压电式超声波发生器原理

合集下载

超声波焊接机的工作原理

超声波焊接机的工作原理

超声波焊接机的工作原理超声波焊接机是一种常用于金属、塑料等材料的焊接工艺,其工作原理是利用超声波的振动能量将两个或者多个材料加热并连接在一起。

下面将详细介绍超声波焊接机的工作原理。

1. 超声波发生器超声波焊接机的核心部件是超声波发生器。

超声波发生器产生高频电信号,并将其转换成机械振动。

通常采用的是压电陶瓷材料,当施加电场时,压电陶瓷会发生机械振动,产生超声波。

2. 振动系统振动系统由超声波发生器和振动换能器组成。

超声波发生器将电信号转换成机械振动,然后通过振动换能器将振动传递到焊接头部。

3. 焊接头部焊接头部是超声波焊接机的关键部件。

它由振动换能器、焊接夹具和焊接角组成。

振动换能器将机械振动传递给焊接夹具,焊接夹具通过焊接角将振动传递给工件。

4. 工件准备在进行超声波焊接之前,需要对工件进行准备。

通常需要清洁工件表面,确保没有杂质和油脂。

同时,还需要对工件进行定位,以确保焊接的准确性和稳定性。

5. 焊接过程当超声波焊接机开始工作时,超声波发生器会产生高频电信号,并将其转换成机械振动。

振动系统将机械振动传递给焊接头部,焊接头部通过焊接角将振动传递给工件。

在焊接过程中,焊接头部施加压力并振动,使工件表面产生磨擦热。

磨擦热使工件表面温度升高,塑料材料软化并熔化。

当达到一定的温度和压力时,焊接头部住手振动,保持一段时间,使熔化的塑料冷却和凝固,从而实现焊接。

6. 焊接质量控制超声波焊接机通常具有焊接质量控制功能,以确保焊接质量。

通过对焊接过程中的振动幅度、压力、时间等参数进行监控和调整,可以控制焊接的质量和稳定性。

总结:超声波焊接机通过利用超声波的振动能量将两个或者多个材料加热并连接在一起。

其工作原理是通过超声波发生器产生高频电信号,并将其转换成机械振动。

振动系统将机械振动传递给焊接头部,焊接头部通过焊接角将振动传递给工件。

在焊接过程中,焊接头部施加压力并振动,使工件表面产生磨擦热,从而实现焊接。

超声波焊接机具有焊接质量控制功能,可以通过监控和调整振动幅度、压力、时间等参数来控制焊接的质量和稳定性。

压电超声波原理

压电超声波原理

压电超声波原理
压电超声波原理指的是通过对压电材料施加电压,使其发生变形,从而产生超声波的方法。

压电材料被广泛应用于超声波传感器、超声波发生器等领域。

压电效应是指某些晶体材料在受到机械应力或电场作用下,会产生相应的电荷分布和电势差的现象。

在压电材料中,晶体结构呈现了一个非对称的电荷分布,在应变或电压的作用下,晶体会发生变形,而该变形又会引起介质的机械应力和电场的变化。

这种效应是由于晶体内部正负离子的重新排布,从而产生一个分布不均匀的电场。

当一个交变电压施加到压电材料上时,由于材料的压电效应,材料会以相同频率和幅度的振动。

这种振动称为压电振动,可以通过晶体的谐振频率和谐振模式来描述。

通过选择合适的材料和尺寸,可以使压电振动的频率达到超声波的频率范围。

压电超声波在物体中的传播是通过分子间的弹性力进行的。

当超声波遇到物体的边界或界面时,一部分能量会被反射,另一部分能量会被传播到物体内部。

传播过程中,超声波会在不同的介质之间发生反射、折射、散射等现象,这些现象使得我们可以通过超声波来获取物体的结构信息。

通过利用压电超声波的原理,可以实现多种应用,如超声波成像、材料检测、流体检测等。

压电超声波的传播特性和材料的选择对应用效果有重要影响,因此对于超声波原理的研究和改进也变得尤为重要。

超声波的发射原理

超声波的发射原理

超声波的发射原理
超声波是一种机械波,它是通过声源发射出去的,具体的发射原理如下:
1. 超声波发射装置:超声波发射器通常由一个压电陶瓷晶体构成。

这个晶体可以通过施加电压而发生振动,在振动过程中产生声波。

2. 压电效应:压电晶体具有压电效应,也就是当施加电压时会发生形变。

当电压施加到压电晶体上时,晶体会振动,产生压力波,从而生成超声波。

3. 振动频率控制:通过改变施加到压电晶体的电压,可以控制晶体的振动频率,进而控制超声波的频率。

一般来说,超声波的频率在20kHz到10MHz之间。

4. 超声波传播:振动的压电晶体会使周围的介质产生振动,从而形成超声波。

超声波在介质中的传播速度取决于介质的密度和弹性模量。

5. 接收器:超声波在被传播的过程中,可以被接收器接收到。

接收器通常也是一个压电陶瓷晶体,当超声波到达时,晶体会产生电荷,这个电荷可以通过放大电路来转换成电信号。

总结起来,超声波的发射原理是通过压电效应产生振动的压电晶体,通过改变电压控制振动频率,并在介质中产生压力波从而形成超声波。

超声波可以被接收器接收并转换为电信号。

传感器课件-压电式传感器与超声波传感器

传感器课件-压电式传感器与超声波传感器
界条件的变化小,在锆钛酸铅的基方中添加一两种微 量元素,可以获得不同性能的PZT材料。
( 3 ) 铌 镁 酸 铅 Pb(MgNb)O3-PbTiO3-PbZrO3 压 电 陶 瓷 (PMN)
具有较高的压电系数,在压力大至700kg/cm2仍能 继续工作,可作为高温下的力传感器。
返回
上一页
下一页
18
返回
上一页
下一页
20
1. 压电元件的等效电路
压电传感器在受外力作用时,在两个电极 表面将要聚集电荷,且电荷量相等,极性相 反。这时它相当于一个以压电材料为电介质 的电容器,其电容量为
Ca
r0S
ε0为真空介电常数;ε为压电材料的相对介电常数; δ为压电元件的厚度;S为压电元件极板面积。
21
Ca
s
h
r0s
h
返回
上一页
下一页
U Q Ca
22
压电式传感器的等效电路
(a)等效为一个电荷源Q与一个电容Ca并联的电路 (b) 等效成一个电源U = Q/Ca 和一个电容Ca的串联电路
返回
上一页
下一页
23
两个压电片的联结方式
(a) “并联”,Q’=2Q,U’=U,C’=2C 并联接法输出电荷大,本身电容大,时间常数大, 适宜用在测量慢变信号并且以电荷作为输出量的地方, (b) “串联” Q’=Q,U’=2U,C’=C/2 而串联接法输出电压大,本身电容小。 适宜用于以电压作输出信号,且测量电路输入阻抗很高的地方。
(1+K)Cf>>(Ca+Cc+Ci)
返回
上一页
下一页
35
电荷放大器能将压电传感器输出的电荷
转换为电压(Q/U转换器),但并无放大 电荷的作用,只是一种习惯叫法。

超声波水雾发生器原理

超声波水雾发生器原理

超声波水雾发生器原理
超声波水雾发生器利用超声波的振动作用原理产生水雾。

超声波发生器通过压电晶体的振动使水产生微小的震动。

当超声波频率的声波传递到水中时,水分子受到振动力而产生微小的位移。

随着超声波的传播,水分子之间的相互作用也会导致水分子之间产生相互碰撞。

这些碰撞会使水分子的能量增加,增加到了饱和蒸汽压以上,就会出现水分子从液相转变为气相的现象。

这些水分子从液滴直接转变为气态,形成了微小的水雾颗粒。

同时,超声波也会在水中产生空腔效应,形成微小气泡。

当这些气泡剧烈振动时,它们会迅速坍塌并产生微小的爆炸。

这些小爆炸会将周围的液体冲击并产生冲击波,进一步将液滴破碎成更小的颗粒,形成更细的水雾。

这个过程被称为超声喷雾。

通过超声波的振动作用,水分子被雾化成微细的水雾颗粒,形成细小而均匀的雾状水。

值得注意的是,超声波水雾发生器的效果与超声波的频率、功率等参数有关,不同参数的设置会产生不同大小、密度和稳定性的水雾。

超声波洗碗机工作原理

超声波洗碗机工作原理

超声波洗碗机工作原理超声波洗碗机是一种利用超声波技术来清洗餐具的设备。

它利用超声波的高频振动来产生弱小的气泡和冲击力,以去除餐具表面的污垢和细菌。

下面将详细介绍超声波洗碗机的工作原理。

1. 超声波发生器超声波洗碗机的核心部件是超声波发生器。

发生器通过电路将电能转化为高频电能,然后将其传递给超声波换能器。

2. 超声波换能器超声波换能器是将电能转化为机械振动能的装置。

它由压电晶体或者压电陶瓷组成,当高频电能通过压电晶体或者压电陶瓷时,会引起晶体或者陶瓷的振动。

3. 超声波传导换能器产生的机械振动通过传导材料传递到洗碗机的清洗槽内。

传导材料通常是不锈钢或者陶瓷,具有良好的超声波传导性能。

4. 超声波作用当超声波传导到清洗槽内时,它会在水中产生强烈的压力变化。

这种压力变化会形成弱小的气泡,称为空化现象。

当气泡在水中形成和破裂时,会产生剧烈的冲击力和涡流,从而将餐具表面的污垢和细菌分离和去除。

5. 清洗效果超声波的高频振动和冲击力可以穿透餐具的弱小孔隙和污垢,使其彻底清洁。

此外,超声波还可以杀灭细菌和病毒,提高清洗效果。

6. 清洗槽设计超声波洗碗机的清洗槽通常采用特殊设计,以最大限度地利用超声波的效果。

清洗槽内通常有多个超声波换能器,以确保餐具可以从不同方向受到超声波的清洗作用。

7. 清洗剂的使用为了提高清洗效果,超声波洗碗机通常需要使用清洗剂。

清洗剂可以匡助分解和去除污垢,并提供额外的杀菌效果。

总结:超声波洗碗机利用超声波的高频振动和冲击力来清洗餐具。

它通过超声波发生器产生高频电能,然后通过超声波换能器将电能转化为机械振动能。

这种振动能通过传导材料传递到清洗槽内,形成弱小的气泡和剧烈的冲击力,从而去除餐具表面的污垢和细菌。

超声波洗碗机的工作原理确保了餐具的彻底清洁和杀菌效果,提高了洗碗的效率和卫生水平。

超声波测距原理

超声波测距原理

一、引言由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。

利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。

为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。

本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。

二、超声波测距原理1、超声波发生器为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。

总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。

电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。

它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。

目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。

超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。

当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。

反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。

3、超声波测距原理超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 图1 超声波传感器结构这就是所谓的时间差测距法。

三、超声波测距系统的电路设计本系统的特点是利用单片机控制超声波的发射和对超声波自发射至接收往返时间的计时,单片机选用8751,经济易用,且片内有4K的ROM,便于编程。

超声波发生器

超声波发生器
超声波发生器,通常称为超声波电箱、超声波发生源、超声波电源。它的作用是把我们的市电(220V或380V,50或60Hz)转换成与超声波换能器相匹配的高频交流电信号。从放大电路形式,可以采用线性放大电路和开关电源电路,大功率超声波电源从转换效率方面考虑一般采用开关电源的电路形式。线性电源也有它特有的应用范围,它的优点是可以不严格要求电路匹配,允许工作频率连续快速变化。从目前超声业界的情况看,超声波主要分为自激式和它激式电源。
随着现代电子技术,特别是微处理器(uP)及信号处理器(DSP)的发展,超声波发生器的功能越来越强大,但不管如何变化,其核心功能应该是如下所述的内容,只是每部分在实现时技术不同而已。超声波发生器来产生一个特定频率的信号,这个信号可以是正弦信号,也可以是脉冲信号,这个特定频率就 超声波发生器是超声波换能器的频率,一般在超声波设备中使用到的超声波频率为25KHz、28KHz、35KHz、40KHz;100KHz或以上现在尚未大量使用.但随着以后精密清洗的不断发展。相信使用面会逐步扩大.比较完善的超声波发生器还应有反馈环节,主要提供二个方面的反馈信号:第一个是提供输出功率信号,我们知道当超声波发生器的供电电源(电压)发生变化时.超声波发生器的输出功率也会发生变化,这时反映在超声波换能器上就是机械振动忽大忽小,导致清洗效果不稳定.因此需要稳定输出功率,通过功率反馈信号相应调整功率放大器,使得功率放大稳定。第二个是提供频率跟踪信号.当超声波换能器工作在谐振频率点时其效率最高,工作最稳定,而超声波换能器的谐振频率点会由于装配原因和工作老化后改变,当然这种改变的频率只是漂移,变化不是很大,频率跟踪信 号可以控制信号超声波发生器,使信号超声波发生器的频率在一定范围内跟踪超声波换能器的谐振频率点.让超声波发生器工作在最佳状态。

工业超声波的原理

工业超声波的原理

工业超声波的原理
工业超声波是利用超声波的特性在工业领域进行非破坏性检测和相关应用的一种技术手段。

其原理主要包括超声波的产生、传播和接收三个方面。

首先,超声波的产生是通过在超声波发生器中利用压电效应或电磁感应效应激励晶体或电磁铁钢材料,产生高频振动。

这种高频振动会通过声学耦合将机械振动转化为超声波。

其次,超声波的传播是通过超声波传感器将产生的超声波传导到检测对象的表面。

超声波在传播过程中会遇到不同介质的边界界面,从而发生反射、折射和散射等现象。

根据超声波传播速度的不同,可以探测到材料的内部缺陷或界面的变化。

最后,超声波的接收是通过超声波传感器将传播回来的超声波信号转化为电信号。

超声波传感器可以采用压电陶瓷材料或半导体材料制成,当超声波信号通过传感器时,会引起材料的应力或电荷变化,进而产生电信号。

在工业应用中,工业超声波可以用于检测材料的缺陷、裂纹、变形等问题,同时也可以用于材料的测厚、界面检测、材料性能分析等方面。

在超声波检测过程中,通过分析接收到的超声波信号的强度、时间延迟和频率等参数,可以确定材料的可靠性和品质。

综上所述,工业超声波是利用压电效应或电磁感应效应产生超声波,通过超声波传感器将超声波传导到检测对象表面,然后
将传播回来的超声波信号转化为电信号进行分析,从而实现对材料的非破坏性检测和相关应用。

压电式脉冲超声波发生器激励电源的设计

压电式脉冲超声波发生器激励电源的设计

压电式脉冲超声波发生器激励电源的设计超声波技术在医学、工业、军事等领域得到了广泛的应用。

而超声波的发生则是关键。

压电式脉冲超声波发生器是一种常用的超声波发生器,其工作原理是利用压电晶体的压电效应产生超声波。

为了更好地发挥超声波的作用,需要一个稳定可靠的激励电源。

因此,本文将对压电式脉冲超声波发生器激励电源的设计进行探讨。

一、压电式脉冲超声波发生器的工作原理压电式脉冲超声波发生器是利用压电晶体的压电效应产生超声波。

当施加外部电场时,晶体会发生形变,从而产生机械振动,进而产生超声波。

由于压电效应的反向性,当施加电场的极性反向时,产生的超声波也是反向的。

二、压电式脉冲超声波发生器激励电源的设计要求1. 稳定性超声波发生器的工作需要一个稳定可靠的激励电源。

如果激励电源不稳定,会导致超声波的频率、振幅等参数不稳定,影响超声波的成像效果。

2. 高效性超声波发生器的激励电源需要具备较高的效率,以确保能够提供足够的电能,使压电晶体产生足够的机械振动,从而产生足够强度的超声波。

3. 可调性超声波的频率、振幅等参数需要根据具体应用场景进行调整。

因此,超声波发生器的激励电源需要具备可调性,以便根据需要进行调整。

三、压电式脉冲超声波发生器激励电源的设计方案1. 采用开关电源开关电源具有高效、稳定、可调等优点,适合用于超声波发生器的激励电源。

开关电源采用高频开关技术,将输入电压转换为高频脉冲信号,再通过变压器、整流、滤波等环节,得到稳定可靠的直流电源输出。

同时,开关电源还具备过载、过压、短路保护等功能,能够保证激励电源的安全性。

2. 采用反馈控制技术为了保证超声波的频率、振幅等参数的稳定性,可以采用反馈控制技术。

通过对超声波发生器输出的信号进行采样,得到超声波的实际频率、振幅等参数,再将其与设定值进行比较,通过反馈控制技术对激励电源的输出进行调整,以保证超声波的稳定性。

3. 采用数字控制技术数字控制技术可以实现对超声波发生器的频率、振幅等参数进行精确控制。

信号发生器发射和接收超声波的原理

信号发生器发射和接收超声波的原理

信号发生器发射和接收超声波的原理
信号发生器发射和接收超声波的原理如下:
1.发射超声波:信号发生器发送电信号经过放大电路,将其转化为高频电信号。

这个高频电信号作为驱动源连接到超声波发射器上。

超声波发射器将电信号转化成机械振动,通过压电材料的共振效应,产生超声波。

超声波的频率通常在20kHz到1MHz之间。

2.超声波传播:发射器产生的超声波在介质中传播,可以是空气、液体或固体。

超声波在传播过程中会发生折射、反射等现象。

它们的传播速度取决于介质的密度和弹性模量,一般介质越密度高、弹性模量越大,超声波的传播速度越快。

3.接收超声波:超声波接收器通常也采用压电材料构建,它能够将接收到的超声波转化为电信号。

当超声波到达接收器时,压电材料产生机械振动,并将机械振动转化为电信号。

这个电信号经过放大和滤波处理后,就可以用来进行后续的分析和处理。

4.信号处理:接收到的电信号可以通过放大和滤波来增强和净化,以便于后续的信号处理和分析。

这些信号可以被传输到计算机或其他设备上,进行信号处理、图像生成或者其他相关应用。

信号发生器发射和接收超声波的原理主要依靠压电效应和共振效应。

利用压电材料的特性,可以将电信号转化为
机械振动,并产生超声波。

当超声波传播到达接收器时,又可以将机械振动转化为电信号。

这种原理在超声波技术中有着广泛的应用,如医学中的超声诊断、工业中的无损检测等领域。

超声波测距仪设计及其应用分析

超声波测距仪设计及其应用分析

超声波测距仪设计及其应用分析[摘要] 本文利用超声波传输中距离与时间的关系,采用AT89C51单片机进行控制及数据处理,设计出了能精确测量两点间距离的超声波测距仪。

该测距仪主要由超声波发射器电路、超声波接收器电路、单片机控制电路、环境温度检测电路及显示电路构成。

利用所设计出的超声波测距仪,对不同距离进行了测试,并进行了详尽的误差分析。

[关键词] 超声波测距单片机温度传感器随着社会的发展,人们对距离或长度测量的要求越来越高。

超声波测距由于其能进行非接触测量和相对较高的精度,越来越被人们所重视。

本设计的超声波测距仪,可以对不同距离进行测试,并可以进行详尽的误差分析。

一、设计原理超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。

超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。

通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。

基本的测距公式为:L=(△t/2)*C式中L——要测的距离T——发射波和反射波之间的时间间隔C——超声波在空气中的声速,常温下取为340m/s声速确定后,只要测出超声波往返的时间,即可求得L。

二、超声波测距仪设计目标测量距离: 5米的范围之内;通过LED能够正确显示出两点间的距离;误差小于5%。

三、数据测量和分析1.数据测量与分析由于实际测量工作的局限性,最后在测量中选取了一米以下的30cm、50cm、70cm、80cm、90cm、100cm 六个距离进行测量,每个距离连续测量七次,得出测量数据(温度:29℃),如表所示。

从表中的数据可以看出,测量值一般都比实际值要大几厘米,但对于连续测量的准确性还是比较高的。

对所测的每组数据去掉一个最大值和最小值,再求其平均值,用来作为最终的测量数据,最后进行比较分析。

这样处理数据也具有一定的科学性和合理性。

超声波的原理

超声波的原理

[编辑本段]引言由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。

利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人研制上也得到了广泛的应用。

为了使移动机器人能自动避障行走,就必须装备测距系统,以使其及时获取距障碍物的距离信息(距离和方向)。

本文所介绍的三方向(前、左、右)超声波测距系统,就是为机器人了解其前方、左侧和右侧的环境而提供一个运动距离信息。

[编辑本段]原理二、超声波测距原理1、超声波发生器为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。

总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。

电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。

它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。

目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理压电式超声波发生器实际上是利用压电晶体的谐振来工作的。

超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。

当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。

反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。

3、超声波测距原理超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。

这就是所谓的时间差测距法。

超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。

超声波换能器的结构及原理

超声波换能器的结构及原理

超声波换能器的结构及原理超声波的发射和接收,需要一种电-声之间的能量转换装置,这就是换能器。

超声换能器,也即超声传感器,是超声波流量计中的重要组成部分。

通常所说的超声换能器一般是指电声换能器,它是一种既可以把电能转化为声能、又可以把声能转化为电能的器件或装置。

换能器处在发射状态时,将电能转换为机械能,再将机械能转换为声能;反之,当换能器处在接收状态时,将声能转换为机械能,再转换为电能。

超声换能器通常都有一个电的储能元件和一个机械振动系统。

人们为研究和应用超声波,己发明设计并制成了许多类型的超声波发生器,目前使用较多的是压电型超声波发生器,而压电材料有单晶体的、多晶体复合的,如石英单晶体,钛酸钡压电陶瓷、锆钛酸铅压电陶瓷复合晶体(PZT)、PVDF等。

压电型超声波换能器是借助压电晶体的谐振来工作的,即晶体的压电效应和逆压电效应。

其结构原理如图3所示:图3超声波换能器结构原理图超声波换能器是一个超声频电子振荡器,当把振荡器产生的超声频电压加到超声换能器的压电晶体上时,压电晶体组件就在电场作用下产生纵运动。

压电组件振荡时,仿佛是一个小活塞,其振幅很小,约为(1~10) m ,但这种振动的加速度很大,约(10~10 3 ) g,这样就可以把电磁振荡能量转化为机械振动量,若这种能量沿一定方向传播出去,就形成超声波。

当在超声换能器的两电极施加脉冲信号时,压电晶片就会发生共振,并带动谐振子振动,并推动周围介质振动,从而产生超声波。

相反,电极间未加电压,则当共振板接收到回波信号时,由逆压电效应,将压迫两压电晶片振动,从而将机械能转换为电信号,此时的传感器就成了超声波接收器。

通常压电型超声波换能器可以等效地看作一个电压源和一个电容器的串联电路,如图 4(a)所示,也可以等效为一个电流源和一个电容器地并联电路,如图4(b)所示。

如果用导线将压电换能器和测量仪器连接时,则应考虑连接导线地等效电容、等效电阻、前置放大器地输入电阻、输入电容。

自动追频超声波发生器的电路原理

自动追频超声波发生器的电路原理

自动追频超声波发生器的电路原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!超声波发生器是一种广泛应用于医疗、工业领域的设备,其中自动追频超声波发生器是一种自动调节频率的超声波发生器。

超声波及应用

超声波及应用

超声波1.超声波简介声波是一种机械波。

声的发生是由于发声体的机械振动,引起周围弹性介质中质点的振动由近及远的传播,这就是声波。

人耳所能听闻的声波其频率在20~20000Hz之间,频率在20~20000Hz以外的声波不能引起声音的感觉。

频率超过20000Hz的叫做超声波,频率低于20Hz的叫做次声波。

超声波的频率可以高达911Hz,而次声波的频率可以低达9-8Hz。

2.超声波传感器一般超声波传感器运用压电效应原理。

(1)发生器:压电式超声波发生器是利用压电晶体的电致伸缩现象制成的。

常用的压电材料为石英晶体、压电陶瓷锆钛酸铅等。

在压电材料切片上施加交变电压,使它产生电致伸缩振动,而产生超声波。

(1)接收器:当超声波作用到压电晶体片上时,使晶片伸缩,则在晶片的两个界面上产生交变电荷。

这种电荷先被转换成电压,经过放大后送到测量电路,最后记录或显示出结果。

它的结构和超声波发生器基本相同,有时就用同一个超声波发生器兼做超声波接收器。

3.应用于弹性模量测量在各向同性的固体材料中,根据应力和应变满足的虎克定律,可以求得超声波传播的特征方程。

(当介质中质点振动方向与超声波的传播方向一致时,称为纵波;当介质中质点振动方向与超声波的传播方向垂直时,称为横波。

在气体介质中,声波只是纵波。

在固体介质内部,超声波可以按纵波或横波两种波型传播。

)对于同一种材料,其纵波波速和横波波速的大小一般不同,但它们都由弹性介质的密度、杨氏模量和泊松比等弹性参数决定。

相反,利用超声波速度可以测量材料有关的弹性常数。

(固体在外力作用下,其长度沿力的方向产生变形,变形时的应力与应变之比就定义为杨氏模量,一般用E表示。

固体在应力作用下,沿纵向有一正应变(伸长),沿横向就将有一个负应变(缩短),横向应变与纵向应变之比被定义为泊松比。

)4.超声波探伤对高频超声波,由于它的波长短,不易产生绕射,碰到杂质或分界面就会有明显的反射,而且方向性好,能成为射线而定向传播;在液体、固体中衰减小,穿透本领大。

超声波发声器和换能器简介

超声波发声器和换能器简介

A
2
超声波发生器原理图如下:
A
3
工作过程如下:先由信号发生器来产生一 个特定频率的脉冲信号,这个特定频率就是换 能器的自身的机械谐振频率,一般在超声波设 备中使用到的超声波频率为25kHz至100kHz, 这个频率信号必须经过功率放大器进行功率放 大,然后通过阻抗匹配电路,有助于换能器将 电信号高效率地转化为机械震动。而反馈电路 的存在不仅保证了换能器始终工作在一个合适 的频率范围内,让发生器工作在最佳状态,也 保障了电路的安全。
A
6
超声波换能器
• 超声波换能器是实现声能和电能转换的器 件,声能和电能可以互相转换。
• 超声换能器按材料分可化为两大类,一是 磁致伸缩换能器,二是压电换能器。
• 超声波换能器主电路包括:整流滤波电路、 直流斩波调(稳)压电路、半桥逆变电路、匹 配电路、超声波换能器。控制电路由调压 控制电路、逆变器控制与保护电路组成。
A
13
A
12
发生器与换能器的匹配
超声波发生器与换能器匹配包括两个方面:
• 一是通过匹配使发生器向换能器输出额定的电功 率,这是由于发生器需要一个最佳的负载才能输 出额定功率所致,把换能器的阻抗变换成最佳负 载,也即阻抗变换作用。
• 二是通过匹配使发生器输出效率最高,这是由于 换能器有静电抗的原因,造成工作频率上的输出 电压和电流有一定相位差,从而使输出功率得不 到期望的最大输出,使发生器输出效率降低,因 此在发生器输出端并上或串上一个相反的抗,使 发生器负载为纯电阻,也即调谐作用。
A
4
完善的超声波发生器还应有反馈环节,主要 提供二个方面的反馈信号:
• 第一个是提供输出功率信号 。供电电压发 生变化时。发生器的输出功率也会发生变 化,这时反映在换能器上就是机械振动忽 大忽小。

超超声波电路原理

超超声波电路原理

超声波电路原理超声波功率源(或称发生器)是一种用于产生并向超声换能器提供超声能量的装置。

超声波发生器就其激励方式有两种:一种是他激式。

另一种是自激式。

如果按末级功放管所采用的器件类型分,又可分四种:电子管式超声发生器;可控硅逆变式超声发生器;晶体管式超声发生器及功率模块超声发生器。

电子管式与可控硅逆变式目前基本已淘汰,当前广泛使用的是晶体管式发生器。

他激式超声发生器主要包括两部分,前级是振荡器,后级是放大器。

一般通过输出变压器耦合,把超声能量加到换能器上。

而自激式超声发生器是把振荡、功放、输出变压器及换能器集为一体,形成一闭环回路,回路在满足幅度、相位反馈条件,组成一个有功率放大的振荡器。

并谐振于换能器的机械共振频率上。

本文根据超声发生器特点,主要讨论、分析、设计超声发生器的谐振、功放及匹配等相关问题。

一、关于谐振问题<频率自动跟踪>,所谓谐振问题就是要求发生器的输出信号频率能对在工作中变化的换能器谐振频率进行跟踪,也即称频率自动跟踪。

目前常用的频率自动跟踪大致有以下几种方法:1.声跟踪以声耦合方式,从换能器上采集谐振频率的电讯号,然后反馈至前级放大器,使形成自激振荡器。

其原理图1.28 声跟踪超声波发生器原理框图,由图1.28看出,电路是个闭环系统,电路在通电的瞬间产生一个冲击脉冲,此脉冲经预放、功放去激励换能器,换能器按自身固有频率振动。

从而在反馈的声接收器上可得到相同频率的电讯号。

经过电路的移相、选频、预放及功放再去激励换能器,如果满足振荡器的相位,幅度条件,系统将自激振荡,且振荡频率跟踪在换能器的共振频率上。

2.电跟踪所谓“电跟踪”又称反馈自激式振荡器。

大致有以下几种形式(1)阻抗电桥形式的动态反馈系统阻抗电桥形式的动态反馈系统组成的频率自动跟踪电路其原理如下;它是利用电桥平衡原理补偿换能器电学臂的无功与有功分量,借助于差动变量器提取与换能器机械臂振荡电流成正比的反馈电压,使闭环系统在换能器机械共振频率上自振。

压电式超声波发生器原理

压电式超声波发生器原理

压电式超声波发生器原理由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。

利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人研制上也得到了广泛的应用。

下面为大家介绍超声波测距原理是什么。

超声波测距原理1、超声波发生器为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。

总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。

电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。

它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。

目前较为常用的是压电式超声波发生器。

2、压电式超声波发生器原理压电式超声波发生器实际上是利用电晶体的谐振来工作的。

超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。

当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。

反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。

3、超声波测距原理超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2 。

这就是所谓的时间差测距法。

超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。

由此可见,超声波测距原理与雷达原理是一样的。

测距的公式表示为:L=C×T式中L为测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收时间数值的一半)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。由此可见,超声波测距原理与雷达原理是一样的。
测距的公式表示为:L=C×T
式中L为测量的距离长度;C为超声波在空气中的传播速度半)。
2、压电式超声波发生器原理
压电式超声波发生器实际上是利用电晶体的谐振来工作的。超声波发生器内部结构如图1所示,它有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,这时它就成为超声波接收器了。
对于超声波测距精度要求达到1mm时,就必须把超声波传播的环境温度考虑进去。例如当温度0℃时超声波速度是332m/s, 30℃时是350m/s,温度变化引起的超声波速度变化为18m/s。若超声波在30℃的环境下以0℃的声速测量100m距离所引起的测量误差将达到5m,测量1m误差将达到5cm。
由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人研制上也得到了广泛的应用。下面为大家介绍超声波测距原理是什么。
3、超声波测距原理
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2。这就是所谓的时间差测距法。
超声波测距原理
1、超声波发生器
为了研究和利用超声波,人们已经设计和制成了许多超声波发生器。总体上讲,超声波发生器可以分为两大类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。电气方式包括压电型、磁致伸缩型和电动型等;机械方式有加尔统笛、液哨和气流旋笛等。它们所产生的超声波的频率、功率和声波特性各不相同,因而用途也各不相同。目前较为常用的是压电式超声波发生器。
相关文档
最新文档