2020年福州市九年级质量检测数学试题答案及评分参考
福州市2019-2020年九年级上期末质量检测数学试卷及答案
福州市2019-2020年九年级上期末质量检测数学试卷及答案—学年度第一学期九年级期末质量检测数 学 试 卷(满分150分;考试时间120分钟)一、选择题(共10小题,每小题4分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.下列根式中,不是最简二次根式的是 A .10 B .8 C . 6 D . 22.下列图形依次是圆、正方形、平行四边形、正三角形,其中不是中心对称图形的是3.如图,△ABC 内接于⊙O ,∠A =50°,则∠BOC 的度数是 A .100° B .80° C .50° D .40° 4.下列事件中,为必然事件的是A .购买一张彩票,一定中奖B .打开电视,正在播放广告C .一个袋中只有装有5个黑球,从中摸出一个球是黑球D .抛掷一枚硬币,正面向上5.用扇形统计图反映地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是A .0.2B .0.3C .0.4D .0.5 6.方程x 2=x 的解是A .x =1B .x =0C .x 1=1,x 2=0D .x 1=-1,x 2=07.在平面直角坐标系中,将抛物线y =x 2先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式是A .y =(x -2)2+2B .y =(x ―2)2―2C .y =(x +2)2+2D .y =(x +2)2-2 8.若n (n ≠0)是关于x 的方程x 2+mx +3n =0的一个根,则m +n 的值是 A .-3 B .-1 C .1 D .39.已知⊙O 1和⊙O 2的半径分别是方程x 2-6x +5=0的两根,且两圆的圆心距等于4,则⊙O 1与⊙O 2的位置关系是A .外离B .外切C .相交D .内切10.二次函数y =ax 2+bx +c 的图象如图所示,则点A (4a +2b +c ,abc )在 A .第一象限 B .第二象限C.第三象限D .第四象限A BCD 第3题图第5题图 第10题图 ABC D O 第14题图二、填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置) 11.使x -1有意义的x 的取值范围是_______________.12.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字为6的概率是______________.13.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个相等的实数根,则k =_________.14.如图,一条公路的转弯处是一段圆弧(图中的⌒AB ),点O 是这段弧的圆心,C 是⌒AB 上一点,OC ⊥AB ,垂足为D ,AB =160m ,CD =40m ,则这段弯路的半径是___________m .15.已知二次函数y =―x 2―4x +3,则y 的最大值是____________;x +y 的最大值是____________.三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.计算:(每小题7分,共14分)(1) 8×12×18÷27; (2) 9x +6 x 4-2x 1x.17.(本题15分)如图,△ABC 的顶点坐标分别为A (-3,1),B (0,1),C (0,3),将△ABC 绕原点O 顺时针旋转90°,得到△A 1B 1C 1.(1) 画出△A 1B 1C 1;(2) 直接写出△A 1B 1C 1各顶点坐标;(3) 若二次函数y =ax 2+bx +c 的图象经过点C 、B 1、C 1,求二次函数的解析式;(4) 请在右边的平面直角坐标系中画出(3)的二次函数y =ax 2+bx +c18.(本题12分)在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,5.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x ,小强摸出球的标号为y .小明和小强在此基础上共同协商一个游戏规则:当x 与y 的积为偶数时,小明获胜;否则小强获胜.(1) 若小明摸出的球不放回,求小明获胜的概率;(2) 若小明摸出的球放回后小强再随机摸球,问他们制定的游戏公平吗?请说明理由. 19.(本题10分)据媒体报道,某年旅游纯收入约2000万元,年旅游纯收入约2880万元,若年、年旅游纯收入逐年递增,请解答下列问题:(1) 求这两年该旅游纯收入的年平均增长率;(2) 如果今后两年仍保持相同的年平均增长率,请你预测到年该旅游纯收入约多少万元?20.(本题12分)如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,且∠A =∠PCB .(1) 求证:PC 是⊙O 的切线; (2) 若CA =CP ,PB =1,求⌒BC 的弧长.第20题图21.(本题13分)在△ABC 中,AC =BC =2,∠C =90°.将一块三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交边AC 、CB 于点D 、E .(1) 如图①,当PD ⊥AC 时,则DC +CE 的值是____________.(2) 如图②,当PD 与AC 不垂直时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3) 如图③,在∠DPE 内作∠MPN =45°,使得PM 、PN 分别交DC 、CE 于点M 、N ,连接MN .那么△CMN 的周长是否为定值?若是,求出定值;若不是,请说明理由.22.(本题14分)如图,抛物线y =x 2-4x +1与x 轴交于A 、B 两点,与y 轴交于点C .(1) 求点A 、B 的坐标及线段AB 的长; (2) 求△ABC 的外接圆⊙D 的半径;(3) 若(2)中的⊙D 交抛物线的对称轴于M 、N 两点(点M 在点N 的上方),在对称轴右边的抛物线上有一动点P ,连接PM 、PN 、PC ,线段PC 交弦MN 于点G .若PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,当这两部分面积之差等于4时,求出点P 的坐标.A C DEP 第21题图① 第21题图② A B C DE P 第21题图③ A C D E MPN 第22题图①第22题图②福州市—学年第一学期九年级期末质量检测数学试卷参考答案及评分标准一、选择题(每小题4分,共40分)1.B 2.D 3.A 4.C 5.B 6.C 7.A 8.A 9.D 10.D 二、填空题(每小题4分,共20分):11.x ≥1 12. 1 6 13.1 14.100 15.7; 214(正确一个得2分)三、解答题:(满分90分) 16.(每小题7分,共14分)解:(1) 8×12×18÷27=22×23×32÷3 3 ……………………………………………………………4分 =8. ……………………………………………………………………………………7分(2) 9x +6x 4-2x 1 x=3x +3x -2x ……………………………………………………………………6分=4x . …………………………………………………………………………………7分17.解:(1) △A 1B 1C 1如右下图; ………………………………………………………………3分(2) A 1(1,3),B 1(1,0),C 1(3,0); …………………………………………………6分(3) 由抛物线y =ax 2+bx +c 经过点C 、B 1、C 1,可得:⎩⎪⎨⎪⎧c =3a +b +c =09a +3b +c =0, ………………………………………………………………9分解得:⎩⎪⎨⎪⎧a =1b =-4c =3, …………………………………10分∴抛物线的解析式为:y =x 2-4x +3. ……………11分 (答案用一般式或顶点式表示,否则扣2分)18.解:(1) 列树状图如下:………………3分由树状图可知:所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有6种.…………………………………………………………………………………4分∴小明获胜的概率P (x 与y 的积为偶数)=6 12 = 12. (6)分(2) 列树状图如下:……………9分由树状图可知,所有可能出现的结果共16种情况,并且每种情况出现的可能性相等.其中x 与y 的积为偶数有7种. ……………………………………………………………………………10分∴小明获胜的概率P (x 与y 的积为偶数)=7 16 < 12, (11)1 2 3 51 2 3 5 1 2 3 5 1 2 3 5 小明 小强 小明 小强 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5 1 2 3 5分(或证明7 16 ≠916也可) ∴游戏规则不公平. ……………………………………………………………………12分19.解:(1) 设这两年该旅游纯收入的年平均增长率为x .根据题意得: ………………1分2000(1+x )2=2880. (4)分解得:x 1=0.2=20%,x 2=-2.2 (不合题意,舍去). ………………………6分答:这两年该旅游纯收入的年平均增长率为20%. (7)分(2) 如果到2015年仍保持相同的年平均增长率,则2015年该旅游纯收入为 2880(1+0.2)2=4147.2(万元). ………………………9分答:预测2015年该旅游纯收入约4147.2万元. ………………………10分 20.解:(1) 连接OC . …………………………………………1分∵AB 是⊙O 的直径, ∴∠ACB =90°,即∠ACO +∠OCB =90°. ………2分 ∵OA =OC ,∴∠A =∠ACO , ………………………………3分 ∵∠A =∠PCB ,∴∠ACO =∠PCB . ………………………………4分 ∴∠PCB +∠OCB =∠ACO +∠OCB =90°,即∠PCO =90°. ∴PC ⊥OC . ………………………………5分 又∵OC 为⊙O 的半径,∴PC 是⊙O 的切线. ………………………………6分(2) ∵AC =PC ,∴∠A =∠P , ………………………………………7分 ∴∠PCB =∠A =∠P .∴BC =BP =1. ………………………………………8分 ∴∠CBO =∠P +∠PCB =2∠PCB . 又∵∠COB =2∠A =2∠PCB ,∴∠COB =∠CBO , …………………………………9分 ∴BC =OC . 又∵OB =OC ,∴OB =OC =BC =1,即△OBC 为等边三角形. ……10分 ∴∠COB =60°. ………………………………11分∴l ⌒BC = 1×60π 180= 13π. ……………………………12分 21.解:(1) DC +CE =2; …………………………………3分(2) 结论成立.连接PC ,如图. …………………………4分 ∵△ABC 是等腰直角三角形,P 是AB 的中点,∴CP =PB ,CP ⊥AB ,∠ACP = 12∠ACB =45°.∴∠ACP =∠B =45°,∠CPB =90°. …………………5分A B C OA DP∴∠BPE =90°-∠CPE . 又∵∠DPC =90°-∠CPE ,∴∠DPC =∠EPB . ………………………………6分 ∴△PCD ≌△PBE .∴DC =EB , …………………………………………7分 ∴DC +CE =EB +CE =BC =2. ……………………8分(3) △CMN 的周长为定值,且周长为2. …………9分在EB 上截取EF =DM ,如图, …………………10分 由(2)可知:PD =PE ,∠PDC =∠PEB ,∴△PDM ≌△PEF , ………………………………11分∴∠DPM =∠EPF ,PM =PF . ∵∠NPF =∠NPE +∠EPF =∠NPE +∠DPM =∠DPE -∠MPN =45°=∠NPM .∴△PMN ≌△PFN ,∴MN =NF . ……………………………………………12分 ∴MC +CN +NM =MC +CN +NE +EF=MC +CE +DM =DC +CE =2.∴△CMN 的周长是2. …………………………………13分 22.解:(1) 令y =0,得:x 2-4x +1=0, …………………1分解得:x 1=2+3,x 2=2-3. …………………3分∴点A 的坐标为(2-3,0),点B 的坐标为(2+3,0). …4分 ∴AB 的长为23. ………………………………5分 (由韦达定理求出AB 也可)(2) 由已知得点C 的坐标为(0,1),由y =x 2-4x +1=(x ―2)2―3, 可知抛物线的对称轴为直线x =2, ……………………6分 设△ABC 的外接圆圆心D 的坐标为(2,n ),连接AD 、CD ,∴DC =DA ,即22+(n -1)2=[2―(2―3)]2+n 2,……………8分 解得:n =1, …………………………………………9分 ∴点D 的坐标为(2,1),∴△ABC 的外接圆⊙D 半径为2. ……………………10分 (3) 解法一:由(2)知,C 是弧MN 的中点.在半径DN 上截取EN = MG , ……………………11分 又∵DM =DN ,∴DG =DE .则点G 与点E 关于点D 对称,连接CD 、CE 、PD 、PE .由圆的对称性可得:图形PMC 的面积与图形PECN 的面积相等. …………………………………………12分 由PC 把图形PMCN (指圆弧⌒MCN 和线段PM 、PN 组成的图形)分成两部分,这两部分面积之差为4.可知△PCE 的面积为4.设点P 坐标为(m ,n ) ∴S △CEP =2S △CDP =2× 12·CD ·n -1=4,∴n 1=3,n 2=-1. ……………………………………13分由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);A CD E MP N F或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分 解法二:设点P 坐标为(m ,n ),点G 坐标为(2,c ),直线PC 的解析式为y =kx +b ,得:⎩⎨⎧b =1n =km +b ,解得:⎩⎪⎨⎪⎧k = n -1 m b =1, ∴直线PC 的解析式为y = n -1mx +1. …………………11分当x =2时,c = 2(n -1)m+1.由(2)知,C 是弧MN 的中点,连接CD , 图形PCN 的面积与图形PMC 的面积差为: =S 扇形DCN +S △GCD +S △PGN -(S 扇形MCD -S △GCD +S △PMG ) =2S △GCD +S △PGN -S △PMG=2×1 2 ×2(c -1)+1 2 (1+c )(m ―2)―12 (3―c )(m ―2)=2(c -1)+12 (2c ―2)(m ―2)=(c -1)(2+m ―2) =[ 2(c -1) m +1―1]m=2(n -1)=4.∴n 1=3,n 2=-1. ……………………………………13分 由点P 在抛物线y =x 2-4x +1上,得:x 2-4x +1=3,解得:x 1=2+6,x 2=2-6(舍去);或x 2-4x +1=-1,解得:x 3=2+2,x 4=2-2(舍去).∴点P 的坐标为(2+2,-1)或(2+6,3). ……………14分。
2020年福建省福州市初中毕业班质量检测卷(数学卷)附详细解析
2020年福建省(福州市)初中毕业班质量检测数 学 试 题(测试范围:中考范围 测试时间:120分钟 满分:150分)一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在实数π4,-227,2.02002,38中,无理数的是( )A .π4B .-227C .2.02002D .382.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .赵爽弦图 笛卡尔心形线 科克曲线 斐波那契螺旋线3.下列运算中,结果可以为3-4的是( ) A .32÷36B .36÷32C .32×36D .(-3)×(-3)×(-3)×(-3)4.若一个多边形的内角和是540°,则这个多边形是( ) A .四边形B .五边形C .六边形D .七边形5.若a <28-7<a +1,其中a 为整数,则a 的值是( ) A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六。
问人数、鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为( )A .⎩⎪⎨⎪⎧9x -11=y 6x +16=yB .⎩⎪⎨⎪⎧9x -11=y 6x -16=yC .⎩⎪⎨⎪⎧9x +11=y 6x +16=yD .⎩⎪⎨⎪⎧9x +11=y 6x -16=y7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是( )A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作⌒EF ,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是( ) A .63+2πB .63+3πC .93-3πD .93-2π第8题 第9题10.小明在研究抛物线y =-(x -h )2-h +1(h 为常数)时,得到如下结论,其中正确的是( ). A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x -1上C .当-1<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2 二、填空题:本题共6小题,每小题4分,共24分. 11.计算:2-1+cos60°= .12.能够成为直角三角形三条边长的三个正整数称为勾股数,若从2,3,4,5中任取3个数,则这3个数能够构成一组勾股数的概率是 .13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于 度.第13题15.如图,在⊙O 中,C 是⌒AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于 度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数y =k x(x>0)的图像上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是 .第15题 第16题三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解不等式组⎩⎪⎨⎪⎧2x ≤6, ①3x +12>x . ②并把不等式组的解集在数轴上表示出来.18.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .19.(本小题满分8分)先化简,再求值:x 2+1x 2+2x +1÷1x +1-x +1,其中x =3-1.20.(本小题满分8分)如图,已知∠MON ,A ,B ,分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息,图1是甲出发后行走的路程y (单位:m)与行走时间x (单位:min)的函数图象,图2是甲,乙两人之间的距离s (单位:m)与甲行走时间x (单位:min)的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.图1 图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m(单位:t)的部分按平价收费,超出m的部分按议价收费,为此拟召开听证会,以确定一个合理的月均用水量标准m,通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t),将这1000个数据按照0≤x<4,4≤x<8…,28≤x<32分成8组,制成了如图所示的频数分布直方图.(1)写出a的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m,请判断若以(1)中所求得的平均数作为标准m是否合理?并说明理由.23.(本小题满分10分)如图,在Rt△ABC中,AC<AB,∠BAC=90°,以AB为直径作⊙O交BC于点D,E是AC的中点,连接ED,点F在⌒BD上,连接BF并延长交AC的延长线于点G.(1)求证:DE是⊙O的切线;(2)连接AF,求AFBG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°. (1)如图1,若AE =DE , ①求证:CD 平分∠ACB ; ②求ADDB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图225.(本小题满分14分)在平面直角坐标系xOy中,抛物线C:y=kx2+(4k2-k)x的对称轴是y轴,过点F(0,2)作一直线与抛物线C相交于点P,Q两点,过点Q作x轴的垂线与直线OP相交于点A.(1)求抛物线C的解析式;(2)判断点A是否在直线y=-2上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,过抛物线C上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=2和直线y=-2于点M,N,求MF2-NF2的值.2019-2020学年度福建省质量检测数学试题参考答案一、选择题(本题共10小题,每小题4分,共40分,每小题只有一个选项正确)1 2 3 4 5 6 7 8 9 10 ACABBABCCD二、填空题(本题共6小题,每小题4分,共24分)11.1 12.14 13.15 14.4 15.18 16.94三、解答题(共9题,满分86分) 17.(本小题满分8分)解:解不等式①,得x ≤3. ……………………………………………………………………3分解不等式②,得 x >-1. …………………………………………………………………5分 ∴原不等式组的解集是-1<x ≤3, ………………………………………………………6分 将该不等式组解集在数轴上表示如下:……………………………………………………………8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE =CF ∴BE +EF =CF +EF∴BF =CE ……………………………………………………………………………………3分在△ABF 和△DCE 中, ⎩⎪⎨⎪⎧AB =DC ∠B =∠C BF =CE∴△ABF ≌△DCE ……………………………………………………………………………6分 ∴∠A =∠D …………………………………………………………………………………8分 19.(本小题满分8分)x 2+1=x 2+1x +1-(x +1)(x -1)x +1…………………………………………………………………4分=x 2+1x +1-x 2-1x +1…………………………………………………………………………5分=2x +1…………………………………………………………………………………6分 当x =3-1时,原式=23-1+1………………………………………………………………7分=23=233…………………………………………………………………………8分20.(本小题满分8分) 解:画法一: 画法二:………………………………………4分 (1)如图,点C 、D 分别为(1),(2)所求作的点. ……………………………5分(2)证明如下:由(1)得BC ∥OA ,BC =12OA ,∴∠DBC =∠DAO ,∠DCB =∠DOA ,∴△DBC ∽△DAO ,…………………………………………………………7分 ∴DC DO =BC AO =12, ∴OD =2CD ……………………………………………………………………8分21.(本小题满分8分)解:(1)由图1可得甲的速度是120÷2=60m /min . …………………………………………………2分由图2可知,当x =43时,甲,乙两人相遇,故(60+v 乙)×43=200,解得v 乙=90m /min . …………………………………………………………………………4分(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴b =20090=209,………………………………………………………………………………6分 a =20060=103. ………………………………………………………………………………8分 ∴a 的值为103,b 的值为209. 22.(本小题满分10分)(1)依题意a =100 ·································································································· 2 分 这1000户家庭月均用水量的平均数 为:72.141000203060261002222018280114180101006402=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=x , ∴估计这1000户家庭月均用水量的平均数是14.72.·······················································6分(2)解法一:不合理.理由如下·····················································································7分 由(1)可得14.72在12≤x <16内,这1000户家庭中月均用水量小于16t 的户数有40+100+180+280=600(户),····················································································8分 ∴这1000家庭中月均用水量小于16t 的家庭所占的百分比是%60%10010060=⨯ ∴月均用水量不超过14.72t 的户数小于60%··································································9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m而60%<70%,∴用14.72作为标准m 不合理.····················································································10分 解法二:不合理.理由如下··························································································7分 ∵该市政府希望70%的家庭的月均用水量不超过标准m∴数据中不超过m 的频数应为700,·············································································8分 即有300户家庭的月均用水量超过m又20+60+100=160<300,20+60+100+220=380>300∴m 应在16≤x <20内·································································································9分 而14.72<16∴用14.72作为标准m 不合理.·····················································································10分23.(本小题满分10分)(1)证明:连接OD ,AD∵AB 为⊙O 直径,点D 在⊙O 上∴∠ADB=90°…………………………………………………………………………………………1分∴∠ADC=90°∵E是AC的中点∴DE=AE∴∠EAD=∠EDA……………………………………………………………………………………2分∵OA=OD∴∠OAD=∠ODA……………………………………………………………………………………3分∵∠OAD+∠EAD=∠BAC=90°∴∠ODA+∠EAD=90°即∠ODE=90°…………………………………………………………………………………………4分∴OD⊥DE∵D是半径OD的外端点∴DE是⊙O的切线……………………………………………………………………………………5分(2)解法一:过点F作FH⊥AB于点H,连接OF∴∠AHF=90°∵AB为⊙O的直径,点F⊙O在上∴∠AFB=90°∴∠BAF+∠ABF=90°∵∠BAC=90°∴∠G+∠ABF=90°∴∠G=∠BAF…………………………………………………………………………………………6分∵∠AHF=∠GAB=90°∴△AFH∽△GBA ……………………………………………………………………………………7分∴AFGB=FHBA………………………………………………………………………………………………8分由垂线段最短可得FH≤OF……………………………………………………………………………9分当且仅当点H,O重合时等号成立∵AC<AB∴⌒BD上存在点F使得FO⊥AB,此时点H,O重合∴AFGB=FHBA≤OFBA=12……………………………………………………………………………………10分即AFGB的最大值为12解法二:取GB 中点M ,连接AM∵BAG =90°∴AM =12GB ……………………………………………………………………………………………6分 ∵AB 为⊙O 的直径,点F ⊙O 在上∴∠AFB =90°∴∠AFG =90°∴AF ⊥GB ………………………………………………………………………………………………7分 由垂线段最短可得AF ≤AM …………………………………………………………………………8分 当且仅当点F ,M 重合时等号成立此时AF 垂直平分GB即AG =AB∵AC <AB∴⌒BD 上存在点F 使得F 为GB 中点∴AF ≤12GB ……………………………………………………………………………………………9分 ∴AF GB ≤12………………………………………………………………………………………………10分 即AF GB 的最大值为1224.(本小题满分12分)(1)①证明:∵∠AED =45°,AE =DE ,∴∠EDA =180°-45°2=67.5°·················································································· 1 分 ∵AB =AC ,∠BAC =90°,∴∠ACB =∠ABC =45°,∠DCA =22.5°, ································································· 2 分 ∴∠DCB =22.5°,即∠DCA =∠DCB ,∴CD 平分∠ACB . ······························································································· 3 分 ②解:过点D 作DF ⊥BC 于点F ,∴∠DFB =90°.∵∠BAC =90°,∴DA ⊥CA .又CD 平分∠ACB ,∴AD =FD ,········································································································· 4分 ∴ AD DB =FD DB在Rt △BFD 中,∠ABC =45°,∴sin ∠DBF =FD DB =22····························································································· 5 分 ∴ AD DB =22··········································································································· 6 分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE =90°.又∠BAC =90°,∠AED =45°,∴∠BAG =∠CAE ,∠AGE =45°,∠AEC =135°, ························································ 7 分 ∴∠AGE =∠AEG ,∴AG =AE . ··········································································································8 分 ∵AB =AC ,∴△AGB ≌△AEC , ································································································ 9 分 ∴∠AGB =∠AEC =135°,CE =BG ,∴∠BGE =90°. ·····································································································10 分 ∵AE ⊥BE ,∴∠AEB =90°,∴∠BEG =45°,在Rt △BEG 和Rt △AGE 中,BE =GE cos45°=2GE ,AE =GE •cos 45°=22GE , ······························································ 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22GE GE =12. ································································ 12 分 (也可以将△AEB 绕点 A 逆时针旋转 90°至△AFC 得到AE =22EF ,CF =2EF ) 证法二:∵AE ⊥BE ,∴∠AEB =90°,∴∠BAE =∠ABE =90°.∵∠AED =45°,∴∠BED =45°,∠EAC =∠ECA =45°,∴∠AEC =∠BEC =135°. ······················································································ 7 分∵∠BAC =90°,∴∠BAE =∠EAC =90°,∴∠ABE =∠EAC .∵∠ABC =45°,∴∠ABE +∠EBC =45°,∴∠ECA =∠EBC , ······························································································· 8 分 ∴△BEC ∽△CEA ,∴ BE CE =EC EA =BC CA. ································································································ 9 分 在Rt △ABC 中,BC =CA cos45°=2CA , ··································································· 10 分 ∴BE CE =EC EA =2, ∴ BE =2CE ,AE =22CE . ·················································································· 11 分 在Rt △ABE 中,tan ∠ABE =AE BE =22CE CE =12································································ 12 分 25.(本小题满分14分)解:(1)∵抛物线C 的对称轴是y 轴,∴-4k 2-k 2k= 0且k ≠0,…………………………………………………………………………1分 ∴4k -12=0 解得k =14,………………………………………………………………………………………3分 ∴抛物线C 的解析式为y =14x 2……………………………………………………………………4分 (2)点A 在直线y =-2上……………………………………………………………………………5分 理由如下:∵过F (0,2)的直线与抛物线C 交于P ,Q 两点∴直线PQ 与x 轴不垂直设直线PQ 的解析式为y =tx +2将y =tx +2带入y =14x 2得x 2-4tx -8=0 ∴ △ =16t 2+32>0∴该方程有两个不相等的实数根x 1,x 2不妨设P (x 1,y 1),Q (x 2,y 2)∴直线OP 的解析式为 y =y 1x 1x ………………………………………………………………………6分设A (m ,n ),∵QA ⊥x 轴交直线OP 于点A∴m =x 2∴n =y 1x 1•x 2=14x 12•x 2x 1=14x 1x 2……………………………………………………………………………7分 又方程x 2-4tx -8=0的解为x =2t ±2t 2+2∴x 1x 2=(2t +2t 2+2)(2t -2t 2+2)=4t 2-4(t 2+2)=-8∴14x 1x 2=-2 即点A 的纵坐标为-2………………………………………………………………………………9分 ∴点A 在直线y =-2上(3)∵切线l 不过抛物线C 的顶点∴设切线l 的解析式为y =ax +b (a≠0)将y =ax +b 代入y =14x 2 得x 2-4ax -4b =0………………………………………………10分 依题意得△=0即(-4a )2-4×(-4b )=16a 2+16b =0∴b =-a 2∴切线l 的解析式为y =ax -a 2……………………………………………………………………11分当y =2时,x =a 2+2a ,∴(a 2+2a,2)………………………………………………………………12分 当y =-2时,x =a 2-2a ,∴(a 2-2a,2) …………………………………………………………13分 ∵F (0,2)∴MF 2=(a 2+2a)2, 由勾股定理得NF 2=(a 2-2a )2+(-2-2)2 ∴MF 2-NF 2=(a 2+2a )2-[(a 2-2a)2+(-2-2)2] =(a 2+2a +a 2-2a )(a 2+2a -a 2-2a)-16 =2a 2a •4a-16 =8-16=-8……………………………………………………………………………14分。
2020年福州市九年级质量检测数学试题(含答案)
准考证号:姓名:(在此卷上答题无效)2020年福州市九年级质量检测数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,完卷时间120分钟,满分150分.注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数π4,227-,2.02002A .π4B .227-C .2.02002D2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图笛卡尔心形线科克曲线斐波那契螺旋线A BC D3.下列运算中,结果可以为3-4的是A .32÷36B .36÷32C .32×36D .(3-)×(3-)×(3-)×(3-)4.若一个多边形的内角和是540°,则这个多边形是A .四边形B .五边形C .六边形D .七边形5.若a<a +1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为A .911616x yx y -=⎧⎨+=⎩B .911616x y x y -=⎧⎨-=⎩C .911616x y x y+=⎧⎨+=⎩D .911616x y x y+=⎧⎨-=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是A .b 一定增大,c 可能增大B .b 可能不变,c 一定增大C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变8.若一个粮仓的三视图如图所示(单位:m ),则它的体积(参考公式:V 圆锥=13S 底h ,V 圆柱=S 底h )是A .21πm 3B .36πm 3C .45πm 3D .63πm 39.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心,CE 长为半径作 EF,交CD 于点F ,连接AE ,AF .若AB =6,∠B =60°,则阴影部分的面积是A.2π+B.3π+C.3πD.2π-10.小明在研究抛物线2()1y x h h =---+(h 为常数)时,得到如下结论,其中正确的是A .无论x 取何实数,y 的值都小于0B .该抛物线的顶点始终在直线y =x 1-上C .当1-<x <2时,y 随x 的增大而增大,则h <2D .该抛物线上有两点A (x 1,y 1),B (x 2,y 2),若x 1<x 2,x 1+x 2>2h ,则y 1>y 2ADBCFE46主视图76左视图俯视图第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.二、填空题:本题共6小题,每小题4分,共24分.11.计算:12cos 60-+︒=.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是.13.一副三角尺如图摆放,D 是BC 延长线上一点,E 是AC 上一点,∠B =∠EDF =90°,∠A =30°,∠F =45°,若EF ∥BC ,则∠CED 等于度.14.若m (m -2)=3,则(m -1)2的值是.15.如图,在⊙O 中,C 是 AB 的中点,作点C 关于弦AB 的对称点D ,连接AD 并延长交⊙O 于点E ,过点B 作BF ⊥AE 于点F ,若∠BAE =2∠EBF ,则∠EBF 等于度.16.如图,在平面直角坐标系xOy 中,□ABCD 的顶点A ,B 分别在x ,y 轴的负半轴上,C ,D 在反比例函数k y x =(x >0)的图象上,AD 与y 轴交于点E ,且AE =23AD ,若△ABE 的面积是3,则k 的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解不等式组26312x x x ⎧⎪⎨+>⎪⎩,①②. 并把不等式组的解集在数轴上表示出来.12345-1-2-3-4-518.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .AF DE B C19.(本小题满分8分)先化简,再求值:22111121x x x x x +÷-++++,其中1x =-.AC FED Bxy BCDEAO如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点.(1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象.(1)求甲,乙两人的速度;(2)求a ,b 的值.y x 1202Oxsb a O43图1图222.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.4048121620242832280220180a 6020月均用水量(单位:t )频数(户数)如图,在Rt △ABC 中,AC <AB ,∠BAC =90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在 BD上,连接BF 并延长交AC 的延长线于点G .(1)求证:DE 是⊙O 的切线;(2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°.(1)如图1,若AE =DE ,①求证:CD 平分∠ACB ;②求AD DB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.BACDEBACDE图1图225.(本小题满分14分)在平面直角坐标系xOy 中,抛物线C :22(4)y kx k k x =+-的对称轴是y 轴,过点F (0,2)作一直线与抛物线C 相交于P ,Q 两点,过点Q 作x 轴的垂线与直线OP 相交于点A .(1)求抛物线C 的解析式;(2)判断点A 是否在直线y =2-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C 上的任意一点(除顶点外)作该抛物线的切线l ,分别交直线y =2和直线y =2-于点M ,N ,求22MF NF -的值.A F D EB C数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂. 1.A 2.C 3.A 4.B 5.B 6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答. 11.1 12.1413.15 14.415.1816.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答. 17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1 . ···························································································· 5分 ∴原不等式组的解集是1 <x ≤3, ··············································································· 6分 将该不等式组解集在数轴上表示如下:······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE CF ,∴BE EF CF EF , 即BF CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE,,, ∴△ABF ≌△DCE , ······························································································· 6分 ∴∠A ∠D . ······································································································· 8分12345-1-2-3 -4-519.(本小题满分8分)解:原式221(1)(1)(1)x x x x······················································································· 3分 2(1)(1)111x x x x x ·························································································· 4分 221111x x x x ·································································································· 5分 21x . ··········································································································· 6分当1x时,原式 ················································································· 7分. ····················································································· 8分 20.(本小题满分8分) 解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分 (2)证明如下:由(1)得BC ∥OA ,BC 12OA ,∴∠DBC ∠DAO ,∠DCB ∠DOA ,∴△DBC ∽△DAO , ············································································ 7分 ∴12DC BC DO AO , ∴OD 2CD . ····················································································· 8分21.(本小题满分8分) 解:(1)由图1可得甲的速度是1202=60 m/min . ································································ 2分由图2可知,当43x 时,甲,乙两人相遇,故4(60)2003v 乙,解得90v 乙m/min . ···························································································· 4分 答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b , ······························································································· 6分20010603a . ································································································ 8分∴a 的值为103,b 的值为209.22.(本小题满分10分) 解:(1)依题意得100a . ······························································································ 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x , ········· 6分∴估计这1000户家庭月均用水量的平均数是14.72.(2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有 40100180280600 (户), ···························································· 8分 ∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000,∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分 ∵该市政府希望70%的家庭的月均用水量不超过标准m , 而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m ,∴数据中不超过m 的频数应为700, ·························································· 8分 即有300户家庭的月均用水量超过m .又2060100160300 ,2060100220380300 ,∴m 应在16≤x <20内. ·········································································· 9分 而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分 23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB 90°,分∴∠ADC 90°.∵E 是AC 的中点,∴DE =AE ,∴∠EAD ∠EDA . ·分 ∵OA OD ,∴∠OAD ∠ODA . ······················································································· 3分 ∵∠OAD ∠EAD ∠BAC 90°, ∴∠ODA ∠EDA 90°,即∠ODE 90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点,∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF ,∴∠AHF 90°.∵AB 为⊙O 直径,点F 在⊙O 上,∴∠AFB 90°, ∴∠BAF ∠ABF 90°.∵∠BAC 90°,∴∠G ∠ABF 90°, ∴∠G ∠BAF . ························································································· 6分 又∠AHF ∠GAB 90°,∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立. ∵AC <AB ,∴ BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合, ∴AF FH GB BA ≤12OF BA , ············································································ 10分即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG 90°,∴AM 12GB . ·分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°,∴∠AFG 90°,∴AF ⊥GB .分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立, 此时AF 垂直平分GB , 即AG =AB . ∵AC <AB ,∴ BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED 45°,AE DE ,∴∠EDA 18045267.5°. ······································································· 1分∵AB AC ,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°, ························································· 2分 ∴∠DCB 22.5°, 即∠DCA ∠DCB ,∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB 90°.∵∠BAC 90°, ∴DA ⊥CA . 又CD 平分∠ACB , ∴AD FD , ································································································· 4分 ∴AD FD DB DB. 在Rt △BFD 中,∠ABC 45°, ∴sin ∠DBF FD DB ················································································ 5分∴AD DB . ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE ,∠AGE 45°,∠AEC 135°, ·············································· 7分 ∴∠AGE ∠AEG , ∴AG AE . ······························································································· 8分 ∵AB AC ,∴△AGB ≌△AEC , ···················································································· 9分 ∴∠AGB ∠AEC 135°,CE BG ,∴∠BGE 90°. ························································································ 10分 ∵AE ⊥BE ,FB AC DE。
2020-2021学年福建省初中毕业生学业质量测查数学试题及答案解析
最新福建省初中学业质量测查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)友情提示:请认真作答,把答案准确地填写在答题卡上学校姓名考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.化简4的结果是( )A .2B .2C .-2D .±2 2.下列计算错误..的是( ) A .6a + 2a =8aB .a – (a – 3) =3C .a 2÷a 2 = 0D .a –1·a 2 = a3. 下列四个平面图形中,三棱锥的表面展开图的是( )A .B .C .D . 4.学校团委组织“阳光助残”捐款活动,九年级一班学生捐款情况如下表:捐款金额(元)5102050人数(人) 10 13 12 15 A .13 B .12 C .10 D .20 5.下列事件发生属于不可能事件的是( ) A .射击运动员只射击1次,就命中靶心B .画一个三角形,使其三边的长分别为8cm ,6cm ,2cmC .任取一个实数x ,都有|x |≥0D .抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 6.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( ) A .8 B. 6 C. 4 D. 27.已知Rt △ABC 中,∠C =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到AD 的距离是( ) A .23 B .2 C .5 D .13136 E B O A (第6题图) (第7题图)二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答. 8.若70A ︒∠=,则A ∠的余角是度.9.我国第一艘航母“辽宁舰”的最大排水量为68000吨,用科学记数法表示这个数据是 吨. 10.计算:2-x x +x-22=. 11.分解因式:xy 2 – 9x =.12.如图,点O 是正五边形ABCDE 的中心,则∠BAO 的度数为 . 13. 如图,在△ABC 中,两条中线BE ,CD 相交于点O ,则S △DOE :S △DCE =. 14.若关于x 的方程x 2+(k -2)x -k2=0的两根互为相反数,则k = .15.如果圆锥的底面周长....为2πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是 cm 2.(结果保留π)16.如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连结DE .若DE :AC =3:5,则ABAD的值为 . 17.如图,在平面直角坐标系xoy 中,直线:l 3y kx k =-(0k <)与x 、y 轴的正半轴分别交于点A 、B ,动点D (异于点A 、B ) 在线段AB 上,DC ⊥x 轴于C .(1)不论k 取任何负数,直线l 总经过一个定点,写出该定点的坐标为 ;(2)当点C 的横坐标为2时,在x 轴上存在点P ,使得PB ⊥PD ,则k 的取值范围为 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:232(2)2sin 60---+o -(2π-1)0.19.(9分)先化简,再求值:2x (x +1)+(x ﹣1)2,其中x =23.(第17题图)20.(9分)如图,已知四边形ABCD 是菱形,DE ⊥AB 于E ,DF ⊥BC 于F .求证:△ADE ≌△CDF .21.(9分)某校开展“中国梦•泉州梦•我的梦”主题教育系列活动,设有征文、独唱、绘画、手抄报四个项目,该校共有800人次参加活动.下面是该校根据参加人次绘制的两幅不完整的统计图,请根据图中提供的信息,解答下面的问题.(1)此次有 名同学参加绘画活动,扇形统计图中“独唱”部分的圆心角是 度.请你把条形统计图补充完整.(2)经研究,决定拨给各项目活动经费,标准是:征文、独唱、绘画、手抄报每人次分别为10元、12元、15元、12元,请你帮学校计算开展本次活动共需多少经费? 22.(9分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片的背面朝上洗匀后随机抽取一张,以其正面的数字作为x 的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y 的值,两次结果记为(x ,y ). (1)用树状图或列表法表示(x ,y )所有可能出现的结果;(2)求使分式yx yy x xy x -+--2223有意义的(x ,y )出现的概率;(第20题图)23.(9分)如图,在平面直角坐标系xoy 中,抛物线12-+=bx ax y 经过点A (2,﹣1),它的对称轴与x 轴相交于点B . (1)求点B 的坐标;(2)如果直线y =x +1与抛物线的对称轴交于点C , 与抛物线在对称轴右侧交于点D ,且∠BDC =∠ACB ,求此抛物线的表达式.24.(9分)某公司采购某商品60箱销往甲乙两地,已知某商品在甲地销售平均每箱的利润1y (百元)与销售数量x (箱)的关系为⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 在乙地销售平均每箱的利2y (百元)与销售数量t (箱)的关系为⎪⎩⎪⎨⎧<≤+-≤<=)6030(8151),300(62t t t y(1)将y 2转换为以x 为自变量的函数,则y 2=;(2)设某商品获得总利润W (百元),当在甲地销售量x (箱)的范围是0<x ≤20时,求W 与x的关系式;(总利润=在甲地销售利润+在乙地销售利润)(3)经测算,在20<x ≤30的范围内,可以获得最大总利润,求这个最大总利润,并求出此时x 的值.25.(12分)如图,在平面直角坐标xoy 内,函数y =xm(x >0,m 是常数)的图象经过A (1,4),B (a ,b ),其中a >1.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB .(1)求m 的值;(2)求证:DC ∥AB ;(3)当AD =BC 时,求直线AB 的函数表达式.(第23题图).26.(14分)如图,矩形ABCD的边AB=3,AD=4,点E从点A出发,沿射线AD移动,以CE 为直径作圆O,点F为圆O与射线BD的公共点,连结EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连结CG.(1)求证:四边形EFCG是矩形;(2)求tan∠CEG的值;(3)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,求四边形EFCG面积的取值范围;(第26题图)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每小题3分,共21分)1.B2.C3.B4.D5.B6.A7.C二、填空题(每小题4分,共40分)8.20;9. 46.810⨯;10. 1;11. (3)(y3)x y+-;12. 54°;13. 1:3;14. 2;15. 3π;16. 12;17.(1)(3,0);(2)303k-≤<.三、解答题(共89分)18.(本小题9分)解:原式23431=--+-……………………(8分)3=-……………………(9分)19.(本小题9分)解:原式=2x2+2x+x2﹣2x+1,……………………(6分)=3x2+1……………………(7分)当x=2时,原式=3×(2)2+1………………(8分)=37.……………………(9分)20.(本小题9分)解:∵四边形ABCD是菱形,∴AD=CD;∠A=∠C,……………………(6分)又∵DE⊥AB于E,DF⊥BC于F,∴∠AED=∠CFD=90°; ……………………(8分)在△ADE和△CDF中,∠A=∠C,∠AED=∠CFD, AD=CD;∴△ADE≌△CDF.……………………(9分)21.(本小题9分)解:(1)200,36.……………………(4分)画图如图:……………………(6分)(2)根据题意得:296×10+80×12+200×15+224×12=9608(元) 答:开展本次活动共需9608元经费. ……………………(9分) 22.(本小题9分) 解:(1)列表如下:-2 -1 1 -2 (-2,-2) (-2,-1) (-2,1) -1 (-1,-2) (-1,-1) (-1,1) 1 (1,-2) (1,-1) (1,1)……………………(5分)(2)由上表可知,所有等可能的情况共有9种,……………………(6分)∵使分式yx yy x xy x -+--2223有意义,∴x ≠y 且x ≠-y;……………………(7分)∴满足条件的点有4种,…………………(8分) 则P=49.………………(9分) (树状图略)23.(本小题9分)解:(1)∵抛物线经过点A (2,-1),∴ 4a +2b -1=-1,即 b =-2a ,………………(1分)∵-2b a =-22a a-=1,………………(2分) ∴点B 的坐标是(1,0). ………………(3分) (2)(解法1)如图2所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴的交点为E (-1,0), 与抛物线的对称轴的交点C (1,2),∴BE =BC =2, ∴△EBC 是等腰直角三角形;…………(4分)连结AB ,则∠ABC =∠BCD =135 º,且AB 2; 又∵∠BDC =∠ACB ,∴△ABC ∽△BCD .∴AB BCBC CD=,∴2BC AB CD =•;………………(5分) 过D 作DH ⊥BC 于H ,则CH =HD ,设点D 的坐标为(m ,m +1),在Rt △CHD 中,∵m >1, CH =HD =m -1,∴CD 221(m )- ∴22221(m )- , 解得m =3,………………(5分) ∴点D (3,4),………………(7分)把D (3,4)坐标代入抛物线y =ax 2-2ax -1得 9a -6a -1=4,解得a =53.………………(8分) (图2)∴此抛物线的表达式为y =53x 2-103x -1.………………(9分) (解法2)如图3所示.由(1)得,抛物线的对称轴是x =1,可得直线y =x +1与x 轴、y 轴的交点为E (-1,0), F (0,1),与抛物线的对称轴的交点C (1,2), ∴BE =BC ,BE ⊥BC ,∴△EBC 是等腰直角三角形.………………(4分) 连结BF ,则BF ⊥EC ,且BF =2;过A 作AG ⊥BC 于G ,则∠DFB =∠CGA =90º, 又∵∠BDF =∠ACG ,∴△BDF ∽△ACG . ∴BD BF AC AG =∴2213+=2 ∴BD =25.………………(5分)过D 作DH ⊥BC 于H ,设点D 的坐标为(m ,m +1),在Rt △BDH 中,BH 2+HD 2=BD 2, ∴(m +1)2+(m -1)2=20,解得m =±3(负数不合题意,舍去),∴点D (3,4)………………(7分) 把D (3,4)坐标代入抛物线y =ax 2-2ax -1得9a -6a -1=4,解得a =53.………………(8分) ∴此抛物线的表达式为y =53x 2-103x -1.………………(9分)24.(本小题9分)解:(1)⎪⎩⎪⎨⎧<≤≤<+=)6030(6),300(41512x x x y ……………………(2分)(2)综合⎪⎪⎩⎪⎪⎨⎧<≤+-≤<+=)6020(5.7401),200(51011x x x x y 和(1)中 y 2,当对应的x 范围是0<x ≤20 时,W 1=(110x +5)x +(115x +4)(60-x )……………………(4分) =130x 2+5x +240;……………………(6分) (3)当20<x ≤30 时,W 2=(-140x +75)x +(115x +4)(60-x )……………………(7分) (图3)=-11120x 2+75x +240……………………8分 ∵x =-2b a =45011>30,∴W 在20<x ≤30随x 增大而增大 ∴当x =30时,W 2取得最大值为832.5(百元).……………………………(9分)25.(本小题12分) 解:(1)∵函数xmy =(x >0,m 是常数)图象经过)4,1(A ∴4=m ……………………(2分)(2)(解法1) 设AC BD ,交于点E ,则在Rt △AEB 中,tan ∠EAB =1;444BE a aAE a-==-在Rt △CED 中,tan ∠ECD =1;44DE aCE a==……………………(5分) ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(解法2)设AC BD ,交于点E ,根据题意,可得B 点的坐标为)4,(aa ,D 点的坐标为)4,0(a ,E 点的坐标为)4,1(a ……………………(3分),a AE 44-=,4;CE a =1,1;EB a ED =-=……………………(4分)∴441;4AE a a CEa-==-∴1-==a ED EB CE AE ……………………(5分) 又∵;AEB CED ∠=∠∴△AEB ∽△CED ∴;EAB ECD ∠=∠……………………(6分) ∴AB DC //.……………………(7分)(3)(解法1)∵AB DC // ∴当BC AD =时,有两种情况:①当BC AD //时,由中心对称的性质得:BE =DE ,则11=-a ,得2=a . ∴点B 的坐标是(2,2).……………………(8分)设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入,得⎩⎨⎧+=+=b k b k 22,4解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数表达式是.62+-=x y ……………………(9分) ②当AD 与BC 所在直线不平行时,由轴对称的性质得:AC BD =, ∴4=a ,∴点B 的坐标是(4,1).……………………(10分) 设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入, 得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分) (解法2)当BC AD =时,AD 2=BC 2.在Rt △AED 中,222DE AE AD +=;在Rt △BEC 中,222CE BE BC +=∴222244(4)1(1)(),a aa-+=-+……………………(8分) 整理得:32216320,a a a ---=∴(2)(4)(4)0;a a a -+-= ∴244a a a ==-=或或,∴24a a ==或……………………(9分)① 当2=a 时,点B 的坐标是(2,2).设直线AB 的函数表达式为b kx y +=,分别把点B A ,的坐标代入, 得⎩⎨⎧+=+=b k b k 22,4解得⎩⎨⎧=-=.6,2b k∴直线AB 的函数解析式是62+-=x y .……………………(10分) ②当4=a 时,点B 的坐标是(4,1).设直线AB 的函数解析式为b kx y +=,分别把点B A ,的坐标代入, 得⎩⎨⎧+=+=.41,4b k b k 解得⎩⎨⎧=-=5,1b k∴直线AB 的函数表达式是.5+-=x y ……………………(11分)综上所述,所求直线AB 的函数表达式是62+-=x y 或.5+-=x y ……………(12分)26.(本小题14分)解:(1)证明:∵CE 为⊙O 的直径,∴∠CFE =∠CGE =90°.……………………(1分)∵EG ⊥EF ,∴∠FEG =90°.∴∠CFE =∠CGE =∠FEG =90°.……………………(2分)∴四边形EFCG 是矩形.……………………(3分)(2)由(1)知四边形EFCG 是矩形.∴CF ∥EG ,∴∠CEG =∠ECF ,∵∠ECF =∠EDF ,∴∠CEG =∠EDF ,……………………(4分)在Rt △ABD 中,AB =3,AD =4,∴tan 34AB BDA AD ∠==,……………………(5分) ∴tan ∠CEG = 34;……………………(6分) (3)∵四边形EFCG 是矩形,∴FC ∥EG .∴∠FCE =∠CEG .∴tan ∠FCE =tan ∠CEG =34 ∵∠CFE =90°,∴EF =34CF ,……………………(7分) ∴S 矩形EFCG = 234CF ;……………………(8分) 连结OD ,如图2①,∵∠GDC =∠CEG ,∠FCE =∠FDE ,∴∠GDC =∠FDE .∵∠FDE +∠CDB =90°,∴∠GDC +∠CDB =90°.∴∠GDB =90°……………………(9分)(Ⅰ)当点E 在点A (E ′)处时,点F 在点B (F ′)处,点G 在点D (G ′)处,如图2①所示. 此时,CF =CB =4.……………(10分)(Ⅱ)当点F 在点D (F ″)处时,直径F ″G ″⊥BD ,如图2②所示,此时⊙O 与射线BD 相切,CF =CD =3.……………(11分)(Ⅲ)当CF ⊥BD 时,CF 最小,如图2③所示.S △BCD =12BC ×CD =12BD ×CF , ∴4×3=5×CF ∴CF =125.……………(12分) ∴125≤CF ≤4.……………(13分) ∵S 矩形EFCG =234CF ,∴34×(125)2≤S 矩形EFCG ≤34×42. ∴10825≤S 矩形EFCG ≤12.……………(14分)。
2020年福建省九年级初中学业质量检查数学试卷
2020年初中学业质量检查数学试卷(满分150分,时间:120分钟)一、选择题(4×10=40)1、2020的相反数为( )B. 2020C. −2020D. ±2020A. 120202、地球与月球平均距离约为384000千米,将数字384000用科学记数法表示为( )A. 3.84×106B. 3.84×105C. 3.84×104D. 3.84×1053、下列运算正确的是( )A. a+a+a=a3B. (2a)3=6a3C. a•a•a=3aD. a8÷a2=a64、如图是由5个相同的正方体组成的立体图形,则它的主视图是( )5、现有一列数:6,3,3,4,5,4,3,则这列数的众数是( )A. 3B. 4C. 5D. 66、如图,数轴上有A、B、C、D四个点,下列说法正确的是( )、A. 点A表示的数约为√2 B. 点B表示的数约为√3C. 点C表示的数约为√5D. 点D表示的数约为√67、已知点P的坐标是(−2−√m,1),则点P在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8、关于x的一元二次方程ax2+a=0根的情况是( )A. 有两个实数根B. 有两个相等的实数根C. 有两个不等的实数根D. 无实数根9、如图,AB切⊙O于点B,OA与⊙O相交于点C,AC=CO,点D为BĈ上任意一点(不与点B、C 重合),则∠BDC等于( )A. 120°B. 130°C. 140°D. 150°10、已知点A(a-m,y1)、B(a-n,y2)、C(a+b,y3)都在二次函数y=x2−2ax+1的图象上,若0<m<b<n,则y1、y2、y3的大小关系是( )A. y1<y2<y3B. y1<y3<y2C. y3<y1<y2D. y2<y3<y1二、填空题(4×6=24)11、计算:2−1+ (−√3)0=_______________;12、甲、乙两人在相同的条件下,各射靶10次,经统计:甲、乙两人射击的平均成绩都是8环,甲、乙两人射击成绩的方差分别是1.2、2.6,由此可知甲、乙两人中_____________的成绩比较稳定(填“甲”或“乙”);13、不等式组{x−2>02x−3<0的解集为_____________;14、如图,在△ABC中,AB=AC=5,BC=8,中线AD、CE相交于点F,则AF的长为_____________;15、如图,在正方形ABCD中,AB=2,M、N分别为AD、BC的中点,则图中阴影部分的面积为_____________ ;16、如图,四边形ABCO为矩形,点A在反比例函数y=4x(x>0)的图象上,点C在反比例函数y=− 1x(x<0)的图象上,若点B在y轴上,则点A的坐标为_____________;三、解答题:(9小题,共86分)17、(8分) 化简:2a−1a−1+a2−1a÷a2−2a+1a18、(8分) 如图,在△ABC与△DEF中,B、E、C、F在同条直线上,AB=DE,AC∥DF,∠A=∠D,求证:BE=CF.19、(8分) 我国古代数学著作《孙子算经》中记载这样一个问题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,问:几何?” 其大意为:现有一根木棍,不知道它的长短,用绳子去测量,绳子多了4尺5寸;把绳子对折后再量,绳子又短了1尺,问:木棍有多长?(提示:1尺=10寸)20、(8分)如图,将圆心角为120°的扇形AOB绕着点A按逆时针方向旋转一定的角度后,得到扇形̂上.AO'B′,使得点O′恰在AB(1) 求作点O′(尺规作图,保留作图痕迹,不写作法和证明过程);(2) 连接AB、AB'、AO',求证:AO'平分∠BAB' .21、(10分)如图,在矩形ABCD中,AB=6,BC=8,点E是对角线BD上的一点,把△ABE沿着直线AE翻折得到△AFE,且点F恰好落在AD边上,连接BF.(1) 求△DEF的周长;(2) 求sin∠BFE的值。
2020年福州市中考数学试卷含答案
2020年福州市初中毕业会考、高级中等学校招生考试数学试卷(全卷共4页,三大题,共22小题,满分150分,考试时间120分钟)友情提示:所有答案都必须填涂在答题卡相应的位置上,答在本卷上一律无效。
毕业学校姓名考生号一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.2的倒数是A. 12B. 12- C. 2 D.-22. 今年我省规划重建校舍约3890000平方米,3890000用科学记数法表示为A. 70.38910⨯ B. 63.8910⨯ C. 43.8910⨯ D.438910⨯3.下面四个图形中,能判断∠1 > ∠2的是4.下面四个中文艺术字中,不是..轴对称图形的是5.若二次根式1x -有意义,则x 的取值范围为A.1x ≠ B.1x ≥ C.1x < D.全体实数6.下面四个立体图形中,主视图是三角形的是7.已知反比例函数k y x=的图像过点P (1,3),则反比例函数图像位于A.第一、二象限B.第一、三象限C.第二、四象限 D.第三、四象限8. 有人预测2010年南非世界杯足球赛巴西国家队夺冠的概率是70%他们的理解正确的是A.巴西国家队一定夺冠B.巴西国家队一定不会夺冠C.巴西国家队夺冠的可能性比较大D.巴西国家队夺冠的可能性比较小 9.分式方程312x =-的解是 A.5x = B. 1x = C. 1x =- D. 2x =10.已知二次函数2y ax bx c =++的图像如图所示,则下列结论正确的是A.0a >B. 0c <C.240b ac -<D.0a b c ++>二、填空题(共5小题,每题4分,满分20分。
请将答案填入答题卡相应的位置)11.实数a 、b 在数轴上对应点的位置如图所示,则a b(填“>”、“<”或“=”)。
12.因式分解:21x -= 。
13.某校七年(2班)6位女生的体重(单位:千克)是:36,38,40,42,42,45,这组数据的众数为 。
2020年福州市九年级质量检测数学试题答案及评分参考(0526)
2020 年福州市九年级质量检测数学试题答案及评分参考评分说明: 1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考 查内容比照评分参考制定相应的评分细则. 2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半; 如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:共 10 小题,每小题 4 分,满分 40 分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A2.C3.A4.B5.B6.A7.B8.C9.C10.D二、填空题:共 6 小题,每小题 4 分,满分 24 分,请在答题卡的相应位置作答.11.112. 1 413.1514.415.1816. 9 4三、解答题:共 9 小题,满分 86 分,请在答题卡的相应位置作答.17.(本小题满分 8 分) 解:解不等式①,得 x≤3. ······························································································3 分 解不等式②,得 x> 1.····························································································5 分 ∴原不等式组的解集是 1<x≤3,···············································································6 分 将该不等式组解集在数轴上表示如下:-5 -4 -3 -2 -1 0 1 2 3 4 5·······························································8 分18.(本小题满分 8 分)证明:∵点 E,F 在 BC 上,BE CF,∴BE EF CF EF,即 BF CE.·········································································································3 分在△ABF 和△DCE 中,AD AB DC,B C,BF CE,BEFC∴△ABF≌△DCE, ·······························································································6 分∴∠A ∠D.·······································································································8 分九年级数学试题答案及评分参考第1页(共 6 页)19.(本小题满分 8 分)解:原式x2 1 (x 1)2 (x 1)(x1)······················································································· 3分 x2 1 (x 1)(x 1) ··························································································4 分x 1x 1 x2 1 x2 1 ··································································································5 分 x 1 x 1x2 1. ··········································································································· 6分当 x 3 1时,原式 2 ·················································································7 分 3 112 323 3. ·····················································································8分20.(本小题满分 8 分) 解: 画法一:M AOC DBN画法二:M AOCD BN·······························································4 分如图,点 C,D 分别为(1),(2)所求作的点.························································5 分(2)证明如下:由(1)得 BC∥OA,BC 1 OA, 2∴∠DBC ∠DAO,∠DCB ∠DOA,∴△DBC∽△DAO, ············································································7 分∴DC DOBC AO1 2,∴OD 2CD.·····················································································8 分21.(本小题满分 8 分)解:(1)由图 1 可得甲的速度是120 2=60 m/min.································································2 分由图2可知,当x4 3时,甲,乙两人相遇,故(60v乙 )4 3200,解得 v乙 90 m/min.····························································································4 分 答:甲的速度是 60 m/min,乙的速度是 90 m/min. (2)由图 2 可知:乙走完全程用了 b min,甲走完全程用了 a min,∴b200 9020 9,······························································································· 6分a200 6010 3. ································································································ 8分∴a的值为10 3,b的值为20 9.22.(本小题满分 10 分) 解:(1)依题意得 a 100 .······························································································2 分 这 1000 户家庭月均用水量的平均数为:九年级数学试题答案及评分参考第2页(共 6 页)x24061001018014280 18 1000220221002660302014.72,········· 6分∴估计这 1000 户家庭月均用水量的平均数是 14.72.(2)解法一:不合理.理由如下: ···············································································7 分由(1)可得 14.72 在 12≤x<16 内,∴这 1000 户家庭中月均用水量小于 16 t 的户数有40 100 180 280 600(户),····························································8 分∴这1000户家庭中月均用水量小于16t的家庭所占的百分比是600 1000100%60%,∴月均用水量不超过 14.72 t 的户数小于 60%. ·············································9 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,而 60%<70%,∴用 14.72 作为标准 m 不合理.·······························································10 分解法二:不合理.理由如下: ···············································································7 分∵该市政府希望 70%的家庭的月均用水量不超过标准 m,∴数据中不超过 m 的频数应为 700, ··························································8 分即有 300 户家庭的月均用水量超过 m.又 20 60 100 160 300 , 20 60 100 220 380 300,∴m 应在 16≤x<20 内.··········································································9 分而 14.72<16,∴用 14.72 作为标准 m 不合理.·······························································10 分23.(本小题满分 10 分)(1)证明:连接 OD,AD.∵AB 为⊙O 直径,点 D 在⊙O 上,B∴∠ADB 90°, ····························································································1 分∴∠ADC 90°. ∵E 是 AC 的中点,F OD∴DE=AE,∴∠EAD ∠EDA.····················································A········E·······C··········G···········2 分 ∵OA OD,∴∠OAD ∠ODA. ·······················································································3 分∵∠OAD ∠EAD ∠BAC 90°,∴∠ODA ∠EDA 90°,即∠ODE 90°, ····························································································4 分∴OD⊥DE.∵D 是半径 OD 的外端点,∴DE 是⊙O 的切线. ·····················································································5 分(2)解法一:过点 F 作 FH⊥AB 于点 H,连接 OF,∴∠AHF 90°.B∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°, ∴∠BAF ∠ABF 90°.HFO D∵∠BAC 90°,∴∠G ∠ABF 90°,A ECG∴∠G ∠BAF.·························································································6 分又∠AHF ∠GAB 90°,∴△AFH∽△GBA, ····················································································7 分∴AF GBFH BA.··························································································· 8分由垂线段最短可得 FH≤OF, ········································································9 分当且仅当点 H,O 重合时等号成立.∵AC<AB,∴ B»D 上存在点 F 使得 FO⊥AB,此时点 H,O 重合,∴AF GBFH BA≤OF BA1 2,············································································10分九年级数学试题答案及评分参考第3页(共 6 页)即 AF 的最大值为 1 .GB2解法二:取 GB 中点 M,连接 AM.∵∠BAG 90°,∴AM 1BGB.···························································································6分2∵AB 为⊙O 直径,点 F 在⊙O 上, ∴∠AFB 90°,FOMD∴∠AFG 90°,∴AF⊥GB. ···························································A········E········C·········G··········7 分 由垂线段最短可得 AF≤AM, ········································································8 分当且仅当点 F,M 重合时等号成立,此时 AF 垂直平分 GB,即 AG=AB.∵AC<AB,∴ B»D 上存在点 F 使得 F 为 GB 中点,∴AF≤1 2GB,··························································································· 9分∴AF GB≤1 2,····························································································10分即 AF 的最大值为 1 .GB224.(本小题满分 12 分)(1)①证明:∵∠AED 45°,AE DE,∴∠EDA 180 45 67.5°. ·······································································1 分 2∵AB AC,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°,·························································2 分 ∴∠DCB 22.5°,即∠DCA ∠DCB,∴CD 平分∠ACB. ·····················································································3 分②解:过点 D 作 DF⊥BC 于点 F,A∴∠DFB 90°.∵∠BAC 90°,D∴DA⊥CA.E又 ∴ACDD平FD分,∠·A··C··B·,····················································B········F······················C·········4 分∴ AD FD . DB DB在 Rt△BFD 中,∠ABC 45°,∴sin∠DBF FD DB2 2, ················································································5分∴ AD DB2 2.······························································································· 6分(2)证法一:过点 A 作 AG⊥AE 交 CD 的延长线于点 G,连接 BG,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE,∠AGE 45°,∠AEC 135°,··············································7 分∴∠AGE ∠AEG,∴AG AE.·······························································································8 分∵AB AC,∴△AGB≌△AEC, ····················································································9 分∴∠AGB ∠AEC 135°,CE BG,∴∠BGE 90°. ························································································10 分∵AE⊥BE,九年级数学试题答案及评分参考第4页(共 6 页)。
福州市初三数学质量检查
B .A .C .D .第3题图第8题图福州市初三数学质量检查2020年福州市初中毕业班质量反省数 学 试 卷〔全卷共4页,三大题,共22小题;总分值150分;考试时间120分钟〕友谊提示:一切答案都必需填涂在答题卡上,答在本试卷上有效.学校 姓名 考生号一、选择题〔共10小题,每题4分,总分值40分;每题只要一个正确的选项,请在答题卡的相应位置填涂〕1.-2020的相对值是〔 〕.A .2020 B.-2020 C.20101 D.-201012.2020年福州市参与中考的先生数约79000人,这个数用迷信记数法表示为〔 〕. A .3109.7⨯ B. 31079⨯ C. 4109.7⨯ D. 51079.0⨯ 3.如图是由4个大小相反的正方体搭成的几何体,其仰望图是〔 〕.4.以下计算不正确的选项是〔 〕.A .a +b =2abB .2a a ⋅=3a C .63a a ÷=3a D .()2ab =22b a5.⊙O 1和⊙O 2的半径区分为5和2,O 1O 2=7,那么⊙O 1和⊙O 2的位置关系是〔 〕. A .外离 B .外切 C . 相交 D .内含 6.以下事情中是肯定事情的是〔 〕.A .翻开电视机,正在播旧事B .掷一枚硬币,正面朝下C .太阳从西边落下D .明天我市晴天 7.三角形的三边长区分为5,6,x ,那么x 不能够是〔 〕. A .5 B. 7 C. 9 D.118.假定一次函数y=kx+b 的图象如下图,那么k 、b 的取值范围是〔 〕. A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <0第13题图第17(1)题图第15题图第10题图9.在等边三角形、正方形、菱形、矩形、等腰梯形、圆这几个图形中,既是轴对称图形又是中心对称图形的有〔 〕.A .3个B .4个C .5个D .6个10.如图,在平面直角坐标系中,△PQR 可以看作是△ABC 经过以下变换失掉:①以点A 为中心,逆时针方向旋转90; ②向右平移2个单位; ③向上平移4个单位. 以下选项中,图形正确的选项是〔 〕.二、填空题〔共5小题,每题4分,总分值20分.请将答案填入答题卡的相应位置〕 11.因式分解:=-42a .12.某电视台综艺节目从接到的500个热线 中,抽取10名〝幸运观众〞,小英打通了一次热线 .她成为〝幸运观众〞的概率是 .13.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOG=60°,那么∠DCF 等于 .14.一次函数11+-=x y 与正比例函数x ky =2的图象交于点A 〔2,m 〕,那么k 的值是 .15.如图,1A 〔1,0〕,2A 〔1,-1〕,3A 〔-1,-1〕,3A 〔-1,1〕,4A 〔2,1〕,…,那么点2010A 的坐标是 .三、解答题〔总分值90分.请将解答进程填入答题卡的相应位置〕 16.〔每题7分,总分值14分〕 〔1〕计算:9)3(2201+---+-π.〔2〕12=-x y ,求代数式)()1(22y x x ---的值.17.〔每题7分,总分值14分〕〔1〕如图,在4×4的正方形方格中,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上.①填空:∠ABC= °;∠DEF= °;BC= ;DE= ; ②判别△ABC 与△DEF 能否相似,并证明你的结论.第19题图第18题图①第18题图②第17(2)题图〔2〕如图,四边形ABCD 是正方形,G 是BC 上恣意一点〔点G 与B 、C 不重合〕,AE ⊥DG 于E ,CF ∥AE 交DG 于F. 求证:△ADE ≌△DCF .18.〔此题总分值12分〕〝五一〞时期,新华商场贴出促销海报.在商场活动时期,王莉同窗随机调查了局部参与活动的顾客,并将调查结果绘制了两幅不完整的统计图.请你依据图中的信息回答以下效果: 〔1〕王莉同窗随机调查的顾客有__________人; 〔2〕请将统计图①补充完整;〔3〕在统计图②中,〝0元〞局部所对应的圆心角是_________度;〔4〕假定商场每天约有2000人次摸奖,请预算商场一天送出的购物券总金额是多少元?19.〔此题总分值11分〕如图等腰梯形ABCD 是⊙O 的内接四边形,AD ∥BC ,AC 平分∠BCD ,∠ADC =120°,四边形ABCD 的周长为15.〔1〕求证:BC 是直径; 〔2〕求图中阴影局部的面积.20.〔此题总分值12分〕为了援助云南人民抗旱救灾,某品牌矿泉水自动承当了为灾区消费300吨矿泉水的义务.〝五一〞大派送为了回馈广阔顾客,本商场在4月30日至5月6日时期举行有奖购物活动.每购置100元的商品,就有一次摸奖的时机,奖品为:一等奖:50元购物卷 二等奖:20元购物卷 三等奖:5元购物卷第21题图第21题备用图第22题图第22题备用图〔1〕由于义务紧急,实践加工时每天的任务效率比原方案提高了20%,结果提早2天完成义务.该厂实践每天加工消费矿泉水多少吨?〔2〕该公司组织A 、B 两种型号的汽车共16辆,将300吨矿泉水一次性运往灾区.A 型号汽车每辆可装20吨,运输本钱500元/辆.B 型号汽车每辆可装15吨,运输本钱300元/辆.运输本钱不超越7420元的状况下,有几种契合题意的运输方案?哪种运输方案更省钱?21.〔此题总分值13分〕如图,Rt △ABC 中,∠A =30°,AC =6.边长为4的等边△DEF 沿射线AC 运动〔A 、D 、E 、C 四点共线〕,使边DF 、EF 与边AB 区分相交于点M 、N 〔M 、N 不与A 、B 重合〕. 〔1〕求证:△ADM 是等腰三角形;〔2〕设AD =x ,△ABC 与△DEF 堆叠局部的面积为y ,求y 关于x 的函数解析式,并写出x 的取值范围;〔3〕能否存在一个以M 为圆心,MN 为半径的圆与边AC 、EF 同时相切,假设存在,央求出圆的半径;假设不存在,请说明理由.22.〔此题总分值14分〕在平面直角坐标系xOy 中,抛物线c bx x y ++-=2与x 轴交于A 〔-1,0〕,B 〔-3,0〕两点,与y 轴交于点C .〔1〕求抛物线的解析式;〔2〕设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; 〔3〕点Q 在直线BC 上方的抛物线上,且点Q 到直线BC 的距离最远,求点Q 坐标.第17(2)题图2020年福州市初中毕业班质量反省数学试卷参考答案和评分规范评分规范说明:1. 规范答案只列出试题的一种或几种解法. 为了阅卷方便,解答题中的推导步骤写得较为详细,考生只需写明主要步骤即可. 假设考生的解法与规范答案中的解法不同,可参照规范答案中的评分规范相应评分.2. 第一、二大题假定无特别说明,每题评分只要总分值或零分.3. 评阅试卷,要坚持每题评阅究竟,不能因考生解答中出现错误而中缀对此题的评阅. 假设考生的解答在某一步出现错误,影响后继局部而未改动此题的内容和难度,视影响的水平决议后继局部的给分,但原那么上不超事先继局部应得分数的一半.4. 规范答案中的解答右端所注分数,表示考生正确做到这一步应得的累加分数.5. 评分进程中,只给整数分数.一、选择题〔共10小题,每题4分,总分值40分.〕 题号 1 2 3 4 5 6 7 8 9 10 答案ACDABCDBBA二、填空题:〔共5小题,每题4分,总分值20分.〕 11. )2)(2(+-a a ;12.501; 13.30°; 14. -2; 15. (503,-503) . 三、解答题:(总分值90分) 16.〔每题7分,总分值14分〕 〔1〕解:原式=31221+-+-------------------------------------------------4分 =214--------------------------------------------------------------7分〔2〕解:原式=y x x x +-+-2212-------------------------------------4分=12++-y x -----------------------------------------------5分 ∵12=-x y ,∴原式=1+1=2------------------------------------------------7分17.〔每题7分,总分值14分〕17〔1〕①135,135,22,2;------------------------------------------4分②△ABC 与△DEF 相似--------------------------------------------5分理由:由图可知,AB=2,EF=2 ∴21==EF DE BC AB .------------------------------------------6分 ∵∠ABC =∠DEF =135°,∴△ABC ∽△DEF .--------------------------------------------7分(2) 证明: ∵四边形ABCD 是正方形 ∴AD=DC, ∠ADC =90°,∴∠ADG+∠CDG =90°.--------------------------------------2分 又∵AE ⊥DG ,∴∠AED =∠AEF =90°. ∴∠DAE+∠ADE =90°,∴∠DAE=∠CDG .-----------------------------------------------4分 ∵CF ∥AE ,∴∠CFD =∠AEG =90°.∴∠AED =∠CFD .----------------------------------------------6分 ∴△ADE ≌△DCF .-----------------------------------------------7分〔注:假设先生有不同的解题方法,只需正确,可参考评分规范,酌情给分.〕 18.〔此题总分值12分〕解:⑴200------------------------------------------------------3分. 〔2〕画图正确------------------------------------------------6分 〔3〕216-----------------------9分 〔4〕5.6200501020305400120=⨯+⨯+⨯+⨯=x.∴6.5×2000=13000〔元〕----------------------------12分 ∴估量商场一天送出的购物券总金额是13000元.19.〔此题总分值11分〕解:(1)证明:∵等腰梯形ABCD 是⊙O 的内接四边形, ∴∠ADC +∠ABC =180°.∴∠ABC =180°―∠ADC =180°―120°=60°.---------------1分 ∴∠DCB =∠ABC =60°.-----------------------------------------------2分 ∵AC 平分∠BCD ,∴∠ACD=∠ACB=30°.----------------------------------------------------3分 ∵∠ABC +∠ACB +∠BAC =180°,∴∠BAC =90°.----------------------------------------------------------4分 ∴BC 是直径.--------------------------------------------------------------5分 (2)∵AD ∥BC ,∴∠DAC =∠ACB =30°. ∴∠DAC =∠DCA .∴AD =DC .---------------------------------------------------------------6分 设CD=x ,得AB=AD=DC =x , ∵∠BAC =90°,∠ACB =30°, ∴BC =2x .∵四边形ABCD 的周长为15,∴x =3.----------------------------------------------8分 ∴BC=6,AO=DO=3. 衔接AO 、DO ,∠AOD =2∠ACD =60°.----------------------------------------------9分 ∵△ADO 和△ADC 同底等高,∴S △ADO =S △ADC .------------------------------------------------------10分第21题图 1∴图中阴影局部的面积=扇形AOD 的面积=ππ233360602=⨯⨯.------------------------------------------------11分〔注:假设先生有不同的解题方法,只需正确,可参考评分规范,酌情给分.〕 20. 〔此题总分值12分〕〔1〕设该厂实践每天加工消费矿泉水x 吨,依题意得:2%)201(300300++=xx ∴解得x =25------------------------------------------------------------5分 经检验:x =25是原方程的解.-------------------------------------6分 答:该公司原方案布置750名工人消费矿泉水。
{3套试卷汇总}2020年福州市九年级上学期期末学业质量监测数学试题
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知⊙O 中最长的弦为8cm ,则⊙O 的半径为( )cm .A .2B .4C .8D .16【答案】B【解析】⊙O 最长的弦就是直径从而不难求得半径的长.【详解】∵⊙O 中最长的弦为8cm ,即直径为8cm ,∴⊙O 的半径为4cm .故选B.【点睛】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键.2.如图是一根空心方管,则它的主视图是( )A .B .C .D .【答案】B【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是:大正方形里有一个小正方形,∴主视图为:故选:B .【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线. 3.如图,A B 、是函数1y x=的图像上关于原点对称的任意两点,//BC x 轴,//AC y 轴,ABC ∆的面积记为S ,则( )A .2S =B .4S =C .24S <<D . 4S >【答案】A 【分析】根据反比例函数图象上的点A 、B 关于原点对称,可以写出它们的坐标,则△ABC 的面积即可求得.【详解】解:设A(x ₁,y ₁),根据题意得B(-x ₁,-y ₁),BC=2x ₁,AC=2y ₁∵A 在函数1y x=的图像上 ∴x ₁y ₁=11111122222S x y x y ∴=⨯⋅== 故选: A【点睛】本题考查的是反比例函数的性质.4.用配方法解方程x 2-4x+3=0时,原方程应变形为( )A .(x+1)2=1B .(x-1)2=1C .(x+2)2=1D .(x-2)2=1【答案】D【分析】根据配方时需在方程的左右两边同时加上一次项系数一半的平方解答即可.【详解】移项,得 x 2-4x=-3,配方,得 x 2-2x+4=-3+4,即(x-2)2=1 ,故选:D.【点睛】本题考查了一元二次方程的解法—配方法,熟练掌握配方时需在方程的左右两边同时加上一次项系数一半的平方是解题的关键.5.小华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为( )A .3.2米B .4.8米C .5.2米D .5.6米【答案】B 【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】据相同时刻的物高与影长成比例,设这棵树的高度为xm , 则可列比例为1.6=26x 解得,x=4.1.故选:B【点睛】本题主要考查同一时刻物高和影长成正比,考查利用所学知识解决实际问题的能力.6.如图,抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=1,且经过点P (3,0),则a-b+c 的值为( )A .0B .-1C .1D .2【答案】A 【解析】试题分析:因为对称轴x=1且经过点P (3,1)所以抛物线与x 轴的另一个交点是(-1,1)代入抛物线解析式y=ax 2+bx+c 中,得a-b+c=1.故选A .考点:二次函数的图象.7.反比例函数(0)k y k x =≠的图象经过点()2,6-,若点(3,)n 在反比例函数的图象上,则n 等于( ) A .-4B .-9C .4D .9【答案】A 【分析】将点(-2,6)代入(0)k y k x =≠得出k 的值,再将(3,)n 代入(0)k y k x=≠即可 【详解】解:∵反比例函数(0)k y k x =≠的图象经过点()2,6-, ∴k=(-2)×6=-12,∴12y x=-又点(3,n)在此反比例函数12yx=-的图象上,∴3n=-12,解得:n=-1.故选:A【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.8.下列说法错误的是()A.必然事件的概率为1 B.心想事成,万事如意是不可能事件C.平分弦(非直径)的直径垂直弦D.16的平方根是2±【答案】B【分析】逐一对选项进行分析即可.【详解】A. 必然事件的概率为1,该选项说法正确,不符合题意;B. 心想事成,万事如意是随机事件,该选项说法错误,符合题意;C. 平分弦(非直径)的直径垂直弦,该选项说法正确,不符合题意;D. 16的平方根是2±,该选项说法正确,不符合题意;故选:B.【点睛】本题主要考查命题的真假,掌握随机事件,垂径定理,平方根的概念是解题的关键.9.如图,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形图,如果要使整个挂图的面积是25400cm,设金色纸边的宽为xcm,那么x满足的方程是()A.213014000x x+-=B.2653500x x+-=C.213014000x x--=D.2653500x x--=【答案】B【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】依题意,设金色纸边的宽为xcm,则:()()8025025400x x ++=,整理得出:2653500x x +-=.故选:B .【点睛】本题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.10.如图,在ABC ∆中,,A B 两个顶点在x 轴的上方,点C 的坐标是()1,0- .以点C 为位似中心,在x 轴的下方作ABC ∆的位似,图形A B C ∆'',使得A B C ∆''的边长是ABC ∆的边长的2倍.设点B 的横坐标是-3,则点B '的横坐标是( )A .2B .3C .4D .5【答案】B 【解析】设点B′的横坐标为x ,然后根据△A′B′C 与△ABC 的位似比为2列式计算即可求解.【详解】设点B′的横坐标为x ,∵△ABC 的边长放大到原来的2倍得到△A′B′C ,点C 的坐标是(-1,0),∴x-(-1)=2[(-1)-(-1)],即x+1=2(-1+1),解得x=1,所以点B 的对应点B′的横坐标是1.故选B .【点睛】本题考查了位似变换,坐标与图形的性质,根据位似比列出方程是解题的关键.11.已知点C 在线段AB 上(点C 与点A 、B 不重合),过点A 、B 的圆记作为圆1O ,过点B 、C 的圆记作为圆2O ,过点C 、A 的圆记作为圆3O ,则下列说法中正确的是( )A .圆1O 可以经过点CB .点C 可以在圆1O 的内部 C .点A 可以在圆2O 的内部D .点B 可以在圆3O 的内部【答案】B【分析】根据已知条件确定各点与各圆的位置关系,对各个选项进行判断即可.【详解】∵点C 在线段AB 上(点C 与点A 、B 不重合),过点A 、B 的圆记作为1O∴点C 可以在圆1O 的内部,故A 错误,B 正确;∵过点B 、C 的圆记作为圆2O∴点A 可以在圆2O 的外部,故C 错误;∴点B 可以在圆3O 的外部,故D 错误.故答案为B .【点睛】本题考查了点与圆的位置关系,根据题意画出各点与各圆的位置关系进行判断即可.12.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150 【答案】B【分析】可设每月营业额平均增长率为x ,则二月份的营业额是100(1+x ),三月份的营业额是100(1+x )(1+x ),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x .根据题意得:100(1+x )1=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )1.增长用“+”,下降用“-”.二、填空题(本题包括8个小题)13.如图,在菱形c 中,,,E P Q 分别是边AB ,对角线BD 与边AD 上的动点,连接,EP PQ ,若60,6ABC AB ∠=︒=,则EP PQ +的最小值是___.【答案】33【分析】作点Q 关于BD 对称的对称点Q’,连接PQ ,根据两平行线之间垂线段最短,即有当E 、P 、Q’在同一直线上且'EQ AB ⊥ 时,'EP PQ +的值最小,再利用菱形的面积公式,求出EP PQ +的最小值.【详解】作点Q 关于BD 对称的对称点Q’,连接PQ .∵四边形ABCD 为菱形∴'PQ PQ = ,//AB CD∴'EP PQ EP PQ +=+当E 、P 、Q’在同一直线上时,'EP PQ +的值最小∵ 两平行线之间垂线段最短∴当'EQ AB ⊥ 时,'EP PQ +的值最小∵60,6ABC AB ∠=︒=∴6AC = ,2cos306=63BD =⨯︒⨯ ∴11832S ABCD AC BD =⨯= ∵'6'S ABCD AB EQ EQ =⨯=∴6'183EQ =解得'33EQ =∴EP PQ +的最小值是33 . 故答案为:33.【点睛】本题考查了菱形的综合应用题,掌握菱形的面积公式以及两平行线之间垂线段最短是解题的关键. 14.在半径为3cm 的圆中,长为πcm 的弧所对的圆心角的度数为____________.【答案】60︒【分析】根据弧长公式求解即可.【详解】 1803180180360n r l n nn πππ====︒故本题答案为:60︒.【点睛】本题考查了圆的弧长公式,根据已知条件代入计算即可,熟记公式是解题的关键.15.如图,一张桌子上重叠摆放了若干枚一元硬币,从三个不同方向看它得到的平面图形如图所示,那么桌上共有_______枚硬币.【答案】1【分析】从俯视图中可以看出最底层硬币的个数及形状,从主视图可以看出每一层硬币的层数和个数,从左视图可看出每一行硬币的层数和个数,从而算出总的个数.【详解】解:三堆硬币的个数相加得:3+4+2=1.∴桌上共有1枚硬币.故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)甲的速度______乙的速度.(大于、等于、小于)(2)甲乙二人在______时相遇;(3)路程为150千米时,甲行驶了______小时,乙行驶了______小时.【答案】 (1)、小于;(2)、6;(3)、9、4【解析】试题分析:根据图像可得:甲的速度小于乙的速度;两人在6时相遇;甲行驶了9小时,乙行驶了4小时.考点:函数图像的应用17.如图,某河堤的横截面是梯形ABCD ,BC AD ∥,迎水面AB 长26m ,且斜坡AB 的坡比(即BE AE)为12:5,则河堤的高BE 为__________.【答案】24cm【分析】根据坡比(即BE AE)为12:5,设BE=12x ,AE=5x ,因为AB=26cm ,根据勾股定理列出方程即可求解.【详解】解:设BE=12x ,AE=5x ,∵AB=26cm ,222AE BE AB +=∴()()22212526x x += 2x =∴BE=2×12=24cm故答案为:24cm.【点睛】本题主要考查的是坡比以及勾股定理,找出图中的直角三角形在根据勾股定理列出方程即可求解. 18.将方程22(32)10x x x --++=化成一般形式是______________.【答案】2550x x -+=【分析】先将括号乘开,再进行合并即可得出答案.【详解】x 2-6x+4+x+1=0,2550x x -+=.故答案为:2550x x -+=.【点睛】本题考查了一次二次方程的化简,注意变号是解决本题的关键.三、解答题(本题包括8个小题)19.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A(-2,-2) , B(-4,-1) , C(-4,-4).(1) 画出与△ABC关于点P(0,-2)成中心对称的△A1B1C1,并写出点A1的坐标;(2) 将△ABC绕点O顺时针旋转的旋转90°后得到△A2B2C2,画出△A2B2C2,并写出点C2的坐标.【答案】(1)详见解析;(2,-2);(2)详见解析;(-4,4)【分析】(1)分别得出A、B、C三点关于点P的中心对称点,然后依次连接对应点可得;(2)分别做A、B、C三点绕O点顺时针旋转90°的点,然后依次连接对应点即可.【详解】(1)△A1B1C1如下图所示.点A1的坐标为(2,-2)(2)△A2B2C2如上图所示.点C2的坐标为(-4,4).【点睛】本题考查绘制中心对称图形和绘制旋转图形,解题关键是绘制图形中的关键点的对应点.20.某公司2016年10月份营业额为64万元,12月份营业额达到100万元,(1)求该公司11、12两个月营业额的月平均增长率;(2)如果月平均增长率保持不变,据此估计明年1月份月营业额.【答案】(1)该公司11、12两个月营业额的月平均增长率为25%;(2)1明年1月份月营业额为125万元.【分析】(1)设该公司11、12两个月营业额的月平均增长率为x,根据该公司10月份及12月份的营业额,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据明年1月份月营业额=今年12月份营业额×(1+增长率),即可求出结论.【详解】解:(1)设该公司11、12两个月营业额的月平均增长率为x,依题意,得:64(1+x)2=100,解得:x 1=0.25=25%,x 2=﹣2.25(不合题意,舍去).答:该公司11、12两个月营业额的月平均增长率为25%.(2)100×(1+25%)=125(万元).答:明年1月份月营业额为125万元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.我县寿源壹号楼盘准备以每平方米5000元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘均价购买一套120平方米的住房,开发商给予以下两种优惠方案供选择: ①打9.8折销售;②不打折,一次性送装修费每平方米70元.试问哪种方案更优惠?【答案】(1)10%;(2)选择方案①更优惠.【分析】(1)此题可以通过设出平均每次下调的百分率为x ,根据等量关系“起初每平米的均价(1⨯-下调百分率)(1⨯-下调百分率)=两次下调后的均价”,列出一元二次方程求出.(2)对于方案的确定,可以通过比较两种方案得出的费用:①方案:下调后的均价1000.98⨯⨯+两年物业管理费②方案:下调后的均价100⨯,比较确定出更优惠的方案.【详解】解:(1)设平均每次降价的百分率是x ,依题意得25000(1)4050x -=,解得:110%x =,21910x =(不合题意,舍去). 答:平均每次降价的百分率为10%.(2)方案①购房优惠:4050×120×(1-0.98)=9720(元)方案②购房优惠:70×120=8400(元)9720(元)>8400(元)答:选择方案①更优惠.【点睛】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键.22.如图,AB 为⊙O 的弦,若OA⊥OD,AB、OD 相交于点C,且CD=BD .(1)判定BD 与⊙O 的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD 的长.【答案】(1)见解析;(2)1【分析】(1)连接OB,由BD=CD,利用等边对等角得到∠DCB=∠DBC,再由AO垂直于OD,得到三角形AOC为直角三角形,得到两锐角互余,等量代换得到OB垂直于BD,即可得证;(2)设BD=x,则OD=x+1,在RT△OBD中,根据勾股定理得出32+x2=(x+1)2,通过解方程即可求得.【详解】解:(1)证明:连接OB,∵OA=OB,DC=DB,∴∠A=∠ABO,∠DCB=∠DBC,∵AO⊥OD,∴∠AOC=90°,即∠A+∠ACO=90°,∵∠ACO=∠DCB=∠DBC,∴∠ABO+∠DBC=90°,即OB⊥BD,则BD为圆O的切线;(2)解:设BD=x,则OD=x+1,而OB=OA=3,在RT△OBD中,OB2+BD2=OD2,即32+x2=(x+1)2,解得x=1,∴线段BD的长是1.23.已知:如图,Rt△ABC中,∠ACB=90°,sinB=35,点D、E分别在边AB、BC上,且AD∶DB=2∶3,DE⊥BC.(1)求∠DCE的正切值;(2)如果设AB a=,CD b=,试用a、b表示AC.【答案】(1)98;(2)25AC a b =-. 【解析】试题分析:()1在Rt ABC △中,根据3sin 5B =,设35AC a AB a ==,. 则4BC a =. 根据:2:3AD DB =,得出: 23AD a DB a ==,.根据平行线分线段成比例定理,用a 表示出,.DE CE 即可求得.()2先把AD 用a 表示出来,根据向量加法的三角形法则即可求出.试题解析:(1)390sin 5ACB B ∠=︒=,, ∴35AC AB =,∴设35AC a AB a ==,. 则4BC a =. :2:3?23AD DB AD a DB a ,,.=∴== 90ACB ∠=︒ 即AC BC ⊥,又DE BC ⊥,∴AC//DE .∴DE BD AC AB =,CE AD CB AB =,∴335DE a a a =,245CE a a a=. ∴95DE a =,85CE a =. DE BC ⊥, ∴9tan 8DE DCE CE ∠==. (2):2:3:2:5AD DB AD AB =∴=,.∵AB a =,CD b =,∴25AD a =.DC b =-. ∵AC AD DC =+,∴25AC a b =-. 24.如图,在等边三角形ABC 中,点D ,E 分别在BC, AB 上,且∠ADE=60°.求证:△ADC~△DEB .【答案】见解析【解析】根据等边三角形性质得∠B=∠C ,根据三角形外角性质得∠CAD=∠BDE,易证ADC DEB . 【详解】证明:∆ABC 是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C= ∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴ADC DEB【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.25.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2016年的绿色建筑面积约为950万平方米,2018年达到了1862万平方米.若2017年、2018年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2019年我市计划推行绿色建筑面积达到2400万平方米.如果2019年仍保持相同的年平均增长率,请你预测2019年我市能否完成计划目标?【答案】(1)这两年我市推行绿色建筑面积的年平均增长率为40%;(2)如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【分析】(1)设这两年我市推行绿色建筑面积的年平均增长率x,根据2016年的绿色建筑面积约为950万平方米和2018年达到了1862万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2019年绿色建筑面积,再与计划推行绿色建筑面积达到2400万平方米进行比较,即可得出答案.【详解】(1)设这两年我市推行绿色建筑面积的年平均增长率为x,则有950(1+x)2=1862,解得,x1=0.4,x2=−2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862×(1+40%)=2606.8,∵2606.8>2400,∴2019年我市能完成计划目标,即如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.26.已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b =,c =;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x <2时,y 的取值范围是.【答案】(1)b=2,c=3;(2)(0,3),(1,4)(3)见解析;(4)-12<y≤4【解析】(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y 的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩ , 故答案为:b=2,c=3;(2)解:令x=0,c=3, 二次函数图像与y 轴的交点坐标为则(0,3),二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.27.市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=45时,y=10;x=55时,y=1.在销售过程中,每天还要支付其他费用500元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【答案】(1)y=﹣2x+200(30≤x≤60);(2)W=﹣2x2+260x﹣6500;(3)当销售单价为60元时,该公司日获利最大为110元.【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单个利润×销售量-500列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【详解】(1)设y=kx+b,∵x=45时,y=10;x=55时,y=1,∴45110 5590k bk b+=⎧⎨+=⎩,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)∵售价为x元/千克,进价为30元/千克,日销量y=﹣2x+200,每天支付其他费用500元,∴W=(x﹣30)(﹣2x+200)﹣500=﹣2x2+260x﹣6500,(3)∵W=﹣2x2+260x﹣6500=﹣2(x﹣65)2+1950,∴抛物线的对称轴为x=65,∵-2<0,∴抛物线开口向下,x<65时,y随x的增大而增大,∵30≤x≤60,∴x=60时,w有最大值为-2(60-65)2+1950=110(元),∴当销售单价为60元时,该公司日获利最大为110元.【点睛】本题考查二次函数和一次函数的综合应用,考查了待定系数法求一次函数解析式及二次函数的性质,熟练掌握二次函数的性质是解题关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知矩形ABCD的对角线AC的长为8,连接矩形ABCD各边中点E、F、G、H得到四边形EFGH,则四边形EFGH的周长为()A.12 B.16 C.24 D.32【答案】B【分析】根据三角形中位线定理易得四边形EFGH的各边长等于矩形对角线的一半,而矩形对角线是相等的,都为8,那么就求得了各边长,让各边长相加即可.【详解】解:∵H、G是AD与CD的中点,∴HG是△ACD的中位线,∴HG=12AC=4cm,同理EF=4cm,根据矩形的对角线相等,连接BD,得到:EH=FG=4cm,∴四边形EFGH的周长为16cm.故选:B.【点睛】本题考查了中点四边形.解题时,利用了“三角形中位线等于第三边的一半”的性质.2.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟【答案】B【详解】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm1,则BP为(8﹣t)cm,BQ为1tcm,由三角形的面积计算公式列方程得:12×(8﹣t)×1t=15,解得t1=3,t1=5(当t=5时,BQ=10,不合题意,舍去).故当动点P,Q运动3秒时,能使△PBQ的面积为15cm1.故选B.【点睛】此题考查借助三角形的面积计算公式来研究图形中的动点问题.3.方程x 2+2x-5=0经过配方后,其结果正确的是A .2(1)5x +=B .2(1)5x -=C .2(1)6x +=D .2(1)6x -= 【答案】C【详解】解:根据配方法的意义,可知在方程的两边同时加减一次项系数的一半的平方,可知2+25x x =,即2+216x x +=,配方为()216x +=.故选:C.【点睛】此题主要考查了配方法,解题关键是明确一次项的系数,然后在方程的两边同时加减一次项系数的一半的平方,即可求解.4.对于二次函数()212y x =-+的图象,下列说法正确的是( )A .开口向下B .对称轴1x =C .顶点坐标是()1,2D .与x 轴有两个交点 【答案】C【分析】根据抛物线的性质由a=2得到图象开口向上,再根据顶点式得到顶点坐标,再根据对称轴为直线x=1和开口方向和顶点,从而可判断抛物线与x 轴的公共点个数.【详解】解:二次函数y=2(x-1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x 轴没有公共点.故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,其顶点坐标为(h ,k ),对称轴为x=h .当a >0时,抛物线开口向上,当a <0时,抛物线开口向下.5.把中考体检调查学生的身高作为样本,样本数据落在1.6~2.0(单位:米)之间的频率为0.28,于是可估计2000名体检中学生中,身高在1.6~2.0米之间的学生有( )A .56B .560C .80D .150 【答案】B【分析】由题意根据频率的意义,每组的频率=该组的频数:样本容量,即频数=频率×样本容量.数据落在1.6~2.0(单位:米)之间的频率为0.28,于是2 000名体检中学生中,身高在1.6~2.0米之间的学生数即可求解.【详解】解:0.28×2000=1.故选:B .【点睛】本题考查频率的意义与计算以及频率的意义,注意掌握每组的频率=该组的频数÷样本容量.6.若2是关于方程x 2﹣5x+c =0的一个根,则这个方程的另一个根是( )A .﹣3B .3C .﹣6D .6 【答案】B【分析】根据一元二次方程根与系数的关系即可得.【详解】设这个方程的另一个根为a , 由一元二次方程根与系数的关系得:5251a -+=-=, 解得3a =,故选:B .【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键. 7.已知⊙O 的半径为4cm ,点P 在⊙O 上,则OP 的长为( )A .2cmB .4cmC .6cmD .8cm 【答案】B【分析】根据点在圆上,点到圆心的距离等于圆的半径求解.【详解】∵⊙O 的半径为4cm ,点P 在⊙O 上,∴OP =4cm .故选:B .【点睛】本题考查了点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP=d ,则有:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d <r .8.如图,O 的半径为3,BC 是O 的弦,直径AD BC ⊥,30D ∠=,则BC 的长为( )A .2πB .πC .2πD .3π【答案】C【分析】连接OC ,利用垂径定理以及圆心角与圆周角的关系求出BOC ∠;再利用弧长公式180n r l =︒π即可求出BC 的长.【详解】解:连接OC260AOC D ∠=∠=︒ (同弧所对的圆心角是圆周角的2倍)∵直径AD BC ⊥∴AC =AB (垂径定理) ∴2120BOC AOC ∠=∠=︒1203=2180180n BC ==︒πr ππ 故选C【点睛】本题考查了垂径定理、圆心角与圆周角以及利用弧长公式求弧长,熟练掌握相关定理和公式是解答本题的关键.9.如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是( )A .B .C .D .【答案】C【解析】根据简单几何体的三视图即可求解. 【详解】三视图的俯视图,应从上面看,故选C 【点睛】此题主要考查三视图的判断,解题的关键是熟知三视图的定义.10.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误; B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确. 故选D . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 11.关于x 的一元二次方程2(3)(2)0x x p ---=的根的情况是() A .有两个不相等的实数根 B .没有实数根 C .有两个相等的实数根 D .不确定【答案】A【分析】将方程化简,再根据24b ac ∆=-判断方程的根的情况. 【详解】解:原方程可化为22560x x p -+-=,222(5)4(6)10p p ∴∆=---=+>所以原方程有两个不相等的实数根. 故选:A 【点睛】本题考查了一元二次方程根的情况,灵活利用∆的正负进行判断是解题的关键.当>0∆时,方程有两个不相等的实数根;当0∆=时,方程有两个不相等的实数根;当∆<0时,方程没有实数根.12.抛物线2y x 2=-+的对称轴为 A .x 2= B .x 0=C .y 2=D .y 0=【答案】B【分析】根据顶点式的坐标特点,直接写出对称轴即可. 【详解】解∵:抛物线y=-x 2+2是顶点式, ∴对称轴是直线x=0,即为y 轴. 故选:B . 【点睛】此题考查了二次函数的性质,二次函数y=a (x-h )2+k 的顶点坐标为(h ,k ),对称轴为直线x=h . 二、填空题(本题包括8个小题)13.二次函数223y x x =--,当03x ≤≤时,y 的最大值和最小值的和是_______. 【答案】4-【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【详解】抛物线的对称轴是x =1, 则当x =1时,y =1−2−3=−1,是最小值; 当x =3时,y =9−6−3=0是最大值.y 的最大值和最小值的和是-1故答案为:-1. 【点睛】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.【答案】14【分析】如图,作点A 关于CM 的对称点A′,点B 关于DM 的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点A 关于CM 的对称点'A ,点B 关于DM 的对称点'B .120CMD ∠=, 60AMC DMB ∴∠+∠=, ∴''60CMA DMB ∠+∠=,''60A MB ∴∠=,''MA MB =, ''A MB ∴∆为等边三角形''''14CD CA A B B D CA AM BD ≤++=++=, CD ∴的最大值为14,故答案为14.。
2020年福建省初中学业质量测查数学试题(附答案)
福建省初中学业质量测查数学试题(试卷满分:150分;考试时间:120分钟)温馨提示:所有答案必须填写到答题卡相应的位置上,答在本试卷上一律无效.毕业学校 姓名 考生号一、选择题(每小题3分,共21分)每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分. 1.-2015的相反数是( )A .-2015B .2015C .12015 D .12015- 2.下列运算正确的是( )A .a 3+a 3=a 6B . a 6÷a 2=a 4C .a 3•a 5=a 15D .(a 3)4=a 73.如图所示几何体的俯视图是( )A .B .C .D . 4.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( ) A .10° B .15° C .20° D .25° 5.关于x 的方程01322=--x x 的解的情况,正确的是( ).A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.如图所示,把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形7.已知二次函数y=﹣x 2+2bx +c ,当x >1时,y 的值随x 值的增大而减小,则实数b 的取值范围是( )A .b ≥﹣1B . b ≤﹣1C .b ≥1D .b ≤1二、填空题(每小题4分,共40分)在答题卡上相应题目的答题区域内作答.8.地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为 .(第3题图) (第4题图)(第6题图)219.若正n 边形的中心角等于24°,则这个正多边形的边数为 . 10.分解因式:x x 42+ = .11.若a <13<b ,且a ,b 为连续正整数,则b 2﹣a 2= .12. 计算:_______x yx y x y +=++.13.在《中国梦•我的梦》演讲比赛中,由6个评委对某选手打分,得分情况如下:8,9,7,8,9,10 (单位:分),则该选手得分的中位数是 分. 14. 不等式组⎩⎨⎧≤-≥+0201x x 的解集是 . 15.菱形ABCD 的边长AB =5cm ,则菱形ABCD 的周长为 cm .16.如图,P A 、PB 是⊙O 的切线,切点是A 、B ,已知60P ∠=︒,P A =63,那么AB 的长为 .17.如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线kx y =上,则(1)k = ,(2)A 2015的坐标是 . 三、解答题(共89分)在答题卡上相应题目的答题区域内作答. 18.(9分)计算:10)31(28)2(|3|-+⨯--+-π.19.(9分)先化简,再求值:)22(2)2(2-++a a a ,其中3=a .20.(9分)如图,已知:点B 、F 、C 、E 在一条直线上,∠B =∠E ,BF =CE ,AB =DE .求证:△ABC ≌△DEF .21.(9分)为了解我县八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图所示).A OP B(第16题图)ECABDFA 1A 2 A OB 1 B 2B3 AO BP (第17题图)请根据图中提供的信息,解答下列问题:(1)直接填写:a =____%,该扇形所对圆心角的度数为____度,并补全条形图;(2)如果全县共有八年级学生7000人,请你估计“活动时间不少于...7天”的学生人数大约有多少人?22.(9分)第14届亚洲艺术节计划于2015年11月底在泉州举行.现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人. (1)若从这20人中随机选取一人作为联络员,直接写出选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.23.(9分)已知反比例函数xm y 1-=(m 为常数)的图象在第一、三象限内. (1)求m 的取值范围;(2)如图,若该反比例函数的图象经过平行四边形ABOD 的顶点D ,点A 、B 的坐标分别为a(0,3),(﹣2,0).①求出该反比例函数解析式;②设点P 是该反比例函数图象上的一点,且在ΔDOP 中,OD=OP ,求点P 的坐标. 24.(9分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2小时后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为y 甲(km ),y 乙(km ),甲车行驶的时间为x (h ),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题: (1)乙车休息了 h ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围;(3)当两车相距40km 时,求出x 的值.25.(13分)如图,已知抛物线c bx x y ++-=221图象经过A (﹣1,0),B (4,0)两点. (1)求抛物线的解析式;y/km y(2)若C (m ,m ﹣1)是抛物线上位于第一象限内的点,D 是线段AB 上的一个动点(不与端点A 、B 重合),过点D 分别作DE ∥BC 交AC 于E ,DF ∥AC 交BC 于F .①求证:四边形DECF 是矩形; ②试探究:在点D 运动过程中,DE 、DF 、CF 的长度之和是否发生变化?若不变,求出它的值;若变化,试说明变化情况.A O D BF EC x26.(13分)在平面直角坐标系中,O 为坐标原点,直线33+-=k kx y 交y 轴正半轴于点A ,交x 轴于点B (如图1)(1)不论k 取何值,直线AB 总经过一个定点C ,请直接写出点C 坐标; (2)当OC ⊥AB 时,求出此时直线AB 的解析式;(3)如图2,在(2)条件下,若D 为线段AB 上一动点(不与端点A 、B 重合),经过O 、D 、B 三点的圆与过点B 垂直于AB 的直线交于点E ,求ΔDOE 面积的最小值.(图1)(图2)参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分) 1.B 2.B 3.C 4.D 5.A 6.A 7.D 二、填空题(每小题4分,共40分)8. 5101.1⨯ 9. 15 10. )4(+x x 11.7 12. 1 13. 8.5 14. 21≤≤-x 15. 20 16. π4 17.(1)33(2))2017,32015( 三、解答题(共89分) 18.(本题9分)解:原式=3+1-4+3…………………………………………………………8分 =3…………………………………………………………………… 9分 19.(本题9分)解:原式=a a a a 444422-+++…………………………………………………4分=452+a ………………………………………………………………6分当3=a 时,原式=4)3(52+⨯………………………………………7分=19…………………………………………………9分 20.(本题9分)证明:∵CE BF =, ∴CF CE CF BF +=+即EF BC =……………4分又∵E B DE AB ∠=∠=,……………7分 ∴△ABC ≌△DEF . ………………………9分21.(本题9分)解:(1)10,36°,补图如右;(填空各2分,补图2分, 共6分)(2)7000×(25%+10%+5%)=7000×40%=2800人. 答:“活动时间不少于7天”的学生人数大约有2800人……………………9分 22. (本题9分)ECA BDF解 :(1)P (女生)=53;……………………………………………………3分 (2)解法一: 画树状图…………………………………………………………………………6分由树状图可知,共有12种机会均等的情况,其中和为偶数的有4种情况,P ∴(甲参加)=31124=,P (乙参加)=32128=. P (甲参加)<P (乙参加),∴这个游戏不公平. ……………………………………………………9分解法二:列表(略)23. (本题9分)解:(1)根据题意得01>-m解得1>m …………………3分(2)①∵四边形ABOC 为平行四边形, ∴AD ∥OB ,AD =OB =2 又A 点坐标为(0,3)∴D 点坐标为(2,3)………………5分∴1-m =2×3=6∴反比例函数解析式为xy 6=………………6分 ②(法一)如图所示,以O 为圆心,OD 长为半径作圆O ,与双曲线xy 6=分别交于321,,,P P P D 四点. 根据图形的对称性,得点D (2,3)关于直线y =x 对称点1P 的坐标为(3,2);………………7分 点D (2,3)关于原点中心对称点2P 的坐标为(﹣2,﹣3);点1P (3,2)关于原点中心对称点3P 的坐标为(﹣3,﹣2). ………….8分 由于O 、D 、2P 三点共线.,所以符合题意的P 点只有两点, 其坐标分别为(3,2),(﹣3,﹣2). …………..9分(法二)2 第1张第2张 3 4 53 4 52 4 52 3 52 3 4和 5 6 7 5 7 8 6 7 9 7 8 9∵直线y =x 是反比例函数x y 6=图象的对称轴, D (2,3)在反比例函数xy 6=图象上, ∴点D (2,3)关于直线y =x 对称点的坐标为(3,2),则此时满足条件OP =OD 的P 点坐标为(3,2)………………..7分 ∵反比例函数xy 6=的图象是以原点为对称中心的中心对称图形 ∴当点P 与点D 关于原点中心对称,则OD =OP ,但此时O 、D 、P 三点共线. 而点(3,2)关于原点中心对称的点的坐标为(﹣3,﹣2)即此时满足条件OP =OD 的P 点坐标为(﹣3,﹣2)…………………8分综上,符合题意的P 点有两点,其坐标分别为(3,2),(﹣3,﹣2).………………9分 24. (本题9分)解:(1)0.5;………………………3分(2)设乙车与甲车相遇后y 乙与x 的函数解析式y 乙=kx +b ,y 乙=kx +b 图象过点(2.5,200),(5,400),得⎩⎨⎧=+=+4005,2005.2b k b k 解得⎩⎨⎧==0,80b k ∴乙车与甲车相遇后y 乙与x 的函数解析式y 乙=80x (2.5≤x ≤5);………………6分(其中自变量取值范围1分)(3)设乙车与甲车相遇前y 乙与x 的函数解析式y 乙=kx ,图象过点(2,200),所以200=2k 解得k =100 ∴乙车与甲车相遇前y 乙与x 的函数解析式y 乙=100x可求y 甲与x 的函数解析式y 甲=-80x +400…………………7分 ①当0≤x <2.5时,y 甲减y 乙等于40千米即﹣80x +400﹣100x =40,解得 x =2………………………8分 ②当2.5≤x ≤5时,y 乙减y 甲等于40千米即80x ﹣(﹣80x +400)=40,解得x =…………………9分综上,x =2或x =.25. (本题13分) 解:∵抛物线y=﹣221x +bx +c 图象经过A (﹣1,0),B (4,0)两点, 根据题意,得⎪⎩⎪⎨⎧++-=+--=c b c b 480,210 解得⎪⎩⎪⎨⎧==.2,23c b ∴抛物线的解析式为:223212++-=x x y ;…………3分(2)①证明:把C (m ,m ﹣1)代入223212++-=x x y 得 2232112++-=-m m m ,解得:m =3或m =﹣2,∵C (m ,m ﹣1)位于第一象限,∴⎩⎨⎧-01,0 m m ∴m >1,∴m =﹣2不合舍去,只取m =3, ∴点C 坐标为(3,2),…………4分(法一)如图,过C 点作CH ⊥AB ,垂足为H ,则∠AHC =∠BHC =90°, 由A (﹣1,0)、B (3,0)、C (3,2)得 AH =4,CH =2,BH =1,AB =5 ∵,2==BHCH CH AH ∠AHC =∠BHC =90°∴△AHC ∽△CHB ,∴∠ACH =∠CBH , ∵∠CBH +∠BCH =90°∴∠ACH +∠BCH =90°∴∠ACB =90°,…………6分 ∵DE ∥BC ,DF ∥AC ,即四边形DECF 是平行四边形,…………7分 ∴四边形DECF 是矩形;…………8分 (法二)∵202=AC ,52=BC ,AB =5, ∴222AB BC AC =+=25, ∴∠ACB =90°.以下解法同上.(法三)由1-=∙BC AC k k ,证得∠ACB =90°. 以下解法同上.(3)(法一) ∵DE ∥BC ∴ΔAED ∽ΔACB ∴AB AD BC ED = (1)…………9分同理:ABBDAC DF =(2) 设n AD =, 则n BD -=5由(1)得55n ED =………10分∴55nED FC ==由(2)得5)5(52n DF -=………11分 ∴52=++FC DF ED ………12分∴DE 、DF 、CF 的长度之和不变. …………13分(法二)∵DE ∥BC ∴ΔAED ∽ΔACB∴AB AD BC ED = (1)…………9分 同理:ABBDAC DF =(2) 由(1)+(2)得:1=+ACDF BC ED …………10分又∵5,52==BC AC ,CF =ED ∴522=+DF ED …………11分 ∴52=++FC DF ED ………12分∴DE 、DF 、CF 的长度之和不变. …………13分26. (本题13分)解:(1))3,3(C …………3分(2)(法一)如图,作CF ⊥OB 于F ,则3=OF ,CF =3 在Rt ΔOCF 中,tan ∠COF =333==OF CF∴∠COF = 60………4分又∵AB OC ⊥∴∠ABO = 30………5分在Rt ΔBCF 中,tan ∠ABO =33=BF CF ∴33=BF ∴34=OB ∴)0,34(B …………6分 把)0,34(B 代入33+-=k kx y ,得33-=k …………7分 ∴433+-=x y …………8分(法二)由BF OF CF ∙=2,得33=BF(法三)设B )0,(a ,由222OB CB OC =+,得22222)3(33)3(a a =-+++ 解得34=a(法四)可求直线OC 解析式为x y 3=,由AB OC ⊥,得13-=k ,∴33-=k(3)∵O 、D 、B 、E 四点共圆∴ 180=∠+∠DBE DOE ……………………9分又∵AB ⊥BE ∴ 90=∠ABE ∴ 90=∠DOE∵ 30=∠=∠ABO DEO ……………………10分在Rt ΔDOE 中,tan ∠DEO =33=OE OD ∴OD OE 3= ∴22321OD OE OD S DOE =∙=∆……………………11分 ∴当OD ⊥AB 时,ΔDOE 的面积最小,即点D 与点C 重合, 此时32==OC OD ……………………12分∴ΔDOE 面积的最小值为36.……………………13分。
2020年福州市九年级质量检测数学试题
2020年福州市九年级质量检测数 学 试 题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在实数π4,227-,2.02002A .π4B .227-C .2.02002D 2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是赵爽弦图 笛卡尔心形线 科克曲线 斐波那契螺旋线A B C D3.下列运算中,结果可以为3-4的是 A .32÷36 B .36÷32 C .32×36 D .(3-)×(3-)×(3-)×(3-) 4.若一个多边形的内角和是540°,则这个多边形是 A .四边形 B .五边形 C .六边形 D .七边形5.若a a +1,其中a 为整数,则a 的值是A .1B .2C .3D .46.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,买鸡的钱数为y ,可列方程组为 A .911616x y x y -=⎧⎨+=⎩B .911616x yx y -=⎧⎨-=⎩ C .911616x yx y +=⎧⎨+=⎩D .911616x y x y +=⎧⎨-=⎩7.随机调查某市100名普通职工的个人年收入(单位:元)情况,得到这100人年收入的数据,记这100个数据的平均数为a ,中位数为b ,方差为c .若将其中一名职工的个人年收入数据换成世界首富的年收入数据,则a 一定增大,那么对b 与c 的判断正确的是A.b一定增大,c可能增大B.b可能不变,c一定增大C.b一定不变,c一定增大D.b可能增大,c可能不变8.若一个粮仓的三视图如图所示(单位:m),则它的体积(参考公式:V圆锥=13S底h,V圆柱=S底h)是A.21πm3B.36πm3C.45πm3D.63πm39.如图,在菱形ABCD中,点E是BC的中点,以C为圆心,CE长为半径作EF,交CD于点F,连接AE,AF.若AB=6,∠B=60°,则阴影部分的面积是A.632π+B.633π+C.933π-D.932π-10.小明在研究抛物线2()1y x h h=---+(h为常数)时,得到如下结论,其中正确的是A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x1-上C.当1-<x<2时,y随x的增大而增大,则h<2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2>2h,则y1>y2第Ⅱ卷二、填空题:本题共6小题,每小题4分,共24分.11.计算:12cos60-+︒=.12.能够成为直角三角形三条边长的三个正整数称为勾股数.若从2,3,4,5中任取3个数,则这3个数能构成一组勾股数的概率是.13.一副三角尺如图摆放,D是BC延长线上一点,E是AC上一点,∠B=∠EDF=90°,∠A=30°,∠F=45°,若EF∥BC,则∠CED等于度.14.若m(m-2)=3,则(m-1)2的值是.15.如图,在⊙O中,C是AB的中点,作点C关于弦AB的对称点D,连接AD并延长交⊙O于点E,过点B作BF⊥AE于点F,若∠BAE=2∠EBF,则∠EBF等于度.16.如图,在平面直角坐标系xOy中,□ABCD的顶点A,B分别在x,y轴的负半轴上,C,D在反比例函数kyx=(x>0)的图象上,AD与y轴交于点E,且AE=23AD,若△ABE的面积是3,则k的值是.ACFEDBAD BCFE46主视图76左视图俯视图CDB AEFOxyBCDEA O三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分8分)解不等式组26312x x x ⎧⎪⎨+>⎪⎩,①②. 并把不等式组的解集在数轴上表示出来.18.(本小题满分8分)如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,求证:∠A =∠D .19.(本小题满分8分)先化简,再求值:22111121x x x x x +÷-++++,其中31x =-. 20.(本小题满分8分)如图,已知∠MON ,A ,B 分别是射线OM ,ON 上的点. (1)尺规作图:在∠MON 的内部确定一点C ,使得BC ∥OA 且BC =12OA ;(保留作图痕迹,不写作法)(2)在(1)中,连接OC ,用无刻度直尺在线段OC 上确定一点D ,使得OD =2CD ,并证明OD =2CD .21.(本小题满分8分)甲,乙两人从一条长为200 m 的笔直栈道两端同时出发,各自匀速走完该栈道全程后就地休息.图1是甲出发后行走的路程y (单位:m )与行走时间x (单位:min )的函数图象,图2是甲,乙两人之间的距离s (单位:m )与甲行走时间x (单位:min )的函数图象. (1)求甲,乙两人的速度; (2)求a ,b 的值.图1 图212345 -1-2 -3 -4 -5 0AFDEBCy x 1202 O xsb aO 43NM O AB22.(本小题满分10分)某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过m (单位:t )的部分按平价收费,超出m 的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准m .通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:t ),将这1000个数据按照0≤x <4,4≤x <8,…,28≤x <32分成8组,制成了如图所示的频数分布直方图.(1)写出a 的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)(2)假定该市政府希望70%的家庭的月均用水量不超过标准m ,请判断若以(1)中所求得的平均数作为标准m 是否合理?并说明理由.23.(本小题满分10分)如图,在Rt △ABC 中,AC <AB ,∠BAC =90°,以AB 为直径作⊙O 交BC 于点D ,E 是AC 的中点,连接ED .点F 在BD 上,连接BF 并延长交AC 的延长线于点G . (1)求证:DE 是⊙O 的切线; (2)连接AF ,求AF BG的最大值.24.(本小题满分12分)已知△ABC ,AB =AC ,∠BAC =90°,D 是AB 边上一点,连接CD ,E 是CD 上一点,且∠AED =45°.(1)如图1,若AE =DE ,①求证:CD 平分∠ACB ; ②求AD DB的值;(2)如图2,连接BE ,若AE ⊥BE ,求tan ∠ABE 的值.图1 图2AEBD CGF OBACDEB AC DE40 4 8 12 16 20 24 28 32 280 220 180 a 6020月均用水量 (单位:t ) 频数(户数)25.(本小题满分14分)在平面直角坐标系xOy中,抛物线C:22=+-的对称轴是y轴,过点F(0,2)(4)y kx k k x作一直线与抛物线C相交于P,Q两点,过点Q作x轴的垂线与直线OP相交于点A.(1)求抛物线C的解析式;(2)判断点A是否在直线y=2-上,并说明理由;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.过抛物线C上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=2和直线y=2-于点M,N,求22-的值.MF NF。
〖汇总3套试卷〗福州市2020年中考学业质量监测数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在六张卡片上分别写有13,π,1.5,5,0六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .56 【答案】B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个,∴卡片上的数为无理数的概率是21=63. 故选B.【点睛】本题考查了无理数的定义及概率的计算.2.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 【答案】C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键. 3.已知直线m ∥n ,将一块含30°角的直角三角板ABC ,按如图所示方式放置,其中A 、B 两点分别落在直线m 、n 上,若∠1=25°,则∠2的度数是( )A.25°B.30°C.35°D.55°【答案】C【解析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【详解】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选C.【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.4.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称【答案】D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.5.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >4【答案】C 【解析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4,故选C .【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.6.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3- 【答案】D【解析】根据“平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A (-2,3)关于原点对称的点的坐标是(2,-3), 故选D .【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.7.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】试题分析:根据y 随x 的增大而减小得:k <0,又kb >0,则b <0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.8.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【答案】A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.9.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是()A.2402008x x=-B.2402008x x=+C.2402008x x=+D.2402008x x=-【答案】B【解析】根据题意设出未知数,根据甲所用的时间=乙所用的时间,用时间列出分式方程即可. 【详解】设乙每天完成x个零件,则甲每天完成(x+8)个.即得,2402008x x+=,故选B.【点睛】找出甲所用的时间=乙所用的时间这个关系式是本题解题的关键.10.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A .B .C .D .【答案】A【解析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案. 【详解】该几何体的俯视图是:. 故选A .【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.二、填空题(本题包括8个小题)11.若直角三角形两边分别为6和8,则它内切圆的半径为_____.【答案】27-1【解析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8226+8=10,∴内切圆的半径为:6+810=22-; 若8228627=-∴内切圆的半径为:6+278712. 故答案为27-1.【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键. 12.若2a ﹣b=5,a ﹣2b=4,则a ﹣b 的值为________.【答案】1.【解析】试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1.考点:整体思想.13.如图,a ∥b ,∠1=40°,∠2=80°,则∠3= 度.【答案】120【解析】如图,∵a ∥b ,∠2=80°,∴∠4=∠2=80°(两直线平行,同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案为120°.14.27的立方根为 .【答案】1【解析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算15.计算:cos 245°-tan30°sin60°=______.【答案】0【解析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos 45tan30sin60︒-︒︒=2233110222-=-= . 故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.16.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg【答案】20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg17.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.【答案】【解析】设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.18.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】1【解析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.故填1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.三、解答题(本题包括8个小题)19.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.20.新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.【答案】(1)30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数);(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.【解析】解:(1)当1≤x≤8时,每平方米的售价应为:y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)当9≤x≤23时,每平方米的售价应为:y=4000+(x﹣8)×50=50x+3600(元/平方米).∴30+37601850+3600923x x xyx x x≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),当W1>W2时,即485760﹣a>475200,解得:0<a<10560,当W 1<W 2时,即485760﹣a <475200,解得:a >10560,∴当0<a <10560时,方案二合算;当a >10560时,方案一合算.【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.21.小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.【答案】(1)详见解析;(2)详见解析;(3)3BC AB =【解析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=12AC ,即可得出OE=12BD ,即可得出结论; (3)先判断出△ABE 是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD ,∴∠B=∠BAD ,∵AD=CD ,∴∠C=∠CAD ,在△ABC 中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°,(2)如图②,连接AC 与BD ,交点为O ,连接OE四边形ABCD 是矩形 1122OA OB OC OD AC BD ∴===== AE CE ⊥90AEC ∴∠=︒12OE AC ∴=12OE BD ∴= 90BED ∴∠=︒BE DE ∴⊥(3)如图3,过点B 做BF AE ⊥于点F四边形ABCD 是矩形AD BC ∴=,90BAD ∠=︒ADE ∆是等边三角形AE AD BC ∴==,60DAE AED ∠=∠=︒ 由(2)知,90BED ∠=︒30BAE BEA ∴∠=∠=︒2AE AF ∴=在Rt ABF ∆中,30BAE ∠=︒2AB AF ∴=,3AF BF =3AE ∴=AE BC =3BC AB ∴=【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD ,解(2)的关键是判断出OE=12AC ,解(3)的关键是判断出△ABE 是底角为30°的等腰三角形,进而构造直角三角形. 22.先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数. 【答案】12-. 【解析】先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=12x -,由于x 不能取±1,2,所以把x=0代入计算即可. 【详解】22211·1441x x x x x x -++--+-, =()()2211•11(2)1x x x x x x -+++--- =12(1)(2)(1)(2)x x x x x -+---- =()()112x x x --- =12x -, 当x=0时,原式=11022=--. 23.水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W (L )与滴水时间t (h )的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图 ① 图②【答案】(1)0.3 L ;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W 与t 之间的函数图象经过点(0,0.3),故设函数关系式为W =kt +0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9(L ),9.9-0.3=9.6(L ),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.24.如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .【答案】(1)详见解析;(2)详见解析;(3)6.【解析】(1)分别画出A 、B 、C 三点的对应点即可解决问题;(2)由(1)得111A B C ∆各顶点的坐标,然后利用位似图形的性质,即可求得222A B C ∆各点的坐标,然后在图中作出位似三角形即可.(3)求得222A B C ∆所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,111A B C ∆即为所求作;(2)如图,222A B C ∆即为所求作;(3)222A B C ∆面积=4×4-12×2×4-12×2×2-12×2×4=6. 【点睛】 本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.25.如图,在直角坐标系xOy 中,直线y mx =与双曲线n y x=相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. 求m 、n 的值;求直线AC 的解析式.【答案】(1)m =-1,n =-1;(2)y =-12x +12 【解析】(1)由直线y mx =与双曲线n y x=相交于A(-1,a)、B 两点可得B 点横坐标为1,点C 的坐标为(1,0),再根据△AOC 的面积为1可求得点A 的坐标,从而求得结果;(2)设直线AC 的解析式为y =kx +b ,由图象过点A (-1,1)、C (1,0)根据待定系数法即可求的结果.【详解】(1)∵直线y mx =与双曲线n y x =相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0)∵△AOC 的面积为1,∴A(-1,1)将A(-1,1)代入y mx =,n y x=可得m =-1,n =-1; (2)设直线AC 的解析式为y =kx +b∵y =kx +b 经过点A (-1,1)、C (1,0)∴1,{0,k b k b -+=+=解得k =-12,b =12. ∴直线AC 的解析式为y =-12x +12. 【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.26.《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从2018年9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:在扇形统计图中,“玩游戏”对应的百分比为,圆心角度数是度;补全条形统计图;该校共有学生2100人,估计每周使用手机时间在2小时以上(不含2小时)的人数.【答案】(1)35%,126;(2)见解析;(3)1344人【解析】(1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360即可得到结果;(2)求出3小时以上的人数,补全条形统计图即可;(3)由每周使用手机时间在2小时以上(不含2小时)的百分比乘以2100即可得到结果.【详解】(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°,故答案为35%,126;(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全图形如下:;(3)根据题意得:2100×3232100=1344(人),则每周使用手机时间在2小时以上(不含2小时)的人数约有1344人.【点睛】本题考查了条形统计图,扇形统计图,以及用样本估计总体,准确识图,从中找到必要的信息进行解题是关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【答案】A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.2.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=210【答案】B【解析】设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.3.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.8【答案】C【解析】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.4.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2m,则树高为()米A.5B.3C.5+1 D.3【答案】C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则BC=2222125AC AB+=+=m;∴AC+BC=(1+5)m.答:树高为(1+5)米.故选C.5.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )A .40°B .50°C .60°D .70°【答案】B 【解析】解:∵由作法可知直线l 是线段AB 的垂直平分线,∴AC=BC ,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B .6.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2b a>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B .故选C .7.如图所示的图形,是下面哪个正方体的展开图( )A .B .C .D .【答案】D 【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A 选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B 选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C 选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能力, 解决本题的关键突破口是掌握正方体的展开图特征.8.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y4【答案】A【解析】由图象的点的坐标,根据待定系数法求得解析式即可判定.【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=34(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.9.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E∠=,90C∠=,45A∠=,30D∠=,则12∠+∠等于()A .150B .180 C .210 D .270【答案】C 【解析】根据三角形的内角和定理和三角形外角性质进行解答即可.【详解】如图:1D DOA ∠∠∠=+,2E EPB ∠∠∠=+,DOA COP ∠∠=,EPB CPO ∠∠=,∴12D E COP CPO ∠∠∠∠∠∠+=+++=D E 180C ∠∠∠++-=309018090210++-=,故选C .【点睛】本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.10.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是( ) A .5B .4C .3D .2 【答案】C【解析】先解不等式组得到-1<x≤3,再找出此范围内的正整数.【详解】解不等式1-2x <3,得:x >-1, 解不等式12x +≤2,得:x ≤3, 则不等式组的解集为-1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选C .【点睛】本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.二、填空题(本题包括8个小题)11.若正六边形的内切圆半径为2,则其外接圆半径为__________.【答案】433【解析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ;则2OG =,∵六边形ABCDEF 正六边形,∴OAB 是等边三角形,∴60OAB ∠=︒,∴43sin 603OG OA ===︒, ∴正六边形的内切圆半径为2,则其外接圆半径为433. 故答案为433. 【点睛】 本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.12.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.【答案】1【解析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形; ②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验. 13.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD为矩形,则它的面积为.【答案】2【解析】如图,过A点作AE⊥y轴,垂足为E,∵点A在双曲线1y=上,∴四边形AEOD的面积为1x∵点B在双曲线3y=上,且AB∥x轴,∴四边形BEOC的面积为3x∴四边形ABCD为矩形,则它的面积为3-1=214.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.【答案】(﹣b,a)【解析】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β="90°sinα=cosβ" cosα="sinβ" sinα==cosβ=同理cos α==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=cosβ,cosα=sinβ.15.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____【答案】18 5【解析】分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式1122AB BE AE BH⨯⨯=⨯⨯可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BF.∵△AEF是由△ABE沿AE折叠得到的,∴BF⊥AE,BE=EF.∵BC=6,点E为BC的中点,∴BE=EC=EF=3根据勾股定理有AE2=AB2+BE2代入数据求得AE=5根据三角形的面积公式1122AB BE AE BH ⨯⨯=⨯⨯得BH=12 5即可得BF=24 5由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC2-BF2=CF2代入数据求得CF=18 5故答案为18 5【点睛】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质16.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .【答案】20°【解析】根据切线的性质可知∠PAC=90°,由切线长定理得PA=PB,∠P=40°,求出∠PAB的度数,用∠PAC ﹣∠PAB得到∠BAC的度数.【详解】解:∵PA是⊙O的切线,AC是⊙O的直径,∴∠PAC=90°.∵PA,PB是⊙O的切线,∴PA=PB.∵∠P=40°,∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.故答案为20°.【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为.【答案】1或32.【解析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.。
2019-2020年福建省福州市九年级上册期末质量检测数学试题有答案-优质版
福州市第一学期九年级期末质量检测数学试卷(考试时间:120分钟,满分:150分)一、选择题:(共10小题,每题4分,满分40分;每小题只有一个正解的选项。
)1.下列图形中,是中心对称的是( )2.若方程k x x x =--)2)(7(3的根是7和2,则的值为( ) A.0 B.2 C.7 D.2或73.从气象台获悉“本市明天降水概率是80%”,对此信息,下面几种说法正确的是( ) A.本市明天将有80%的地区降水 B.本市明天将有80%的时间降水 C.明天肯定下雨 D.明天降水的可能性大4.二次函数22-=x y 的顶点坐标是( )A .(0,0)B .(0,-2)C .(0,2)D .(2,0) 5.下列图形中,∠B=2∠A 的是( )6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的边框,制成一幅挂图,如图所示,设边框的宽为 cm ,如果整个挂图的面积是25400cm ,那么下列方程符合题意的是( )A .5400)80)(50(=--x xB .5400)280)(250(=--x xC .5400)80)(50(=++x xD .5400)280)(250(=++x x 7.正六边形的两条对边之间的跳高是32,则它的边长是( ) A .1 B .2 C .3 D .328.若点M (m ,n )(mn ≠0)在二次函数)0(2≠=a ax y 图象上,则下列坐标表示的点也在该抛物线图象上的是( )A .(n m ,-)B .(m n ,)C .(22,n m )D .(n m -,)9.在⊙O 中,将圆心绕着圆周上一点A 旋转一定角度θ,使旋转后的圆心落在⊙O 上,则θ的值可以是( ) A .30° B .45° C .60° D .90°10.圆心角为60°的扇形面积为S ,半径为r ,则下列图象大致描述S 与r 的函数关系的是( )二、填空题(共6小题,每题4分,满分24分) 11.点(0,1)关于原点O 对称的点是____________12.从实数―1,―2,1中随机选取两个数,积为负数的概率是__________ 13.已知∠APB=90°,以AB 为直径作⊙O ,则点P 与⊙O 的位置关系是________14.如图,利用标杆BE 测量建筑物的高度,如果BE=1.2m ,AB=1.6m ,BC=12.4m,那么建筑物的高CD=_______m 15.已知□ABCD 的面积为4,对角线AC 在y 轴上,点D 在第一象限内,且AD∥轴,当双曲线xky =经过B ,D 两点时,则=k ________ 16.二次函数,)2(22m m x y +-=当1+<<m x m 时,y 随 的增大而减小,则m 的取值范围是____________ 三、解答题(共9小题,满分86分)17.(8分)解方程0162=++x x18.(8分)已知关于的一元二次方程0141)1(2=-=-m x 有两个不相等的实数根,求m 的取值范围.19.(8分)如图,△ABC 中,∠C=90°,CA=CB=1,将△ABC 绕点B 顺时针旋转45°,得到△DBE (A ,D 两点为对应点),画出旋转后的图形,并求线段AE 的长.20.(8分)一个不透明的盒子中有2枚黑棋,枚白棋,这些棋子除了颜色外无其他差别,现从中随机摸出一枚棋子(不放回),再随机摸出一枚棋子.(1)若“摸出两枚棋子的颜色都是白色”是不可能事件,请写出符合条件的一个 值(2)当=2 时,“摸出两枚棋子的颜色相同”与“摸出两枚棋子的颜色不同”的概率相等吗?说明理由.21.(8分)如图,△ABC 中,点D 在BC 边上,有下列三个关系式:①∠BAC=90°,②,DCADAD BD ③AD ⊥BC 选择其中两个式子作为已知,余下一个作为结论,写出已知,求证,并证明. 已知: 求证:证明:22.(10分)如图,在左边托盘A (固定)中放置一个生物,在右边托盘B (可左右移动)中放置一定重量的砝码,可使得仪器左右平衡,改变托盘B 与支撑点M 的跳高,记录相应的托盘B 中的砝码质量,得到下表:托盘B 与点M 的距离(cm) 10 15 20 25 30 托盘B 中的砝码质量y (g )3020151210(1)把上表中(,y )的各级对应值作为点的坐标,在如图所示的平面直角坐标系中描出其余的点,并用一条光滑的曲线连接起,观察所画的图象,猜想y 与的函数关系,求出该函数关系式. (2)当托盘B 向左移动(不能超过点M )时,应往托盘B 中添加砝码还是减少砝码?为什么?23.(10分)如图,在Rt △ABC 中,∠C=90°,O 为AB 边上一点,⊙O 交AB 于点E ,F 两点,BC 切⊙O 于点D ,且.121==EF CD (1)求证:⊙O 与AC 相切; (2)求图中阴影部分的面积.24.(13分)在平面直角坐标系Oy 中,对于点P (,y ),若点Q 的坐标为),(y x x -,则称点Q 为点P 的“关联点”.(1)请直接写出点(2,2)的“关联点”的坐标;(2)如果点P 在函数1-=x y 的图象上,其“关联点”Q 与点P 重合,求点P 的坐标; (3)如果点M (m ,n )的“关联点”N 在函数2x y =的图象上,当0≤m ≤2 时,求线段MN 的最大值.25.(13分)如图,C 为线段AB 上一点,分别以AC ,BC 为边在AB 的同侧作等边△HAC 与等边△DCB ,连接DH.(1)如图1,当∠DHC=90°时,求ACBC的值; (2)在(1)的条件下,作点C 关于直线DH 的对称点E ,连接AE ,BE , 求证:CE 平分∠AEB.(3)现将图1中的△DCB 绕点C 顺时针旋转一定角度α(0°<α<90°),如图2,点C 关于直线DH 的对称点为E ,则(2)中的结论是否还成立,并证明.。
2020福建省福州市初中毕业班质检数学卷
2,3,4,5 中任取 3 个数,则这 3 个数能构成一组勾股数的概
E
F
率是
.
13.一副三角尺如图摆放,D 是 BC 延长线上一点,E 是 AC 上一点,∠ B
B ∠EDF 90°,∠A 30°,∠F 45°,若 EF∥BC,则∠CED 等
于
度.
CD
E F D
14.若 m(m 2) 3,则(m 1)2 的值是
第Ⅰ卷
一、选择题:本题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一项是符 合题目要求的.
1.在实数 π , 22 ,2.02002, 3 8 中,无理数的是 47
A. π 4
B. 22 7
C.2.02002
D. 3 8
2.下列用数学家名字命名的图形中,既是轴对称图形又是中心对称图形的是
x
1
,其中
x
3 1.
BE
FC
20.(本小题满分 8 分)
如图,已知∠MON,A,B 分别是射线 OM,ON 上的点.
M
(1)尺规作图:在∠MON 的内部确定一点 C,使得 BC∥OA
且 BC 1 OA;(保留作图痕迹,不写作法)
A
2
(2)在(1)中,连接 OC,用无刻度直尺在线段 OC 上确定一
赵爽弦图
笛卡尔心形线
科克曲线
斐波那契螺旋线
A
B
C
D
3.下列运算中,结果可以为 3-4 的是
A.32÷36
B.36÷32
Hale Waihona Puke C.32×36D.( 3 )×( 3 )×( 3 )×( 3 )
4.若一个多边形的内角和是 540°,则这个多边形是
2019-2020年福建省福州市九年级上册期末质量检测数学试题有答案
福州市第一学期九年级期末质量检测数学试卷(考试时间:120分钟,?^分:150分)10小题,每题4分,满分40分;每小题只有一个正解的选项。
)2.若方程3x (x —7)(x —2) =k 的根是7和2,则的值为( )A.0B.2C.7D.2 或 7D.明天降水的可能性大24.二次函数y = x - 2的顶点坐标是y = ax 2(a # 0)图象上,则下列坐标表示的点也在该抛物线图象上的是()22、A. ( —m,n)B. ( n,m) C, ( m ,n ) D. ( m,-n)9 .在O O 中,将圆心绕着圆周上一点 A 旋转一定角度0 ,使旋转后的圆心落在。
。
上,则。
的值可以是1.下列图形中,是中心对称的是()、选择题:(共 3.从气象台获悉“本市明天降水概率是 80%”,对此信息,下面几种说法正确的是( A.本市明天将有 80%的地区降水B.本市明天将有80%的时间降水C.明天肯定下雨D. ( V2 , 0)A. (50 — x)(80 — x) =5400B.C. (50 +x)(80 +x) =5400D.7.正六边形的两条对边之间的跳高是 (50 -2x)(80 -2x) =5400 (50 2x)(80 2x) = 54002运,则它的边长是()8.若点 M (m, n ) (mnw0)在二次函数 A. ( 0, 0) B. ( 0, —2) C. ( 0, 2)6.在一幅长为80cm,宽为50cm 的矩形风景画的四周镶一条相同宽度的边框,制成一幅挂图,如图所示, 设边框的宽为 cm,如果整个挂图的面积是 5400cm 2,那么下列方程符合题意的是()()A. 30°B. 45°C. 60°D. 90°10.圆心角为60。
的扇形面积为S,半径为r,则下列图象大致描述S与r的函数关系的是()二、填空题(共6小题,每题4分,满分24分)11.点(0, 1)关于原点O对称的点是12.从实数一1, —2, 1中随机选取两个数,积为负数的概率是13.已知/ APB=90 ° ,以AB为直径作。
2020年福州市九年级质量检测数学试题答案
∴AF⊥GB.
由垂线段最短可得AF≤AM,
当且仅当点F,M重合时等号成立,
此时AF垂直平分GB,即AG=AB.
∵AC<AB,∴ 上存在点F使得F为GB中点,
∴AF≤ GB,∴ ≤ ,即 的最大值为 .
24.(本小题满分12分)
(1)①证明:∵∠AED 45°,AE DE,∴∠EDA 67.5°.
不妨设P( , ),Q( , ),
∴直线OP的解析式为 .
设A(m,n).
∵QA⊥x轴交直线OP于点A,
∴ ,
∴ .
又方程 的解为 ,
∴ ,
∴ ,
即点A的纵坐标为 ,
∴点A在直线 上.
(3)∵切线l不过抛物线C的顶点,
∴设切线l的解析式为 (a 0).
将 代入 ,得 ,
依题意得 ,
即 ,
∴ ,
∴切线l的解析式为 .
∴∠BED 45°,∠EAC ∠ECA 45°,
∴∠AEC ∠BEC 135°.
∵∠BAC 90°,
∴∠BAE ∠EAC 90°,
∴∠ABE ∠EAC.
∵∠ABC 45°,
∴∠ABE ∠EBC 45°,
∴∠ECA ∠EBC,
∴△BEC∽△CEA,
∴ .
在Rt△ABC中, ,
∴ ,
∴ , .
在Rt△ABE中,tan∠ABE .
∴m应在16≤x<20内.而14.72<16,
∴用14.72作为标准m不合理.
23.(本小题满分10分)
(1)证明:连接OD,AD.
∵AB为⊙O直径,点D在⊙O上,
∴∠ADB 90°,∴∠ADC 90°.
∵E是AC的中点,∴DE=AE,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A F D EBC 数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题和填空题不给中间分.一、选择题:共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂.1.A 2.C 3.A 4.B 5.B6.A 7.B 8.C 9.C 10.D二、填空题:共6小题,每小题4分,满分24分,请在答题卡的相应位置作答.11.112.14 13.15 14.4 15.18 16.94三、解答题:共9小题,满分86分,请在答题卡的相应位置作答.17.(本小题满分8分)解:解不等式①,得x ≤3. ······························································································ 3分解不等式②,得x >1 . ···························································································· 5分∴原不等式组的解集是1 <x ≤3, ··············································································· 6分 将该不等式组解集在数轴上表示如下:······························································· 8分18.(本小题满分8分)证明:∵点E ,F 在BC 上,BE CF ,∴BE EF CF EF ,即BF CE . ········································································································· 3分在△ABF 和△DCE 中,AB DC B C BF CE ,,, ∴△ABF ≌△DCE , ······························································································· 6分∴∠A ∠D . ······································································································· 8分12345-1-2-3 -4-5019.(本小题满分8分) 解:原式221(1)(1)(1)x x x x ······················································································· 3分 2(1)(1)111x x x x x ·························································································· 4分 221111x x x x ·································································································· 5分 21x . ··········································································································· 6分当1x时,原式 ················································································· 7分. ····················································································· 8分20.(本小题满分8分)解:画法一:画法二:······························································· 4分如图,点C ,D 分别为(1),(2)所求作的点. ························································ 5分(2)证明如下:由(1)得BC ∥OA ,BC 12OA , ∴∠DBC ∠DAO ,∠DCB ∠DOA ,∴△DBC ∽△DAO , ············································································ 7分∴12DC BC DO AO , ∴OD 2CD . ····················································································· 8分21.(本小题满分8分)解:(1)由图1可得甲的速度是1202=60 m/min . ································································ 2分由图2可知,当43x 时,甲,乙两人相遇, 故4(60)2003v 乙, 解得90v 乙m/min . ···························································································· 4分答:甲的速度是60 m/min ,乙的速度是90 m/min .(2)由图2可知:乙走完全程用了b min ,甲走完全程用了a min ,∴20020909b , ······························································································· 6分 20010603a . ································································································ 8分 ∴a 的值为103,b 的值为209.22.(本小题满分10分)解:(1)依题意得100a . ······························································································ 2分这1000户家庭月均用水量的平均数为:2406100101801428018220221002660302014.721000x , ········· 6分 ∴估计这1000户家庭月均用水量的平均数是14.72.(2)解法一:不合理.理由如下: ··············································································· 7分由(1)可得14.72在12≤x <16内,∴这1000户家庭中月均用水量小于16 t 的户数有40100180280600 (户), ···························································· 8分∴这1000户家庭中月均用水量小于16 t 的家庭所占的百分比是600100%60%1000, ∴月均用水量不超过14.72 t 的户数小于60%. ············································· 9分∵该市政府希望70%的家庭的月均用水量不超过标准m ,而60%<70%,∴用14.72作为标准m 不合理. ······························································· 10分解法二:不合理.理由如下: ··············································································· 7分∵该市政府希望70%的家庭的月均用水量不超过标准m ,∴数据中不超过m 的频数应为700, ·························································· 8分即有300户家庭的月均用水量超过m .又2060100160300 ,2060100220380300 ,∴m 应在16≤x <20内. ·········································································· 9分而14.72<16,∴用14.72作为标准m 不合理. ······························································· 10分23.(本小题满分10分)(1)证明:连接OD ,AD .∵AB 为⊙O 直径,点D 在⊙O 上,∴∠ADB 90°,分∴∠ADC 90°. ∵E 是AC 的中点,∴DE =AE ,∴∠EAD ∠EDA . ·分 ∵OA OD ,∴∠OAD ∠ODA . ······················································································· 3分 ∵∠OAD ∠EAD ∠BAC 90°,∴∠ODA ∠EDA 90°,即∠ODE 90°, ···························································································· 4分 ∴OD ⊥DE .∵D 是半径OD 的外端点,∴DE 是⊙O 的切线. ····················································································· 5分(2)解法一:过点F 作FH ⊥AB 于点H ,连接OF , ∴∠AHF 90°.∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°, ∴∠BAF ∠ABF 90°.∵∠BAC 90°,∴∠G ∠ABF 90°, ∴∠G ∠BAF . ························································································· 6分 又∠AHF ∠GAB 90°,∴△AFH ∽△GBA , ···················································································· 7分 ∴AF FH GB BA. ··························································································· 8分 由垂线段最短可得FH ≤OF , ········································································ 9分 当且仅当点H ,O 重合时等号成立.∵AC <AB , ∴ BD上存在点F 使得FO ⊥AB ,此时点H ,O 重合, ∴AF FH GB BA ≤12OF BA , ············································································ 10分即AF GB 的最大值为12. 解法二:取GB 中点M ,连接AM .∵∠BAG 90°, ∴AM 12GB . ·分 ∵AB 为⊙O 直径,点F 在⊙O 上, ∴∠AFB 90°,∴∠AFG 90°,∴AF ⊥GB .分 由垂线段最短可得AF ≤AM , ········································································ 8分 当且仅当点F ,M 重合时等号成立,此时AF 垂直平分GB ,即AG =AB .∵AC <AB , ∴ BD上存在点F 使得F 为GB 中点, ∴AF ≤12GB , ··························································································· 9分 ∴AF GB ≤12, ···························································································· 10分 即AF GB 的最大值为12.24.(本小题满分12分)(1)①证明:∵∠AED 45°,AE DE ,∴∠EDA 18045267.5°. ······································································· 1分 ∵AB AC ,∠BAC 90°,∴∠ACB ∠ABC 45°,∠DCA 22.5°, ························································· 2分 ∴∠DCB 22.5°,即∠DCA ∠DCB ,∴CD 平分∠ACB . ····················································································· 3分②解:过点D 作DF ⊥BC 于点F ,∴∠DFB 90°. ∵∠BAC 90°,∴DA ⊥CA . 又CD 平分∠ACB , ∴AD FD , ································································································· 4分 ∴AD FD DB DB. 在Rt △BFD 中,∠ABC 45°,∴sin ∠DBF FD DB ················································································ 5分 ∴AD DB . ······························································································· 6分 (2)证法一:过点A 作AG ⊥AE 交CD 的延长线于点G ,连接BG ,∴∠GAE 90°.又∠BAC 90°,∠AED 45°,∴∠BAG ∠CAE ,∠AGE 45°,∠AEC 135°, ·············································· 7分 ∴∠AGE ∠AEG ,∴AG AE . ······························································································· 8分 ∵AB AC ,∴△AGB ≌△AEC , ···················································································· 9分 ∴∠AGB ∠AEC 135°,CE BG ,∴∠BGE 90°. ························································································ 10分 ∵AE ⊥BE ,F B A C D E。