管理运筹学讲义动态规划优秀课件
合集下载
第07章 动态规划 《运筹学》PPT课件

最优路径问题 资源分配问题 排序问题 投资问题 装载问题 生产计划与库存问题 生产过程的最优控制等
动态规划
模型分类
离散确定型 离散随机型 连续确定型 连续随机型
§1 多阶 段决 策过 程的 最优
化
多阶段决策问题
(Multi-Stage decision process)
决策u1 决策u2
决策uk
32
维护费
8 8 9 9 10 6 6 8 8 10 5 6 8 9 5 5 6 4 54Βιβλιοθήκη 新设备购置费 5050
52 52 55 60
旧设备折价
20 15 10 5 2 30 25 20 15 10 31 26 21 15 33 28 20 35 30
40
§1 多阶 段决 策过 程的 最优
化
3)连续生产过程的控制 问题:一般化工生产过程中,
本章 内容
多阶段决策过程的最优化 动态规划的基本概念和基本原理 动态规划模型的建立与求解 动态规划在经济管理中的应用 马氏决策规划简介
创始时间 创始人
上个世纪50年代
美国数学家贝尔曼 (Richard. Bellman)
是运筹学的一个主要分支 是解决多阶段决策过程的最优化的一
种方法多阶段决策过程: 多阶段决策过程的最优化的目标: 达到整个活动过程的总体效果最优 •主要用于解决:
不过,实际中尚有许多不包含时间 因素的一类“静态”决策问题,就其本 质而言是一次决策问题,是非动态决策 问题,但是也可以人为地引入阶段的概 念当作多阶段决策问题,应用动态规划 方法加以解决。
§1 多阶 段决 策过 程的 最优
化
4)资源分配问题:便属于这类静 态问题。如:某工业部门或公司,拟对 其所属企业进行稀缺资源分配,为此需 要制定出收益最大的资源分配方案。这 种问题原本要求一次确定出对各企业的 资源分配量,它与时间因素无关,不属 动态决策,但是,我们可以人为地规定 一个资源分配的阶段和顺序,从而使其 变成一个多阶段决策问题(后面我们将 详细讨论这个问题)。
动态规划
模型分类
离散确定型 离散随机型 连续确定型 连续随机型
§1 多阶 段决 策过 程的 最优
化
多阶段决策问题
(Multi-Stage decision process)
决策u1 决策u2
决策uk
32
维护费
8 8 9 9 10 6 6 8 8 10 5 6 8 9 5 5 6 4 54Βιβλιοθήκη 新设备购置费 5050
52 52 55 60
旧设备折价
20 15 10 5 2 30 25 20 15 10 31 26 21 15 33 28 20 35 30
40
§1 多阶 段决 策过 程的 最优
化
3)连续生产过程的控制 问题:一般化工生产过程中,
本章 内容
多阶段决策过程的最优化 动态规划的基本概念和基本原理 动态规划模型的建立与求解 动态规划在经济管理中的应用 马氏决策规划简介
创始时间 创始人
上个世纪50年代
美国数学家贝尔曼 (Richard. Bellman)
是运筹学的一个主要分支 是解决多阶段决策过程的最优化的一
种方法多阶段决策过程: 多阶段决策过程的最优化的目标: 达到整个活动过程的总体效果最优 •主要用于解决:
不过,实际中尚有许多不包含时间 因素的一类“静态”决策问题,就其本 质而言是一次决策问题,是非动态决策 问题,但是也可以人为地引入阶段的概 念当作多阶段决策问题,应用动态规划 方法加以解决。
§1 多阶 段决 策过 程的 最优
化
4)资源分配问题:便属于这类静 态问题。如:某工业部门或公司,拟对 其所属企业进行稀缺资源分配,为此需 要制定出收益最大的资源分配方案。这 种问题原本要求一次确定出对各企业的 资源分配量,它与时间因素无关,不属 动态决策,但是,我们可以人为地规定 一个资源分配的阶段和顺序,从而使其 变成一个多阶段决策问题(后面我们将 详细讨论这个问题)。
管理运筹学第5章动态规划

递推关系的建立
根据阶段划分、状态转移方程和最优解的性质,建立递推关系。
递推关系的求解
通过递推关系求解各阶段的最优解,最终得到整个问题的最优解。
03
动态规划的求解方法
逆推法
总结词
逆推法是从目标状态出发,逆向推算出达到目标状态的最优决策,逐步推算出初始状态的最优决策。
详细描述
逆推法的基本思想是将问题分解为若干个相互联系的阶段,从最后阶段开始,依次向前推算出每个阶 段的最优决策,直到达到初始状态。这种方法适用于具有重叠子问题和最优子结构的问题,可以避免 重复计算,提高求解效率。
详细描述
资源分配问题通常需要考虑资源的约束条件、 各部门或个体的需求和优先级,以及如何平 衡各方利益。动态规划通过将问题分解为一 系列子问题,逐一求解最优解,最终得到整 体最优解。
生产与存储问题
总结词
生产与存储问题主要研究在生产过程 中如何平衡生产与库存的关系,以最 小化生产成本和库存成本。
详细描述
特点
动态规划适用于具有重叠子问题和最优子结构特性的问题,通过将原问题分解 为子问题,逐个求解并存储子问题的解,避免了重复计算,提高了求解效率。
动态规划的重要性
解决复杂问题
动态规划能够解决一些复杂的问题,如资源分配、生产计 划、物流调度等,这些问题通常难以通过传统方法求解。
提高计算效率
通过避免重复计算,动态规划能够显著提高计算效率,尤 其在处理大规模问题时,能够大大减少计算时间和资源消 耗。
05
动态规划的优化策略
多阶段决策优化
01
02
03
阶段划分
将问题划分为若干个相互 关联的阶段,每个阶段都 有自己的决策变量和状态 转移方程。
状态转移
根据阶段划分、状态转移方程和最优解的性质,建立递推关系。
递推关系的求解
通过递推关系求解各阶段的最优解,最终得到整个问题的最优解。
03
动态规划的求解方法
逆推法
总结词
逆推法是从目标状态出发,逆向推算出达到目标状态的最优决策,逐步推算出初始状态的最优决策。
详细描述
逆推法的基本思想是将问题分解为若干个相互联系的阶段,从最后阶段开始,依次向前推算出每个阶 段的最优决策,直到达到初始状态。这种方法适用于具有重叠子问题和最优子结构的问题,可以避免 重复计算,提高求解效率。
详细描述
资源分配问题通常需要考虑资源的约束条件、 各部门或个体的需求和优先级,以及如何平 衡各方利益。动态规划通过将问题分解为一 系列子问题,逐一求解最优解,最终得到整 体最优解。
生产与存储问题
总结词
生产与存储问题主要研究在生产过程 中如何平衡生产与库存的关系,以最 小化生产成本和库存成本。
详细描述
特点
动态规划适用于具有重叠子问题和最优子结构特性的问题,通过将原问题分解 为子问题,逐个求解并存储子问题的解,避免了重复计算,提高了求解效率。
动态规划的重要性
解决复杂问题
动态规划能够解决一些复杂的问题,如资源分配、生产计 划、物流调度等,这些问题通常难以通过传统方法求解。
提高计算效率
通过避免重复计算,动态规划能够显著提高计算效率,尤 其在处理大规模问题时,能够大大减少计算时间和资源消 耗。
05
动态规划的优化策略
多阶段决策优化
01
02
03
阶段划分
将问题划分为若干个相互 关联的阶段,每个阶段都 有自己的决策变量和状态 转移方程。
状态转移
5 运筹学讲义[目标规划动态规划]PPT课件
![5 运筹学讲义[目标规划动态规划]PPT课件](https://img.taocdn.com/s3/m/e5684381195f312b3169a5c9.png)
n
c kj x j
d
k
d
k
gk (k
1.2 K )
j1
n
a ij x j
( . )bi
(i 1.2 m )
j1
xj 0
(j 1.2 n)
d
k
.
d
k
0
(k
1.2 K )
目标约束
其中:gk为第k个目标约束的预期目标值,
lk
和
lk
为pl
优先因子
对应各目标的权系数。
2x1
2x2
d
d
12
20
3. 目标的优先级与权系数
在一个目标规划的模型中,为达到某一目标可牺牲其他一些 目标,称这些目标是属于不同层次的优先级。优先级层次的高低 可分别通过优先因子P1,P2,…表示。对于同一层次优先级的不同 目标,按其重要程度可分别乘上不同的权系数。权系数是一个个 具体数字,乘上的权系数越大,表明该目标越重要。
例; (3) C和D为贵重设备,严格禁止超时使用; (4) 设备B必要时可以加班,但加班时间要控制;设备A即要求
充分利用,又尽可能不加班。 要考虑上述多方面的目标,需要借助目标规划的方法。
15
• 线性规划模型存在的局限性:
• 1)要求问题的解必须满足全部约束条件,实际 问题中并非所有约束都需要严格满足。
• 整数规划问题 • 运输问题模型 • 某航运公司承担六个港口城市A、B、C、D、
E、F的四条固定航线的物资运输任务,已知各 条航线的起点、终点城市及每天航班数见表1, 假定各条航线使用相同型号的船只,又各城市 间的航程天数见表2。 • 又知每条船只每次装卸货的时间各需1天,则该 航运公司至少应配备多少条船,才能满足所有 航线的运货需求?
第8章 动态规划《管理运筹学》PPT课件

Vk,n (sk , uk , , sn1) fk [sk , uk ,Vk 1,n (sk 1, uk 1, , 1)] ③函数 fk (sk , uk ,Vk 1,n ) 对于变量 Vk1,n 要严格单调。
8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。
8.2 动态规划模型建立
下面以投资问题为例介绍动态规划的建模条件。
【例8-2】 某公司现有资金20万元,若投资于三个
8.1 动态规划基础知识
(5)状态转移方程:状态转移方程是确定过程由一
个状态转移到另一个状态的演变过程。动态规划中某一状
态以及该状态下的决策,与下一状态之间具有一定的函数
关系,称这种函数关系的表达式为状态转移方程。如果第
k段的状态为 sk ,该阶段的决策为
的状态就可以用下式来表示:
uk
sk
,则第k+1段
阶段的指标函数,是该阶段最优的指标函数。
8.2 动态规划模型建立
建立动态规划模型,就是在分析实际问题的基础上建 立该问题的动态规划基本方程。成功地应用动态规划方法 的关键,在于识别问题的多阶段特征,将问题分解成为可 用递推关系式联系起来的若干子问题,或者说正确地建立 具体问题的基本方程,这需要经验与技巧。而正确建立基 本递推关系方程的关键又在于正确选择状态变量,保证各 阶段的状态变量具有递推的状态转移关系。
第8章 动态规划
动态规划(DYnamic Programming,缩写为DP)方法 ,是本世纪50年代初期由美国数学家贝尔曼(Richard E ,Bellman)等人提出,后来逐渐发展起来的数学分支, 它是一种解决多阶段决策过程最优化问题的数学规划法 。动态规划的数学模型和求解方法比较灵活,对于连续 的或离散的,线性的或非线性的,确定性的或随机性的 模型,只要能构成多阶段决策过程,便可用动态规划方 法求其最优解。因而在自然科学、社会科学、工程技术 等许多领域具有广泛的用途,甚至一定程度上比线性规 划(LP)、非线性规划(NLP)有成效,特别是对于某 些离散型问题,解析数学无法适用,动态规划方法就成 为非常有用的求解工具。
运筹学教材课件(第四章动态规划)

最优解的存在性
对于多阶段决策问题,如果每个 阶段的决策空间是有限的,则存 在最优解。
最优解的唯一性
对于某些多阶段决策问题,可能 存在多个最优解。在这种情况下, 我们需要进一步分析问题的性质 和约束条件,以确定最优解的个 数和性质。
最优解的稳定性
在某些情况下,最优解可能受到 参数变化的影响。我们需要分析 最优解的稳定性,以确保最优解 在参数变化时仍然保持最优。
VS
详细描述
排序问题可以分为多种类型,如冒泡排序 、快速排序、归并排序等。动态规划可以 通过将问题分解为子问题,逐一求解最优 解,最终得到全局最优解。在排序问题中 ,动态规划可以应用于求解最小化总成本 、最大化总效益等问题。
04
动态规划的求解方法
逆推法
逆推法
从问题的目标状态出发,逆向推算出达到目标状态的 最优决策,直到达到初始状态为止。
案例二:投资组合优化问题
要点一
总结词
要点二
详细描述
投资组合优化问题是动态规划在金融领域的重要应用,通 过合理配置资产,降低投资风险并提高投资收益。
投资组合优化问题需要考虑市场走势、资产特性、风险偏 好等多种因素,通过动态规划的方法,可以确定最优的投 资组合,使得投资者在风险可控的前提下,实现收益最大 化。
详细描述
在背包问题中,给定一组物品,每个物品都有一定的重量和价值,要求在不超过背包容量的限制下, 选择总价值最大的物品组合。通过动态规划的方法,可以将背包问题分解为一系列子问题,逐一求解 最优解。
排序问题
总结词
排序问题是动态规划应用的另一个重要 领域,主要涉及到将一组元素按照一定 的顺序排列,以达到最优的目标。
本最小化和效率最大化。
感谢您的观看
《运筹学07动态规划》课件

组合动态规划:解决组合问题, 如旅行商问题、背包问题等
动态规划的应用场景
资源分配 问题:如 背包问题、 车辆路径 问题等
优化问题: 如最短路 径问题、 最大子数 组问题等
决策问题: 如股票买 卖问题、 投资组合 问题等
游戏问题: 如国际象 棋、围棋 等
生物信息 学:如基 因序列比 对、蛋白 质结构预 测等
优化策略的改进
动态规划的扩展:从线性规划到非 线性规划,从单阶段决策到多阶段 决策
优化策略的改进:引入并行计算, 提高计算效率
添加标题
添加标题
添加标题
添加标题
优化策略的改进:引入启发式算法, 如遗传算法、模拟退火算法等
优化策略的改进:引入智能优化算 法,如神经网络、深度学习等
动态规划与其他 算法的比较
感谢您的观看
汇报人:
动态规划的基本 思想:将问题分 解为更小的子问 题,并利用子问 题的解来求解原
问题
动态规划的步 骤:确定状态、 状态转移方程、 初始状态和边
界条件
动态规划的算 法实现:递归、 迭代、记忆化
搜索等
动态规划的应 用:背包问题、 最短路径问题、 资源分配问题
等
动态规划的经典 案例
最短路径问题
问题描述:在图中找到从起点到终点的最短路径 应用场景:交通网络、物流配送、电路设计等 解决方案:使用动态规划算法,通过状态转移方程求解 经典案例:旅行商问题、最短路径问题等
排班问题
问题描述:如何合理安排员工工作时间,使得员工满意度最高,同时满足 公司业务需求
动态规划方法:使用动态规划算法,通过状态转移方程和递归函数求解
状态转移方程:定义状态变量,表示员工在不同时间段的工作状态
递归函数:根据状态转移方程,递归求解最优解
动态规划的应用场景
资源分配 问题:如 背包问题、 车辆路径 问题等
优化问题: 如最短路 径问题、 最大子数 组问题等
决策问题: 如股票买 卖问题、 投资组合 问题等
游戏问题: 如国际象 棋、围棋 等
生物信息 学:如基 因序列比 对、蛋白 质结构预 测等
优化策略的改进
动态规划的扩展:从线性规划到非 线性规划,从单阶段决策到多阶段 决策
优化策略的改进:引入并行计算, 提高计算效率
添加标题
添加标题
添加标题
添加标题
优化策略的改进:引入启发式算法, 如遗传算法、模拟退火算法等
优化策略的改进:引入智能优化算 法,如神经网络、深度学习等
动态规划与其他 算法的比较
感谢您的观看
汇报人:
动态规划的基本 思想:将问题分 解为更小的子问 题,并利用子问 题的解来求解原
问题
动态规划的步 骤:确定状态、 状态转移方程、 初始状态和边
界条件
动态规划的算 法实现:递归、 迭代、记忆化
搜索等
动态规划的应 用:背包问题、 最短路径问题、 资源分配问题
等
动态规划的经典 案例
最短路径问题
问题描述:在图中找到从起点到终点的最短路径 应用场景:交通网络、物流配送、电路设计等 解决方案:使用动态规划算法,通过状态转移方程求解 经典案例:旅行商问题、最短路径问题等
排班问题
问题描述:如何合理安排员工工作时间,使得员工满意度最高,同时满足 公司业务需求
动态规划方法:使用动态规划算法,通过状态转移方程和递归函数求解
状态转移方程:定义状态变量,表示员工在不同时间段的工作状态
递归函数:根据状态转移方程,递归求解最优解
运筹学教案动态规划ppt课件

(uk ,u2un )
注: 指标函数的含义是多样的,如:距离、 利润、成本、产品产量、资源消耗等。
最优化原理与动态规划问题基本方程
最优化原理
“作为全过程的最优策略具有这样的性质: 无论过去的状态和决策如何,对于前面决策所形 成的状态(即该最优策略上某一状态)而言,余 下的诸决策必须构成以此状态为初始状态的最优 策略。
3 A5
4
1 阶段
B
9
1
5
4
B
3
2
5
1 B
3
7
2
阶段
C1
1
5
D
1
4
8
C
4
2 D6
E 1
1
2
6
29
F
2 E
4 C
4
3
2
3
阶段
7
D
3
5
4 阶段
2
5 阶段
状态与状态变量
状态: 表示每个阶段开始时所处的自然状 况或客观条件,又称为不可控因素,是阶段的特 征,通常一个阶段有若干个状态。
如:前例,第一阶段状态为点A,第二阶段 的状态有B1,B2,B3三个状态。
但是要受到维数限制。
求解动态规划问题的过程: (1)将问题过程划分恰当阶段,选择阶段
变量k.。 正确(描2过)程正的确演选变择,状又态要变满量足x无k. 后应效注性意。:既能够
(3)正确选择决策变量uk,确定允许集合 。 (4)正确写出状态转移方程 xk+1= Tk(xk, uk)。 (5) 列出按阶段可分的准则函数V1,n ,要 满足几个性质。
概述
▪ 动态规划为运筹学的一个分支,是用于求解 多个阶段决策过程的最优化数学方法。
运筹学课件(动态规划)

(二)、动态规划的基本思想 1、动态规划方法的关键在于正确地写出基本的递推 关系式和恰当的边界条件(简称基本方程)。要做到 这一点,就必须将问题的过程分成几个相互联系的阶 段,恰当的选取状态变量和决策变量及定义最优值函 数,从而把一个大问题转化成一组同类型的子问题, 然后逐个求解。即从边界条件开始,逐段递推寻优, 在每一个子问题的求解中,均利用了它前面的子问题 的最优化结果,依次进行,最后一个子问题所得的最 优解,就是整个问题的最优解。
d( B1,C1 ) + f1 (C1 ) 3+1 f2 ( B1 ) = min d( B1,C2 ) + f1 (C2 ) = min 3+3 d( B1,C3 ) + f1 (C3 ) 1+4 4 = min 6 = 4 (最短路线为B1→C1 →D) 5
3
2 A 4 B2 B1 2 1 3
最优策略为(30,20),此时最大利润为105万元。
f 2 ( 40)
g2 ( y) y 0 ,10 ,, 40
max
f1 ( 40 y )
90
最优策略为(20,20),此时最大利润为90万元。
f 2 (30)
g2 ( y) y 0 ,10 , 20 , 30
max
f1 (30 y )
70
最优策略为(20,10),此时最大利润为70万元。
f 2 ( 20) ma 0 ,10 , 20
50
最优策略为(20,0),此时最大利润为50万元。
f 2 (10) maxg 2 ( y ) f1 (10 y )
3 2 A 4 B2 B1 2 3 1 3 1
C1 C2 4 3
运筹学第章动态规划 PPT资料共82页

2019/10/3
65 11 min52min77
x3(C2)D2
14
2
A5
1
B1 12 14
10
6
B2 10
4 13
B3
12 11
f3(C1)=8
C1
3
9
f3(C2)=7
6
C2
5 8
C3
10
f3(C3)=12
f4(D1)=5
D1
5 f5(E)=0
E
D2 2
f4(D2)=2
2
A5
1
B1 12 14
10
6
B2 10
4 13
B3
12 11
C1
3
9
6
C2
5
8
C3
10
D1
5
E
D2 2
第1阶段
第2阶段
第3阶段
第4阶段
2019/10/3
8
基本思想:如果起点A经过B1,C1,D1而到终点E,则由C1出 发经D1到E点这条子路线,是从C1到E的最短路线。所以,寻 找最短路线,应该从最后一段开始找,然后往前递推.
第二种方法贪心算法,即所谓“局部最优路径”法, 是说某人从k出发,他并不顾及全线是否最短,只是选择 当前最短途径,“逢近便走”,错误地以为局部最优会致 整体最优,在这种想法指导下,所取决策必是
A B3 C3 D1 E. 距离为:1+11+8+5=25
2019/10/3
7
第三种方法是动态规划方法。
状态
x4(D 1)E
2019/10/3
11
2
A5
1
B1
运筹学――动态规划课件

当k=1时F1(s1)就是从初始状态到全过程的整体最优函 数.
8
指标函数的常见形式:
(1)过程和它的任一子过程的指标是它所包n 含的各阶段
(2的)指过标程的和和它。的Vk任,n(一sk子, u过k程, s的k+指1,标… 是sn它+1所)=包含jk 的v j (各s j阶,u段j) 的1
指标的乘积。Vk,n(sk,
23
1、动态规划模型的建立
建立动态模型的6个要素: 1)阶段k 2)状态SK 3)决策uk(sk) 4)状态转移方程 5)阶段指标函数 6)指标递推方程
24
2、动态规划模型的解法
动态规划的求解方法有两种: 逆序解法与顺序解法
1、在已知初始状态S1下,采用逆序解法:(反向递归) 2、在已知终止状态Sn下,采用顺序解法(正向递归)
fk (Sk )
dk Dk
OPt{vk (Sk , dk ) fk1( Sk1 )} fk (sk ) 0Pt Uk (sk , dk )
(k n, n 1,1)
dk Dk (k 1,2,n)
fk1(sk1 )
fn1( Sn1 ) 1
f0 (s0 ) 1
26
计 k 算 顺1如 序时下 解,: 法按解kuff( ( ( 111例0BsB1, 2) 11) ) :f的 ( 0 4A定 sA1)义45有f( 0: uf( ( A11BB) B1B2222) ) 538077,5A这C是 CCC1234边 845835界 44 条DDD件123156。 323
13
二、动态规划的基本思想和基本方程
最短路线有一个重要特性:如果由起点A经P点和H点 最终到达F点是一条最短路线,则由P点出发经过H点 最终到达F点的这条路线必定也是从P点到F点的最短路 。
8
指标函数的常见形式:
(1)过程和它的任一子过程的指标是它所包n 含的各阶段
(2的)指过标程的和和它。的Vk任,n(一sk子, u过k程, s的k+指1,标… 是sn它+1所)=包含jk 的v j (各s j阶,u段j) 的1
指标的乘积。Vk,n(sk,
23
1、动态规划模型的建立
建立动态模型的6个要素: 1)阶段k 2)状态SK 3)决策uk(sk) 4)状态转移方程 5)阶段指标函数 6)指标递推方程
24
2、动态规划模型的解法
动态规划的求解方法有两种: 逆序解法与顺序解法
1、在已知初始状态S1下,采用逆序解法:(反向递归) 2、在已知终止状态Sn下,采用顺序解法(正向递归)
fk (Sk )
dk Dk
OPt{vk (Sk , dk ) fk1( Sk1 )} fk (sk ) 0Pt Uk (sk , dk )
(k n, n 1,1)
dk Dk (k 1,2,n)
fk1(sk1 )
fn1( Sn1 ) 1
f0 (s0 ) 1
26
计 k 算 顺1如 序时下 解,: 法按解kuff( ( ( 111例0BsB1, 2) 11) ) :f的 ( 0 4A定 sA1)义45有f( 0: uf( ( A11BB) B1B2222) ) 538077,5A这C是 CCC1234边 845835界 44 条DDD件123156。 323
13
二、动态规划的基本思想和基本方程
最短路线有一个重要特性:如果由起点A经P点和H点 最终到达F点是一条最短路线,则由P点出发经过H点 最终到达F点的这条路线必定也是从P点到F点的最短路 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
C1
2 B1 3
1
A
1 2
3ቤተ መጻሕፍቲ ባይዱ
C2
3
D
4 B2 1
4
C3
第二阶段(B →C): B 到C 有六条路线。
d( B1,C1 ) + f1 (C1 ) f2 ( B1 ) = min d( B1,C2 ) + f1 (C2 )
d( B1,C3 ) + f1 (C3 ) 4
3+1 = min 3+3
1+4
第一节 多阶段决策问题
一、 问题的提出
• 多阶段决策:
▪ 经济管理决策中,有些管理决策问题可以按时序或空间演 变划分成多个阶段 ,呈现出明显的阶段性;
▪ 于是可把这类决策问题分解成几个相互联系的阶段,每个 阶段即为一个子问题;
▪ 原有问题的求解就化为逐个求解几个简单的阶段子问题; ▪ 每个阶段的决策一旦确定,整个决策过程也随之确定,此
类问题称为多阶段决策问题。
• 例如:
▪ 企业生产物流:可分为物料供应、生产制造、分销零售等 阶段。
▪ 最短路问题:可以按空间顺序划分阶段。
第一节 多阶段决策问题
• 最短路问题
2 Q4
3
生 产 商
A1 7 4
6 4 A2 2 4
4 2
A3 5
出 口 港
B1 1 4
6 B2
3
3 B3 3 进 口 港
C1 3 T
管理运筹学讲义动 态规划
第七章 动态规划
• 动态规划Dynamic Programming
▪ 研究多阶段决策的最优化问题的方法。 ▪ 多阶段决策问题含有一个描述过程时序或空间演变的阶段
变量,将复杂问题划分成若干阶段,根据“最优性原理”, 逐段解决而最终实现全局最优。 ▪ 经济、管理、工业生产、工程技术等领域,许多问题可归 结为多阶段决策问题。 ▪ 一些用线性规划、非线性规划处理有困难的问题,往往可 以用动态规划方便地求解。 ▪ 动态规划是美国运筹学家贝尔曼(R.Bellman)等人1959年提 出的。
= min 6 = 4
5
(最短路线为B1→C1 →D)
3
C1
2 B1 3
1
A
1 2
3
C2
3
D
4 B2 1
4
C3
d( B2,C1 ) + f1 (C1 ) f2 ( B2 ) = min d( B2,C2 ) + f1 (C2 )
d( B2,C3 ) + f1 (C3 ) 3
2+1 = min 3+3
4 C1
城 市
某 公 司
阶段1
阶段2
阶段3
阶段4
• 从生产厂Q到某公司T选择那条路线,使总运费最低(路程最短)?
第一节 多阶段决策问题
• 这是一个多阶段决策问题,它可分为四个阶段:
▪ 第一阶段:从Q(制造厂)到A(出口港); ▪ 第二阶段:从A(出口港)到B(进口港); ▪ 第三阶段:从B(进口港)到C(城市); ▪ 第四阶段:从C(城市)到T(某公司)。
▪ 决策变量的取值被限制在某一范围内,此范围称为允许决 策集合Xk(sk)
11,B1 ,B2
4,C1
A1 7
B1 1
3,T
11,A3 2 Q4
4
8,B1
6 4
A2 2
4 7,C2
6 B2
C1 3
0
T
3
4
3
8,B1 4 2
6,C1 3
4,T 4
C2
A3 5
B3 3
阶段1
阶段2
阶段3
阶段4
• 最短路径:Q→ A3→ B1→ C1→T
第一节 多阶段决策问题
三、 多阶段决策的基本特征
第二节 动态规划原理
一、动态规划的基本概念
• 阶段(stage)
▪ 处理多阶段决策,需将全过程划为若干阶段,每个阶段进 行一次抉择。
▪ 各阶段按一定顺序联接在一起组成统一的整体。 ▪ 用k表示阶段变量。 ▪ 阶段编号
• 顺序编号 • 逆序编号
第二节 动态规划原理
• 状态(state)
▪ 状态表示过程发展中某阶段的起始状况。 ▪ 过程的发展可以通过各阶段状态的演变来描述。 ▪ 状态可用一个变量来描述,称为状态变量,用Sk表示。 ▪ 选取的状态变量必须满足无后效性。
• 最短路的基本特征
▪ 从始点Q到终点T 的最短路径:Q→ A3→ B1→ C1→T,则 从中点A3 到终点T 的最短路径必为: A3→ B1→ C1→T, 从中点B1 到终点T 的最短路径必为:B1→ C1→T,…。
▪ 推广:从始点Q到终点T 的最短路径: Q → S1→ S2→ … → Sk→ Sk+1→ … → Sn→T,则 从中点Sk 到终点T 的最短路径必为: Sk→ Sk+1→ … → Sn→T。
1+4
= min 6 = 3 (最短路线为B2→C1 →D) 5
3
C1
2 B1 3
1
A
1 2
3
C2
3
D
4 B2 1
4
C3
第三阶段( A → B ): A 到B 有二条路线。
f3(A)1 = d(A, B1 )+ f2 ( B1 ) =2+4=6 f3 (A)2 = d(A, B2 )+ f2 ( B2 ) =4+3=7
• 每个阶段选取的路线不同,对应从Q到T就有一系列不同 的运输路线:
▪ 从始点Q到终点T共有3×3×2×1=18条不同路线 ▪ 现在的问题是如何选择一条费用最小的路线?
二、最短路径问题
例一、从A 地到D 地要铺设一条煤气管道,其中需经过 两级中间站,两点之间的连线上的数字表示距离,如 图所示。问应该选择什么路线,使总距离最短?
• 某阶段的状态给定后,则过程未来发展不受该阶段以前 各阶段状态的影响。
▪ 第 k 阶段可能有若干状态,用Sk 表示阶段k的状态集合,
▪ sk(i)表示第k阶段的第 i 个状态。
第二节 动态规划原理
• 决策(decision)
▪ 从上一阶段某状态演变到下一阶段某状态要作一次选择, 称为决策。
▪ 用变量xk(sk)表示第k阶段状态为sk时的决策,称为决策变 量,简记xk
3
C1
2 B1 3
1
A
1 2
3
C2
3
D
4 B2 1
4
C3
3
C1
2 B1 3
1
A
1 2
3
C2
3
D
4 B2 1
4
C3
解:整个计算过程分三个阶段,从最后一个阶段开始。 第一阶段(C →D): C 有三条路线到终点D 。
显然有 f1 (C1 ) = 1 ; f1(C2 ) = 3 ; f1 (C3 ) = 4
∴ f3 (A) = min
d(A, B1 )+ f2 ( B1 ) d(A, B2 )+ f2 ( B2 )
= min{6,7}=6
(最短路线为A→B1→C1 →D)
3
C1
2 B1 3
1
A
1 2
3
C2
3
D
4 B2 1
4
C3
最短路线为 A→B1→C1 →D 路长为 6
第一节 多阶段决策问题
二、动态规划的标号法