2018年全国2卷数学文科

合集下载

2018年高考全国卷2作文题原文《消失的弹孔》

2018年高考全国卷2作文题原文《消失的弹孔》

消失的弹孔
著名数学家亚伯拉罕•瓦尔德二战时一直在美军统计部门工作,有一次军方来找他,要求他看看飞机上的弹孔统计数据,在飞机的哪个部位加装装甲比较合适。

原来军方派出去的作战飞机,返航的时候往往都会带着不少弹孔回来。

为了避免飞机被击落,就需要在飞机上加装装甲,但装甲安装多了,又会降低飞机的机动性,消耗更多的燃料。

装多装少都不行,军方希望把装甲安装在飞机最容易受到攻击、最需要防护的地方,这样就可减少装甲的安装量,而不会降低防护效率。

他们希望瓦尔德能算出这些部位究竟需要安装多少装甲。

瓦尔德拿到数据一看,引擎上平均每平方英尺有1.1个弹孔,机身1.73个,油料系统1.55个,其它部位1.8个。

看起来机身和其它部位最容易受到攻击,应该加装装甲才行。

瓦尔德的回答却让军方大吃一惊,飞机上最应该加装装甲的地方不是弹孔多的地方,而是弹孔少甚至没有弹孔的引擎。

为什么会这样呢?瓦尔德的逻辑非常简单:飞机各部位中弹的概率应该是一样的,为什么引擎上会很少?引擎上的弹孔到哪儿去了?原来这些弹孔已经随着坠毁的飞机落到地球上去了!军方统计的只是返航的飞机,那些遭遇不幸的飞机被忽视掉了。

这就是著名的幸存者偏差,人们往往因为过分关注目前的人或物以及幸存的经历,而忽略了不在视界之内或者无法幸存的人或物,容易在不知不觉中犯下错误。

美军迅速将瓦尔德的建议付诸实施,瓦尔德睿智的建议挽救了多少飞机,在多大程度上左右了战争的进程我们无从知道,但美国国防部一直有一个认识,如果被击落的飞机比对方少5%,消耗的油料低5%,步兵的给养多5%,而所付出的成本仅为对方的95%,往往就会成为胜利的一方。

从某种意义上说,数学家瓦尔德的建议让美军赢得了第二次世界大战。

【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。

3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。

2018年江西省南昌市高考数学二模试卷(文科)(解析版)

2018年江西省南昌市高考数学二模试卷(文科)(解析版)

18. (12 分)如图,四棱柱 P﹣ABCD 中,底面 ABCD 是直角梯形,AB∥CD,AB⊥AD,AB =2CD=2AD=4, 侧面 PAB 是等腰直角三角形, PA=PB, 平面 PAB⊥平面 ABCD, 点 E, F 分别是棱 AB,PB 上的点,平面 CEF∥平面 PAD. (Ⅰ)确定点 E,F 的位置,并说明理由; (Ⅱ)求三梭锥 F﹣DCE 的体积.
2 2
A. (x﹣1) +(y﹣2) =4 C. (x﹣2) +(y﹣2) =4
2 2
B. (x﹣1) +(y﹣3) =9 D. (x﹣2) +(y﹣3) =9
2 2
2
2
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13. (5 分)从某企业的某种产品中抽取 1000 件,测量该种产品的一项指标值,由测量结果 得到如图所示的频率分布直方图.假设这种指标值在[185,215]内’则这项指标合格,估 计该企业这种产品在这项指标上的合格率为 .
A.2
2
B.
C.0
D.﹣1
6. (5 分)已知抛物线 y =4x 的焦点为 F,准线 l 与 x 轴的交点为 K,抛物线上一点 P,若
第 1 页(共 23 页)
|PF|=5,则△PKF 的面积为( A.4 B.5
) C.8 D.10 表示的平面区域内,则实数 m 的取
7. (5 分)已知点 P(m,n)在不等式组 值范围是( A .[ ) ] B.[﹣5 ]
2 2

B. (﹣∞,﹣3)∪(1,4) D. (3,4) +y=2+i(i 为虚数单位) ,则 x+yi 在复平面内对应的点位于
A.第一象限

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。

2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题纸上,写在本试卷上无效。

3.考试结束后,将本试卷和答题纸一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。

$(-4,-3)$B。

$[-4,-3]$C。

$(-\infty,-3)\cup(4,+\infty)$D。

$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。

$-\frac{2}{5}+\frac{1}{5}i$B。

$-\frac{2}{5}-\frac{1}{5}i$C。

$\frac{2}{5}+\frac{1}{5}i$D。

$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。

$\frac{2}{3}$B。

$\frac{1}{5}$C。

$\frac{2}{5}$D。

$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8.三角函数、解三角形2011年—2018年新课标全国卷Ⅰ文科数学分类汇编7.三角函数、解三角形一、选择题2018年新课标Ⅰ文8题:已知函数$f(x)=2\cos x-\sin x+2$,则$f(x)$的最小正周期为$\pi$,最大值为3.2018年新课标Ⅰ文11题:已知角$\alpha$的顶点为坐标原点,始边与$x$轴的非负半轴重合,终边上有两点$A(1,0)$,$B(2,b)$,且$\cos2\alpha=\frac{1}{5}$,则$a-b=\frac{1}{5}$。

2018年新课标Ⅱ文7题:在$\triangle ABC$中,$\cos C=\frac{5}{\sqrt{26}}$,$BC=1$,$AC=5$,则$AB=5\sqrt{2}$。

2018年新课标Ⅱ文10题:若$f(x)=\cos x-\sin x$在$[0,a]$是减函数,则$a$的最大值是$\frac{3\pi}{4}$。

2018年新课标Ⅲ文4题:若$\sin \alpha=\frac{1}{\sqrt{8}}$,则$\cos 2\alpha=-\frac{7}{8}$。

2018年新课标Ⅲ文6题:函数$f(x)=\frac{\tan x}{1+\tan^2 x}$的最小正周期为$\pi$。

2018年新课标Ⅲ文11题:triangle ABC$的内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$。

若$\triangle ABC$的面积为$4$,则$\cosC=\frac{3}{4}$。

2017年新课标Ⅰ文11题:triangle ABC$的内角$A$、$B$、$C$的对边分别为$a$、$b$、$c$。

已知$\sin B+\sin A(\sin C-\cos C)=\frac{3}{2}$,$a=2$,$c=2$,则$C=\frac{\pi}{3}$。

2018年全国二卷数学(含详解答案)

2018年全国二卷数学(含详解答案)

2018年全国二卷数学(含详解答案)2018年全国二卷数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=-A .43i 55-- B .43i 55-+ C .34i 55--D .34i 55-+2.已知集合(){}223A x y x y x y =+∈∈Z Z,≤,,,则A 中元素的个数为A .9B .8C .5D .4 3.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0 5.双曲线22221(0,0)x y a b a b -=>>3线方程为 A .2y x= B .3y x= C .2y =D .3y x =6.在ABC△中,5cos2C 1BC =,5AC =,则AB = A .42B 30C 29D .257.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的开始0,0N T ==S N T =-S 输出1i =100i <1N N i=+11T T i =++结束是否和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112 B .114 C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为A .15B 5C 5D 210.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .50 12.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A是C的左顶点,点P 在过A3的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分. 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________. 14.若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB△的面积为515,则该圆锥的侧面积为__________.三、解答题:共70分。

三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

三角函数(原卷版)-五年(2018-2022)高考数学真题分项汇编(全国通用)

专题09三角函数1.【2022年全国甲卷】将函数op =sin B (>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则的最小值是()A .16B .14C .1D .122.【2022年全国甲卷】设函数op =sin B +(0,π)恰有三个极值点、两个零点,则的取值范围是()A B ,6C D 3.【2022年全国乙卷】函数=cos ++1sin +1在区间0,2π的最小值、最大值分别为()A .−π2,π2B .−3π2,π2C .−π2,π2+2D .−3π2,π2+24.【2022年新高考1卷】记函数op =sin(B +4)+o >0)的最小正周期为T .若23<<,且=op 的图象关于点(32,2)中心对称,则o2)=()A .1B .32C .52D .35.【2022年新高考2卷】若sin(+p +cos(+p =22cos +sin ,则()A .tan(−p =1B .tan(+p =1C .tan(−p =−1D .tan(+p =−16.【2021年甲卷文科】若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A 15B C .3D .37.【2021年乙卷文科】函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A .3πB .3π和2C .6πD .6π和28.【2021年乙卷文科】22π5πcos cos 1212-=()A .12B C .2D 9.【2021年乙卷理科】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A .7sin 212x π⎛⎫- ⎪⎝⎭B .sin 212x π⎛⎫+ ⎪⎝⎭C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭10.【2021年新高考1卷】下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是()A .0,2π⎛⎫⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫⎪⎝⎭11.【2021年新高考1卷】若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B .25-C .25D .6512.【2021年新高考2卷】北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B .34%C .42%D .50%13.【2020年新课标1卷理科】设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为()A .10π9B .7π6C .4π3D .3π214.【2020年新课标1卷理科】已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=()A B .23C .13D15.【2020年新课标2卷理科】若α为第四象限角,则()A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<016.【2020年新课标3卷理科】已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .217.【2020年新课标3卷文科】已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .3C .23D .218.【2020年新课标3卷文科】在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()AB .C .D .19.【2019年新课标1卷理科】函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .20.【2019年新课标1卷理科】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点④f (x )的最大值为2其中所有正确结论的编号是A .①②④B .②④C .①④D .①③21.【2019年新课标1卷文科】tan255°=A .-2B .-C .2D .22.【2019年新课标2卷理科】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )=sin│x │23.【2019年新课标2卷理科】已知α∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BC D 24.【2019年新课标2卷文科】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A .2B .32C .1D .1225.【2019年新课标3卷理科】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④26.【2019年新课标3卷文科】函数()2sin sin2f x x x =-在[]0,2π的零点个数为A .2B .3C .4D .527.【2018年新课标1卷文科】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为428.【2018年新课标1卷文科】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -=A .15B .5C .5D .129.【2018年新课标2卷理科】若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是A .4πB .2πC .34πD .π30.【2018年新课标3卷理科】若1sin 3α=,则cos2α=A .89B .79C .79-D .89-31.【2018年新课标3卷文科】函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2πC .πD .2π32.【2022年新高考2卷】已知函数op =sin(2+p(0<<π)0中心对称,则()A .op 在区间0,12B .op 在区间−π12C .直线=7π是曲线=op 的对称轴D .直线=是曲线=op 的切线33.【2020年新高考1卷(山东卷)】下图是函数y =sin(ωx +φ)的部分图像,则sin(ωx +φ)=()A .πsin(3x +)B .πsin(2)3x -C .πcos(26x +)D .5πcos(2)6x -34.【2022年全国乙卷】记函数op =cos(B +p(>0,0<<π)的最小正周期为T ,若op ==9为op 的零点,则的最小值为____________.35.【2021年甲卷文科】已知函数()()2cos f x x ωϕ=+的部分图像如图所示,则2f π⎛⎫= ⎪⎝⎭_______________.36.【2021年甲卷理科】已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.37.【2020年新课标2卷文科】若2sin 3x =-,则cos 2x =__________.38.【2020年新高考1卷(山东卷)】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,//BH DG ,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.39.【2019年新课标1卷文科】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.40.【2018年新课标2卷理科】已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.41.【2018年新课标2卷文科】已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.42.【2018年新课标3卷理科】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.43.【2019年新课标1卷文科】已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数.(1)证明:f′(x )在区间(0,π)存在唯一零点;(2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.。

2018年高考数学试卷(文科)(全国新课标Ⅰ)-教师用卷

2018年高考数学试卷(文科)(全国新课标Ⅰ)-教师用卷

2018年高考数学试卷(文科)(全国新课标Ⅰ)一、选择题(本大题共12小题,共60.0分)1.已知集合,0,1,,则A. B.C. D. 0,1,【答案】A【解析】解:集合,0,1,,则.故选:A.直接利用集合的交集的运算法则求解即可.本题考查集合的基本运算,交集的求法,是基本知识的考查.2.设,则A. 0B.C. 1D.【答案】C【解析】解:,则.故选:C.利用复数的代数形式的混合运算化简后,然后求解复数的模.本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【分析】设建设前经济收入为a,建设后经济收入为通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果本题主要考查事件与概率,概率的应用,命题的真假的判断,考查发现问题解决问题的能力.【解答】解:设建设前经济收入为a,建设后经济收入为2a.A项,种植收入,故建设后,种植收入增加,故A项错误.B项,建设后,其他收入为,建设前,其他收入为,故,故B项正确.C项,建设后,养殖收入为,建设前,养殖收入为,故,故C项正确.D项,建设后,养殖收入与第三产业收入总和为,经济收入为2a,故,故D项正确.因为是选择不正确的一项,故选A.4.已知椭圆C:的一个焦点为,则C的离心率为A. B. C. D.【答案】C【解析】解:椭圆C:的一个焦点为,可得,解得,,.故选:C.利用椭圆的焦点坐标,求出a,然后求解椭圆的离心率即可.本题考查椭圆的简单性质的应用,考查计算能力.5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】D【解析】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,可得:,解得,则该圆柱的表面积为:.故选:D.利用圆柱的截面是面积为8的正方形,求出圆柱的底面直径与高,然后求解圆柱的表面积.本题考查圆柱的表面积的求法,考查圆柱的结构特征,截面的性质,是基本知识的考查.6.设函数,若为奇函数,则曲线在点处的切线方程为.A. B. C. D.【答案】D【解析】【分析】利用函数的奇偶性求出a,求出函数的导数,求出切线的向量然后求解切线方程.本题考查函数的奇偶性以及函数的切线方程的求法,考查计算能力.【解答】解:函数,若为奇函数,可得,所以函数,可得,曲线在点处的切线的斜率为:1,则曲线在点处的切线方程为:.故选D.7.在中,AD为BC边上的中线,E为AD的中点,则A. B. C. D.【答案】A【解析】解:在中,AD为BC边上的中线,E为AD的中点,,故选:A.运用向量的加减运算和向量中点的表示,计算可得所求向量.本题考查向量的加减运算和向量中点表示,考查运算能力,属于基础题.8.已知函数,则A. 的最小正周期为,最大值为3B. 的最小正周期为,最大值为4C. 的最小正周期为,最大值为3D. 的最小正周期为,最大值为4【答案】B【解析】解:函数,,,,,,故函数的最小正周期为,函数的最大值为,故选:B.首先通过三角函数关系式的恒等变换,把函数的关系式变形成余弦型函数,进一步利用余弦函数的性质求出结果.本题考查的知识要点:三角函数关系式的恒等变换,余弦型函数的性质的应用.9.某圆柱的高为2,底面周长为16,其三视图如图圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A. B. C. 3 D. 2【答案】B【解析】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:.故选:B.判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.本题考查三视图与几何体的直观图的关系,侧面展开图的应用,考查计算能力.10.在长方体中,,与平面所成的角为,则该长方体的体积为A. 8B.C.D.【答案】C【解析】解:长方体中,,与平面所成的角为,即,可得.可得.所以该长方体的体积为:.故选:C.画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可.本题考查长方体的体积的求法,直线与平面所成角的求法,考查计算能力.11.已知角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点,,且,则A. B. C. D. 1【答案】B【解析】解:角的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点,,且,,解得,,,.故选:B.推导出,从而,进而由此能求出结果.本题考查两数差的绝对值的求法,考查二倍角公式、直线的斜率等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.12.设函数,则满足的x的取值范围是A. B. C. D.【答案】D【解析】解:函数,的图象如图:满足,可得:或,解得.故选:D.画出函数的图象,利用函数的单调性列出不等式转化求解即可.本题考查分段函数的应用,函数的单调性以及不等式的解法,考查计算能力.二、填空题(本大题共4小题,共20.0分)13.已知函数,若,则______.【答案】【解析】解:函数,若,可得:,可得.故答案为:.直接利用函数的解析式,求解函数值即可.本题考查函数的解析式的应用,函数的零点与方程根的关系,是基本知识的考查.14.若x,y满足约束条件,则的最大值为______.【答案】6【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可本题主要考查线性规划的应用,利用目标函数的几何意义以及数形结合是解决本题的关键.【解答】解:作出不等式组对应的平面区域如图:由得,平移直线,由图象知当直线经过点时,直线的截距最大,此时z最大,最大值为,故答案为:615.直线与圆交于A,B两点,则__________.【答案】【解析】解:圆的圆心,半径为:2,圆心到直线的距离为:,所以.故答案为:.求出圆的圆心与半径,通过点到直线的距离以及半径、半弦长的关系,求解即可.本题考查直线与圆的位置关系的应用,弦长的求法,考查计算能力.16.的内角A,B,C的对边分别为a,b,已知,,则的面积为______.【答案】【解析】解:的内角A,B,C的对边分别为a,b,c.,利用正弦定理可得,由于,,所以,所以,则或由于,则:,当时,,解得,所以.当时,,解得不合题意,舍去.故:.故答案为:.直接利用正弦定理求出A的值,进一步利用余弦定理求出bc的值,最后求出三角形的面积.本体考察的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用及三角形面积公式的应用.三、解答题(本大题共7小题,共82.0分)17.已知数列满足,,设.求,,;判断数列是否为等比数列,并说明理由;求的通项公式.【答案】解:数列满足,,则:常数,由于,故:,数列是以为首项,2为公比的等比数列.整理得:,所以:,,.数列是为等比数列,由于常数;由得:,根据,所以:.【解析】直接利用已知条件求出数列的各项.利用定义说明数列为等比数列.利用的结论,直接求出数列的通项公式.本题考查的知识要点:数列的通项公式的求法及应用.18.如图,在平行四边形ABCM中,,,以AC为折痕将折起,使点M到达点D的位置,且.证明:平面平面ABC;为线段AD上一点,P为线段BC上一点,且,求三棱锥的体积.【答案】解:证明:在平行四边形ABCM中,,,又且,面ADC,又面ABC,平面平面ABC;,,,,由得,又,面ABC,三棱锥的体积.【解析】可得,且,即可得面ADC,平面平面ABC;首先证明面ABC,再根据,可得三棱锥的高,求出三角形ABP的面积即可求得三棱锥的体积.本题考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.19.某家庭记录了未使用节水龙头50天的日用水量数据单位:和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头天的日用水量频数分布表作出使用了节水龙头50天的日用水量数据的频率分布直方图;估计该家庭使用节水龙头后,日用水量小于的概率;估计该家庭使用节水龙头后,一年能节省多少水?一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表【答案】解:根据使用了节水龙头50天的日用水量频数分布表,作出使用了节水龙头50天的日用水量数据的频率分布直方图,如下图:根据频率分布直方图得:该家庭使用节水龙头后,日用水量小于的概率为:.由题意得未使用水龙头50天的日均水量为:,使用节水龙头50天的日均用水量为:,估计该家庭使用节水龙头后,一年能节省:.【解析】根据使用了节水龙头50天的日用水量频数分布表能作出使用了节水龙头50天的日用水量数据的频率分布直方图.根据频率分布直方图能求出该家庭使用节水龙头后,日用水量小于的概率.由题意得未使用水龙头50天的日均水量为,使用节水龙头50天的日均用水量为,能此能估计该家庭使用节水龙头后,一年能节省多少水.本题考查频率分由直方图的作法,考查概率的求法,考查平均数的求法及应用等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.设抛物线C:,点,,过点A的直线l与C交于M,N两点.当l与x轴垂直时,求直线BM的方程;证明:.【答案】解:当l与x轴垂直时,,代入抛物线解得,所以或,直线BM的方程:,或:.证明:设直线l的方程为l:,,,联立直线l与抛物线方程得,消x得,即,,则有,所以直线BN与BM的倾斜角互补,.【解析】当时,代入求得M点坐标,即可求得直线BM的方程;设直线l的方程,联立,利用韦达定理及直线的斜率公式即可求得,即可证明.本题考查抛物线的性质,直线与抛物线的位置关系,考查韦达定理,直线的斜率公式,考查转化思想,属于中档题.21.已知函数.设是的极值点,求a,并求的单调区间;证明:当时,.【答案】解:函数.,,是的极值点,,解得,,,当时,,当时,,在单调递减,在单调递增.证明:当时,,设,则,当时,,当时,,是的最小值点,故当时,,当时,.【解析】推导出,,由是的极值点,解得,从而,进而,由此能求出的单调区间.当时,,设,则,由此利用导数性质能证明当时,.本题考查函数的单调性、导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.22.在直角坐标系xOy中,曲线的方程为以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.求的直角坐标方程;若与有且仅有三个公共点,求的方程.【答案】解:曲线的极坐标方程为,转换为直角坐标方程为:,转换为标准式为:.由于曲线的方程为,则:该直线关于y轴对称,且恒过定点,由于该直线与曲线的极坐标有且仅有三个公共点,所以:必有一直线相切,一直线相交,则:圆心到直线的距离等于半径2,故:,解得:或舍去故C的方程为:.【解析】直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.利用直线在坐标系中的位置,再利用点到直线的距离公式的应用求出结果.本题考察知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和曲线的位置关系的应用,点到直线的距离公式的应用.23.已知.当时,求不等式的解集;若时不等式成立,求a的取值范围.【答案】解:当时,,因为,或,解得,故不等式的解集为;当时不等式成立,,即,即,,,,,,,,,故a的取值范围为.【解析】去绝对值,化为分段函数,即可求出不等式的解集;当时不等式成立,转化为,即,转化为,且,即可求出a的范围.本题考查了绝对值不等式的解法和含参数的取值范围,考查了运算能力和转化能力,属于中档题.。

(完整版)2018年高考全国卷1文科数学试题及含答案

(完整版)2018年高考全国卷1文科数学试题及含答案

2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出の四个选项中,只有一项是符合题目要求の。

1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。

2018年高考江苏数学卷及答案解析

2018年高考江苏数学卷及答案解析

温馨提示:全屏查看效果更佳。

绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每题5小分,共计70分。

请把答案填写在答题卡相应位置上。

1.已知集合==-{0,1,2,8},{1,1,6,8}A B ,那么A B ⋂=__________.2.若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z z 的实部为__________.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为__________.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为__________.5.函数()f x =__________.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率是__________.7.已知函数sin(2)()22y x ππϕϕ=+-<<的图像关于直线3x π=对称,则ϕ的值是__________.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为2c ,则其离心率的值是__________. 9.函数()f x 满足(4)()()f x f x x R +=∈,且在区间(2,2)-上cos ,022()1||,202x x f x x x π⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩,则((15))f f 的值为__________.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为__________.11.若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为__________.12.在平面直角坐标系xOy 中, A 为直线:2l y x =上在第一象限内的点, ()5,0B 以AB 为直径的圆C 与直线l 交于另一点D ,若0AB CD ⋅=,则点A 的横坐标为__________. 13.在ABC ∆中,角,,A B C 所对应的边分别为,,,120,a b c ABC ABC ∠=∠o的平分线交AC 于点D ,且1BD =,则4a c +的最小值为__________.14.已知集合{}{}**|21,,|2,n A x x n n N B x x n N ==-∈==∈,将A B ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列的前n 项和,则使得112n n S a +>成立的n 的最小值为__________.二、解答题15.在平行四边形1111ABCD A B C D -中, 1111,AA AB AB B C =⊥1.求证: //AB 平面11A B C2.平面11ABB A ⊥平面1A BC16.已知,αβ为锐角, ()4tan ,cos 3ααβ=+= 1.求cos2α的值。

高考数学文科一轮复习全国2卷 B课件:§2.4 指数函数与对数函数

高考数学文科一轮复习全国2卷 B课件:§2.4 指数函数与对数函数

答案 B log5b=a,b>0,故由换底公式得 l g b=a,∴lg b=alg 5.∵lg b=c,∴alg 5=c,又∵5d=10,∴d=
lg 5
log510,即 1 =lg 5,将其代入alg 5=c中得 a =c,即a=cd.
d
d
4.(2014安徽,5,5分)设a=log37,b=21.1,c=0.83.1,则 ( ) A.b<a<c B.c<a<b C.c<b<a D.a<c<b
正确的是 ( ) A.q=r<p B.q=r>p
C.p=r<q
D.p=r>q
,r =a
2
b (f(a)+12 f(b)),则下列关系式中
答案 C 由题意知f( )a=bln = a bln(a1 b)= (ln1 a+ln b)= (1f(a)+f(b)),从而p=r.因为 a> b
2
2
ห้องสมุดไป่ตู้
2
2
,a bf(x)=ln x在(0,+∞)上为增函数,所以f
答案 B 依题意得f(a)≥2a, 若f(a)≤2b,则2a≤f(a)≤2b,∴2a≤2b, 又y=2x是R上的增函数,∴a≤b.故选B.
3.(2014陕西,7,5分)下列函数中,满足“f(x+y)=f(x)f(y)”的单调递增函数是 ( )
A.f(x)=x3 B.f(x)=3x
1
C.f(x)= x 2
2=
2
答案 - 1 ;3 3 2
解析
log2
2 2
=log2
2
1
=2 -
1. 2

2018年全国高考数学卷(含文理科)

2018年全国高考数学卷(含文理科)

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答案卡一并交回。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合)1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =( )A .{}0B .{}1C .{}12,D .{}012,,2.()()12i i +-=( ) A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )4.若1sin 3α=,则cos 2α=( )A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]26,B .[]48,C .D .⎡⎣7.函数422y x x =-++的图像大致为( )8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( ) A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2πB .3πC .4πD .6π10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为三棱锥D ABC -体积的最大值为( )A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF OP ,则C 的离心率为( )AB .2CD12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题(本题共4小题,每小题5分,共20分)13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1x y ax e =+在点()01,处的切线的斜率为2-,则a =________.15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17~31题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分。

2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

 2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.28.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+49.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国2卷文科数学带答案解析

2018年高考全国2卷文科数学带答案解析

2018年普通高等学校招生全国统一考试文科数学本试卷共注意事项:23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

1•答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在 条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用 0.5毫米黑色字迹的签字笔 书写,字体工整、笔迹清楚。

3•请按照题号顺序在各题目的答题区域内作答, 超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。

4 •作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。

一、选择题:本题共 12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 项是符合题目要求的。

1. i(2+3i)=A. 3-2iB. 3 2iC. -3 _2iD. -3 2i2.已知集合A=「1,3,5,7 匚 B -「2,3,4,5 [则 A^B =A.「3 ?B.C. :3,5;D. 11,2,3,4,5,7 /3.函数 f(x)e x- e e 2e的图象大致为2 x4.已知向量 a , b 满足 | a |=1 , a b - -1,则 a (2a -b )=A. 0.6B. 0.5C. 0.4D. 0.32 26 •双曲线笃-1( a 0, b 0)的离心率为-3,则其渐近线方程为a bA. y =. 2xB. y = 3xC 占 C ・yx2D. y =二 3x2C7.在"Be 中,co 丁 5, BC=1 ,AC =5,贝U AB =A. 42B. , 30C.29D. 2 5绝密★启用前A. 45•从2名男同学和 B . 3 3名女同学中任选 C. 2 2人参加社区服务,则选中D. 02人都是女同学的概率为A CD&为计算S -1---- —,设计了右侧的程 2 3 499 100序框图,则在空白框中应填入A. i =i 1B. i =i 2C. i =i 3D. i =i 49.在长方体 ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线 AE 与CD 所成角的正切值为 A.二B.二C.」2 2 210 .若f (x) = cosx -sinx 在[0, a ]是减函数,则 a 的最大值是则C 的离心率为f(1) f (2) f(3) Hl • f (50)=二、 填空题:本题共 4小题,每小题5分,共20分。

2018年河南省信阳市高考数学二模试卷(文科)及答案

2018年河南省信阳市高考数学二模试卷(文科)及答案

2018年河南省信阳市高考数学二模试卷(文科)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的实部与虚部分别为()A.7,﹣3 B.7,﹣3i C.﹣7,3 D.﹣7,3i2.(5分)已知全集U=R,集合A={x|x<﹣或x>1},B={x|﹣1≤x≤2,x∈Z},则图中阴影部分所表示的集合等于()A.{﹣1,2}B.{﹣1,0}C.{0,1}D.{1,2}3.(5分)已知命题p:∃x∈R,e x﹣x﹣1≤0,则¬p为()A.∀x∉R,e x﹣x﹣1>0 B.∀x∈R,e x﹣x﹣1≥0C.∀x∈R,e x﹣x﹣1>0 D.∃x∈R,e x﹣x﹣1>04.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线经过点(3,),则双曲线的离心率为()A.B.2 C.或2 D.或25.(5分)某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x﹣y=1上的概率为()A.B.C.D.6.(5分)如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)7.(5分)已知等比数列{a n}的前n项和为S n,a1+a3=,且a2+a4=,则等于()A.4n﹣1 B.4n﹣1 C.2n﹣1 D.2n﹣18.(5分)执行如图所示的程序框图,若输出的y的值为5,则判断框中可以填入的条件是()A.i<6?B.i<5?C.i<4?D.i<3?9.(5分)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”:乙说:“我没有作案,是丙偷的”:丙说:“甲、乙两人中有一人是小偷”:丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁10.(5分)在△ABC中,内角A、B、C所对的边分别为a、b、c.若asinBcosC+csinBcosA=b,且a>b,则B等于()A. B.C. D.11.(5分)已知x=﹣与x0分别是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一条对称轴和零点,且|x0+|min=,则φ等于()A.﹣B.﹣C.D.12.(5分)已知函数f(x)(x∈R)满足f(﹣x)=8﹣f(4+x),函数g(x)=,若函数f(x)与g(x)的图象共有168个交点,记作P i(x i,y i)(i=1,2,…,168),则(x1+y1)+(x2+y2)+…+(x168+y168)的值为()A.2018 B.2017 C.2016 D.1008二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)设向量=(1,﹣2),+=(0,2),则|﹣2|=.14.(5分)已知椭圆C:x2+my2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m=.15.(5分)直线ax+by+c=0与圆C:x2﹣2x+y2+4y=0相交于A,B两点,且||=,则•=.16.(5分)某化肥厂生产甲、乙两种肥料,生产一车皮甲种肥料需要磷酸盐4吨、硝酸盐18吨;生产一车皮乙种肥料需要磷酸盐1吨、硝酸盐15吨.已知生产一车皮甲种肥料产生的利润是10万元,生产一车皮乙种肥料产生的利润是5万元.现库存磷酸盐10吨、硝酸盐66吨.如果该厂合理安排生产计划,则可以获得的最大利润是.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且acosB+bsinA=0.(Ⅰ)求角B的大小;(Ⅱ)若a+c=4,b=,求△ABC的面积.18.(12分)已知等差数列{a n}的前n项和为S n,且S5=45,S6=60.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)若数列{b n}满足b n+1﹣b n=a n(n∈N*),且b1=3,求的前n项和T n.19.(12分)某二手车交易市场对某型号的二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如下的对应数据:246810使用年数售价16139.57 4.5(1)试求y关于x的回归直线方程:(参考公式:=,=﹣.)(2)已知每辆该型号汽车的收购价格为ω=0.05x2﹣1.75x+17.2万元,根据(1)中所求的回归方程,预测x为何值时,销售一辆该型号汽车所获得的利润z最大?20.(12分)已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F交抛物线C于A、B两点.且以AB为直径的圆M与直线y=﹣1相切于点N.(1)求C的方程;(2)若圆M与直线x=﹣相切于点Q,求直线l的方程和圆M的方程.21.(12分)已知函数f(x)=4x2+﹣a,g(x)=f(x)+b,其中a,b为常数.(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.选考题:共10分.请考生从第22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-4:坐标系与参数方程]22.(10分)已知直线l的参数方程为(其中t为参数),曲线C1:ρ2cos2θ+3ρ2sin2θ﹣3=0,以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同长度单位.(Ⅰ)求直线l的普通方程及曲线C1的直角坐标方程;(Ⅱ)在曲线C1上是否存在一点P,使点P到直线l的距离最大?若存在,求出距离的最大值及点P的直角坐标;若不存在,请说明理由.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣5|﹣|x﹣2|.(Ⅰ)若∃x∈R,使得f(x)≤m成立,求实数m的取值范围;(Ⅱ)解不等式x2﹣8x+15+f(x)≤0.2018年河南省信阳市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数的实部与虚部分别为()A.7,﹣3 B.7,﹣3i C.﹣7,3 D.﹣7,3i【解答】解:=,∴z的实部与虚部分别为7,﹣3.故选:A.2.(5分)已知全集U=R,集合A={x|x<﹣或x>1},B={x|﹣1≤x≤2,x∈Z},则图中阴影部分所表示的集合等于()A.{﹣1,2}B.{﹣1,0}C.{0,1}D.{1,2}【解答】解:∵A={x|x<﹣或x>1},全集U=R,∴∁U A={x|﹣≤x≤1},∵B={﹣1,0,1,2},∴由图象可知阴影部分对应的集合为B∩(∁U A)={0,1}.故选:C.3.(5分)已知命题p:∃x∈R,e x﹣x﹣1≤0,则¬p为()A.∀x∉R,e x﹣x﹣1>0 B.∀x∈R,e x﹣x﹣1≥0C.∀x∈R,e x﹣x﹣1>0 D.∃x∈R,e x﹣x﹣1>0【解答】解:因为特称命题的否定是全称命题,所以命题p:∃x∈R,e x﹣x﹣1≤0,则¬p为∀x∈R,e x﹣x﹣1>0.故选:C.4.(5分)已知双曲线﹣=1(a>0,b>0)的一条渐近线经过点(3,),则双曲线的离心率为()A.B.2 C.或2 D.或2【解答】解:双曲线﹣=1(a>0,b>0)的一条渐近线经过点(3,),可得,即,可得,解得e=.故选:A.5.(5分)某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x﹣y=1上的概率为()A.B.C.D.【解答】解:由题意知本题是一个古典概型,∵试验发生包含的事件是先后掷两次骰子,共有6×6=36种结果,满足条件的事件是(x,y)为坐标的点落在直线2x﹣y=1上,当x=1,y=1,x=2,y=3;x=3,y=5,共有3种结果,∴根据古典概型的概率公式得到以(x,y)为坐标的点落在直线2x﹣y=1上的概率:P=.故选:A.6.(5分)如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)【解答】解:∵f(x)是奇函数,∴f(﹣x)=﹣f(x).对于A,g(﹣x)=﹣x+f(﹣x)=﹣x﹣f(x)=﹣g(x),∴y=x+f(x)是奇函数.对于B,g(﹣x)=﹣xf(﹣x)=xf(x)=g(x),∴y=xf(x)是偶函数.对于C,g(﹣x)=(﹣x)2+f(﹣x)=x2﹣f(x),∴y=x2+f(x)为非奇非偶函数,对于D,g(﹣x)=(﹣x)2f(﹣x)=﹣x2f(x)=﹣g(x),∴y=x2f(x)是奇函数.故选:B.7.(5分)已知等比数列{a n}的前n项和为S n,a1+a3=,且a2+a4=,则等于()A.4n﹣1 B.4n﹣1 C.2n﹣1 D.2n﹣1【解答】解:∵等比数列{a n}的前n项和S n,且a1+a3=,a2+a4=,∴两式相除可得公比q=,∴a1=2,∴a n==,S n==4(1﹣),∴=2n﹣1,故选:D.8.(5分)执行如图所示的程序框图,若输出的y的值为5,则判断框中可以填入的条件是()A.i<6?B.i<5?C.i<4?D.i<3?【解答】解:模拟执行程序,可得x=1,y=1,i=1满足条件,执行循环体,y=2,x=1,i=2满足条件,执行循环体,y=3,x=2,i=3满足条件,执行循环体,y=5,x=3,i=4由题意,此时应该不满足条件,退出循环,输出y的值为5.故判断框中可填入的条件是i≤3?或i<4?.故选:C.9.(5分)一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”:乙说:“我没有作案,是丙偷的”:丙说:“甲、乙两人中有一人是小偷”:丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.甲B.乙C.丙D.丁【解答】解:在甲、乙、丙、丁四人的供词不达意中,可以看出乙、丁两人的观点是一致的,因此乙、丁两人的供词应该是同真或同假(即都是真话或者都是假话,不会出现一真一假的情况);假设乙、丁两人说的是真话,那么甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出乙、丙、丁三人不是罪犯的结论;显然这两个结论是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯,乙、丙、丁中有一人是罪犯,由丁说假说,丙说真话,推出乙是罪犯.故选:B.10.(5分)在△ABC中,内角A、B、C所对的边分别为a、b、c.若asinBcosC+csinBcosA=b,且a>b,则B等于()A. B.C. D.【解答】解:△ABC中,asinBcosC+csinBcosA=b,由正弦定理得:sinAsinBcosC+sinCsinBcosA=sinB,且sinB≠0,∴sinAcosC+sinCcosA=,∴sin(A+C)=;又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB=;又a>b,∴B=.故选:D.11.(5分)已知x=﹣与x0分别是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一条对称轴和零点,且|x0+|min=,则φ等于()A.﹣B.﹣C.D.【解答】解:x=﹣与x0分别是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的一条对称轴和零点,则:①,ω•x0+φ=kπ②,②﹣①得:ω|ω•x0+φ|=,由于:|x0+|min=,解得:ω=2.故:(k∈Z),解得:φ=(k∈Z),当k=﹣1时,.故选:B.12.(5分)已知函数f(x)(x∈R)满足f(﹣x)=8﹣f(4+x),函数g(x)=,若函数f(x)与g(x)的图象共有168个交点,记作P i(x i,y i)(i=1,2,…,168),则(x1+y1)+(x2+y2)+…+(x168+y168)的值为()A.2018 B.2017 C.2016 D.1008【解答】解:函数f(x)(x∈R)满足f(﹣x)=8﹣f(4+x),可得:f(﹣x)+f(4+x)=8,即函数f(x)关于点(2,4)对称,函数g(x)===4+可知图象关于(2,4)对称;∴函数f(x)与g(x)的图象共有168个交点即在(2,4)两边各有84个交点.而每个对称点都有:x1+x2=4,y1+y2=8,∵有168个交点,即有84组.故得:(x1+y1)+(x2+y2)+…+(x168+y168)=(4+8)×84=1008.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)设向量=(1,﹣2),+=(0,2),则|﹣2|=.【解答】解:根据题意,向量=(1,﹣2),+=(0,2),则=+﹣=(﹣1,4),则﹣2=(3,﹣10),则|﹣2|==;故答案为:.14.(5分)已知椭圆C:x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m=.【解答】解:根据题意,椭圆C:x2+my2=1的焦点在y轴上,则其标准方程为:+=1,其中a=,b=1,若长轴长是短轴长的两倍,则a=2b,则有=2,解可得m=;故答案为:.15.(5分)直线ax+by+c=0与圆C:x2﹣2x+y2+4y=0相交于A,B两点,且||=,则•=﹣.【解答】解:圆C:x2﹣2x+y2+4y=0⇔(x﹣1)2+(y+2)2=5,如图,过C作CD⊥AB于D,AB=2AD=2AC•sin∠CAD,∴,∴∠CAD=30°,∴∠ACB=120°,则•==﹣.故答案为:﹣.16.(5分)某化肥厂生产甲、乙两种肥料,生产一车皮甲种肥料需要磷酸盐4吨、硝酸盐18吨;生产一车皮乙种肥料需要磷酸盐1吨、硝酸盐15吨.已知生产一车皮甲种肥料产生的利润是10万元,生产一车皮乙种肥料产生的利润是5万元.现库存磷酸盐10吨、硝酸盐66吨.如果该厂合理安排生产计划,则可以获得的最大利润是30万元.【解答】解:设x、y分别为计划生产甲、乙两种混合肥料的车皮数,于是满足以下条件:再设分别生产甲、乙两种肥料各x、y车皮产生的利润为z=10000x+5000y=5000(2x+y),由得两直线的交点M(2,2).令t=2x+y,当直线L:y=﹣2x+t经过点M(2,2)时,它在y轴上的截距有最大值为6,此时z=30000.故分别生产甲、乙两种肥料各2车皮时产生的利润最大为30万元.故答案为:30万元.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,且acosB+bsinA=0.(Ⅰ)求角B的大小;(Ⅱ)若a+c=4,b=,求△ABC的面积.【解答】解:(Ⅰ)∵且acosB+bsinA=0.由正弦定理可得:sinAcosB+sinAsinB=0∵sinA≠0,∴sinB=﹣cosB,∴tanB=﹣.∴B=120°.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB=(a+c)2﹣ac,∵a+c=4,b=,∴ac=3.∴△ABC的面积S=.18.(12分)已知等差数列{a n}的前n项和为S n,且S5=45,S6=60.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)若数列{b n}满足b n+1﹣b n=a n(n∈N*),且b1=3,求的前n项和T n.【解答】解:(I)设等差数列{a n}的公差为d,∵S5=45,S6=60.∴=45,d=60,解得a1=5,d=2.∴a n=5+2(n﹣1)=2n+3.﹣b n=a n=2n+3,且b1=3,(II)b n+1∴b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+…+(b2﹣b1)+b1=2(n﹣1)+3+2(n﹣2)+3+…+2×1+3+3==n2+2n.∴==.∴的前n项和T n=+…+==.19.(12分)某二手车交易市场对某型号的二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如下的对应数据:246810使用年数售价16139.57 4.5(1)试求y关于x的回归直线方程:(参考公式:=,=﹣.)(2)已知每辆该型号汽车的收购价格为ω=0.05x2﹣1.75x+17.2万元,根据(1)中所求的回归方程,预测x为何值时,销售一辆该型号汽车所获得的利润z最大?【解答】解:(1)由已知:,则,所以回归直线的方程为.(2)z=﹣1.45x+18.7﹣(0.05x2﹣1.75x+17.2)=﹣0.052x2+0.3x+1.5=﹣0.05(x﹣3)2+1.95,所以预测当x=3时,销售利润z取得最大值.20.(12分)已知抛物线C:x2=2py(p>0)的焦点为F,直线l过点F交抛物线C于A、B两点.且以AB为直径的圆M与直线y=﹣1相切于点N.(1)求C的方程;(2)若圆M与直线x=﹣相切于点Q,求直线l的方程和圆M的方程.【解答】解:(1)设A(x1,y1),B(x2,y2),则|AB|=y1+y2+p=2p,又∵以AB为直径的圆M与直线y=﹣1相切,∴|FN|=|AB|=+1,即|AB|=p+2,∴p=2,∴抛物线C的方程为x2=4y.(2)设直线l的方程为y=kx+1,代入x2=4y中,化简整理得x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4,∴,∴圆心的坐标为M(2k,2k2+1),∵圆M与直线相切于点Q,∴|MQ|=|MN|,∴,解得,此时直线l的方程为,即x﹣2y+2=0,圆心,半径,∴圆M的方程为.21.(12分)已知函数f(x)=4x2+﹣a,g(x)=f(x)+b,其中a,b为常数.(1)若x=1是函数y=xf(x)的一个极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)有2个零点,f(g(x))有6个零点,求a+b的取值范围.【解答】解:(1)函数f(x)=4x2+﹣a,则y=xf(x)=4x3+1﹣ax的导数为y′=12x2﹣a,由题意可得12﹣a=0,解得a=12,即有f(x)=4x2+﹣12,f′(x)=8x﹣,可得曲线在点(1,f(1))处的切线斜率为7,切点为(1,﹣7),即有曲线y=f(x)在点(1,f(1))处的切线方程为y+7=7(x﹣1),即为y=7x﹣14;(2)由f(x)=4x2+﹣a,导数f′(x)=8x﹣,当x>时,f′(x)>0,f(x)递增;当x<0或0<x<时,f′(x)<0,f(x)递减.可得x=处取得极小值,且为3﹣a,由f(x)有两个零点,可得3﹣a=0,即a=3,零点分别为﹣1,.令t=g(x),即有f(t)=0,可得t=﹣1或,则f(x)=﹣1﹣b或f(x)=﹣b,由题意可得f(x)=﹣1﹣b或f(x)=﹣b都有3个实数解,则﹣1﹣b>0,且﹣b>0,即b<﹣1且b<,可得b<﹣1,即有a+b<2.则a+b的范围是(﹣∞,2).选考题:共10分.请考生从第22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-4:坐标系与参数方程]22.(10分)已知直线l的参数方程为(其中t为参数),曲线C1:ρ2cos2θ+3ρ2sin2θ﹣3=0,以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同长度单位.(Ⅰ)求直线l的普通方程及曲线C1的直角坐标方程;(Ⅱ)在曲线C1上是否存在一点P,使点P到直线l的距离最大?若存在,求出距离的最大值及点P的直角坐标;若不存在,请说明理由.【解答】解:(Ⅰ)直线l的参数方程为(其中t为参数),转化为直角坐标方程为:x﹣y+1=0.曲线C1:ρ2cos2θ+3ρ2sin2θ﹣3=0,转化为直角坐标方程为:.(Ⅱ)由(Ⅰ)知:C1的参数方程为:(θ为参数).所以:点P到直线l的距离d==,则:,此时:cos()=1,解得:(k∈Z).所以:,故P()到直线l的距离最大.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣5|﹣|x﹣2|.(Ⅰ)若∃x∈R,使得f(x)≤m成立,求实数m的取值范围;(Ⅱ)解不等式x2﹣8x+15+f(x)≤0.【解答】解:(Ⅰ)f(x)=|x﹣5|﹣|x﹣2|=,当2<x<5时,﹣3<7﹣2x<3,所以﹣3≤f(x)≤3,∴m≥﹣3;(Ⅱ)不等式x2﹣8x+15+f(x)≤0,即﹣f(x)≥x2﹣8x+15由(1)可知,当x≤2时,﹣f(x)≥x2﹣8x+15的解集为空集;当2<x<5时,﹣f(x)≥x2﹣8x+15,即x2﹣10x+22≤0,∴5﹣≤x<5;当x≥5时,﹣f(x)≥x2﹣8x+15,即x2﹣8x+12≤0,∴5≤x≤6;综上,原不等式的解集为{x|5﹣≤x≤6}.。

2018年高考文科数学试卷及详解答案

2018年高考文科数学试卷及详解答案
(22) <本题满分10分)选修4-1:几何证明选讲
如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:Zzz6ZB2Ltk
<I)BE=EC;
<II)AD·DE=2PB2。
【解读】
<1)
<2)
(23)<本小题满分10分)选修4-4:坐标系与参数方程
【答案】 3
【解读】
<16)数列 满足 = , =2,则 =_________.
【答案】
【解读】
(7)解答题:解答应写出文字说明过程或演算步骤。
(15)<本小题满分12分)
四边形ABCD的内角A与C互补,AB=1,BC=3, CD=DA=2.
(I>求C和BD;
(II>求四边形ABCD的面积。
【答案】 (1> (2>
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
<1)已知集合A=﹛-2,0,2﹜,B=﹛ | - - ﹜,则A B=
(A> <B) <C) (D>
【答案】B
所以,市民对甲、乙部门的评分大于90的概率分别为0.1,0.16
(20)<本小题满分12分)
设F1 ,F2分别是椭圆C: <a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N。LDAYtRyKfE
<I)若直线MN的斜率为 ,求C的离心率;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)
一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i(2+3i)=()
A.3﹣2i B.3+2i
C.﹣3﹣2i D.﹣3+2i
2.已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()
A.{3} B.{5} C.{3,5} D.{1,2,3,4,5,7}
=的图象大致为((x))3.函数f
.. BA
. CD.
2)=(( 4 .已知向量),满足||=1=﹣,1?,则
03
D.C.2
4
A.B.
5.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()
A.0.6 B.0.5 C.0.4 D.0.3
)的离心率为,则其渐近线方程为( 0 )ba=16(.双曲线>0,>
±.x
.By=±x
y=.A±Cy=±y=Dx
.x
=,BC=1,AC=5,则AB=.在△ABC中,(cos )7
2DA..4
B. C .
﹣+﹣.为计算S=1+﹣…+,设计了如图的程序框图,则在空白框8)中应填入(
A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+4
9.在正方体ABCD﹣ABCD中,E为棱CC的中点,则异面直线AE与CD所成角11111的正切值为()
. C D. B..A
10.若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()
. D.π. AC. B
11.已知F,F是椭圆C的两个焦点,P是C上的一点,若PF⊥PF,且∠PFF=60°,122112则C的离心率为()
.﹣D C1.A.1B﹣.2 ﹣
12.已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()
A.﹣50 B.0
C.2
D.50
分。

分,共20二、填空题:本题共4小题,每小题5
. y=2lnx13.曲线在点(1,0)处的切线方程为
.满足约束条件,则z=x+y14.若x,y的最大值为
.= ,则tanα)15.已知tan(α﹣=
16.已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为.
三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.记S为等差数列{a}的前n项和,已知a=﹣7,S=﹣15.3n1n(1)求{a}的通项公式;n(2)求S,并求S的最小值.nn
18.如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线
图.
为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,
)建立模型①:=﹣30.4+13.5t;根据2010年至2016年的数据(时间变量17t
)建立模型②:=99+17.5t.,2,…,7的值依次为1
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.ABC19.如图,在三棱锥P﹣中,
;ABC⊥平面)证明:(1PO
的距离.上,且在棱)若点(2MBCMC=2MBPOM到平面C,求点
2=4x的焦点为F,过F且斜率为k(k>0)的直线20.设抛物线C:yl与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
32+x+1)xx.﹣a21.已知函数f(x)(=
(1)若a=3,求f(x)的单调区间;
(2)证明:f(x)只有一个零点.
(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

[选修4-4:坐标系与参数方程](10分)
的参数方程为,C(θ为参数),xOy(10分)在直角坐标系中,曲线
22.
.t直线l为参数)的参数方程为,(
(1)求C和l的直角坐标方程;
(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.
[选修4-5:不等式选讲](10分)
23.设函数f(x)=5﹣|x+a|﹣|x﹣2|.
(1)当a=1时,求不等式f(x)≥0的解集;
(2)若f(x)≤1,求a的取值范围.
年全国统一高考数学试卷(文科)(新课标Ⅱ)2018
参考答案
分。

在每小题给出的四个选60一、选择题:本题共12小题,每小题5分,共项
中,只有一项是符合题目要求的。

;12.D;.C11109876;.A;.A;.B;.C;.C;D5B4B3C2D1.;.;.;.;.分。

205分,共4二、填空题:本题共小题,每小题
π;.;;.;﹣.13y=2x214915.168。

相关文档
最新文档