标系的学习充分体现了数形结合的思想,而坐标方法的简单应用更是从平移及实际应用的角度让学生感受数形结合的思想。
?能力上掌握点与有序整数对的关系,能建立适当的平面直角坐标系确定点的位置,为今后函数的学习打好基础。
能将实际问题转化为几何问题,能实现几何问题与代数问题的转换建立起数形联系(应用)。
二、教学目标?知识与能力1.理解有序数对,掌握平面直角系的概念2.掌握平面内的点与有序数对的一一对应关系,能熟练地在给定的直角坐标系中,根据坐标描出点的位置,能由点的位置写出点的坐标。
3.了解象限的概念,能根据象限内和坐标轴的特征,熟练地由点的坐标判断点在的象限。
4.在同一平面直角坐标系中,能用坐标表示平移和说出坐标变换的平移。
?过程方法1.由生活事例引入,师生合作。
先从实际中需要确定物体的位置出发,引出有序数对的概念,指出有序数对可以确定物体的位置。
北师大版数学七年级下册全册教案-第六章变量之间的关系
教案:第六章变量之间的关系一、教学目标1.经历探索具体情境中两个变量之间关系的过程,进一步发展符号感和抽象思维.2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量.3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力.4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测.5.体验从运动变化的角度认识数学对象的过程,发展对数学的认识.二、课时安排建议1小车下滑的时间~~~~~~~~~~~~~1课时2变化中的三角形~~~~~~~~~~~~~1课时3温度的变化~~~~~~~~~~~~~~~1课时4速度的变化~~~~~~~~~~~~~~~1课时回顾与思考~~~~~~~~~~~~~~~~1课时三、教学建议1.创设丰富的现实情境,使学生在对变化规律的丰富经历中理解变量之间的相依关系.本章主要讨论的是现实世界中大量存在的变量,讨论如何用数学的方法去理解、表示变量之间的关系,并解决一些问题和进行预测.因此在教学中,教师要创设丰富的现实情境使学生体会变量以及变量之间相互依赖的关系,而不是形式地讨论函数的有关概念.教师可以充分利用教科书中提供的问题,也可以根据学生实际创设新的情境,或鼓励学生自己从生活中寻找有关素材供课堂讨论.2.注重使学生亲身经历探索现实世界变化规律的过程.运用数学的语言、方法、知识去理解、刻画现实世界中的变化规律,是本章学习的主要目标之一.而实现这一目标的重要途径是使学生亲身经历探索现实世界变化规律的过程,在探索活动中理解变量之间的相依关系,并尝试用语言和符号去刻画.例如,在探索小车下滑过程中下滑时间与支撑物高度的关系时,教师应鼓励学生充分地从表格中获取信息,运用自己的语言进行描述,并与同伴进行交流.有条件的地方,教师可以让学生亲自实践这个实验或实践其他可操作性的实验,使他们获得变量之间关系的直观体验,并体会收集数据、整理数据、由数据进行推断的思考方式.3.注重使学生从表格、关系式、图象中尽可能多地获取信息,并运用语言进行表达.前面已经提到,为了发展学生对函数思想的理解,必须使他们对函数的多种表示——数值表示、解析表示、图象表示有相当丰富的经历.因此,教科书安排了大量由表格、关系式、图象所表达的变量之间关系的实例.在学生讨论这些例子时,教师要留给他们充分思考的时间,鼓励他们从表格、关系式、图象中尽可能多地获取信息,并运用自己的语言进行表达.当学生运用语言进行表达时,教师不要苛求语言的统一性以及对关系的精确描述,只要学生能大致描述出变量之间的关系即可.四、评价建议1.关注对学生探索现实世界变化规律的过程的评价.在本章的学习中,学生花费了较多的时间经历从具体问题中抽象出变化规律、理解符号所代表的变化规律等活动,这些活动对于学生发展符号感具有重要的价值.因此,对上述活动过程的考查应当成为评价的首要方面.对这一方面评价的重点显然不是记忆概念的准确性和使用技能、法则的熟练程度,而是对以下诸方面的考查:从事活动的投入程度,从表格、关系式、图象中获取信息的准确性和广泛性,对具体情境中变量之间关系的敏感性,运用语言等描述变量之间关系的合理性等.例如,在对学生探索小车下滑时间与支撑物高度关系的过程进行评价时,可以关注以下几个方面:学生是否积极地进行活动,并在活动中进行独立思考;能否从实际操作或表格中意识到下滑时间与支撑物高度之间存在着相依关系;能否从表格中获取尽可能多的信息;能否运用自己的语言描述下滑时间与支撑物高度之间的关系等.2.在现实情境中评价学生对变量之间关系的理解.在考查学生对变量之间关系的理解时,应关注学生是否能够感受周围世界中的变量,是否能够发现变量之间互相依赖的关系;关注学生是否能从表格和图象中获取信息,并由此进行预测;关注学生能否运用语言、表格、关系式描述一些变量之间的关系等.评价时应提供具体的问题情境,从大量实际问题或学生感兴趣的问题出发.避免形式化地对函数性质本身(如单值对应、三种表达形式)进行讨论.§6.1 小车下滑的时间一、[教学目标]1.经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。
人教版七年级下册数学第6章 实数 【教案】实数及其性质
实数及其性质一、学生起点分析实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。
二、教学任务分析本节是义务教育课程标准七年级下册第六章《实数》的第三节。
主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义。
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
本节课的教学目标是:1.了解实数的意义,能对实数按要求进行分类;2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.3.在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
5.了解数系扩展对人类认识发展的必要性;教学重点1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律; 三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:课堂练习;第六环节:归纳小结; 第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类? (2)什么是无理数?带根号的数都是无理数吗? 意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。
通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。
新课标人教版数学七年级下册第六章教案
重点
描出点的位置和建立坐标系
教学
难点
适当地建立坐标系
课前
准备
教师
准备
学生
准备
引入
以复习的方式引入新课
准备
活动
讲解
活动
任务
(1、2、4)
主
要
活
动
任务一(1.2.4)
通过建立平面直角坐标系,更加深刻地体会几何与代数间的相互联系.
知识点对照
任务二
(1.2.3)
小组讨论并说出平面直角坐标系四个象限内坐标点的区别联系
点的坐标
如图,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4)。
类似地,请你根据课本41面图6.1-4,写出点B、C、D的坐标.
B(-3,4)、C(0,2)、D(-3,0).
注意:写点的坐标时,横坐标在前,纵坐标在后。
四、练一练
1、如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?
6大道
5大道
4大道
A
3大道
B
2大道
1大道
1街
2街
3街
4街
5街
6街
分析:图中确定点用前一个数表示大街,后一个数表示大道。
知识点对照
任务三
(1.2.3)
初步运用平面直角坐标系的有关知识解决一些简单实际问题,增强数学应用意识,发展创新精神.
知识点对照
人教版七年级下册数学第6章《实数》优秀教学案例(教案)
1.生活情境的引入:通过购物小票的实际例子,让学生感受实数在生活中的应用,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向的教学策略:设计一系列递进式的问题,引导学生逐步深入理解实数的相关知识,培养学生的批判性思维和问题意识。
3.小组合作的学习方式:通过小组讨论和合作任务,培养学生的团队合作精神,提高学生的沟通能力和协作能力。
2.理解实数与数轴的关系,能够利用数轴表示和解释实数。
3.掌握实数的运算方法,包括加法、减法、乘法、除法等,并能进行实数的混合运算。
4.能够运用实数的概念和运算方法解决实际问题,提高学生的应用能力。
(二)过程与方法
1.通过观察、思考、讨论等方式,引导学生主动探索实数的概念和性质。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
3.通过实际例子,让学生体会实数在生活中的应用,提高学生解决实际问题的能力。
4.注重个体差异,给予每个学生充分的思考和表达机会,鼓励学生提出不同观点,培养学生的创新思维。
在教学过程中,我还将注重以下几点:
1.关注学生的学习兴趣,创设有趣的教学情境,激发学生的学习热情。
(四)反思与评价
1.个人反思:在教学过程中,鼓励学生进行个人反思,思考自己在学习实数知识过程中的理解、困惑和收获,如“你觉得自己在实数学习中有哪些收获?还有哪些需要改进的地方?”
2.同伴评价:引导学生相互评价,互相借鉴学习方法和解题思路,如“你觉得他的解题方法怎么样?有没有更好的解决办法?”
3.教师评价:教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维过程和团队合作能力等方面的表现,如“你在这次小组合作中表现得很出色,不仅积极参与讨论,还能够提出有深度的观点。”
新人教版数学七年级下册第六章《实数》全章教案
5.144的算术平方根是多少?怎样用符号表示?
学生活动:独立思考1、2答案,提出疑难问题。
给学生充足的时间和空间,理解和感知算术平方根概念,通过讨论、交流,提出问题
师
生
互
动
归
纳
新
知
问题1:你能叙述算术平方根的概念吗?
一般地:如果一个正数 的平方等于a,即 =a,那么这个正数 叫做a的算术平方根。a的算术平方根记为 ,读作“根号a”,a叫做被开方数。
年级
七年级
课题
6.1平方根(2)
课型
新授
教
学
目
标
知识
技能
1.用有理数估计无理数的大致范围,并初步体验“无限不循环小数”的含义.
2.用计算器求一个非负数的算术平方根.
过程
方法
通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;
情感
态度
通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习的兴趣。
问题(四)
两种运算有什么不同?
问:前四个是什么运算?后面的又是什么运算?
教师板书:求一个数a的平方根的运算,叫开平方,其中a叫被开方数.。
学生思考,小组讨论,个别回答
问题是知识能力生长点,通过富有实际意义的问题,激发学生原有认知,促使学生主动地进行探索和思考,让他们体会数学的韵味.。
尝
试
应
用
问题(五)
(2)0的平方根和算术平方根都是0。
区别
(1)定义不同:
“如果一个数 的平方等于a,那么这个数 叫做a的平方根”,
“如果一个正数x的平方等于a,即 ,那么这个正数x叫做a的算术平方根”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?
让同学们看图6.2.2。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?
把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?
五、作业。
教科书第12页习题6.2,2第l题。
六、教学反思:
____课时 第_____周星期_____备课人:_______ 授课班级:_____ 总____课时
2、解一元一次方程(第二课时)
教学目的:
1、使学生掌握去分母解方程的方法,并从中体会到转化的思想。
2、对于求解较复杂的方程,注重培养学生自觉反思求解的过程和自觉检验方程的解是否正确的良好习惯。
五、作业
教科书第7—8页习题6.2.1第1、2、3。
六、教学反思:
____课时 第_____周星期_____备课人:_______ 授课班级:_____ 总____课时
2、解一元一次方程(第一课时)
教学目的
1.了解一元一次方程的概念。
2.掌握含有括号的一元一次方程的解法。
重点、难点
1.重点;解含有括号的一元一次方程的解法。
由图6.2.1和6.2.2可归结为;
方程两边都加上或都减去同一个数或同一个整式,方程的解不变。
让学生观察(3),由学生自己得出方程的第二个变形。
即方程两边都乘以或除以同一个不为零的数,方程的解不变:
通过对方程进行适当的变形.可以求得方程的解。
例1.解下列方程
(1)x-5=7 (2)4x=3x-4
解:(1)两边都加上5,得x=7+5即x=12
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
我们再来看下面一个例子:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?
问:你能解决这个问题吗?有哪些方法?
(让学生思考后,回答,教师再作讲评)
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
小敏同学很快说出了答案。“三年”。他是这样算的:
1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。
2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一。
3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的们本章要解决的问题。
三、巩固练习
1.教科书第3页练习1、2。
2.补充练习:检验下列各括号内的数是不是它前面方程的解。
(1)x-3(x+2)=6+x (x=3,x=-4)
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
(2)2y(y-1)=3 (y=-1,y=2)
(3)5(x-1)(x-2)=0 (x=0,x=1,x=2)
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业。教科书第3页,习题6.1第1、3题。
六、教学反思:
____课时 第_____周星期_____备课人:_______ 授课班级:_____ 总____课时
(提示:观察未知数的个数和未知数的次数。)
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,这样的方程叫做一元一次方程。
例1.判断下列哪些是一元一次方程
x=3x-2x-3=-l
5x2-3x+1=02x+y=l-3y=5
下面我们再一起来解几个一元一次方程。
例2.解方程(1)-2(x-1)=4
补充例题:解方程3x-[3(x+1)-(1+4)]=l
方程中有多重括号,你会解这个方程吗?
说明:方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
三、巩固练习。
教科书第9页,练习,l、2、3。
四、小结。
本节课我们学习了一元一次方程的概念,并学习了含有括号的一元一次方程的解法。用分配律去括号时,不要漏乘括号中的项,并且不要搞错符号。
2、难点:弄清应用题题意列出方程。
教学过程
一、复习
1、什么叫一元一次方程?
2、解一元一次方程的理论根据是什么?
二、新授。
例1、如图6.2.4(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?
先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。
算术法:(328-64)÷44=264÷44=6(辆)
列方程解应用题:
设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。
44x+64=328(1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。)
花
滩
中
学
2016
年
春
期
七年级(下)数学教案
____课时第_____周星期_____备课人:_______授课班级:_____ 总____课时
第6章 一元一次方程
6.1从实际问题到方程
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
解法二;把方程两边都乘以6,去分母。
比较两种解法,可知解法二简便。
想一想,解一元一次方程有哪些步骤?
先让学生自己总结,然后互相交流,得出结论。
解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例2:解方程 = -
(2)两边都减去3x,得x=3x-4-3x即x=-4
请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点?
这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
6.2解一元一次方程
1.方程的简单变形
教学目的
1、通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,
2、能利用它们将简单的方程变形以求出未知数的值。
重点、难点
1.重点:方程的两种变形。
2.难点:由具体实例抽象出方程的两种变形。
教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
问:如果先去分母,方程两边应同乘以一个什么数?
应乘以各分母的最小公倍数,5、2、3的最小公倍数。
三、巩固练习
教科书第10页,练习1、2。
(练习第1题是辨析题,引导学生进行分析、讨论,帮助学生在实践中自我认识和纠正解题中的错误)
四、小结
1.解一元一次方程有哪些步骤?
2.同学们要灵活运用这些解法步骤,掌握移项要变号,去分母时,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上。
注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。
例2.解下列方程
(1)-5x=2 (2) x=
这里的变形通常称为“将未知数的系数化为1”。
以上两个例题都是对方程进行适当的变形,得到x=a的形式。
练习:
课本第6页练习1、2、3。
练习中的第3题,即第2页中的方程①先让学生讨论、交流。
(2) 3(x-2)+1=x-(2x-1)
方程(1)该怎样解?由学生独立探索解法,并互相交流
此方程既可以先去括号求解,也可以看作关于(x-1)的一元一次方程进行求解。
第(2)题可由学生自己完成后讲评,讲评时,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是“-”号,注意去掉括号,要改变括号内的每一项的符号。
重点、难点
1、重点:掌握去分母解方程的方法。
2、难点:求各分母的最小公倍数,去分母时,有时要添括号。
教学过程
一、复习提问
1.去括号和添括号法则。
2.求几个数的最小公倍数的方法。
二、新授
例1:解方程 - =1
分析:如何解这个方程呢?此方程可改写成
=1
所以可以去括号解这个方程,先让学生自己解。
同学们,想一想还有其他方法吗?能否把方程变形成没有分母的一元一次方程,这样,我们就可以用已学过的方法解它了。
鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。