控制理论实验报告MATLAB仿真实验解析

合集下载

现代控制理论实验matlab 报告

现代控制理论实验matlab 报告

实验一系统的传递函数阵和状态空间表达式的转换实验目的:1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换的方法。

实验内容及结果:>>num=[0 0 1 2;0 1 5 3];den=[1 2 3 4];[A,B,C,D]=tf2ss(num,den)实验二状态空间控制模型系统仿真及状态方程求解实验目的:1、熟悉线性连续系统的状态空间控制模型的各种表示方法;2、熟悉系统模型之间的转换功能;3、利用MATLAB对线性定常系统进行动态分析。

实验内容及结果(1)>>num=[1 2 1 3]; den=[1 0.5 2 1];sys=tf(num,den);sys1=tf2zp(num,den); sys2=tf2ss(num,den); impulse(sys);step(num,den,t);>>A=[0 1;-10 -5];B=[0;0];D=B;C=[1 0;0 1];x0=[2;1];[y,x,t]=initial(A,B,C,D,x0);plot(t,x(:,1),t,x(:,2))gridtitle('Response to initial condition') xlabel('Time(sec)')ylabel('x1,x2')text(0.55,1.15,'x1')text(0.4,-2.9,'x2')>>A=[-1 -1;6.5 0]; B=[1 1;1 0];C=[1 0;0 1];D=[0 0;0 0];step(A,B,C,D)(4)思考>>A=[0 -2;1 -3];B=[2;0];C=[1 0];x0=[1;1];U=1;[t,x]=ode45(@solve_state_fun,[0 10],x0,[],A,B,U); plot(t,x(:,1),t,x(:,2));gridtitle('Response to initial condition')xlabel('Time(sec)')ylabel('x1,x2')text(0.55,1.15,'x1')text(0.4,-2.9,'x2')实验三系统能控性、能观性的判别实验目的:1、系统的能控性和能观测性的判别方法、系统的能控性和能观测性的分解;2、了解MATLAB中的相应的函数。

控制理论实验报告MATLAB仿真实验.doc

控制理论实验报告MATLAB仿真实验.doc

控制理论实验报告MATLAB仿真实验实验报告课程名称:控制理论(二)讲师:林峰结果:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _实验名称:MATLAB仿真实验类型:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _同一组学生的姓名:________一、实验的目的和要求(要求)二.实验内容和原则(要求)三.主要仪器和设备(必需)四.操作方法和实验步骤五、实验数据的记录和处理六.实验结果和分析(必需)7.控制系统时域分析实验9的探讨与体会首先,实验的目的:1.利用计算机辅助分析,掌握系统的时域分析方法。

2.熟悉Simulink仿真环境。

二、实验原理和方法:系统仿真本质上是系统模型的求解。

对于控制系统,一般模型可以转化为微分方程或差分方程。

因此,在仿真过程中,通过一些数值算法从初始状态开始逐步计算系统响应。

最后,画出系统的响应曲线,分析系统性能。

控制系统最常用的时域分析方法是当输入信号为单位阶跃和单位脉冲函数时,获得系统的输出响应,分别称为单位阶跃响应和单位脉冲响应。

在MATLAB中,提供了单位阶跃响应函数step、单位冲激响应函数impulse、零输入响应函数initial等来获得连续系统。

二、实验内容:二阶系统的状态方程模型是——控制理论(二)指导者:林峰结果:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _实验名称:MATLAB仿真实验类型:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _同一组学生的姓名:________一、实验的目的和要求(要求)二.实验内容和原则(要求)三.主要仪器和设备(必需)四.操作方法和实验步骤五、实验数据的记录和处理六.实验结果和分析(必需)7.控制系统时域分析实验9的探讨与体会首先,实验的目的:1.利用计算机辅助分析,掌握系统的时域分析方法。

2.熟悉Simulink仿真环境。

MATLAB与控制系统仿真实验报告

MATLAB与控制系统仿真实验报告

MATLAB与控制系统仿真实验报告第一篇:MATLAB与控制系统仿真实验报告《MATLAB与控制系统仿真》实验报告2013-2014学年第 1 学期专业:班级:学号:姓名:实验三 MATLAB图形系统一、实验目的:1.掌握绘制二维图形的常用函数。

2.掌握绘制三维图形的常用函数。

3.熟悉利用图形对象进行绘图操作的方法。

4.掌握绘制图形的辅助操作。

二、实验原理:1,二维数据曲线图(1)绘制单根二维曲线plot(x,y);(2)绘制多根二维曲线plot(x,y)当x是向量,y是有一维与x同维的矩阵时,则绘制多根不同颜色的曲线。

当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。

(3)含有多个输入参数的plot函数plot(x1,y1,x2,y2,…,xn,yn)(4)具有两个纵坐标标度的图形plotyy(x1,y1,x2,y2)2,图形标注与坐标控制1)title(图形名称);2)xlabel(x轴说明)3)ylabel(y轴说明)4)text(x,y图形说明)5)legend(图例1,图例2,…)6)axis([xmin xmax ymin ymax zmin zmax])3, 图形窗口的分割 subplot(m,n,p)4,三维曲线plot3(x1,y1,z1,选项1,x2,y2,选项2,…,xn,yn,zn,选项n)5,三维曲面mesh(x,y,z,c)与surf(x,y,z,c)。

一般情况下,x,y,z是维数相同的矩阵。

X,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜色范围。

6,图像处理1)imread和imwrite函数这两个函数分别用于将图象文件读入matlab工作空间,以及将图象数据和色图数据一起写入一定格式的图象文件。

2)image和imagesc函数这两个函数用于图象显示。

为了保证图象的显示效果,一般还应使用colormap函数设置图象色图。

控制系统matlab仿真实验报告5

控制系统matlab仿真实验报告5

控制系统matlab仿真实验报告5实验内容:本实验主要学习控制系统中PI控制器的设计和仿真。

实验目的:1. 了解PI控制器的基本原理和控制算法;2. 学习控制系统建模的基本思路和方法;3. 通过matlab仿真实验掌握PI控制器的实现方法和调节技巧。

实验原理:PI控制器是一种比比例控制器更加完善的控制器,它是由比例控制器和积分控制器组成的复合控制器。

在控制器设计中,通常情况下采用PI控制器进行设计,因为PI控制器的设计参数比其他控制器更加简单,调整起来也更加方便。

PI控制器的输出信号u(t)可以表示为:u(t) = kP(e(t) + 1/Ti ∫e(τ)dτ)其中,kP是比例系数;Ti是积分时间常数;e(t)是控制系统的误差信号,表示偏差;∫e(τ)dτ是误差信号的积分项。

上式中,第一项kPe(t)是比例控制器的输出信号,它与偏差信号e(t)成比例关系,当偏差信号e(t)越大,则输出信号u(t)也越大;PI控制器的设计步骤如下:1. 根据控制系统的特性和要求,选择合适的控制对象,并进行建模;2. 选择比例系数kP和积分时间常数Ti,使系统具有良好的动态响应和稳态响应;3. 利用matlab仿真实验验证控制系统的性能,并进行参数调节和改进。

实验步骤:1. 控制对象的建模a. 选择一个适当的控制对象,例如在本实验中选择一个RC电路。

b. 根据控制对象的特性和运行原理,建立控制对象的数学模型,例如在本实验中建立RC电路的微分方程模型。

a. 根据控制对象的特性和要求,选择合适的比例系数kP和积分时间常数Ti,例如在本实验中选择kP=1和Ti=0.1。

b. 根据PI控制器的输出信号,设计控制系统的反馈环路,例如在本实验中选择负反馈控制系统。

a. 在matlab环境下,利用matlab的控制系统工具箱,建立控制系统的仿真模型。

b. 运行仿真程序,并观察控制系统的时间响应和频率响应特性。

实验结果:本实验利用matlab环境下的控制系统工具箱,建立了RC电路的PI控制系统,并进行了仿真实验。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。

控制工程实训课程学习总结基于MATLAB的系统建模与仿真实验报告

控制工程实训课程学习总结基于MATLAB的系统建模与仿真实验报告

控制工程实训课程学习总结基于MATLAB 的系统建模与仿真实验报告摘要:本报告以控制工程实训课程学习为背景,基于MATLAB软件进行系统建模与仿真实验。

通过对实验过程的总结,详细阐述了系统建模与仿真的步骤及关键技巧,并结合实际案例进行了实验验证。

本次实训课程的学习使我深入理解了控制工程的基础理论,并掌握了利用MATLAB进行系统建模与仿真的方法。

1. 引言控制工程是一门应用广泛的学科,具有重要的理论和实践意义。

在控制工程实训课程中,学生通过实验来加深对控制系统的理解,并运用所学知识进行系统建模与仿真。

本次实训课程主要基于MATLAB软件进行,本文将对实验过程进行总结与报告。

2. 系统建模与仿真步骤2.1 确定系统模型在进行系统建模与仿真实验之前,首先需要确定系统的数学模型。

根据实际问题,可以选择线性或非线性模型,并利用控制理论进行建模。

在这个步骤中,需要深入理解系统的特性与工作原理,并将其用数学方程表示出来。

2.2 参数识别与估计参数识别与估计是系统建模的关键,它的准确性直接影响到后续仿真结果的可靠性。

通过实际实验数据,利用系统辨识方法对系统的未知参数进行估计。

在MATLAB中,可以使用系统辨识工具包来进行参数辨识。

2.3 选择仿真方法系统建模与仿真中,需要选择合适的仿真方法。

在部分情况下,可以使用传统的数值积分方法进行仿真;而在其他复杂的系统中,可以采用基于物理原理的仿真方法,如基于有限元法或多体动力学仿真等。

2.4 仿真结果分析仿真结果的分析能够直观地反映系统的动态响应特性。

在仿真过程中,需对系统的稳态误差、动态响应、鲁棒性等进行综合分析与评价。

通过与理论期望值的比较,可以对系统的性能进行评估,并进行进一步的优化设计。

3. 实验案例及仿真验证以PID控制器为例,说明系统建模与仿真的步骤。

首先,根据PID控制器的原理以及被控对象的特性,建立数学模型。

然后,通过实际实验数据对PID参数进行辨识和估计。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、系统的典型响应有哪些?2、如何判断系统稳定性?3、系统的动态性能指标有哪些?三、实验方法(一)四种典型响应1、阶跃响应:阶跃响应常用格式:1 、step ( sys ) ;其中 sys 可以为连续系统,也可为离散系统。

2 、step ( sys ,Tn ) ;表示时间范围0---Tn 。

3 、step ( sys ,T ) ;表示时间范围向量T 指定。

4 、Y step ( sys , T ) ;可详细了解某段时间的输入、输出情况。

2、脉冲响应:f (x)dx 1脉冲函数在数学上的精确定义:f ( x) 0, t 0f ( s) 1其拉氏变换为:Y ( s) G (s) f (s) G ( s)所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式:①impulse ( sys ) ;impulse ( sys , Tn );②impulse ( sys , T );③Y impulse ( sys ,T )(二)分析系统稳定性有以下三种方法:1、利用 pzmap绘制连续系统的零极点图;2、利用 tf2zp 求出系统零极点;3、利用 roots 求分母多项式的根来确定系统的极点(三)系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容(一) 稳定性1.系统传函为4 3 23s 2s 5s 4s 6G s ,试判断其稳定性5 4 3 2s 3s 4 s 2s 7s 22.用 Matlab 求出2s 2 s 2G 的极点。

( s)4 3 2s 7 s 3s 5 s 2%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果:p =-1.7680 + 1.2673i-1.7680 - 1.2673i0.4176 + 1.1130i0.4176 - 1.1130i-0.2991Pole-Zero Map 1.510.5sixAyranigamI-0.5-1-1.5-2 -1.5 -1 -0.5 0 0.5Real Axis图 1-1 零极点分布图由计算结果可知,该系统的 2 个极点具有正实部,故系统不稳定。

《自动控制原理》MATLAB分析与设计仿真实验报告

《自动控制原理》MATLAB分析与设计仿真实验报告

《自动控制原理》MATLAB分析与设计仿真实验任务书(2010)一.仿真实验内容及要求:1.MATLAB软件要求学生通过课余时间自学掌握MATLAB软件的基本数值运算、基本符号运算、基本程序设计方法及常用的图形命令操作;熟悉MATLAB 仿真集成环境Simulink的使用。

2.各章节实验内容及要求1)第三章 线性系统的时域分析法对教材P136.3-5系统进行动态性能仿真,并与忽略闭环零点的系统动态性能进行比较,分析仿真结果;对教材P136.3-9系统的动态性能及稳态性能通过的仿真进行分析,说明不同控制器的作用;在MATLAB环境下完成英文讲义P153.E3.3。

对英文讲义中的循序渐进实例“Disk Drive Read System”,在时,试采用微分反馈使系统的性能满足给定的设计指标。

2)第四章 线性系统的根轨迹法在MATLAB环境下完成英文讲义P157.E4.5;利用MATLAB绘制教材P181.4-5-(3);在MATLAB环境下选择完成教材第四章习题4-10或4-18,并对结果进行分析。

3)第五章 线性系统的频域分析法利用MATLAB绘制本章作业中任意2个习题的频域特性曲线;4)第六章 线性系统的校正利用MATLAB选择设计本章作业中至少2个习题的控制器,并利用系统的单位阶跃响应说明所设计控制器的功能。

5)第七章 线性离散系统的分析与校正利用MATLAB完成教材P383.7-20的最小拍系统设计及验证。

利用MATLAB完成教材P385.7-25的控制器的设计及验证。

二.仿真实验时间安排及相关事宜1.依据课程教学大纲要求,仿真实验共6学时,教师可随课程进度安排上机时间,学生须在实验之前做好相应的准备,以确保在有限的机时内完成仿真实验要求的内容;2.实验完成后按规定完成相关的仿真实验报告;3.仿真实验报告请参照有关样本制作并打印装订;4.仿真实验报告必须在本学期第15学周结束之前上交授课教师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告课程名称:控制理论(乙) 指导老师:林峰 成绩:__________________ 实验名称:MATLAB 仿真实验 实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得实验九 控制系统的时域分析一、 实验目的:1.用计算机辅助分析的办法,掌握系统的时域分析方法。

2.熟悉Simulink 仿真环境。

二、实验原理及方法:系统仿真实质上就是对系统模型的求解,对控制系统来说,一般模型可转化成某个微分方程或差分方程表示,因此在仿真过程中,一般以某种数值算法从初态出发,逐步计算系统的响应,最后绘制出系统的响应曲线,进而可分析系统的性能。

控制系统最常用的时域分析方法是,当输入信号为单位阶跃和单位冲激函数时,求出系统的输出响应,分别称为单位阶跃响应和单位冲激响应。

在MATLAB 中,提供了求取连续系统的单位阶跃响应函数step ,单位冲激响应函数impulse ,零输入响应函数initial 等等。

二、实验内容:二阶系统,其状态方程模型为•1x -0.5572 -0.7814 1x 1= + u•2x 0.7814 0 2x 01x y = [1.9691 6.4493] +[0] u2x四、实验要求:1.编制MATLAB 程序,画出单位阶跃响应曲线、冲击响应曲线、系统的零输入响应、斜坡输入响应;(1)画出系统的单位阶跃响应曲线; A=[-0.5572 -0.7814;0.7814 0 ]; B=[1;0];C=[1.9691 6.4493];D=[0];G=ss(A,B,C,D);step(G)title('单位阶跃响应')(2)画出系统的冲激响应曲线;A=[-0.5572 -0.7814;0.7814 0 ];B=[1;0];C=[1.9691 6.4493];D=[0];G=ss(A,B,C,D);impulse(G)title('单位脉冲响应')(3)当系统的初始状态为x0=[1,0]时,画出系统的零输入响应;A=[-0.5572 -0.7814;0.7814 0 ];B=[1;0];C=[1.9691 6.4493];D=[0];x0=[1,0];initial(A,B,C,D,x0)title('零输入响应')(4)当系统的初始状态为零时,画出系统斜坡输入响应;A=[-0.5572 -0.7814;0.7814 0 ];B=[1;0];C=[1.9691 6.4493];D=[0];[num, den]=ss2tf(A, B, C, D);t=0:0.01:7;u=t;num1(1)=0; num1(2)=0; num1(3)=num(1); num1(4)=num(2); num1(5)=num(3);den1(1)=den(1); den1(2)=den(2); den1(3)=den(3); den1(4)=0; den1(5)=0;c=step(num1,den1,t);plot(t,c,'o',t,u,'-');2.在Simulink仿真环境中,组成系统的仿真框图,观察单位阶跃响应曲线并记录之。

1)进入线性系统模块库,构建传递函数。

2)改变模块参数。

在simulink 仿真环境“untitled ”窗口中双击该图标,即可改变传递函数 3)选取阶跃信号输入函数。

用鼠标点击simulink 下的“Source ”,将右边窗口中“Step ”图标用左键拖至新建的“untitled ”窗口,形成一个阶跃函数输入模块。

4)选择输出方式。

用鼠标点击simulink 下的“Sinks ”,就进入输出方式模块库,通常选用“Scope ”的示波器图标,将其用左键拖至新建的“untitled ”窗口。

5)连接各元件,用鼠标划线,构成闭环传递函数。

6)运行并观察响应曲线。

用鼠标单击工具栏中的“▶”按钮,便能自动运行仿真环境下的系统框图模型。

运行完之后用鼠标双击“Scope ”元件,即可看到响应曲线。

实验十 控制系统的频域分析一、实验目的:用计算机辅助分析的方法,掌握频率分析法的三种方法,即Bode 图、Nyquist 曲线、Nichols 图。

二、 实验原理及方法:1.Bode(波特)图设已知系统的传递函数模型:11211121)(+-+-+⋅⋅⋅+++⋅⋅⋅++=n n n m m m a s a s a b s b s b s H 则系统的频率响应可直接求出:11211121)()()()()(+-+-+⋅⋅⋅+++⋅⋅⋅++=n n n m m m a j a j a b j b j b j H ωωωωω MATLAB 中,可利用bode 和dbode 绘制连续和离散系统的Bode 图。

2.Nyquist(奈奎斯特)曲线Nyquist 曲线是根据开环频率特性在复平面上绘制幅相轨迹,根据开环的Nyquist 线,可判断闭环系统的稳定性。

反馈控制系统稳定的充要条件是,Nyquist 曲线按逆时针包围临界点(-1,j0)p 圈,为开环传递函数位于右半s 一平面的极点数。

在MA TLAB 中,可利用函数nyquist 和dnyquist 绘出连续和离散系统的乃氏曲线。

3.Nicho1s(尼柯尔斯)图根据闭环频率特性的幅值和相位可作出Nichols 图,从而可直接得到闭环系统的频率特性。

在MATLAB 中,可利用函数nichols 和dnichols 绘出连续和离散系统的Nichols 图。

三、 实验内容:1.一系统开环传递函数为)2)(5)(1(50)(-++=s s s s H绘制系统的bode 图,判断闭环系统的稳定性,并画出闭环系统的单位冲击响应。

)10625.0)(125.0)(185.0(7.16)(+++=s s s ss G其结构如图所示试绘制Nyquist 频率曲线和Nichols 图,并判断稳定性。

四、 实验要求:1.编制MATLAB 程序,画出实验所要求的Bode 图 、 Nyquist 图 、Nichols 图。

1)一系统开环传递函数为)2)(5)(1(50)(-++=s s s s H① Bode 图den=conv([1,1],conv([1,5],[1,-2])); H=tf(50,den); bode(H)R(s)C(s)10G(S)② 系统稳定性判别:系统为非稳定系统 ③ 闭环系统的单位冲击响应den=conv([1,1],conv([1,5],[1,-2])); H=tf(50,den); num1=H; den1=1+H;impulse(num1,den1)2)一多环系统)10625.0)(125.0)(185.0(7.16)(+++=s s s ss GR(s)C(s)10 G(S)①Nyquist频率曲线num=conv([16.7],[1,0]);den=conv([0.85,1],conv([0.25,1],[0.0625,1])); g=tf(num,den);num1=10*g;den1=1+g;G=tf(num1,den1);nyquist(G)②Nichols图num=conv([16.7],[1,0]);den=conv([0.85,1],conv([0.25,1],[0.0625,1])); g=tf(num,den);num1=10*g;den1=1+g;G=tf(num1,den1);nichols(G)③判断系统稳定性:系统是稳定系统2.在Simulink仿真环境中,组成系统的仿真框图,观察单位阶跃响应曲线并记录之。

1)一系统开环传递函数为)2)(5)(1(50)(-++=ssssH2)一多环系统)10625.0)(125.0)(185.0(7.16)(+++=sssssG其结构如图所示R(s)C(s)10G(S)实验十一 控制系统的根轨迹分析一、 实验目的:1. 掌握用计算机辅助分析法分析控制系统的根轨迹 2. 熟练掌握Simulink 仿真环境。

二、 实验原理与方法:根轨迹是指,当开环系统某一参数(一般来说,这一参数选作开环系统的增益k )从零变到无穷大时,死循环系统特征方程的根在s 平面上的轨迹。

因此,从根轨迹,可分析系统的稳定性、稳态性能、动态性能。

同时,对于设计系统可通过修改设计参数,使闭环系统具有期望的零极点分布,因此根轨迹对系统设计也具有指导意义。

在MATLAB 中,绘制根轨迹有关的函数有:rlocus ,rlocfind ,pzmap 等。

三、 实验内容:一开环系统传递函数为22)34()2()(+++=s s s k s G绘制出此闭环系统的根轨迹,并分析系统的稳定性。

四、实验要求:1.编制MA TLAB 程序,画出实验所要求根轨迹, 求出系统的临界开环增益,并用闭环系统的冲击响应证明之。

开环系统传递函数为22)34()2()(+++=s s s k s G①系统根轨迹 n=[1 2];d=conv([1,4,3],[1,4,3]); rlocus(n,d);title('G(s)=k(s+2)/(s^2+4s+3)^2')②求出系统的临界开环增益,并用闭环系统的冲击响应证明系统的临界开环增益k=32√32.在Simulink仿真环境中,组成系统的仿真框图,观察临界开环增益时系统单位阶跃响应曲线并记录之。

相关文档
最新文档