导数及其应用测试题
高中数学选修第三章《导数及其应用》知识点归纳及单元测试
不合要求;综上, 为所求。
20.<1)解法1:∵ ,其定义域为 ,
∴ .
∵ 是函数 的极值点,∴ ,即 .
∵ ,∴ .
经检验当 时, 是函数 的极值点,
∴ .
解法2:∵ ,其定义域为 ,
∴ .
令 ,即 ,整理,得 .
∵ ,
∴ 的两个实根 <舍去), ,
当 变化时, , 的变化情况如下表:
<A) <B) <C) <D)
5.若曲线 的一条切线 与直线 垂直,则 的方程为< )
A. B. C. D.
6.曲线 在点 处的切线与坐标轴所围三角形的面积为< )
A. B. C. D.
7.设 是函数 的导函数,将 和 的图象画在同一个直角坐标系中,不可能正确的是< )
8.已知二次函数 的导数为 , ,对于任意实数 都有 ,则 的最小值为< )A. B. C. D. b5E2RGbCAP
A
如图所示,切线BQ的倾斜角小于
直线AB的倾斜角小于 Q
切线AT的倾斜角
O 1 2 3 4 x
所以选B
11.
12.32
13.
14. (1>
三、解答题
15. 解:设长方体的宽为x<m),则长为2x(m>,高为
.
故长方体的体积为
从而
令V′<x)=0,解得x=0<舍去)或x=1,因此x=1.
当0<x<1时,V′<x)>0;当1<x< 时,V′<x)<0,
17.设函数 分别在 处取得极小值、极大值. 平面上点 的坐标分别为 、 ,该平面上动点 满足 ,点 是点 关于直线 的对称点,.求(Ⅰ>求点 的坐标; (Ⅱ>求动点 的轨迹方程. RTCrpUDGiT
选修二第二单元《一元函数的导数及其应用》测试题(含答案解析)
一、选择题1.已知函数()()221sin 1x xf x x ++=+,其中()f x '为函数()f x 的导数,则()()()()2020202020192019f f f f ''+-+--=( )A .0B .2C .2019D .20202.已知111ln 20x x y --+=,22262ln 20x y +--=,记()()221212M x x y y =-+-,则( )A .M 的最小值为25B .M 的最小值为45C .M 的最小值为85D .M 的最小值为1653.已知()21ln (0)2f x a x x a =+>,若对任意两个不等的正实数1x ,2x ,都有()()12122f x f x x x ->-恒成立,则a 的取值范围是( )A .(]0,1B .()1,+∞C .()0,1D .[)1,+∞4.已知()1()2ln 0f x a x x a x ⎛⎫-⎪⎝⎭=->在[1)+∞,上为单调递增函数,则a 的取值范围为( )A .[0)+∞,B .(0)+∞,C .(1)+∞,D .[1)+∞, 5.已知函数f (x )(x ∈R )满足(1)1f =,且()f x 的导数f ′(x )>12,则不等式1()22x f x <+的解集( ) A .(-∞,1) B .(1,+∞)C .(-∞,-1]∪[1,+∞)D .(-1,1)6.已知函数()2ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .7.定义域为R 的函数()f x 的导函数为()f x ',满足()()f x f x '<,若()01f =,则不等式()xf x e >的解集为( )A .()01,B .()1+∞, C .()1-∞, D .()0-∞,8.函数()262xf x x x e =-+的极值点所在的区间为( ) A .()1,0- B .()0,1C .()1,2D .()2,1--9.已知函数()32114332f x x mx x =-+-在区间[]1,2上是增函数,则实数m 的取值范围为( ) A .45m ≤≤B .24m ≤≤C .2m ≤D .4m ≤10.函数()ln 22f x x x x a =-++,若()f x 与()()f f x 有相同的值域,则a 的取值范围为( ) A .(],0-∞B .1,02⎛⎤- ⎥⎝⎦C .30,2⎡⎫⎪⎢⎣⎭D .[)0,+∞11.已知函数2()sin cos f x x x x x =++,则不等式1(ln )(ln )2(1)0f x f f x+-<的解集为( ) A .(,)e +∞B .(0,)eC .1(,)e eD .1(0,)(1,)e e12.已知定义在(0,)+∞上的函数()f x 的导函数()f x '满足()1xf x '>,则( ) A .()()21ln 2f f -< B .()()21ln 2f f -> C .()()211f f -<D .()()211f f ->二、填空题13.已知曲线()32351f x x x x =+-+,过点()1,0的直线l 与曲线()y f x =相切于点P ,则点P 的横坐标为______________.14.已知()f x 是定义在R 上的奇函数,当0x >时,()()xf x f x '<,若()10f =,则不等式()0f x x>的解集为________. 15.已知函数1()f x x ax=+在(),1-∞-上单调递增,则实数a 的取值范围是_____________.16.函数322()f x x ax bx a =--+在1x =处有极值10,则+a b 的值为________. 17.已知曲线x xy e=在1x x =处的切线为1l ,曲线ln y x =在2x x =处的切线为2l ,且12l l ⊥,则21x x -的取值范围是_________.18.已知32()26f x x x m =-++(m 为常数)在[]22-,上有最小值3,那么此函数在[]22-,上的最大值为______.19.已知函数()sin f x x x =+,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值为______________. 20.已知函数f (x )=ln x -f ′ (12)x 2+3x -4,则f ′(1)=________. 三、解答题21.已知函数321()12f x x x ax =-++. (1)当2a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在1x =处有极小值,求函数()f x 在区间31,2⎡⎤-⎢⎥⎣⎦上的最大值.22.已知函数2()ln f x x x =-,()g x kx =. (1)求函数()f x 的最小值;(2)若()g x 是()f x 的切线,求实数k 的值;(3)若()f x 与()g x 的图象有两个不同交点A (1x ,1y ),B (2x ,2y ),求证:121x x >. 23.已知函数311()ln 62f x x x x x =+-.(1)求曲线()y f x =在点(1,(1)f )处的切线方程; (2)若()f x a <对1(,)x e e∈恒成立,求a 的最小值. 24.已知函数()3ln 42x a f x x x =+--,其中a R ∈,且曲线()y f x =在点()()1,1f 处的切线垂直于直线12y x =. (1)求a 的值;(2)求函数()f x 的单调区间.25.已知集合M 是同时满足下列两个性质的函数()f x 的全体①函数()f x 在其定义域上是单调函数;②()f x 的定义域内存在区间[]a b ,,使得()f x 在[]a b ,上的值域为22a b ⎡⎤⎢⎥⎣⎦,.(1)判断()3g x x =是否属于M ,若是,求出所有满足②的区间[]a b ,,若不是,说明理由;(2)若()h x t M =∈,求实数t 的取值范围.26.已知a ∈R ,函数()2ln f x x a x =-. (1)若有极小值0,求a 的值;(2)若存在1x 、()20,1x ∈,使得不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将函数解析式变形为()22sin 11x xf x x +=++,求得()f x ',进而可求得所求代数式的值. 【详解】()()222221sin 12sin 2sin 1111x x x x x x x f x x x x ++++++===++++,所以,()()()()()2222020sin 202022020sin 202020202020222020120201f f ⨯-+-⨯++-=++=+-+, ()()()()()2222cos 122sin 1x x x x x f x x++-+'=+,函数()f x '的定义域为R ,()()()()()2222cos 122sin 1x x x x x f x x ⎡⎤⎡⎤⎡⎤+-⋅-++-+-⎣⎦⎣⎦⎣⎦-=⎡⎤-+⎣⎦'()()()()()2222cos 122sin 1x x x x x f x x ++-+'==+, 所以,函数()f x '为偶函数,因此,()()()()20202020201920192f f f f ''+-+--=. 故选:B. 【点睛】结论点睛:本题考查利用函数奇偶性求值,关于奇函数、偶函数的导函数的奇偶性,有如下结论:(1)可导的奇函数的导函数为偶函数; (2)可导的偶函数的导函数为奇函数. 在应用该结论时,首先应对此结论进行证明.2.D解析:D 【分析】设1(A x ,1)y ,2(B x ,2)y ,点A 在函数2y lnx x =-+的图象上,点B 在直线22260x y ln +--=上,则221212()()M x x y y =-+-的最小值转化为函数2y lnx x =-+的图象上的点与直线22260x y ln +--=上点距离最小值的平方,利用导数求出切点坐标,再由点到直线的距离公式求解.求出d 的最小值为两直线平行时的距离,即可得到M 的最小值,并可求出此时对应的2x 从而得解. 【详解】解:设1(A x ,1)y ,2(B x ,2)y ,点A 在函数2y lnx x =-+的图象上,点B 在直线24220x y ln +--=上,221212()()M x x y y =-+-的最小值转化为函数2y lnx x =-+的图象上的点与直线22260x y ln +--=上点距离最小值的平方.由2y lnx x =-+,得11y x'=-,与直线22260x y ln +--=平行的直线的斜率为12k =-.令1112x -=-,得2x =,则切点坐标为(2,2)ln , 切点(2,2)ln 到直线22260x y ln +--=的距离d == 即221212()()M x x y y =-+-的最小值为165. 又过(2,2)ln 且与22260x y ln +--=垂直的直线为22(2)y ln x -=-,即2420x y ln --+=,联立222602420x y ln x y ln +--=⎧⎨--+=⎩,解得145x =,即当M 最小时,2145x =. 故选:D . 【点睛】本题考查函数的最值及其几何意义,考查数学转化思想方法,训练了利用导数研究过曲线上某点处的切线方程,属于中档题.3.D解析:D 【分析】 根据条件()()12122f x f x x x ->-可变形为112212()2[()]20f x x f x x x x --->-,构造函数()21()2ln ()202g x f x x a x a x x =-=+>-,利用其为增函数即可求解. 【详解】根据1212()()2f x f x x x ->-可知112212()2[()]20f x x f x x x x --->-, 令()21()2ln ()202g x f x x a x a x x =-=+>- 由112212()2[()]20f x x f x x x x --->-知()g x 为增函数,所以()()'200,0ag x x x a x=+-≥>>恒成立, 分离参数得()2a x x ≥-,而当0x >时,()2x x -在1x =时有最大值为1, 故1a ≥. 故选:D 【点睛】关键点点睛:本题由条件()()12122f x f x x x ->-恒成立,转化为112212()2[()]20f x x f x x x x --->-恒成立是解题的关键,再根据此式知函数()21()2ln ()202g x f x x a x a x x =-=+>-为增函数,考查了推理分析能力,属于中档题. 4.D解析:D 【分析】首先求导,由题意转化为在[1,)x ∈+∞,220ax x a -+≥恒成立,即221xa x ≥+在[1,)+∞上恒成立.再利用基本不等式求出221xx +的最大值即可. 【详解】222()ax x af x x-+'=,(0)a > 因为()f x 在[1,)+∞上为单调递增,等价于220ax x a -+≥恒成立. 即221xa x ≥+在[1,)+∞上恒成立. 因为222111x x x x x x=≤=++,当1x =时,取“=”, 所以1a ≥,即a 的范围为[1,)+∞.故选:D 【点睛】本题主要考查利用导数的单调区间求参数的问题,同时考查了学生的转化思想,属于中档题.5.A解析:A 【分析】 根据f ′(x )>12,构造函数 ()()122x g x f x =-- ,又()()1111022=--=g f ,然后将不等式1()22x f x <+,转化为1()022--<x f x ,利用单调性的定义求解. 【详解】 因为f ′(x )>12,所以()102f x '-> 所以()()()()()110222x g x f x g x f x g x =--⇒=->⇒'' 在R 上递增, 又()()1111022=--=g f , 所以不等式1()22x f x <+,即为1()022--<x f x , 即为:()()1g x g <, 所以1x <, 故选:A 【点睛】本题主要考查函数的单调性与导数以及单调性的应用,还考查了构造转化求解问题的能力,属于中档题.6.A解析:A 【分析】利用函数的定义域和函数的值域排除BD ,通过函数的单调性排除C ,推出结果即可. 【详解】令()ln 1g x x x =--,则11()1x g x x x-'=-=, 由()0g x '>得1x >,即函数()g x 在(1,)+∞上单调递增, 由()0g x '<得01x <<,即函数()g x 在(0,1)上单调递减, 所以当1x =时,()()min 10g x g ==, 于是对任意(0,1)(1,)x ∈+∞,有()0g x >,则()0f x >,故排除BD ,因为函数()g x 在()0,1单调递减,则函数()f x 在()0,1递增,故排除C. 故选:A. 【点睛】本题考查利用导数对函数图象辨别,属于中档题.7.D解析:D 【分析】 构造函数()()x f x g x e=,用导数法得到()g x 在R 上递减,然后由()01f =,得到()01g =,再利用函数的单调性定义求解.【详解】令()()x f x g x e=,因为()()f x f x '<, 则()()()0xf x f xg x e'-'=<, 所以()g x 在R 上递减, 又()01f =,则()01g =, 不等式()xf x e >等价于()()10xf xg e>= , 所以0x <. 故选:D 【点睛】本题主要考查函导数与函数的单调性以及函数单调性解不等式,还考查了构造函数求解问题的能力,属于中档题.8.B解析:B 【分析】求出函数的导数,根据函数的零点判定定理求出函数的极值点的区间即可. 【详解】()262x f x x e '=-+,且()f x '为单调函数,∴()12620f e '=-+>,()0620f '=-+<, 由()()010f f ''<,故()f x 的极值点所在的区间为()0,1, 故选:B. 【点睛】本题主要考查了导数的应用,函数的极值点的意义,考查转化思想,属于中档题.9.D解析:D 【分析】求出函数的导数,利用函数的单调性,推出不等式,利用基本不等式求解函数的最值,即可得结果 【详解】 解:由()32114332f x x mx x =-+-,得'2()4f x x mx =-+, 因为函数()32114332f x x mx x =-+-在区间[]1,2上是增函数, 所以240x mx -+≥在[]1,2上恒成立,得4m x x≤+恒成立因为44x x +≥=,当且仅当4x x =,即2x =时取等号,所以4m ≤, 故选:D 【点睛】此题考查导数的应用,考查函数最值的求值,考查基本不等式应用,考查转化思想,属于中档题10.B解析:B 【分析】判断()f x 的单调性,求出()f x 的值域,根据()y f x =与(())y f f x =有相同的值域得出()f x 的最小值与极小值点的关系,得出a 的范围.【详解】()f x lnx '=,故而当1x >时,()0f x '>,当01x <<时,()0f x '<,()f x ∴在(0,1)上单调递减,在(1,)+∞上单调递增,()f x ∴的最小值为()121f a =+,且x →+∞时,()f x →+∞即()f x 的值域为[)21,a ++∞,函数()y f x =与(())y f f x =有相同的值域,且()f x 的定义域为(0,)+∞,0211a ∴<+≤,解得:102-<≤a .故选:B 【点睛】本题考查了导数研究函数的单调性,考查函数最值的计算,属于中档题.11.C解析:C 【分析】先判断出()f x 为R 上的偶函数,再利用当0x >时,()'0f x >得到函数的单调性,从而可解原不等式. 【详解】因为()()()()22()sin cos sin cos f x x x x x x x x x f x -=--+-+-=++=,所以()f x 为R上的偶函数,又1(ln )(ln )2(1)0f x f f x+-<等价于(ln )(ln )2(1)0f x f x f +--<即:(ln )(1)f x f <,()'()sin cos sin 22cos f x x x x x x x x =+-+=+,当0x >时,()'0f x >,故()f x 在()0,∞+为增函数,故(ln )(1)f x f <等价于ln 1x <即1ln 1x -<<即1x e e <<,故不等式的解集为1e e ⎛⎫⎪⎝⎭,,故选C.【点睛】对于偶函数()f x ,其单调性在两侧是相反的,并且()()()f x fx f x ==-,对于奇函数()g x ,其单调性在两侧是相同的.另外解函数不等式要利用函数的单调性去掉对应法则f .12.B解析:B 【解析】分析:根据题意,由()1xf x '>可得()()'1f x lnx x='>,构造函数()()g x f x lnx =-,可得()()()110xf x g x f x x x-=-=''>',故()g x 单调递增,根据单调性可得结论.详解:令()(),0g x f x lnx x =->,∴()()()11xf x g x f x x x=''-'-=,∵()1xf x '>, ∴()0g x '>,∴函数()g x 在()0,+∞上单调递增, ∴()()21g g >,即()()2211f ln f ln ->-, ∴()()21ln2f f ->. 故选B .点睛:本题考查对函数单调性的应用,考查学生的变形应用能力,解题的关键是根据题意构造函数()()g x f x lnx =-,通过判断函数的单调性得到函数值间的关系,从而达到求解的目的.二、填空题13.0或或【分析】设切点的坐标由求出切线方程把代入切线方程可求得切点坐标【详解】设的坐标为过点的切线方程为代入点的坐标有整理为解得或或故答案为:0或或【点睛】本题考查导数的几何意义求函数图象的切线方程要解析:0或1-或53【分析】设切点P 的坐标,由P 求出切线方程,把(1,0)代入切线方程可求得切点坐标. 【详解】设P 的坐标为()32,351m m m m +-+,2()9101f x x x +'=-,过点P 的切线方程为()()3223519101()m m m m x y m m +-+=+---,代入点()1,0的坐标有()()()32235191011mm m mm m --+-+=+--,整理为323250m m m --=,解得0m =或1m =-或53m =, 故答案为:0或1-或53. 【点睛】本题考查导数的几何意义.求函数图象的切线方程要分两种情况:(1)函数()y f x =图象在点00(,)P x y 处的切线方程,求出导函数,得出切线方程000()()y y f x x x '-=-;(2)函数()y f x =图象过点00(,)P x y 处的切线方程:设切线坐标11(,)x y ,求出切线方程为111()()y y f x x x '-=-,代入00(,)x y 求得11,x y ,从而得切线方程.14.【分析】令对其求导由时可知从而在上单调递减由的奇偶性可得是定义域上的偶函数从而可得出在上的单调性再结合可求出的解集【详解】由题意令则因为时则故在上单调递减又是定义在上的奇函数所以所以即是上的偶函数根 解析:()()1,00,1-【分析】 令()()f xg x x=,对其求导,由0x >时,()()xf x f x '<,可知()0g x '<,从而()g x 在()0,∞+上单调递减,由()f x 的奇偶性,可得()g x 是定义域上的偶函数,从而可得出()g x 在(),0-∞上的单调性,再结合()()110g g -==,可求出()0g x >的解集.【详解】 由题意,令()()f x g x x =,则()()()2xf x f x g x x'-'=, 因为0x >时,()()xf x f x '<,则()()()20xf x f x g x x'-'=<,故()g x 在()0,∞+上单调递减,又()f x 是定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()()f x f x f x g x g x x x x---====--,即()g x 是()(),00,-∞⋃+∞上的偶函数,根据偶函数的对称性,可知()g x 在(),0-∞上单调递增,且()()()11101f g g -===,所以()()1,00,1x ∈-时,()0g x >.故答案为:()()1,00,1-.【点睛】关键点点睛:本题考查不等式的解集,解题关键是求出函数的单调性.本题通过构造函数()()f xg x x=,求导并结合当0x >时,()()xf x f x '<,可求出函数()g x 在()0,∞+上的单调性,再结合函数的奇偶性,可求出()g x 在定义域上的单调性.考查了学生的运算求解能力,逻辑推理能力,属于中档题.15.【分析】根据题意将问题转化为以在区间上恒成立再分类讨论即可得答案【详解】解:因为函数在上单调递增所以在区间上恒成立当时显然在区间上恒成立当时因为在区间上恒成立所以在区间上恒成立所以在区间上恒成立所以 解析:()[),01,-∞+∞【分析】根据题意将问题转化为以()22211'10ax f x ax ax-=-=≥在区间(),1-∞-上恒成立,再分类讨论即可得答案. 【详解】解:因为函数1()f x x ax=+在(),1-∞-上单调递增, 所以()22211'10ax f x ax ax-=-=≥在区间(),1-∞-上恒成立, 当0a <时,显然()22211'10ax f x ax ax -=-=≥在区间(),1-∞-上恒成立, 当0a >时,因为()22211'10ax f x ax ax-=-=≥在区间(),1-∞-上恒成立, 所以210ax -≥在区间(),1-∞-上恒成立, 所以21≥a x 在区间(),1-∞-上恒成立, 所以2max11a x ⎛⎫≥= ⎪⎝⎭ 综上实数a 的取值范围是()[),01,-∞+∞故答案为:()[),01,-∞+∞【点睛】本题考查根据函数在区间上单调求参数范围问题,考查化归转化思想与数学运算能力,是中档题.16.【分析】先根据极值列方程组解得值再代入验证即可确定结果【详解】解∵函数∴又∵函数当时有极值10∴∴或当时有不等的实根满足题意;当时有两个相等的实根不满足题意;∴【点睛】本题考查根据极值求参数考查基本 解析:7a b +=【分析】先根据极值列方程组解得a b ,值,再代入验证,即可确定结果. 【详解】解∵函数322()f x x ax bx a =--+∴2()32f x x ax b '=--,又∵函数322()f x x ax bx a =--+,当1x =时有极值10,∴2320110a b a b a --=⎧⎨--+=⎩,∴411a b =-⎧⎨=⎩或33a b =⎧⎨=-⎩当411a b =-⎧⎨=⎩时,2()32(1)(311)0f x x ax b x x '=--=-+=有不等的实根满足题意; 当33a b =⎧⎨=-⎩时,22()323(1)0f x x ax b x '=--=-=有两个相等的实根,不满足题意; ∴7a b += 【点睛】本题考查根据极值求参数,考查基本分析求解能力,属中档题.17.【分析】由求导根据得到由得到而然后令用导数法求解【详解】令则所以因为故所以因为故又令则当时为减函数故所以在上恒成立故在上为减函数所以即因此的取值范围是故答案为:【点睛】本题主要考查导数的几何意义导数 解析:(),1-∞-【分析】由()xx f x e =,()ln g x x =,求导,根据12l l ⊥,得到1121x x x e -=,由20x >,得到11x >.而112111x x x x x e --=-,然后令()1,1x x h x x x e-=->,用导数法求解.【详解】令()x x f x e =,()ln g x x =,则()1x xf x e -'=,()1g x x'=,所以1111x x k e -=,221k x =, 因为12l l ⊥,故112111x x e x -⨯=-,所以1121x x x e -=, 因为20x >,故11x >.又112111x x x x x e --=-,令()1,1x x h x x x e -=->,则()221xx xx x e h x e e---=-=', 当()1,x ∈+∞时,2xy x e =--为减函数,故12210x x e e --<--<,所以()0h x '<在()1,+∞上恒成立, 故()h x 在()1,+∞上为减函数,所以()()11h x h <=-,即211x x -<-. 因此,21x x -的取值范围是(),1-∞-. 故答案为:(),1-∞-. 【点睛】本题主要考查导数的几何意义,导数与函数的最值,还考查了运算求解的能力,属于中档题.18.43【分析】先求导数判断函数单调性和极值结合(为常数)在上有最小值3求出的值再根据单调性和极值求出函数的最大值【详解】令解得或当时单调递减当时单调递增当时单调递减所以在时有极小值也是上的最小值即函数解析:43. 【分析】先求导数,判断函数单调性和极值,结合32()26f x x x m =-++(m 为常数)在[]22-,上有最小值3,求出m 的值,再根据单调性和极值求出函数的最大值. 【详解】32()26f x x x m =-++, 2()6126(2)f x x x x x '∴=-+=--,令 ()0f x '=,解得 0x =或2x =,当20x -<<时,()0,()f x f x '<单调递减,当02x <<时,()0,()f x f x '>单调递增,当2x >时,()0,()f x f x '<单调递减,所以()f x 在0x =时有极小值,也是[]22-,上的最小值, 即(0)3f m ==,函数在[]22-,上的最大值在2x =-或2x =时取得, 3232(2)2(2)6(2)343;(2)2262311f f -=-⨯-+⨯-+==-⨯+⨯+=,∴函数在[]22-,上的最大值为43.故答案为:43 【点睛】本题主要考查了利用导数研究函数的单调性和极值,函数的最值,属于中档题.19.1【分析】由知为奇函数求导分析为增函数故利用可以算得的关系再利用基本不等式的方法求的最小值即可【详解】故为奇函数又所以为增函数又故所以当且仅当时取得最小值1故答案为1【点睛】本题主要考查函数的奇偶性解析:1 【分析】由()sin f x x x =+知()f x 为奇函数,求导分析()f x 为增函数,故利用()()490f a f b +-=可以算得,a b 的关系,再利用基本不等式的方法求11a b+的最小值即可. 【详解】()sin()sin ()f x x x x x f x -=-+-=--=-,故()f x 为奇函数,又()'1cos 0f x x =+≥,所以()f x 为增函数.又()()()()()490,499f a f b f a f b f b +-==--=-, 故49,49a b a b =-+=,所以()11111144599b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭1519⎛≥+= ⎝,当且仅当4b aa b =时取得最小值1. 故答案为1 【点睛】本题主要考查函数的奇偶性与单调性的运用以及基本不等式的用法,属于中等题型.20.-1【分析】根据题意由函数f (x )的解析式对其求导可得在其中令可得再令即可解可得f′(1)的值【详解】根据题意函数f(x)=lnx -f′()x2+3x -4其导数令令则即答案为-1【点睛】本题考查导数解析:-1 【分析】根据题意,由函数f (x )的解析式对其求导可得112'32f x xf x '=-+()() ,在其中令12x =可得12f ⎛⎫' ⎪⎝⎭,再令1x =即可解可得f′(1)的值, 【详解】根据题意,函数f (x )=ln x -f ′ (12)x 2+3x -4, 其导数112'32f x xf x '=-+()(),令12x =,1111152'3,,1222222f f f '=-⨯⨯+∴'=()()() 令1x =,则15213 1.12f x '=-⨯⨯+=-() 即答案为-1. 【点睛】本题考查导数的计算,注意12f ⎛⎫'⎪⎝⎭为常数. 三、解答题21.(1)210x y -+=;(2)4927. 【分析】(1)当2a =时,求得函数的导数2()32f x x x '=-+,得到(0)2f '=,即可求解曲线()y f x =在点()()0,0f 处的切线方程;(2)由函数在1x =处有极小值,求得2a =-,得到2()32f x x x '=--,根据导数的符号,求得函数的单调性,进而求得函数的最大值,得到答案. 【详解】(1)当2a =时,函数321()212f x x x x =-++, 可得2()32f x x x '=-+,可得(0)2f '=又由()01f =,所以曲线()y f x =在点()()0,0f 处的切线方程12(0)y x -=-,即210x y -+=.(2)由321()12f x x x ax =-++,可得2()3f x x x a '=-+, 因为函数在1x =处有极小值,可得(1)20f a '=+=,解得2a =-,此时321()212f x x x x =--+,且2()32f x x x '=--, 令()0f x '=,即2320x x --=,解得23x =-或1x =, 当23x <-或1x >时,()0f x '>,函数()f x 单调递增; 当213x -<<时,()0f x '<,函数()f x 单调递减, 所以函数()f x 在23(2,),(1,)32--上单调递增,在区间2(,1)3-上单调递减,所以()11,(2)52f f =--=-, 因为24931(),()32724f f -==, 所以函数()f x 的最大值为249()327f -=. 【点睛】解决函数极值、最值综合问题的策略:求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论; 函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值. 22.(1)11ln 222+;(2)1;(3)证明见解析. 【分析】(1)利用导数求出其单调性,即可得出函数()f x 的最小值;(2)利用导数的几何意义得出切线方程20000121ln y x x x x x ⎛⎫=--+- ⎪⎝⎭,再由2000012,1ln 0x k x x x -=-+-=求出k 的值; (3)将22111222ln ,ln x x kx x x kx -=-=两式相加相减化简得出2121212211ln 2ln x x x x x x x x x x ++=-,令211x t x =>,构造函数2(1)()ln (1)1t F t t t t -=->+,利用单调性证明2(1)ln 1t t t ->+,从而得出1212ln 22x x x x +>,再由令()ln 2G x x x =+的单调性得出12()(1)G x x G >,从而得出121x x >. 【详解】解:(1)∵2()ln f x x x =-,∴2121()2(0)x f x x x x x-'=-=>当0,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,∴()f x在2⎛ ⎝⎭上单调递减;当,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0f x '>,∴()f x在⎫+∞⎪⎪⎝⎭上单调递增. 故函数()f x的最小值为211ln ln 222222f ⎛⎫⎛⎫=-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(2)若()g x 是()f x 的切线,设切点为00(,())x f x 则过点00(,())x f x 的切线方程为000()()()y f x x x f x '=-+即20000012()ln y x x x x x x ⎛⎫=--+- ⎪⎝⎭,即20000121ln y x x x x x ⎛⎫=--+- ⎪⎝⎭ 由题意知2000012,1ln 0x k x x x -=-+-= 令2()1ln (0)h x x x x =-+->,则0x >时,1()20h x x x'=--< ∴2()1ln h x x x =-+-在(0,)+∞上单调递增,又(1)0h =∴2001ln 0x x -+-=有唯一的实根01x =,则0012211k x x =-=-=. (3)由题意知22111222ln ,ln x x kx x x kx -=-=两式相加得22121212ln ()x x x x k x x +-=+两式相减得22221211ln ()x x x k x x x --=-,即212121ln x x x x k x x +-=-∴22211212211221ln ln ()x x x x x x x x x x x x ⎛⎫ ⎪ ⎪+-=+-+-⎪ ⎪⎝⎭,即2121212211ln 2ln x x x x x x x x x x ++=- 不妨令120x x <<,记211x t x =>,则2121212211ln 2ln x x xx x x x x x x ++==-1ln 1t t t +- 令2(1)()ln (1)1t F t t t t -=->+,则2(1)()0(1)t F t t t -'=>+∴2l ())1n 1(t F t t t -=-+在(1,)+∞上单调递增,则2(1)()ln (1)01t F t t F t -=->=+ ∴2(1)ln 1t t t ->+,因而1212ln 2x x x x +=112(1)ln 2111t t t t t t t ++->⋅=--+ 令()ln 2G x x x =+,则0x >时,1()20G x x'=+>,∴()G x 在(0,)+∞上单调递增∵121212()ln 22(1)G x x x x x x G =+>=,∴121x x >. 【点睛】在处理极值点偏移问题时,关键是构造新函数,结合单调性解决极值点偏移问题. 23.(1)23y =;(2)31162e e -. 【分析】 (1)求导211'()ln 22f x x x =--,再分别求得(1)f ,'(1)f ,用点斜式写出切线方程.(2)根据()f x a <对1(,)x e e∈恒成立,则()max a f x >,再利用导数求解()max f x 即可. 【详解】(1)()f x 的定义域为(0,)+∞. 由已知得211'()ln 22f x x x =--,且2(1)3f =. 所以'(1)0f =.所以曲线()y f x =在点(1,(1)f )处的切线方程为23y =. (2)设()'()g x f x =,(1x e e<<) 则211'()x g x x x x-=-=. 令'()0g x =得1x =.当x 变化时,'()g x 符号变化如下表:x 1(,1)e1 (1,)e '()g x-+()g x极小则,即,当且仅当时,所以()f x 在1(,)e e上单调递增. 又311()62f e e e =-, 因为()f x a <对1(,)x e e∈恒成立, 所以31162a e e ≥-, 所以a 的最小值为为31162e e -. 【点睛】方法点睛:恒(能)成立问题的解法: 若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则(1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<;(2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<;24.(1)54a =;(2)单调递减区间是()0,5,单调递增区间是()5,+∞. 【分析】(1)求导,使()12f '=-求解a 的值;(2)将(1)中所求a 的值代入,求解()0f x '>和()0f x '<的区间,从而得出函数()f x 的单调区间.【详解】(1)对()f x 求导得()2114a f x x x=--', 由()f x 在点()()1,1f 处的切线垂直于直线12y x =, 知()3124f a '=--=-,解得54a =. (2)由(1)知()()53ln 0442x f x x x x =+-->,则()22454x x f x x'--=, 令()0f x '=,解得1x =-或5x =,因为1x =-不在()f x 的定义域()0,∞+内,所以舍去.当()0,5x ∈时,()0f x '<,故()f x 在()0,5内单调递减;当()5,x ∈+∞时,()0f x '>,故()f x 在()5,+∞内单调递增.故()f x 的单调递减区间是(0,5),单调递增区间是()5,+∞.【点睛】本题考查导数的几何意义,考查函数单调区间的求解,难度一般.25.(1) ()g x 属于M ,且满足②的区间[a ,b ]为00⎡⎤⎡⎡⎢⎥⎢⎢⎣⎦⎣⎦⎣⎦,, ; (2) 102⎛⎤ ⎥⎝⎦, 【分析】(1)可以看出()g x 为增函数,满足条件①,而方程32x x =有三个不同的解,从而满足条件②,从而说明()g x 属于M ,且可写出所有满足②的区间[a ,b ];(2)()h x 属于M 2x t =至少有两个不同的实数根,从而得到12x x t -=-,两边平方并整理可得()221104x t x t -+++= 从而20t∆=>,得到t >0,而02x t -≥即2x t ≤恒成立,且1≥x ,从而又得到12t ≤,这样便可得出实数t 的取值范围.【详解】 (1)()3g x x =在R 上为增函数,满足性质①; 解32x x =得,x =0,或2x =± ; ∴()g x 属于M ,且满足②的区间[a ,b ]为2222002222⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,,,,,; (2)()1h x x t =-+在定义域内单调递增,满足①;∵h (x )∈M ;∴h (x )满足②;则方程12x x t -=-少有两个解; 即函数1y x =-与函数2x y t =-的图象有两个不同的交点. 如图当直线2x y t =-过点()1,0时,12t = 设直线2x y t =-与曲线1y x =-相切于点()00,A x y 由函数1y x =-的导函数为21'=-y x 所以01221k x ==-,所以02x =,则()2,1A 由()2,1A 在直线2x y t =-上,解得0t = 根据图象可得函数1y x =-与函数2x y t =-的图象有两个不同的交点,得102t <≤∴实数t 的取值范围为102⎛⎤ ⎥⎝⎦,.【点睛】考查函数单调性的定义,函数值域的定义,()f x 满足性质②便说明方程()2x f x =至少有两个不同解,即函数y =2x y t =-的图象有两个不同的交点,数形结合可得出答案,属于中档题.26.(1)2a e =;(2)(),2-∞.【分析】(1)求导,分类讨论得出()f x 的单调性及极值,让极小值为0,求出a 的值; (2)只需使函数()2ln f x x a x =-在()0,1x ∈上存在单调递增区间,然后求解a 的取值范围.【详解】解:(1)()f x 的定义域是()0,∞+,()22a x a f x x x-'=-=, 当0a ≤时,()0f x '>恒成立,()f x 在()0,∞+上单调递增,无极小值;当0a >时,令()0f x '<,解得02a x <<;令()0f x '>,解得2a x >, 则()f x 在0,2a ⎛⎫ ⎪⎝⎭上递减,在,2a ⎛⎫+∞ ⎪⎝⎭上递增, 故()f x 有极小值ln 022a a f a a ⎛⎫=-=⎪⎝⎭, ∴1ln 02a -=,∴2a e =; (2)不妨设12x x <,由()()()12120x x f x f x -->⎡⎤⎣⎦知,()()12f x f x <, ∴()f x 在()0,1存在增区间,①由(1)可知,当0a ≤时,()f x 在()0,∞+上为增函数,符合要求;②当0a >时,由(1),()f x 在0,2a ⎛⎫ ⎪⎝⎭上递减,在,2a ⎛⎫+∞ ⎪⎝⎭上递增, ∴只需102a >>,则有02a <<, 综上,实数a 的取值范围为(),2-∞.【点睛】本题考查利用导数研究函数的单调性,极值,考查分类讨论思想及运算求解能力,属于中档题.。
高中数学选修22:第一章导数及其应用单元测试题.doc
数学选修 2-2 第一章单元测试题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点()A.1 个B.2 个C.3 个D.4 个1 12.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在1同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是()C.8D.423.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( )ππ3A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π)3 π 3C.[ 4π,π ) D.[ 2,4π]14.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()3 3A.m≥2 B.m>23 3C.m≤2 D.m<2x2 25.函数f ( x) =cos x-2cos 2的一个单调增区间是 ()f x 0+3 -f x 06.设f ( x) 在x=x0 处可导,且lim Δx=1,Δx→0则 f ′(x0)等于( )A.1 B.0C.3x+97.经过原点且与曲线y=x+5相切的切线方程为()A.x+y=0B.x+25y=0C.x+y= 0 或x+25y=0D.以上皆非8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0 时,f ( x) 是()A.增函数B.减函数C.常数D.既不是增函数也不是减函数13 29.若a>2,则方程3x -ax +1=0 在(0,2) 上恰好有 ()A.0 个根B.1 个根C.2 个根D.3 个根1 10.一点沿直线运动,如果由始点起经过t s 后距离为s=4t 4-53t 3+2t 2,那么速度为零的时刻是( )A.1 s 末B.0 sC.4 s 末D.0,1,4 s 末x2,x∈[0,1],2f(x) d x 等于 () 11.设f ( x) =则2-x,x∈ 1,2] ,0D.不存在sin x sin x1 sin x2 12.若函数 f(x) =x,且 0<x1<x2 <1,设 a=x1 ,b=x2 ,则 a,b 的大小关系是 ( )A.a>b B.a<bC.a=b D.a、b的大小不能确定二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 )1 3 213.若 f(x) =3x -f ′(1)x +x+5,则 f ′(1) = ________.π π14.已知函数 f(x) 满足 f(x) =f( π-x) ,且当 x∈ -2,2 时,f(x) =x+sin x,设a=f(1) ,b=f(2) ,c=f(3) ,则a、b、c 的大小关系是 ________.15.已知函数f(x) 为一次函数,其图像经过点(2,4) ,且1f(x) d x=3,则函数f(x) 的解析式为________.16.(2010 ·江苏卷) 函数2y=x(x>0)的图像在点 2(a k,a k) 处的切线与x 轴的交点的横坐标为a k+1,其中k∈N*. 若a1=16,则a1+a3+a5的值是________.三、解答题 ( 本大题共 6 小题,共 70 分,解答应出写文字说明、证明过程或演算步骤 )17.(10 分) 如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k 的值.18.(12 分) 已知函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 上单调递增,在区间 [1,2) 上单调递减.(1)求 a 的值;(2)若点 A(x0,f(x0)) 在函数 f(x) 的图像上,求证:点 A关于直线x=1 的对称点 B 也在函数 f(x) 的图像上.19.(12 分) 设 x=- 2 与 x=4 是函数 f(x) =x3+ax2+bx 的两个极值点.(1)求常数 a,b;(2)试判断 x=- 2,x= 4 是函数 f(x) 的极大值还是极小值,并说明理由.20.(12 分) 已知 f(x) =ax3-6ax2+b,x∈[ -1,2] 的最大值为 3,最小值为- 29,求 a,b 的值.21.(12 分)(2010 ·重庆卷 ) 已知函数 f(x) =ax3+x2+ bx( 其中常数a,b∈R) ,g( x) =f ( x) +f′(x) 是奇函数.(1)求 f ( x)的表达式;(2)讨论 g( x)的单调性,并求 g( x)在区间[1,2]上的最大值与最小值.1-x22.(12 分) 已知函数f ( x) =ln( ax+1) +1+x,x≥0,其中a>0.(1)若 f ( x)在 x=1处取得极值,求 a 的值;(2)求 f ( x)的单调区间;(3)若 f ( x)的最小值为1,求 a 的取值范围.参考答案1.答案 A解析设极值点依次为 x1,x2,x3且 a<x1<x2<x3<b,则 f ( x) 在( a,x1) ,( x2,x3) 上递增,在 ( x1,x2) ,( x3,b) 上递减,因此,x1、x3是极大值点,只有x2是极小值点.2.答案 D3.答案 B4.答案 A1解析因为函数 f ( x)=2x4-2x3+3m,所以 f ′(x)=2x3-6x2.令 f ′(x)=0,得 x=0或 x=3,经检验知 x=3是函数的一个最27小值点,所以函数的最小值为 f (3)=3m-2.不等式 f ( x)+9≥0恒成27 3立,即 f ( x)≥-9恒成立,所以3m-2≥-9,解得 m≥2.5.答案 A解析 f ( x)=cos2x-cos x-1,∴f′(x)=-2sin x·cos x+sin x=sin x·(1-2cos x).令 f ′(x)>0,结合选项,选A.6. 答案 D7. 答案 D8. 答案 A9. 答案 B解析 1 3 2设 f ( x ) =3x -ax +1,则2f ′(x )=x -2ax =x ( x -2a ) ,当 x ∈(0,2) 时, f ′(x )<0,f ( x ) 在(0,2) 上为减函数,又 f (0) f (2) =8 111 3-4a +1 = 3 -4a <0,f ( x ) =0 在(0,2) 上恰好有一个根,故选 B.10. 答案 D11. 答案 C解析 数形结合,如图.2f(x) d x = 1x 2d x + 2(2 -x) d x0 11 3 11 22= 3x+ 2x -2x11 1= 3+(4 -2-2+2)5= 6,故选 C .12. 答案Af ′(x) =x cos x -sin x解析 x 2, 令 g(x) =x cos x -sin x ,则g ′(x) =- x sin x +cos x -cos x =- x sin x.∵0<x<1,∴ g ′(x)<0 ,即函数 g(x) 在 (0,1) 上是减函数,得 g(x)<g(0) =0,故 f ′(x)<0 ,函数 f(x) 在(0,1) 上是减函数,得 a>b ,故选A .213. 答案 32 2解析 f ′(x) = x -2f ′(1)x + 1,令 x=1,得 f ′(1) =3.14. 答案 c<a<b解析f(2) = f( π-2) , f(3) = f( π- 3) ,因为 f ′(x) = 1+π ππcos x≥0,故f(x)在-2,2上是增函数,∵2 >π-2>1>π-3>0,∴f( π-2)>f(1)>f( π-3) ,即 c<a<b.2815.答案 f(x) =3x+3解析设函数 f(x) =ax+b(a ≠0) ,因为函数 f(x) 的图像过点(2,4) ,所以有 b=4-2a.∴1 f(x) d x= 1 (ax +4-2a) d x0 01 2 1 1=[ ax +(4 -2a)x] | 0=a+4-2a=1.2 22 8 2 8∴a=3. ∴b=3. ∴f(x) =3x+3.16. 答案21解析2 2∵y′=2x,∴过点( a k,a k)处的切线方程为y-a k=2a k( x1-a k),又该切线与 x 轴的交点为( a k+1,0),所以 a k+1=2a k,即数列{ a k}1是等比数列,首项a1=16,其公比q=2,∴ a3=4,a5=1,∴ a1+a3 +a5=21.17. 解析抛物线 y =x -x 2 与 x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与 x 轴所围图形面积 S = 12) d x =x 2 x 3 11 (x -x 2 -3 0=2-1 13=6.y =x -x 2,又 由此可得抛物线 y =x -x 2 与 y =kx 两交点的横y =kx ,S- 2 x 3 -坐标 x 3= , 4= - ,所以 = 1-k (x - x 2 kx) d x =1 k x - 1k -0 x 1 k 2 02313=6(1 -k) .3又 S = ,所以 (1 -k) 3=1,∴ k =1- 4.622118. 解析 (1) 由函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 单调递增,在区间 [1,2) 单调递减,∴x =1 时,取得极大值,∴ f ′(1) = 0.又 f ′(x) = 4x3-12x2+2ax ,∴4-12+2a = 0? a = 4.(2) 点 A(x0,f(x0)) 关于直线 x =1 的对称点 B 的坐标为 (2 -x0, f(x0)) ,f(2 -x0) =(2 -x0)4 -4(2 -x0)3 +4(2 -x0)2 -1= (2 -x0)2[(2 -x0) -2]2 -1= x 40-4x30+ ax20- 1=f(x0) ,∴A 关于直线 x =1 的对称点 B 也在函数 f(x) 的图像上.19.解析 f ′(x) =3x2+2ax+b.(1) 由极值点的必要条件可知:12-4a+b=0,f ′( - 2) =f ′(4) = 0,即48+8a+b=0,解得 a=- 3,b=- 24.或f ′(x) = 3x2+2ax+b=3(x +2)(x -4)=3x2-6x-24,也可得 a=- 3,b=- 24.(2) 由 f ′(x) = 3(x +2)(x -4) .当 x<- 2 时, f ′(x) > 0,当- 2<x<4 时, f ′(x) < 0. ∴x=- 2 是极大值点,而当x>4 时, f ′(x) > 0,∴x=4 是极小值点.20.解析 a≠0( 否则 f(x) =b 与题设矛盾 ) ,由f ′(x) = 3ax2-12ax=0 及 x∈[ - 1,2] ,得 x=0. (1) 当 a>0 时,列表:x ( -1,0) 0 (0,2)f ′(x) +0 -f(x) 增极大值 b 减由上表知, f(x) 在[ - 1,0] 上是增函数,f(x) 在[0,2] 上是减函数.则当 x=0 时, f(x) 有最大值,从而b=3.又f( -1) =- 7a+3,f(2) =- 16a+3,∵a>0,∴ f( -1) >f(2) .从而 f(2) =- 16a+3=- 29,得a=2.(2)当 a<0 时,用类似的方法可判断当 x=0 时 f(x) 有最小值.当x=2 时, f(x) 有最大值.从而 f(0) =b=- 29, f(2)=-16a-29=3,得a=- 2.综上, a= 2,b=3 或 a=- 2,b=- 29.21.解析 (1) 由题意得f′(x) = 3ax2+2x+b. 因此g( x) =f ( x) +f′(x)=ax3+(3 a+1) x2+( b+2) x+b.因为函数 g( x)是奇函数,所以g(-x)=- g( x),即对任意实数x,有 a(- x)3+(3 a+1)(-x)2+( b +2)( -x) +b=- [ ax3+(3 a+1) x2+( b+2) x+b] ,从而 3a+1=0,b=0,解得a=-1,b=0,因此f ( x) 的解析式为f ( x) =-x3+x2. 331(2)由(1) 知g( x) =-1x3+2x,所以g′(x) =-x2+2. 3令g′(x)=0,解得x1=-2,x2=2,则当x<-2或x> 2时,g′(x)<0,从而 g( x)在区间(-∞,-2],[ 2,+∞)上是减函数;当- 2<x< 2时,g′(x)>0 ,从而g( x) 在[ - 2, 2] 上是增函数.由前面讨论知, g( x)在区间[1,2] 上的最大值与最小值只能在x=1,2,2 时取得,而g(1)5=3,g( 2) =4 23,g(2)4=3. 因此g( x)在区间 [1,2] 上的最大值为g( 2) =4 2,最小值为3g(2)4=3.22. 分析解答本题,应先正确求出函数 f ( x)的导数f ′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.a 2 ax2+a-2解析 (1) f′(x) =ax+1-1+x 2=ax+1 1+x 2,∵f ( x)在 x=1处取得极值,2∴f ′(1)=0,即 a·1+a-2=0,解得 a=1.(2) f′(x) =ax2+a-22,ax+1 1+x∵x≥0, a>0,∴ ax+1>0.①当 a≥2时,在区间[0,+∞)上, f ′(x)>0,∴f( x)的单调增区间为[0,+∞).②当 0<a<2 时,由 f ′(x)>0,解得 x> 2-a a.由 f ′(x)<0,解得 x< 2-a a.∴f ( x)的单调减区间为(0, 2-a 2-a a ) ,单调增区间为 ( a,+∞ ) .(3) 当a≥2时,由 (2) ①知,f ( x) 的最小值为f (0) =1;当 0<a<2,由 (2) ②知,f ( x) 在x=2-aa 处取得最小值,且2-af ( a )< f (0) =1.综上可知,若 f ( x)的最小值为1,则 a 的取值范围是[2,+∞).。
高中数学的导数与极限应用测试题
高中数学的导数与极限应用测试题在高中数学的学习中,导数与极限是极为重要的概念,它们在解决各种数学问题中发挥着关键作用。
为了帮助同学们更好地掌握这部分知识,以下是一套精心设计的导数与极限应用测试题。
一、选择题(每题 5 分,共 30 分)1、函数\(f(x) = x^3 3x + 1\)的导数\(f'(x)\)为()A \(3x^2 3\)B \(3x^2\)C \(3x^2 + 3\)D \(3x^2 1\)2、已知函数\(f(x) =\frac{1}{x}\),则\(f'(2)\)的值为()A \(\frac{1}{4}\)B \(\frac{1}{4}\)C \(\frac{1}{2}\) D \(\frac{1}{2}\)3、函数\(y =\sin x\)的导数为()A \(\cos x\)B \(\cos x\)C \(\sin x\)D \(\sin x\)4、极限\(\lim_{x \to 0} \frac{\sin x}{x}\)的值为()A 0B 1C \(\infty\)D 不存在5、函数\(f(x) = x^2 2x + 3\)在\(x = 1\)处的导数为()A 0B 1C 2D 36、若\(f(x) =\ln x\),则\(f'(e)\)的值为()A \(\frac{1}{e}\)B \(\frac{1}{e}\)C \( e\)D \(\frac{1}{e^2}\)二、填空题(每题 5 分,共 30 分)1、函数\(f(x) = 2x^2 + 3x 1\)的导数\(f'(x) =\)_____。
2、曲线\(y = x^3 2x + 1\)在点\((1, 0) \)处的切线方程为_____。
3、已知函数\(f(x) =\cos x\),则\(f'(\frac{\pi}{2})=\)_____。
4、极限\(\lim_{x \to 1} \frac{x^2 1}{x 1} =\)_____。
导数及其应用测试题(有详细答案)
《导数及其应用》一、选择题1。
0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。
B. C 。
D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。
设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。
直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。
若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。
第三章.导数及其应用测试卷(含详细答案)
单元综合测试三(第三章)时间:90分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知f (x )=(x +a )2,且f ′(12)=-3,则a 的值为( ) A .-1 B .-2 C .1D .2解析:f (x )=(x +a )2,∴f ′(x )=2(x +a ). 又f ′(12)=-3,∴1+2a =-3,解得a =-2. 答案:B2.函数y =sin x (cos x +1)的导数是( ) A .y ′=cos2x -cos x B .y ′=cos2x +sin x C .y ′=cos2x +cos xD .y ′=cos 2x +cos x解析:y ′=(sin x )′(cos x +1)+sin x (cos x +1)′=cos 2x +cos x -sin 2x =cos2x +cos x .答案:C3.函数y =3x -x 3的单调递增区间是( ) A .(0,+∞) B .(-∞,-1) C .(-1,1)D .(1,+∞)解析:f ′(x )=3-3x 2>0⇒x ∈(-1,1).答案:C4.某汽车启动阶段的路程函数为s (t )=2t 3-5t 2+2,则t =2秒时,汽车的加速度是( )A .14B .4C .10D .6解析:依题意v (t )=s ′(t )=6t 2-10t ,所以a (t )=v ′(t )=12t -10,故汽车在t =2秒时的加速度为a (2)=24-10=14.答案:A5.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 的值为( )A .-2B .-1C .1D .2解析:f ′(x )=x cos x +sin x ,f ′(π2)=1, ∴k =-a2=-1,a =2. 答案:D6.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( )A .1B .3C .-4D .-8解析:如图所示,由已知可设P (4,y 1),Q (-2,y 2), ∵点P ,Q 在抛物线x 2=2y 上,∴⎩⎨⎧42=2y 1, ①(-2)2=2y 2, ②∴⎩⎨⎧y 1=8,y 2=2,∴P (4,8),Q (-2,2).又∵抛物线可化为y =12x 2,∴y ′=x . ∴过点P 的切线斜率为y ′|x =4=4,∴过点P 的切线为y -8=4(x -4),即y =4x -8. 又∵过点Q 的切线斜率为y ′|x =-2=-2.∴过点Q 的切线为y -2=-2(x +2),即y =-2x -2.联立⎩⎨⎧y =4x -8,y =-2x -2,解得x =1,y =-4.∴点A的纵坐标为-4. 答案:C7.若函数y=a(x3-x)的递增区间是(-∞,-33),(33,+∞),则a的取值范围是()A.a>0 B.-1<a<0 C.a>1 D.0<a<1解析:依题意y′=a(3x2-1)>0的解集为(-∞,-33),(33,+∞),故a>0.答案:A8.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是()A.0≤a≤21 B.a=0或a=7C.a<0或a>21 D.a=0或a=21解析:f′(x)=3x2+2ax+7a,当Δ=4a2-84a≤0,即0≤a≤21时,f′(x)≥0恒成立,函数f(x)不存在极值点.故选A.答案:A9.已知函数f(x)=x3-3x,若对于区间[-3,2]上任意的x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.0 B.10C.18 D.20解析:f′(x)=3x2-3,令f′(x)=0,解得x=±1,所以1,-1为函数f(x)的极值点,因为f(-3)=-18,f(-1)=2,f(1)=-2,f(2)=2,所以在区间[-3,2]上,f(x)max=2,f(x)min=-18,所以对于区间[-3,2]上任意的x1,x2,|f(x1)-f(x2)|≤20,所以t≥20,从而t的最小值为20.答案:D10.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:取函数f(x)=x3-x,则x=-33为f(x)的极大值点,但f(3)>f(-33),∴排除A.取函数f(x)=-(x-1)2,则x=1是f(x)的极大值点,f(-x)=-(x+1)2,-1不是f(-x)的极小值点,∴排除B;-f(x)=(x-1)2,-1不是-f(x)的极小值点,∴排除C.故选D.答案:D11.若函数y=f(x)满足xf′(x)>-f(x)在R上恒成立,且a>b,则()A.af(b)>bf(a) B.af(a)>bf(b)C.af(a)<bf(b) D.af(b)<bf(a)解析:设g(x)=xf(x),则g′(x)=xf′(x)+f(x)>0,∴g(x)在R上是增函数,又a>b,∴g(a)>g(b)即af(a)>bf(b).答案:B12.设函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值解析:由题意知f ′(x )=e x x 3-2f (x )x =e x -2x 2f (x )x3.令g (x )=e x-2x 2f (x ),则g ′(x )=e x -2x 2f ′(x )-4xf (x )=e x -2(x 2f ′(x )+2xf (x ))=e x -2e xx =e x ⎝ ⎛⎭⎪⎫1-2x .由g ′(x )=0得x =2,当x =2时,g (x )min =e 2-2×22×e 28=0,即g (x )≥0,则当x >0时,f ′(x )=g (x )x 3≥0,故f (x )在(0,+∞)上单调递增,既无极大值也无极小值.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.若抛物线y =x 2-x +c 上一点P 的横坐标为-2,抛物线过点P 的切线恰好过坐标原点,则c 的值为________.解析:∵y ′=2x -1,∴y ′|x =-2=-5. 又P (-2,6+c ),∴6+c-2=-5.∴c =4. 答案:414.如果函数f (x )=x 3-6bx +3b 在区间(0,1)内存在与x 轴平行的切线,则实数b 的取值范围是________.解析:存在与x 轴平行的切线,即f ′(x )=3x 2-6b =0有解,∵x ∈(0,1),∴b =x 22∈(0,12).答案:{b |0<b <12}15.已知a ≤4x 3+4x 2+1对任意x ∈[-1,1]都成立,则实数a 的取值范围是________.解析:设f (x )=4x 3+4x 2+1,则f ′(x )=12x 2+8x =4x (3x +2),令f ′(x )=0,解得x 1=0,x 2=-23.又f (-1)=1, f (-23)=4327,f (0)=1,f (1)=9,故f (x )在[-1,1]上的最小值为1,故a ≤1.答案:(-∞,1]16.设二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x ),f ′(0)>0,若∀x ∈R ,恒有f (x )≥0,则f (1)f ′(0)的最小值是________.解析:二次函数f (x )=ax 2+bx +c (a ≠0)的导数为f ′(x )=2ax +b ,由f ′(0)>0,得b >0,又对∀x ∈R ,恒有f (x )≥0,则a >0, 且Δ=b 2-4ac ≤0,故c >0,所以f (1)f ′(0)=a +b +c b =a b +c b +1≥2acb 2+1≥2ac4ac +1=2,所以f (1)f ′(0)的最小值为2.答案:2三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知函数f (x )=ln(2x +a )+x 2,且f ′(0)=23.(1)求f (x )的解析式;(2)求曲线f (x )在x =-1处的切线方程. 解:(1)∵f (x )=ln(2x +a )+x 2,∴f ′(x )=12x +a ·(2x +a )′+2x =22x +a +2x .又∵f ′(0)=23,∴2a =23,解得a =3. 故f (x )=ln(2x +3)+x 2.(2)由(1)知f ′(x )=22x +3+2x =4x 2+6x +22x +3,且f (-1)=ln(-2+3)+(-1)2=1, f ′(-1)=4×(-1)2+6×(-1)+22(-1)+3=0,因此曲线f (x )在(-1,1)处的切线方程是y -1=0(x +1),即y =1.18.(12分)已知函数f (x )=13x 3+ax +b (a ,b ∈R )在x =2处取得极小值-43.(1)求函数f (x )的增区间;(2)若f (x )≤m 2+m +103对x ∈[-4,3]恒成立,求实数m 的取值范围.解:(1)由已知得f (2)=-43,f ′(2)=0,又f ′(x )=x 2+a ,所以83+2a +b =-43,4+a =0,所以a =-4,b =4,则f (x )=13x 3-4x +4,令f ′(x )=x 2-4>0,得x <-2或x >2,所以增区间为(-∞,-2),(2,+∞).(2)f (-4)=-43,f (-2)=283,f (2)=-43,f (3)=1,则当x ∈[-4,3]时,f (x )的最大值为283,故要使f (x )≤m 2+m +103对∈[-4,3]恒成立,只要283≤m 2+m +103,所以实数m 的取值范围是m ≥2或m ≤-3.19.(12分)已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b -4=4,所以a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).20.(12分)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程. (2)求函数f (x )的极值.解:函数f (x )的定义域为(0,+∞),f ′(x )=1-ax . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),所以f (1)=1,f ′(1)=-1,所以y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0可知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f(x)无极值;②当a>0时,由f′(x)=0,解得x=a;因为x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,所以f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.综上:当a≤0时,函数f(x)无极值,当a>0时,函数f(x)在x=a处取得极小值a-a ln a,无极大值.21.(12分)某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定给这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品日供应量p 万千克,日需量q 万千克近似地满足关系:p =2(x +4t -14)(t >0),q =24+8ln 20x .当p =q 时的市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于20元/千克,政府补贴至少为多少元/千克?解:(1)由p =q 得2(x +4t -14) =24+8ln 20x (16≤x ≤24,t >0), 即t =132-14x +ln 20x (16≤x ≤24). ∵t ′=-14-1x <0,∴t 是x 的减函数. ∴t min =132-14×24+ln 2024=12+ln 2024=12+ln 56; t max =132-14×16+ln 2016=52+ln 54, ∴值域为⎣⎢⎡⎦⎥⎤12+ln 56,52+ln 54.(2)由(1)知t =132-14x +ln 20x (16≤x ≤24).而当x =20时,t =132-14×20+ln 2020=1.5(元/千克),∵t 是x 的减函数,∴欲使x ≤20,必须t ≥1.5(元/千克). 要使市场平衡价格不高于20元/千克,政府补贴至少为1.5元/千克.22.(12分)已知函数f (x )=ln x -12ax 2-2x .(1)若函数f (x )在x =2处取得极值,求实数a 的值. (2)若函数f (x )在定义域内单调递增,求实数a 的取值范围. (3)当a =-12时,关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.解:(1)由题意,得f ′(x )=-ax 2+2x -1x(x >0), 因为x =2时,函数f (x )取得极值,所以f ′(2)=0,解得a =-34,经检验,符合题意.(2)函数f (x )的定义域为(0,+∞),依题意,f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立,则a ≤1-2x x 2=⎝ ⎛⎭⎪⎫1x -12-1在x >0时恒成立,即a ≤⎝ ⎛⎭⎪⎫⎝⎛⎭⎪⎫1x -12-1min (x >0),当x =1时,⎝⎛⎭⎪⎫1x -12-1取最小值-1,所以a 的取值范围是(-∞,-1].(3)当a =-12时,f (x )=-12x +b , 即14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0), 则g ′(x )=(x -2)(x -1)2x, 当x 变化时,g ′(x ),g (x )的变化情况如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) + 0 - 0 + g (x )极大极小所以g (x )极小值=g (2)=ln2-b -2, g (x )极大值=g (1)=-b -54, 又g (4)=2ln2-b -2,因为方程g (x )=0在[1,4]上恰有两个不相等的实数根, 则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (4)≥0,解得ln2-2<b ≤-54,所以实数b 的取值范围是(ln2-2,-54).。
选修2-2《导数及其应用》测试题
人教B 版选修2-2《导数及其应用》测试题 姓名 得分 一.选择题:(只有一个结论正确,每小题4分,共60分) 1.曲线123-+=x x y 在点P (-1,-1)处的切线方程是 ( )A .1-=x yB .2-=x yC .x y =D .1+=x y2. 曲线f (x )= x 3+x -2在P 0点处的切线平行于直线y = 4x -1,则P 0点的坐标为 ( ) A .(1,0) B .(2,8) C .(1,0)和(-1,-4) D .(2,8)和(-1,-4)3.已知函数x x y 33-=,则它的单调递减区间是 ( ) A.)0,(-∞ B.)1,1(- C. ),0(+∞ D.)1,(--∞及),1(+∞4.已知f (x )=x ln x ,若f ′(x 0)=2,则x 0= ( ) A .e 2B .e C.ln 22D .ln 25. .设曲线11x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a = ( )A .2B . 2-C . 12-D.126已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+x 2,则f ′(1)= ( ) A .-1 B .-2 C .1 D .27. 下列求导运算正确的是 ( )xx x D e C x x B x x x A x x sin 2)cos (.log 3)3(.2ln 1)(log .11)1(.2322-='='='+='+ 8. 函数)2ln()(2--=x x x f 的单调递增区间是 ( )),和(∞+-+∞---∞2)21,1(.),2(.)21,1(.)1,(.D C B A 9. 设)()(),()(),()(,sin )(112010x f x f x f x f x f x f x x f n n '='='==+, ,)(N n ∈则=')(2005x f ( ) x D x C x B x A cos .cos .sin .sin .--10.已知函数y = f (x )在区间(a ,b )内可导,且x 0∈(a ,b ),则000()()limh f x h f x h h→+--= ( )A .f ′(x 0)B .2f ′(x 0)C .-2f ′(x 0)D .011. 设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))((0,0x f x P 处切线的倾角的取值范围为]4,0[π,则P 点到曲线)(x f y =对称轴距离的取值范围为 ( )ab D ab C aB aA21,0[.]2,0[.]21,0[.]1,0[- 12.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)= ( ) A .26B .29C .212D .215二.填空题:(每小4分,共20分)13.若过原点作曲线y =e x的切线,则切点的坐标为________,切线的斜率为________. 14.设函数f (x )=x (e x+1)+12x 2,则函数f (x )的单调增区间为________.15.函数f (x )=x 3-3x 2+1在x =________处取得极小值. 16.如果函数y=f(x)的导函数的图像如右图所示, 给出下列判断:(1) 函数y=f(x)在区间(3,5)内单调递增; (2) 函数y=f(x)在区间(-1/2,3)内单调递减;(3) 函数y=f(x)在区间(-2,2)内单调递增;(4) 当x= -1/2时,函数y=f(x)有极大值; (5) 当x=2时,函数y=f(x)有极大值;则上述判断中正确的是 .三.解答题:17.求下列函数的导数.(1)y =x 2sin x ; (2)y =log 2(2x 2+3x +1).18.设x x a x f ln 6)5()(2+-=,其中R a ∈,曲线)(x f 在点(1,f(1))处切线与y 轴交于点(0,6). (1)确定a 的值;(2)求函数)(x f 的单调区间.19.若函数xe xf x=)(在c x =处的导数值与函数值互为相反数,求c 的值.20.已知二次函数f (x )满足:①在x =1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x +y =0平行. ⑴求f (x )的解析式;⑵求函数g (x )=f (x 2)的单调递增区间.21.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值。
2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析
2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f′(5)分别为() A.5,-1B.-1,5C.-1,0D.0,-1答案D解析由题意可得f(5)=-5+5=0,f′(5)=-1,故选D.2.已知函数f(x)=x sin x+ax,且f1,则a等于()A.0B.1C.2D.4答案A解析∵f′(x)=sin x+x cos x+a,且f1,∴sin π2+π2cosπ2+a=1,即a=0.3.若曲线y=mx+ln x在点(1,m)处的切线垂直于y轴,则实数m等于() A.-1B.0C.1D.2答案A解析f(x)的导数为f′(x)=m+1x,曲线y=f(x)在点(1,m)处的切线斜率为k=m+1=0,可得m=-1.故选A.4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2020(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x答案B解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x=f1(x),∴f n(x)是以4为周期的函数,∴f2020(x)=f4(x)=sin x-cos x,故选B.5.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)等于()A .1B .-1C .-eD .-e -1答案D解析已知f (x )=2xf ′(e)+ln x ,其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)答案B解析由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于()A .5B .3C .-3D .-5答案D解析f ′(x )=2x ,g ′(x )=6x -4,令2x =6x-4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在-π2,0上单调递增,则a 的取值范围为()B .[-1,1]C .[-1,+∞)D .[0,+∞)答案D解析依题意得,f ′(x )=a e x +cos x ≥0,即a ≥-cos xe x 对x ∈-π2,0恒成立,设g (x )=-cos xe x ,x ∈-π2,0,g ′(x )g ′(x )=0,则x =-π4,当x ∈-π2,-g ′(x )<0;当x -π4,0时,g ′(x )>0,故g (x )max =g (0,则a ≥0.故选D.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A.2000π9B.4000π27C .81πD .128π答案B解析小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max ==4000π27,故选B.10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为()A.12B .1C .eD .2e答案B解析原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)()A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案B解析设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数.∵g (0)=e 0f (0)=f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2),且g (-2)>g (0)>g (1),∴e -1f (1)<f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为()A.-323,-B.-2-323,-2答案D解析由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2,即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________.答案x -y -3=0解析∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.答案-1e2,解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点,即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1),则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)[g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a -1e 2,15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案-1,12解析由函数f (x )=x 3-2x +e x -1e x f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1ex ≥-2+2e x ·1e x=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x 0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________.答案12e ,1+ln 36解析∵函数f (x )满足f (-x )=f (x ),∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3)=2f (3)-f (2mx -ln x -3),∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减.∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立,∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立,即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立.令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减,∴g (x )max =g (e)=12e .令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减,∴h (x )min =h (3)=6+ln 36=1+ln 36.综上可得实数m 的取值范围为12e ,1+ln 36.三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9.(1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程.解(1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:f ′(x )+0-0+f (x )增极大值减极小值增从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m 3+m 3+m 3+1=9,∴m =2.(2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5,∴x =-1或x =-13,又f (-1)=6,=6827,所以切线方程为y -6=-5(x +1)或y -6827=-即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数.(1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值.解(1)求导得f ′(x )=x cos x -sin x +a ,由f a -1=-2,解得a =-1.此时2,所以该切线的方程为y -2=-2x +y -2-π=0.(2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0,所以f ′(x )在[0,π]内单调递减.当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π.当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值.①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min,a ≥4π,π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值;(2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围.解(1)∵f (x )=4ln x -mx 2+1,∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2,∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立,∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立,即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立,令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e ,令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:x 14(1,e )14e14(e ,e)g ′(x )+0-g (x )极大值∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee,即实数m 的取值范围是2ee ,+20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围.解(1)依题意知,函数f (x )的定义域为(0,+∞),且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a,函数f (x )当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a ,函数f (x )-1a,+.(2)①当a =0时,函数f (x )在(0,1]内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足0,即ln 12a ≥34,又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )-1a,+若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )-1a,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用?解(1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD ,则DE +2(3-AD )+3=9-AD =x ,S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9).故梯形BCED 的面积S 关于它的周长x 的函数关系式为S =34(-x 2+18x -72)(6<x <9).(2)∵由(1)得S =34(-x 2+18x -72)(6<x <9),令f (x )=S x =x -72x +x <9),∴f ′(x )1令f ′(x )=0,得x =62或x =-62(舍去),f (x ),f ′(x )随x 的变化如下表:x(6,62)62(62,9)f ′(x )+0-f (x )单调递增极大值单调递减∴当x =62时,函数f (x )=S x有最大值,为f (62)=923-36.∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e,故实数k f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=1e x k -2x 1=0得k =112e x x ,所以f (x 1)=1e x k -x 21=112e x x 1e x -x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。
有关导数与积分的经典考试题
数学选修2~2第一章《导数及其应用》测试题姓名 成绩一、选择题:1.已知函数)(x f 在区间(a ,b )内可导,且),(0b a x ∈,则000()()limh f x h f x h h→+--= ( )A.)('0x fB.)('20x fC.)('20x f -D.02.曲线1323+-=x x y 在点(1,-1)处的切线方程为 ( ) A .y =3x -4B .y =-3x +2C .y =-4x +3D .y =4x -53.函数)(x f y =在],[b a 上 ( ) A.极大值一定比极小值大 B.极大值一定是最大值 C.最大值一定是极大值 D.最大值一定大于极小值4.设x x x f +=3)(,则⎰-22)(dx x f 的值等于 ( )A.0B.8C.⎰20)(dx x f D.⎰2)(2dx x f5. 由抛物线x y =2和直线x =1所围成的图形的面积等于 ( )A .1B .34 C .32 D .31 6. 如图,阴影部分的面积是( )A .32B .329-C .332D .335 7. 若11(2)3ln 2ax dx x+=+⎰,且a >1,则a 的值为( ) A .6 B .4 C .3D .28. ()=-⎰dx e 10x -xe( )A .e e 1+B .2eC .e2D .ee 1-7.由曲线2,0,===y x e y x 所围成的曲边梯形的面积为 ( ) A.dy y ⎰21ln B.dy e e x ⎰20C.dy y ⎰2ln 1ln D.()d x e x⎰-212第6题).9.设()2(12)f x x x =⎨-<≤⎩ 则20()f x dx ⎰= ( )A.34 B.45 C .56 D.不存在 10.如果N 10的力能使弹簧压缩cm 10,为在弹性限度内将弹簧拉长cm 6,则力所做的功为( ).A .J 28.0B .J 26.0C .J 18.0D .J 12.011. 求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( ) A .[0,2e ] B .[0,2] C .[1,2] D .[0,1]12.)(x f ,)(x g 分别是定义在R 上的奇函数和偶函数,当0<x 时,0)(')(-)()('>x g x f x g x f ,且0)3(=-g ,则不等式0)()(<x g x f 的解集是 ( ) A .(-3,0)∪(3,+∞) B .(-∞,-3)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-3,0)∪(0,3)二、填空题:本大题共4小题,每小题5分,共20分.13. 由x y cos =及x 轴围成的介于0与2π之间的平面图形的面积,利用定积分应表达为 .14. 某物体做直线运动,其运动规律是s =t 2+3t( t 的单位是秒,s 的单位是米),则它在4秒末的瞬时速度为 . 15. 设函数⎰-=x dt t y 0)1(有极值,则极值点为 .16. 若dx x S ⎰=2121,dx xS ⎰=2121,dx e S x ⎰=213,则S 1,S 2,S 3的大小关系是三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 17.求由两抛物线28x y -=,2x y =所围成的图形的面积.18. 求定积分:(1)dx x ⎰--33|23|; (2)dx x x ⎰-222},max {19.已知c bx ax x x f +++=23)(,在1=x 与2-=x 时,都取得极值. (1)求a ,b 的值;(2)若∈x [-3,2]都有)(x f >112c -恒成立,求c 的取值范围.20. 一辆作变速直线运动的汽车开始以速度 V (t )=3t 4-t 2+运动,求 (1)t=4s 时的位移(2)t=4s 时的运动路程。
导数测试试卷
《导数及其应用》测试题(文科)(满分:150分 时间:120分钟)1.函数()22)(x x f π=的导数是( )A .x x f π4)(='B .x x f 24)(π='C .x x f 28)(π='D .x x f π16)(=' 2. 曲线2xy x =+在点(-1,-1)处的切线方程为( ) A .y=2x+1 B .y=2x-1 C .y=-2x-3 D .y=-2x-23.若42()f x ax bx c =++满足(1)2f '=,则(1)f '-=( )A .4-B .2-C .2D .44.若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )A .1,1a b ==B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=- 5.函数x e x x f -⋅=)(的一个单调递增区间是( )A.[]0,1-B. []8,2C. []2,1D. []2,06.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,7..观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )A .()f xB .()f x -C .()g xD .()g x - 8.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A .294eB .22eC .22eD .22e9.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则( )A. 10<<bB. 1<bC. 0>bD. 21<b10 函数)(x f 的图像如图所示,下列数值排序正确的是( ) A.)2()3()3()2(0//f f f f -<<<B. )2()2()3()3(0//f f f f <-<<C.)2()3()2()3(0//f f f f -<<<D.)3()2()2()3(0//f f f f <<-<11.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )12.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题:本大题共4小题,每小题5分,共20分。
第二章 函数、导数及其应用测试题
高三级第一次考试 文科数学(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.) 1.函数y =( )(A)(]0,8 (B)(-2,8] (C)(2,8] (D)[8,+∞) 2.下列函数中,既是偶函数又在(0,+∞)上是增加的函数是( )(A)y=x 3 (B)y=|x|+1 (C)y=-x 2+1 (D)y=2-|x| 3.已知实数a=log 45,b=(12)0,c=log 30.4,则a,b,c 的大小关系为( )(A)b<c<a (B)b<a<c (C)c<a<b (D)c<b<a 4.若已知函数2log ,0()91,0xx x f x x ->⎧=⎨+≤⎩,则f(f(1))+f(log 312)的值是( )(A)7 (B)2 (C)5 (D)35.已知偶函数f(x)在区间[0,+∞)上是增加的,则满足f(2x-1)<f(13)的x 的取值范围是( )(A)12(,)33(B) 12[,)33(C) 12(,)23(D) 12[,)236.函数f(x)=xcosx-sinx 在下面哪个区间内是增加的( )(A) 3(,)22ππ(B)(π,2π) (C) 35(,)22ππ (D)(2π,3π)7.已知函数(3)5,1,()2,1,a x x f x ax x-+≤⎧⎪=⎨>⎪⎩是(,)-∞+∞上的减函数,则a 的取值范围是( ) (A)(0,3) (B)(0,3] (C)(0,2) (D)(0,2]8.已知f(x)是定义在R 上的偶函数,对任意x ∈R,都有f(x+4)=f(x)+2f(2),且f(-1)=2,则f(2015)等于( )(A)1 (B)2 (C)3 (D)49.若0<a<1,-1<b<0,则函数y=b+1x a+的图象为()10.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)< 12,则f(x)<122x+的解集为( )(A){x|-1<x<1} (B){x|x<-1} (C){x|x<-1或x>1} (D){x|x>1}11.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系2p at bt c=++(a、b、c是常数),下图记录了三次实验的数据根据上述函数模型和实验数据,可以得到最佳加工时间为()A3.50分钟B3.75分钟C4.00分钟D4.25分钟12. 已知函数log()(,ay x c a c=+为常数,其中0,1)a a>≠的图象如右图,则下列结论成立的是()A.1,1a c>> B1,01a c><<C01,1a c<<> D01,01a c<<<<二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知函数f(x)=lnx+2x,若f(x2+2)<f(3x),则实数x的取值范围是.14.若方程lnx+2x-10=0的解为x0,则不小于x0的最小整数是.15. 函数2()lg f x x =的单调递减区间是________ 16. 已知42a =,lg x a =,则x =________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)已知二次函数f (x )的图像过点A (-1,0)、B (3,0)、C (1,-8). (1)求f (x )的解析式;(2)求f (x )在x ∈[0,3]上的最值; (3)求不等式f (x )≥0的解集.18.(12分)已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.19.(12分) 若方程lg (-x 2+3x -m )=lg(3-x )在x ∈(0,3)内有唯一零点,求实数m 的取值范围.20.(12分)已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1, (1)求证:f (x )是周期函数;(2)当x ∈[1,2]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2013)的值.21.(12分)函数f(x)=log 2(4x)·log 2(2x),14≤x ≤4. (1)若t=log 2x,求t 的取值范围.(2)求f(x)的最值,并给出取最值时对应的x 的值.22.(12分) 已知函数f (x )=ax 2+b ln x 在x =1处有极值12. (1)求a ,b 的值;(2)判断函数y =f (x )的单调性并求出单调区间.答案解析1.【解析】选B.由⇒⇒-2<x≤8.2.【解析】选B.对于A:y=x3是奇函数,不合题意;对于C,D:y=-x2+1和y=2-|x|在(0,+≦)上是减少的,不合题意;对于B:y=|x|+1的图像如图所示,知y=|x|+1符合题意,故选B.3.【解析】选D.由题知,a=log45>1,b=()0=1,c=log30.4<0,故c<b<a.4.【解析】选A.f(1)=log21=0,所以f(f(1))=f(0)=2.因为log3<0,所以f(log3)=+1=+1=+1=+1=4+1=5,所以f(f(1))+f(log3)=2+5=7,故选A.[来源:]5.【解析】选A.f(x)是偶函数,其图像关于y轴对称,又f(x)在[0,+≦)上是增加的,≨f(2x-1)<f()⇔f(|2x-1|)<f(),则|2x-1|<,解得<x<.6.【解析】选B.f′(x)=(xcosx-sinx)′=cosx-xsinx-cosx=-xsinx,由函数是增加的,则f′(x)≥0,又各选项均为正实数区间,所以sinx≤0,故选B.7.【解析】选D.≧f(x)为(-≦,+≦)上的减函数,≨解得0<a≤2.8.【解析】选B.在f(x+4)=f(x)+2f(2)中,令x=-2得f(2)=f(-2)+2f(2),即f(2)=f(2)+2f(2),故f(2)=0.因此f(x+4)=f(x),即f(x)是以4为周期的函数.又2013=4×503+1,所以f(2013)=f(1)=f(-1)=2.9.【解析】选C.从定义域看,x≠-a,-1<-a<0,排除A,D;从值域看,y≠b,-1<b<0,排除B.10.【思路点拨】令g(x)=f(x)--,根据g(x)的单调性解不等式.【解析】选D.令g(x)=f(x)--, ≨g ′(x)=f ′(x)-<0,≨g(x)为减函数,g(1)=f(1)-1=0, ≨g(x)=f(x)--<0的解集为{x|x>1}. 11. 【答案】B【解析】由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数2p at bt c =++的图象上,所以930.7,1640.8,2550.5,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得0.2a =- , 1.5b =,2c =-,所以20.2 1.52p t t =-+- 215130.2()416t =--+,当153.754t ==时,p 取最大值,故此时的 3.75t =分钟为最佳加工时间 12. 【答案】D【解析】因为函数是减函数,所以01a << ,排除选项A 、B ;因为函数log ()(,a y x c a c =+为常数,其中0,1)a a >≠的图象是由log a y x = 得图像向左平移不到1个单位而得到,所以01c <<13.【解析】由f(x)=lnx+2x⇒f ′(x)=+2xln 2>0(x ∈(0,+≦)),所以f(x)在(0, +≦)上是增加的,又f(x 2+2)<f(3x)⇒0<x 2+2<3x ⇒x ∈(1,2). 答案:(1,2)14.【解析】令f(x)=lnx+2x-10, 则f(5)=ln 5>0,f(4)=ln 4-2<0, ≨4<x 0<5,≨不小于x 0的最小整数是5. 答案:515. 【答案】(,0)-∞【解析1】因为2()g x x = 在区间(,0)-∞上递减,()lg h x x =在区间(0,)+∞ 上递增,所以复合函数2()(())lg f x h g x x == 在区间(,0)-∞上递减【解析2】因为2()lg f x x =,所以222()ln10ln10x f x x x '==令()0f x '<,得0x <16.【解析】因为42a=,所以12a =由lg x a =,得x = 17. 解析:(1)由题意可设f (x )=a (x +1)(x -3), 将C (1,-8)代入得-8=a (1+1)(1-3),∴a =2. 即f (x )=2(x +1)(x -3)=2x 2-4x -6. (2)f (x )=2(x -1)2-8当x ∈[0,3]时,由二次函数图像知f (x )min =f (1)=-8,f (x )max =f (3)=0.(3)f (x )≥0的解集为{x |x ≤-1或x ≥3}. 18. 解析 (1)证明:方法一:设x 2>x 1>0, 则x 2-x 1>0,x 1x 2>0.∵f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫1a -1x 2-⎝ ⎛⎭⎪⎫1a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数.方法二:∵f (x )=1a -1x,∴f ′(x )=⎝ ⎛⎭⎪⎫1a -1x′=1x2>0,∴f (x )在(0,+∞)上为增函数.(2)∵f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2, 又f (x )在⎣⎢⎡⎦⎥⎤12,2上单调递增, ∴f ⎝ ⎛⎭⎪⎫12=12,f (2)=2,∴a =25.19. 解析:原方程可化为-(x -2)2+1=m (0<x <3),设y 1=-(x -2)2+1(0<x <3),y 2=m , 在同一坐标系中画出它们的图像(如图所示).由原方程在(0,3)内有唯一解,知y 1与y 2的图像只有一个公共点, 可见m 的取值范围是-3<m ≤0或m =1.20. 解析 (1)证明 函数f (x )为奇函数,则f (-x )=-f (x ),函数f (x )的图象关于x =1对称,则f (2+x )=f (-x )=-f (x ),所以f (4+x )=f [(2+x )+2]=-f (2+x )=f (x ),所以f (x )是以4为周期的周期函数.(2) 当x ∈[1,2]时,2-x ∈[0,1],又f (x )的图象关于x =1对称,则f (x )=f (2-x )=22-x-1,x ∈[1,2].(3) ∵f (0)=0,f (1)=1,f (2)=0,f (3)=f (-1)=-f (1)=-1又f (x )是以4为周期的周期函数.∴f (0)+f (1)+f (2)+…+f (2013) =f (2 012)+f (2 013)=f (0)+f (1)=1.21.【解析】(1)≧t=log 2x,≤x ≤4,≨log 2≤t ≤log 24即-2≤t ≤2. (2)f(x)=(log 2x)2+3log 2x+2,≨令t=log 2x, 则y=t 2+3t+2=(t+)2-, 当t=-,即log 2x=-,x=时,f(x)min =-.当t=2,即x=4时,f(x)max =12.22. 解析 (1)因为函数f (x )=ax 2+b ln x , 所以f ′(x )=2ax +b x.又函数f (x )在x =1处有极值12,所以⎩⎪⎨⎪⎧f 1=0,f 1=12.即⎩⎪⎨⎪⎧2a +b =0,a =12,解得⎩⎪⎨⎪⎧a =12,b =-1.(2)由(1)可知f (x )=12x 2-ln x ,其定义域是(0,+∞),且f ′(x )=x -1x =x +1x -1x .当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数y =f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞).。
第一章导数及其应用单元测试_A———高中数学选修2-2
第一章导数及其应用单元测试(A)参考答案
第 4 页 共 8 页
一、选择题(共 12 小题,每小题 5 分,共 60 分) 题号 1 2 3 4 5 6 答案 C A D A C B
第 3 页 共 8 页
21. (本小题满分 12 分)已知函数 f ( x) = x - 3 x.
3
(1)求曲线 y = f ( x ) 在点 x = 2 处的切线方程; (2)若过点 A(1, m) ( m ¹ -2) 可作曲线 y = f ( x ) 的三条切线,求实数 m 的取值范围.
a2 , g ( x ) = x + ln x ,其中 a > 0 . 22. (本小题满分14分)已知函数 f ( x ) = x + x (1)若 x = 1 是函数 h ( x ) = f ( x ) + g ( x ) 的极值点,求实数 a 的值;
第一章导数及其应用单元测试(A)
一、选择题(共 12 小题,每小题 5 分,共 60 分) 1. f ( x) = x , f '( x0 ) = 6 ,则 x0 = (
3
) D. ±1
b
A. 2 2.设连续函数
B. - 2
C. ± 2
f ( x) > 0 ,则当 a < b 时,定积分 òa f ( x )dx 的符号
2 3 21.解(1) f ¢( x ) = 3 x - 3, f ¢(2) = 9, f (2) = 2 - 3 ´ 2 = 2
………………………2 分
导数及其应用章末检测试题(理)
导数及其应用测试题一:选择题1.设函数0()f x x 在可导,则000()(3)limt f x t f x t t→+--=( )A .'0()f xB .'02()f x - C .'04()f x D .不能确定 2.(2007年浙江卷)设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )3.下列说法正确的是 ( )A .当f ′(x 0)=0时,则f(x 0)为f(x)的极大值B .当f ′(x 0)=0时,则f(x 0)为f(x)的极小值C .当f ′(x 0)=0时,则f(x 0)为f(x)的极值D .当f(x 0)为函数f(x)的极值且f ′(x 0)存在时,则有f ′(x 0)=0 4.已知函数x x f =)(,在0=x 处函数极值的情况是( )A .没有极值B .有极大值C .有极小值D .极值情况不能确定5.曲线321x y =在点⎪⎭⎫⎝⎛41,8R 的切线方程是( )A .02048=-+y xB .48200x y ++=C .48200x y -+=D .4200x y --=6.已知曲线)1000)(100(534002≤≤-++=x x x y 在点M 处有水平切线,则点M 的坐标是( ).A .(-15,76)B .(15,67)C .(15,76)D .(15,-76) 7.已知函数x x x f ln )(=,则( )A .在),0(+∞上递增B .在),0(+∞上递减C .在⎪⎭⎫ ⎝⎛e 1,0上递增 D .在⎪⎭⎫ ⎝⎛e 1,0上递减8.(2007年福建卷)已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( )A .()0()0f x g x ''>>,B .()0()0f x g x ''><,C .()0()0f x g x ''<>,D .()0()0f x g x ''<<,9.(2012年高考(湖北理))已知二次函数()y f x =的图象如图所示,则它与x 轴所围图形的面积为( )A .2π5B .43 C.32 D .π210.(2012年高考(福建理))如图所示,在边长为1的正方形OABC中任取一点P ,则点P 恰好取自阴影部分的概率为( )y x O y xO yx O yxO A . B . C . D .1- yxO11A .14 B .15 C .16 D .17二、填空题11.函数53)(23--=x x x f 的单调递增区间是_____________.12.若一物体运动方程如下:⎪⎩⎪⎨⎧≥-+<≤+=)2( )3()3(329)1( )30(2322t t t t s则此物体在1=t 和3=t 时的瞬时速度是________.13.求由曲线1,2,===y x e y x 围成的曲边梯形的面积为___________.14.(2006年湖北卷)半径为r 的圆的面积S(r)=πr 2,周长C(r)=2πr ,若将r 看作(0,+∞)上的变量,则(πr 2)’=2πr ○1,○1式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数。
高中数学导数及其应用多选题测试试题含答案
高中数学导数及其应用多选题测试试题含答案一、导数及其应用多选题1.已知函数()f x 对于任意x ∈R ,均满足()()2f x f x =-.当1x ≤时()ln ,01,0x x x f x e x <≤⎧=⎨≤⎩,若函数()()2g x m x f x =--,下列结论正确的为( )A .若0m <,则()g x 恰有两个零点B .若32m e <<,则()g x 有三个零点 C .若302m <≤,则()g x 恰有四个零点 D .不存在m 使得()g x 恰有四个零点 【答案】ABC 【分析】设()2h x m x =-,作出函数()g x 的图象,求出直线2y mx =-与曲线()ln 01y x x =<<相切以及直线2y mx =-过点()2,1A 时对应的实数m 的值,数形结合可判断各选项的正误. 【详解】由()()2f x f x =-可知函数()f x 的图象关于直线1x =对称. 令()0g x =,即()2m x f x -=,作出函数()f x 的图象如下图所示:令()2h x m x =-,则函数()g x 的零点个数为函数()f x 、()h x 的图象的交点个数,()h x 的定义域为R ,且()()22h x m x m x h x -=--=-=,则函数()h x 为偶函数,且函数()h x 的图象恒过定点()0,2-,当函数()h x 的图象过点()2,1A 时,有()2221h m =-=,解得32m =. 过点()0,2-作函数()ln 01y x x =<<的图象的切线, 设切点为()00,ln x x ,对函数ln y x =求导得1y x'=, 所以,函数ln y x =的图象在点()00,ln x x 处的切线方程为()0001ln y x x x x -=-, 切线过点()0,2-,所以,02ln 1x --=-,解得01x e=,则切线斜率为e , 即当m e =时,函数()y h x =的图象与函数()ln 01y x x =<<的图象相切. 若函数()g x 恰有两个零点,由图可得0m ≤或m e =,A 选项正确; 若函数()g x 恰有三个零点,由图可得32m e <<,B 选项正确; 若函数()g x 恰有四个零点,由图可得302m <≤,C 选项正确,D 选项错误. 故选:ABC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数 D.若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.3.对于函数2ln ()xf x x =,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .fff <<D .若()21f x k x<-在()0,∞+上恒成立,则2e k >【答案】ACD 【分析】求得函数的导数312ln ()-'=xf x x ,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x >()0f x >,可判定B 不正确;由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判定C 正确;分离参数得到()221ln 1x k f x x x+>+=在()0,∞+上恒成立,令()2ln 1x g x x+=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】由题意,函数2ln ()x f x x =,可得312ln ()(0)xf x x x -'=>,令()0f x '=,即312ln 0xx-=,解得x =当0x <<()0f x '>,函数()f x 在上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln ln 2ln ,242f f ππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以ff f <<,所以C 正确;由()21f x k x <-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立, 设()2ln 1x g x x +=,则()32ln 1x g x x --'=, 令()0g x '=,即32ln 10x x--=,解得x =所以当0x <<()0g x '>,函数()g x在上单调递增;当x >()0g x '<,函数()g x在)+∞上单调递减,所以当x =()g x取得最大值,最大值为22e eg e =-=, 所以2ek >,所以D 正确. 故选:ACD. 【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.4.已知0a >,0b >,下列说法错误的是( ) A .若1a b a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立 D .2ln a a b b e e-<恒成立 【答案】AD 【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误.【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b 设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b += 此时1+→a b ,故A 错误. B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确C. ()ln ln ln 1-≥-⇔≥-a b a a b a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a bb a,C 正确D. max 1=⇒=x x y y e e当且仅当1x =; min 1ln =⇒=-y x x y e 当且仅当1=x e;所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误.故选:AD 【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.5.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( ) A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减 B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈【答案】AC 【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax=-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2xm x+=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln xf x x-'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确; 对于B 选项,由于函数()ln xf x x=在区间(),e +∞上单调递减,且4e π>>, 所以,()()4f f π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误; 对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-,则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立,即1ln xa x+≥对任意的()0,x ∈+∞恒成立, 令()1ln x t x x +=,其中0x >,()2ln xt x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增; 当1x >时,()0t x '<,此时函数()t x 单调递减.所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-,由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2xm x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点, 当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x =+->,分析其单调性和最值,由此确定出1ln 10nn a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果.【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确;B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=,因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10nna a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>,所以112n n n a a a ++>,所以D 错误. 故选:AB. 【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.7.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( ) A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln xm x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln xg x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增; 当x e >时,()0g x '<,此时函数()g x 单调递减. 所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确;当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<; 函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>. 由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-. 所以,21x x -的值随m 的增大而减小,B 选项正确. 故选:C. 【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.8.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。
导数的计算及其应用测试题
导数的计算及其应用测试题时间:120分钟 满分:150分一、选择题(每小题5分,共50分)1.若曲线y =x 2+ax +b 在点(0,b)处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 2.使函数f(x)=x +2cosx 在[0,π2]上取最大值的x 为( )A .0 B.π6 C.π3 D.π23.若f(x)满足f(x)=13x 3-f ′(1)x 2-x ,则f ′(1)的值为( )A .0B .2C .1D .-14.函数f(x)=ax 3-x 2+x -5在(-∞,+∞)上单调递增,则实数a 的取值范围是( ) A .[0,+∞) B .(0,+∞) C .[13,+∞) D .(13,+∞)5.设f ′(x)是函数f(x)的导函数,将y =f(x)和y =f ′(x)的图象画在同一个直角坐标系中,不可能正确的是( )6.甲、乙两个物体沿直线运动的方程分别是s 1=t 3-2t 2+t 和s 2=3t 2-t -1,则在t =2秒时两个物体运动的瞬时速度的大小关系是( )A .甲大B .乙大C .相等D .无法比较7.设函数y =xsinx +cosx 的图象上的点(x ,y)处的切线斜率为k ,若k =g(x),则函数k =g(x)的图象大致为( )8.若a>2,则函数f(x)=13x 3-ax 2+1在区间(0,2)上恰好有( )A .0个零点B .1个零点C .2个零点D .3个零点9.设函数f(x)=g(x)+x 2,曲线y =g(x)在点(1,g(1))处的切线方程为y =2x +1,则曲线y =f(x)在点(1,f(1))处的切线的斜率为( )A .4B .-14C .2 D.1210.已知函数f(x)=x 3+bx 2+cx +d(b ,c ,d 为常数),当k ∈(-∞,0)∪(4,+∞)时,f(x)-k =0只有一个实数根;当k ∈(0,4)时,f(x)-k =0有3个相异实根,现给出下列4个命题:①函数f(x)有2个极值点;②函数f(x)有3个极值点;③f(x)=4和f ′(x)=0有一个相同的实根;④f(x)=0和f ′(x)=0有一个相同的实根.其中正确命题的个数是( )A .1B .2C .3D .4二、填空题(每小题4分,共28分)11.已知函数f(x)=kcosx 的图象经过点P(π3,1),则函数图象上过点P 的切线斜率等于________.12.若f(x)=x 3+3ax 2+3(a +2)x +1没有极值,则a 的取值范围为________.13.函数y =x -1x 2的导数为________. 14、.设f(x)是偶函数.若曲线y =f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在点(-1,f(-1))处的切线斜率为________.15.函数y =2x 2-lnx(x>0)的单调增区间为________.16.设a ∈R ,函数f(x)=x 3+ax 2+(a -3)x 的导函数是f ′(x),若f ′(x)是偶函数,则曲线y =f(x)在原点处的切线方程为________.17、.在一块正三角形的铁板的三个角上分别剪去三个全等的四边形,然后折成一个正三棱柱,尺寸如图所示.当x 为________时,正三棱柱的体积最大,最大值是________.三、解答题(共72分)18.(14分)设抛物线C 1:y =x 2-2x +2与抛物线C 2:y =-x 2+ax +b 在它们的一个交点处的切线互相垂直.求a ,b 之间的关系.19.(14分)已知某工厂生产x 件产品的成本为C =25 000+200x +140x 2(元),问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?20.(14分)已知函数f(x)=ax -6x 2+b 的图象在点M(-1,f(-1))处的切线方程为x +2y +5=0,求函数y =f(x)的解析式.21.(15分)已知函数f(x)=x 3+2x 2+x -4,g(x)=ax 2+x -8. (1)求函数f(x)的极值;(2)若对任意的x ∈[0,+∞)都有f(x)≥g(x),求实数a 的取值范围.22.(15分)已知函数f(x)=x 3-ax 2-3x.(1)若f(x)在区间[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =-13是f(x)的极值点,求f(x)在[1,a]上的最大值;(3)在(2)的条件下,是否存在实数b ,使得函数g(x)=bx 的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b 的取值范围;若不存在,试说明理由.答案解析1、解析:y ′=2x +a ,y ′|x =0=2×0+a =1.∴a =1,又∵(0,b)在直线x -y +1=0上,∴b =1.答案:A2、解析:f ′(x)=1-2sinx ,当f ′(x)=0时,解得x =π6,从而可以求得函数f(x)在[0,π2]上的递增区间为[0,π6],递减区间为[π6,π2],所以f(x)取最大值时x 为π6. 答案:B3、解析:f ′(x)=x 2-2xf ′(1)-1,∴f ′(1)=1-2f ′(1)-1,∴f ′(1)=0. 答案:A4、解析:由已知可得f ′(x)=3ax 2-2x +1≥0在(-∞,+∞)上恒成立,所以⎩⎪⎨⎪⎧a>0Δ=4-12a ≤0,解得a ≥13.答案:C5、解析:D 项中如果上面的图象为y =f ′(x),下面的图象为y =f(x),则由f ′(x)≥0,y =f(x)递增,而图中f(x)不单调递增;同理可以推得如果上面的图象为y =f(x),下面的图象为y =f ′(x),也不成立. 答案:D6、解析:v 1=s 1′=3t 2-4t +1,v 2=s 2′=6t -1,所以在t =2秒时两个物体运动的瞬时速度大小分别是5和11,故乙的瞬时速度大. 答案:B7、解析:y ′=sinx +xcosx -sinx =xcosx ,则g(x)=xcosx ,而g(-x)=-xcos(-x)=-g(x), ∴g(x)为奇函数,图象关于(0,0)对称.而x >0,接近于0时,g(x)>0,∴B 项正确. 答案:B8、解析:f ′(x)=x 2-2ax ,由a>2,所以在(0,2a)上,f(x)单调递减,所以f(x)在区间(0,2)也是单调递减.因为f(0)=1,f(2)=83-4a +1=11-12a 3<0,根据根的存在性定理知道在区间(0,2)上有1个零点.答案:B9、解析:由已知g ′(1)=2,而f ′(x)=g ′(x)+2x ,∴f ′(1)=g ′(1)+2=4.即f(x)在(1,f(1))处的切线的斜率为4.答案:A10、解析:利用数形结合可知①③④正确.答案:C11、解析:由已知f(π3)=kcos π3=1,∴k =2,∴f(x)=2cosx ,∴f ′(x)=-2sinx ,∴过点P 处的切线斜率f ′(π3)=-2sin π3=- 3.答案:-312、解析:f ′(x)=3x 2+6ax +3(a +2),当原函数没有极值时,Δ=36a 2-36(a +2)≤0,解得-1≤a ≤2.答案:[-1,2]13、解析:y ′=(x -1)′x 2-(x -1)·(x 2)′x 4=x 2-2x (x -1)x 4=x 2-2x 2+2x x 4=-x 2+2xx 4=2-xx 3. 答案:y ′=2-xx314、解析:由f(x)是偶函数,∴f(x)的图象关于y 轴对称.从而由已知得在(-1,f(-1))处的切线斜率为-1.答案:-115、解析:y ′=4x -1x =4x 2-1x >0,解得x>12或x<-12(舍),所以递增区间为(12,+∞).答案:(12,+∞)16、解析:f ′(x)=3x 2+2ax +a -3,当f ′(x)是偶函数时,a =0,∴f ′(x)=3x 2-3,∴f ′(0)=-3.即(0,0)处的切线斜率为-3,切线方程为y =-3x.答案:y =-3x.17、解析:由图可知体积y =34(a -2x)2×33x =14x(a -2x)2(0<x<a 2),所以y ′=14(a -2x)(a -6x)=0时,解得x =a 6或x =a 2(舍),所以当x =a6时取最大值,且为a 354.答案:a 6 a 35418、解:设两抛物线的交点为M(x 0,y 0).由题意知x 20-2x 0+2=-x 20+ax 0+b , 整理得2x 20-(2+a)x 0+2-b =0,①由导数可知抛物线C 1、C 2在交点M 处的切线斜率为 k 1=2x 0-2,k 2=-2x 0+a. ∵两切线垂直, ∴k 1k 2=-1.即(2x 0-2)(-2x 0+a)=-1, 整理得2[2x 20-(2+a)x 0]+2a -1=0,②联立①②消去x 0,得a +b =52.19、解:(1)设平均成本为y 元,则y =25 000+200x +140x 2x =25 000x +200+x40,y ′=-25 000x 2+140,令y ′=0得x =1 000.当在x ∈(0,1 000)时y ′<0; 在x ∈(1 000,+∞)时y ′>0,故当x =1 000时,y 取最小值,因此,要使平均成本最低,应生产1 000件产品.(2)利润函数为S =500x -(25 000+200x +x 240)=300x -25 000-x 240,S ′=300-x20,令S ′=0,得x =6 000,当在x ∈(0,6 000)时S ′>0;在x ∈(6 000,+∞)时S ′<0,故当x=6 000时,S 取最大值,因此,要使利润最大,应生产6 000件产品.20、解:由函数f(x)的图象在点M(-1,f(-1))处的切线方程为x +2y +5=0知-1+2f(-1)+5=0,即f(-1)=-2,f ′(-1)=-12.∵f ′(x)=a (x 2+b )-2x (ax -6)(x 2+b )2,∴⎩⎪⎨⎪⎧-a -61+b =-2a (1+b )+2(-a -6)(1+b )2=-12,即⎩⎪⎨⎪⎧a =2b -4a (1+b )-2(a +6)(1+b )2=-12.解得a =2,b =3(∵b +1≠0,∴b =-1舍去). 所以所求的函数解析式是f(x)=2x -6x 2+3. 21、解:(1)f ′(x)=3x 2+4x +1,令f ′(x)=0,解得:x 1=-1或x 2=-13.当x 变化时,f ′(x),f(x)的变化情况如下:x,(-∞,-1),-1,(-1,-13),-13,(-13,+∞)f ′(x),+,0,-,0,+f(x),增函数,极大值,减函数,极小值,增函数∴当x =-1时,f(x)取得极大值为-4;当x =-13时,f(x)取得极小值为-11227.(2)设F(x)=f(x)-g(x)=x 3+(2-a)x 2+4.F(x)≥0在[0,+∞)恒成立 F(x)min ≥0,x ∈[0,+∞). ①若2-a ≥0,显然F(x)min =4>0; ②若2-a<0,F ′(x)=3x 2+(4-2a)x ,令F ′(x)=0,解得x =0,x =2a -43,当0<x<2a -43时,F ′(x)<0.当x>2a -43时,F ′(x)>0.∴当x ∈[0,+∞),F(x)min =F(2a -43)≥0,即(2a -43)3+(2-a)(2a -43)2+4≥0,整理得-4(a -2)327+4≥0. 解不等式得:a ≤5,∴2<a ≤5. 综上所述a 的取值范围为(-∞,5].22、解:(1)f ′(x)=3x 2-2ax -3. ∵f(x)在[1,+∞)上是增函数, ∴在[1,+∞)上恒有f ′(x)≥0,即3x 2-2ax -3≥0在[1,+∞)上恒成立,则必有a3≤1且f ′(1)=-2a ≥0,∴a ≤0.(2)依题意,f ′(-13)=0,即13+23a -3=0,∴a =4,∴f(x)=x 3-4x 2-3x.令f ′(x)=3x 2-8x -3=0,得x 1=-13,x 2=3,则当x 变化时,f ′(x)、f(x)的变化情况如下表:x,1,(1,3),3,(3,4),4f ′(x),,-,0,+ f(x),-6, ,-18, ,-12∴f(x)在[1,4]上的最大值是f(1)=-6.(3)函数g(x)=bx 的图象与函数f(x)的图象恰有3个交点,即方程x 3-4x 2-3x =bx 恰有3个不等实根,∴x 3-4x 2-3x -bx =0,∴x =0是其中一个根,∴方程x 2-4x -3-b =0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16+4(3+b )>0,-3-b ≠0, ∴b >-7且b ≠-3,∴存在符合条件的实数b ,b 的范围为(-7,-3)∪(-3,+∞).。
高中数学选修2第五章 一元函数的导数及其应用 单元测试(含解析)
高中数学选修2第五章一、单选题1.现有一球形气球,在吹气球时,气球的体积V (单位:L )与直径d (单位:dm )的关系式为V =πd 36,当d =2dm 时,气球体积的瞬时变化率为( )A .2πB .πC .π2D .π42.若点P 是曲线y =lnx ―x 2上任意一点,则点P 到直线l :x +y ―6=0的距离的最小值为( )A .22B .32C .522D .9223.函数f (x )=13a x 3+12a x 2―2ax +2a +1的图象经过四个象限的一个充分必要条件是( )A .―43<a <―13B .―1<a <―12C .―2<a <0D .―65<a <―3164.根据公式sin3α=3sin α―4sin 3α,sin10°的值所在的区间是( )A .(17,16)B .(16,15)C .(15,14)D .(14,13)5.已知函数f (x )=ax +ln a ,g (x )=x +e x ―ln x ,若关于x 的不等式f (x )>g (x )在区间(0,+∞)内有且只有两个整数解,则实数a 的取值范围为( )A .(e ,e 2]B .(e ,e 22]C .(e 2,e 3]D .(e 22,e 33]6.设函数 f (x )=e xx―t (ln x +x +2x ) 恰有两个极值点,则实数 t 的取值范围是( )A .(―∞,12]B .(12,+∞)C .(12,e 3)∪(e3,+∞)D .(―∞,12]∪(e3,+∞)7.已知 f (x ) 是定义在 R 上的奇函数, f (―1)=0 ,当 x <0 时, x f ′(x )+f (x )<0 ,则使得 f (x)>0 成立的 x 的取值范围是( ) A .(―∞,―1)∪(0,1)B .(―1,0)∪(1,+∞)C .(―∞,―1)∪(―1,0)D .(0,1)∪(1,+∞)8.函数 f (x )=|x |ex ,方程 [f (x )]2―(m +1)f (x )+1―m =0 有4个不相等实根,则 m 的取值范围是( )A .(e 2―e e 2+e,1)B .(e 2―e +1e 2+e ,+∞)C .(e 2―e +1e 2+e ,1)D .(e 2―e e 2+e,+∞)二、多选题9.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充分不必要条件是( )A.0≤a≤21B.1≤a≤20C.a<0D.a=21 10.已知函数f(x)=e xx2―x+1,则下列结论正确的是( )A.函数f(x)存在极大值和极小值B.函数f(x)不存在最小值与最大值C.当x∈[0,3]时,函数f(x)最大值为eD.当x∈[12,e]时,函数f(x)最小值为e2311.已知函数f(x)=14x 4+12a x2+ax,则下面说法正确的是( )A.存在实数a,使f(x)有最小值且最小值小于0B.对任意实数a,f(x)有最小值且最小值不小于0C.存在正实数a和实数x0,使f(x)在(―∞,x0)上递减,在(x0,+∞)上递增D.对任意负实数a,存在实数x0,使f(x)在(―∞,x0)上递减,在(x0,+∞)上递增12.若f(x)图象上存在两点A,B关于原点对称,则点对[A,B]称为函数f(x)的“友情点对”(点对[A,B]与[B,A]视为同一个“友情点对”)若f(x)={x3e x,x≥0ax2,x<0恰有两个“友情点对”,则实数a的值可以是( )A.0B.―12018C.―1eD.―12021三、填空题13.函数f(x)=12x―x3在区间[―3,3]的最小值是 .14.设曲线y=e ax+sine在点(0,1)处的切线与直线x+2y+1=0垂直,则a= .15.关于x的方程kx―lnxx =2在区间[1e,e]上有两个实根,则实数k的最小值是 .16.已知函数f(x)=x3―a e x,若函数f(x)有三个极值点x1,x2,x3(x1<x2<x3),若x3≥3x2,则实数a的取值范围是 .四、解答题17.求下列函数的导数:(1)f(x)=(1+sin x)(1―4x);(2)f(x)=xx+1―2x.18.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.19.已知函数f (x )=x 3+a x 2+x (a ∈R )(1)若函数f (x )存在两个极值点,求a 的取值范围;(2)若f (x )≥xlnx +x 在(0,+∞)恒成立,求a 的最小值.20.设f n (x )=x+x 2+…+x n ﹣1,x≥0,n ∈N ,n≥2.(Ⅰ)求f n ′(2);(Ⅱ)证明:f n (x )在(0,23)内有且仅有一个零点(记为a n ),且0<a n ﹣12<13(23)n .21.已知函数f (x )=lnx+a (x 2﹣3x+2),其中a 为参数.(1)当a=0时,求函数f (x )在x=1处的切线方程; (2)讨论函数f (x )极值点的个数,并说明理由;(3)若对任意x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.22.设函数 f (x )=1x ―eex ,g (x )=a (x 2―1)―lnx ( a ∈R , e 为自然对数的底数).(1)证明:当 x >1 时, f (x )>0 ; (2)讨论 g (x ) 的单调性;(3)若不等式 f (x )<g (x ) 对 x ∈(1,+∞) 恒成立,求实数 a 的取值范围.参考答案1.A2.B解:已知函数y=lnx―x2,可得y′=1x―2x,(x>0),直线l:x+y―6=0的斜率为-1,令y′=―1,即1x―2x=―1,可得(x―1)(2x+1)=0,因为x>0,可得x=1,则y=―1,即平行于直线l:x+y―6=0且与曲线y=lnx―x2相切的切点坐标为P(1,―1),由点到直线的距离公式,可得点P到直线l的距离为d=|1―1―6|2=32.3.D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数及其应用测试题一、选择题(本大题共12小题,第小题5分,共60分.在每小题给出的四个选项中,只有一项符是合题目要求的.)1.下列各式正确的是( )A .(sin a )′=cos a (a 为常数)B .(cos x )′=sin xC .(sin x )′=cos xD .(x -5)′=-15x -62.函数y =x 2(x -3)的减区间是( )A .(-∞,0)B .(2,+∞)C .(0,2)D .(-2,2)3.曲线y =4x -x 3在点(-1,-3)处的切线方程是( )A .y =7x +4B .y =7x +2C .y =x -4D .y =x -2 4.若函数f (x )=x 3+ax 2-9在x =-2处取得极值,则a =( )A .2B .3C .4D .5 5.函数y =13x 3+x 2-3x -4在[-4,2]上的最小值是( )A .-173 B.163 C .-643 D .-1136.若曲线y =1x在点P 处的切线斜率为-4,则点P 的坐标是( )A.⎝⎛⎭⎫12,2B.⎝⎛⎭⎫-12,-2或⎝⎛⎭⎫12,2C.⎝⎛⎭⎫-12,-2D.⎝⎛⎭⎫12,-2 7.已知函数y =f (x ),其导函数y =f ′(x )的图象如下图所示,则y =f (x )( )A .在(-∞,0)上为减函数B .在x =0处取极小值C .在(4,+∞)上为减函数D .在x =2处取极大值8.若f (x )=-x 2+2ax 与g (x )=ax +1,在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]9.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱底面周长与高的比为( )A .2∶1B .1∶πC.1∶2 D .2∶π 10.已知对任意实数x ,有()()f x f x -=-,()()g x g x -=,且0x >时,()0f x '>,()0g x '>,则0x <时( )A.()0f x '>,()0g x '> B.()0f x '>,()0g x '< C.()0f x '<,()0g x '>D.()0f x '<,()0g x '<11.已知f(2)=-2,f ′(2)=g(2)=1,g ′(2)=2,则函数()()g x f x 在x=2处的导数值为( )A.-54 B.54 C.-5 D.5 12.对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1)C. f (0)+f (2)≥2f (1)D. f (0)+f (2)>2f (1)二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上) 13.函数f (x )=e x +e -x在(0,+∞)上的单调性是________.14.若函数f (x )=x 3+x 2+mx +1是R 上的单调递增函数,则m 的取值范围是________.15.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________. 16.若曲线y =x 3-2ax 2+2ax 上任意点处的切线的倾斜角都是锐角,则整数a 的值为__________. 三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17. (10分)如果函数3()f x ax x =+恰有三个单调区间,试确定实数a 的取值范围,并求出这三个单调区间.18.(12分)设函数f (x )=x 3-3ax +b (a ≠0).(1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a ,b 的值; (2)求函数f (x )的单调区间和极值点.19.(12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值.(1) 求a 、b 的值与函数f (x )的单调区间(2) 若对x ∈〔-1,2〕,不等式f (x )<c 2恒成立,求c 的取值范围.20.(12分)设函数f(x)=x+ax 2+blnx,曲线y=f(x)过P (1,0),且在P 点处的切线斜率为2.(1)求a,b 的值;(2)证明:f(x)≤2x-2.21.(12分)已知某工厂生产x 件产品的成本为C=25 000+200x+140x 2(元),问:(1)要使平均成本最低,应生产多少件产品?(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?22.(本小题满分14分)已知函数f (x )=-x 3+ax 2+b (a ,b ∈R ).(1)若a =0,b =2,求F (x )=(2x +1)f (x )的导数;(2)若函数f (x )在x =0,x =4处取得极值,且极小值为-1,求a ,b 的值;(3)若x ∈[0,1],函数f (x )的图象上的任意一点的切线斜率为k ,试讨论k ≥-1成立的充要条件.导数及其应用测试题答案及解析一.1-5:C,C,D,B,A,B ;7-12:D,D,A,B,A,C 二.13.增函数 14.m ≥13 15.32. 16. a =1.三.解答题 17. 解析:2()31f x a '=+若0a >,则()0,f x x R '>∈,此时()f x 只有一个单调区间,与题设条件矛盾; 若0a=,则()10f x '=>,此时()f x 也只有一个单调区间,矛盾;若0,()3()()33a f x a x x a a<=+---,此时()f x 恰有三个单调区间,其中减区间为(,)3a -∞--和(,)3a +∞-,增区间为(,)33a a--- 18.解析:(1)f ′(x )=3x 2-3a (a ≠0),因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以⎩⎨⎧f ′2=0,f 2=8.即⎩⎨⎧34-a =0,8-6a +b =8.解得a =4,b =24.(2)f ′(x )=3(x 2-a )(a ≠0),当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增,此时函数f (x )没有极值点; 当a >0时,由f ′(x )=0,得x =±a ,当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时,x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点. 19.解析:(1)f (x )=x 3+ax 2+bx +c ,f '(x )=3x 2+2ax +b由f '(23-)=124a b 093-+=,f '(1)=3+2a +b =0得a =12-,b =-2 f '(x )=3x 2-x -2=(3x +2)(x -1),函数f (x )的单调区间如下表:x(-∞,-23) -23(-23,1) 1 (1,+∞)f '(x ) +0 -0 +f (x )↑ 极大值↓ 极小值↑所以函数f (x )的递增区间是(-∞,-3)与(1,+∞),递减区间是(-3,1) (2)f (x )=x 3-12x 2-2x +c ,x ∈〔-1,2〕,当x =-23时,f (x )=2227+c为极大值,而f (2)=2+c ,则f (2)=2+c 为最大值。
要使f (x )<c 2(x ∈〔-1,2〕)恒成立,只需c 2>f (2)=2+c ,解得c <-1或c >220. 解析:(1)f ′(x)=1+2ax+b x .由已知条件得()()f 10f 12=⎧⎪⎨'=⎪⎩,即1a 012a b 2+=⎧⎨++=⎩.解得a=-1,b=3.(2)f(x)的定义域为(0,+∞),由(1)知f(x)=x-x 2+3lnx.设g(x)=f(x)-(2x-2)=2-x-x 2+3lnx,则g ′(x)=-1-2x+3x=-()()x 12x 3x -+. 当0<x<1时,g ′(x)>0;当x>1时,g ′(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减. 而g(1)=0, 故当x>0时,g(x)≤0, 即f(x)≤2x-2.21. 解析:(1)设平均成本为y 元,则2125 000200x x25 000x 40y 200xx 40++==++,∴225 0001y ,x 40-'=+令y ′=0得x=1 000.当在x=1 000附近左侧时,y ′<0; 在x=1 000附近右侧时,y ′>0,故当x=1 000时,y 取极小值,而函数只有一个点使y ′=0,故函数在该点处取得最小值,因此,要使平均成本最低,应生产1 000件产品.(2)利润函数为S=500x-(25 000+200x+ 2x 40)=300x-25 000- 2x 40,S ′=300-x20,令S ′=0,得x=6 000,当在x=6 000附近左侧时,S ′>0;在x=6 000附近右侧时,S ′<0,故当x=6 000时,S 取极大值,而函数只有一个点使S ′=0,故函数在该点处取得最大值,因此,要使利润最大,应生产6 000件产品.22.解析: (1)F (x )=-2x 4-x 3+4x +2,∴F ′(x )=-8x 3-3x 2+4.(2)令f ′(x )=-3x 2+2ax =0得x =0或x =2a 3.∴2a3=4得a =6, 当x <0,f ′(x )<0,当0<x <4时,f ′(x )>0, 故当x =0时,f (x )达到极小值f (0)=b ,∴b =-1. (3)当x ∈[0,1]时,-3x 2+2ax ≥-1恒成立. 即g (x )=3x 2-2ax -1≤0. 对一切x ∈[0,1]恒成立, 只需⎩⎨⎧g 0=-1≤0g1=2-2a ≤0,即a ≥1.反之,当a ≥1时,g (x )≤0对x ∈[0,1]恒成立. ∴a ≥1是k ≥-1成立的充要条件..。