2019年湖南省株洲市中考数学试卷
【2019年中考真题系列】湖南省株洲市2019年中考数学真题试卷含答案(解析版)
![【2019年中考真题系列】湖南省株洲市2019年中考数学真题试卷含答案(解析版)](https://img.taocdn.com/s3/m/548111e669dc5022aaea00d4.png)
湖南省株洲市2019年中考数学试卷(解析版)一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)﹣3的倒数是()A.﹣B.C.﹣3D.3【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.(3分)×=()A.4B.4C.D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:×==4.故选:B.【点评】此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.3.(3分)下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.﹣x2y3D.﹣y5【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【解答】解:A、2x5与3x2y3不是同类项,故本选项错误;B、3x3y2与3x2y3不是同类项,故本选项错误;C、﹣x2y3与3x2y3是同类项,故本选项正确;D、﹣y5与3x2y3是同类项,故本选项错误;故选:C.【点评】本题考查了同类项的知识,解答本题的关键是理解同类项的定义.4.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形【分析】直接利用矩形的性质分析得出答案.【解答】解:A、矩形的对角线相等,但不垂直,故此选项错误;B、矩形的邻边都互相垂直,对边互相平行,故此选项错误;C、矩形的四个角都相等,正确;D、矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了矩形的性质,正确把握矩形的性质是解题关键.5.(3分)关于x的分式方程﹣=0的解为()A.﹣3B.﹣2C.2D.3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.6.(3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点A坐标为(2,﹣3),则它位于第四象限,故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(3分)若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为()A.2B.3C.4D.5【分析】根据平均数与中位数的定义分三种情况x≤1,1<x<3,3≤x<6,x≥6时,分别列出方程,进行计算即可求出答案.【解答】解:当x≤1时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去);当1<x<3时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2;当3≤x<6时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去);当x≥6时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去).所以x的值为2.故选:A.【点评】本题考查平均数和中位数.求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.同时运用分类讨论的思想解决问题.8.(3分)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2【分析】直接利用公式法以及提取公因式法分解因式进而判断即可.【解答】解:A、x2﹣1=(x+1)(x﹣1),故此选项错误;B、a3﹣2a2+a=a2(a﹣1),故此选项错误;C、﹣2y2+4y=﹣2y(y﹣2),故此选项错误;D、m2n﹣2mn+n=n(m﹣1)2,正确.故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.9.(3分)如图所示,在直角平面坐标系Oxy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32【分析】根据反比例函数系数k的几何意义得到S1=S2,S1<S3,S2<S3,用排除法即可得到结论.【解答】解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S3=k,S△BOE=S△COF=k,∵S△BOE﹣S OME=S△CDF﹣S△OME,∴S1=S2,∴S1<S3,S2<S3,∴A,B,C选项错误,故选:D.【点评】本题考查了反比例函数系数k的几何意义,反比例函数的性质,正确的识别图形是解题的关键.10.(3分)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K ={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4【分析】找出a i+b i的值,结合对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,即可得出S的最大值.【解答】解:∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∴a i+b i共有5个不同的值.又∵对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,∴S的最大值为5.故选:C.【点评】本题考查了规律型:数字的变化类,找出a i+b i共有几个不同的值是解题的关键.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)若二次函数y=ax2+bx的图象开口向下,则a<0(填“=”或“>”或“<”).【分析】由二次函数y=ax2+bx图象的开口向下,可得a<0.【解答】解:∵二次函数y=ax2+bx的图象开口向下,∴a<0.故答案是:<.【点评】考查了二次函数图象与系数的关系.二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.12.(3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是.【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【解答】解:∵布袋中有6个白球,4个黑球,2个红球,共有12个球,∴摸到白球的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF=1,则AB=4.【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB.【解答】解:∵E、F分别为MB、BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,∴AB=2CM=4,故答案为:4.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14.(3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为a<1且a为有理数.【分析】根据题意列出不等式,解之可得,【解答】解:根据题意知2﹣a>1,解得a<1,故答案为:a<1且a为有理数.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.(3分)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=66度.【分析】首先根据正五边形的性质得到∠EAB=108度,然后根据角平分线的定义得到∠PAB=54度,再利用三角形内角和定理得到∠APB的度数.【解答】解:∵五边形ABCDE为正五边形,∴∠EAB=108度,∵AP是∠EAB的角平分线,∴∠PAB=54度,∵∠ABP=60°,∴∠APB=180°﹣60°﹣54°=66°.故答案为:66.【点评】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.16.(3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD 与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=20度.【分析】由直角三角形的性质得出∠OCE=25°,由等腰三角形的性质得出∠ODC=∠OCE=25°,求出∠DOC=130°,得出∠BOD=∠DOC﹣∠COE=40°,再由圆周角定理即可得出答案.【解答】解:连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,∴∠BAD=∠BOD=20°,故答案为:20.【点评】本题考查了圆周角定理、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握圆周角定理是解题的关键.17.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走250步才能追到速度慢的人.【分析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.(3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为 1.5.【分析】当光线沿O、G、B、C传输时,由tan∠OGH=tan∠CGE,即:,即:,解得:a=1,求出y C=1+2=3,同理可得:y D=1.5,即可求解.【解答】解:当光线沿O、G、B、C传输时,过点B作BF⊥GH于点F,过点C作CE⊥GH于点E,则∠OGH=∠CGE=α,设GH=a,则GF=2﹣a,则tan∠OGH=tan∠CGE,即:,即:,解得:a=1,则α=45°,∴GE=CE=2,y C=1+2=3,当光线反射过点A时,同理可得:y D=1.5,落在挡板Ⅲ上的光线的长度=CD=3﹣1.5=1.5,故答案为1.5.【点评】本题考查的是坐标与图形的变化,涉及到一次函数、解直角三角形等知识,本题关键是弄懂题意,正确画图.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣|+π0﹣2cos30°.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=+1﹣2×=+1﹣=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(6分)先化简,再求值:﹣,其中a=.【分析】根据分式的减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣=====,当a=时,原式==﹣4.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.【分析】(1)由题意得到∠ABC=∠α,解直角三角形即可得到结论;(2)过D作DH⊥BC于H,于是得到四边形ADHC是矩形,根据矩形的性质得到AD =CH=BE=0.6,根据线段的中点的定义得到BM=CM=2.4米,求得EM=BM﹣BE=1.8,根据相似三角形的性质即可得到结论.【解答】解:(1)由题意得,∠ABC=∠α,在Rt△ABC中,AC=1.6,tan∠ABC=tanα=,∴BC===4.8m,答:BC的长度为4.8m;(2)过D作DH⊥BC于H,则四边形ADHC是矩形,∴AD=CH=BE=0.6,∵点M是线段BC的中点,∴BM=CM=2.4米,∴EM=BM﹣BE=1.8,∵MN⊥BC,∴MN∥DH,∴△EMN∽△EHD,∴=,∴=,∴MN=0.6,答:障碍物的高度为0.6米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题问题,牢固掌握仰角俯角的定义是解题的关键.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)最高气温T(单位:℃)需求量(单位:杯)T<2520025≤T<30250T≥30400(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?【分析】(1)由条形图可得答案;(2)用T<25的天数除以总天数即可得;(3)根据利润=销售额﹣成本计算可得.【解答】解:(1)由条形统计图知,去年六月份最高气温不低于30℃的天数为6+2=8(天);(2)去年六月份这种鲜奶一天的需求量不超过200杯的概率为=;(3)250×8﹣350×4+100×1=730(元),答:估计这一天销售这种鲜奶所获得的利润为730元.【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG的边长.【分析】(1)由正方形ABCD与正方形OEFG,对角线AC、BD,可得∠DOA=∠DOC =90°,∠GOE=90°,即可证得∠GOD=∠COE,因DO=OC,GO=EO,则可利用“边角边”即可证两三角形全等(2)过点M作MH⊥DO交DO于点H,由于∠MDB=45°,由可得DH,MH 长,从而求得HO,即可求得MO,再通过MH∥DG,易证得△OHM∽△ODG,则有=,求得GO即为正方形OEFG的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为2【点评】本题主要考查对正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定,比例的性质,直角三角形的性质等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.24.(8分)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.【分析】(1)将点O、B的坐标代入一次函数表达式:y=kx,即可求解;(2)①sin∠APQ===sinα=,则PA=a=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t;②当t=时,T取得最小值,而点C(t,2t),即可求解.【解答】解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QPA=∠OAB=∠ABM=α,则tanα=,sinα=,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则PA=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.【点评】本题为反比例函数综合运用题,涉及到等腰三角形性质、解直角三角形、一次函数等知识,其中(2)①,确定点C的坐标,是本题解题的关键.25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.【分析】(1)由圆周角的定理可得∠DBC=∠DAC=∠ACH,可证AD∥CH,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH是平行四边形;(2)①由平行线的性质可证∠ADH=∠CHD=90°,由∠CDB=∠CAB=45°,可证△DHC为等腰直角三角形;②通过证明△ADP∽△CBP,可得,可得,通过证明△CHD∽△ACB,可得,可得AB=CD,可求CD=2,由等腰直角三角形的性质可求CH 的长度.【解答】证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴∴AB=CD∵AB+CD=2(+1)∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形∴CH=【点评】本题是圆的综合题,考查了圆的有关知识,平行四边形的判定和性质,相似三角形的判定和性质等知识,求CD的长度是本题的关键.26.(11分)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.FA的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.【分析】(1)①把a、b、c的值代入二次函数解析式并配方得顶点式,即求得顶点坐标.②根据定义,把y=x代入二次函数y=x2﹣2x﹣1,得x2﹣2x﹣1=x,根据根的判别式可知满足此方程的x有两个不相等的值,即原二次函数有两个不同的“不动点”.(2)由条件∠AFC=∠ABC与=联想到证△PFC∽△PBA的对应边的比,即有.由DF⊥y轴且OC=OD可得DF∥x轴,由平行线分线段定理可证E也为CF中点,其中CE=,CF=2CE可用含c的式子表示.AB可用含x2﹣x1表示,通过韦达定理变形和b=c3代入可得用a、c表示AB的式子.又由∠AFC =∠ABC和∠AEF=∠CEB可证△AEF∽△CEB,对应边成比例可得式子AE•BE=CE•EF,把含c、x2、x1的式子代入再把韦达定理得到的x1+x2=﹣,x1x2=代入化简,可得c=﹣2a.即能用a表示CF、AB,代回到解方程即求得a的值,进而求b、c的值,得到二次函数表达式.【解答】解:(1)①∵a=1,b=﹣2,c=﹣1∴y=x2﹣2x﹣1=(x﹣1)2﹣2∴该二次函数图象的顶点坐标为(1,﹣2)②证明:当y=x时,x2﹣2x﹣1=x整理得:x2﹣3x﹣1=0∴△=(﹣3)2﹣4×1×(﹣1)=13>0∴方程x2﹣3x﹣1=0有两个不相等的实数根即二次函数y=x2﹣2x﹣1有两个不同的“不动点”.(2)把b=c3代入二次函数得:y=ax2+c3x+c∵二次函数与x轴交于点A(x1,0),B(x2,0)(x1<0,x2>0)即x1、x2为方程ax2+c3x+c=0的两个不相等实数根∴x1+x2=﹣,x1x2=∵当x=0时,y=ax2+c3x+c=c∴C(0,c)∵E(1,0)∴CE=,AE=1﹣x1,BE=x2﹣1∵DF⊥y轴,OC=OD∴DF∥x轴∴∴EF=CE=,CF=2∵∠AFC=∠ABC,∠AEF=∠CEB∴△AEF∽△CEB∴,即AE•BE=CE•EF∴(1﹣x1)(x2﹣1)=1+c2展开得:1+c2=x2﹣1﹣x1x2+x11+c2=﹣﹣1﹣c3+2ac2+2c+4a=0c2(c+2a)+2(c+2a)=0(c2+2)(c+2a)=0∵c2+2>0∴c+2a=0,即c=﹣2a2019年中考真题系列,精心整理,含答案∴x1+x2=﹣=4a2,x1x2==﹣2,CF=2=2∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16a4+8∴AB=x2﹣x1=∵∠AFC=∠ABC,∠P=∠P∴△PFC∽△PBA∴∴解得:a1=1,a2=﹣1(舍去)∴c=﹣2a=﹣2,b=c3=﹣4∴二次函数的表达式为y=x2﹣4x﹣2【点评】本题考查了求二次函数顶点式,一元二次方程的解法及根与系数的关系,相似三角形的判定和性质,因式分解.第(2)题条件较多且杂时,抓住比较特殊且有联系的条件入手,再通过方程思想不断寻找等量关系列方程,逐个字母消去,求得最终结果.。
湖南省株洲市2019中考数学试题(含图片答案)(中考真题)
![湖南省株洲市2019中考数学试题(含图片答案)(中考真题)](https://img.taocdn.com/s3/m/2eddfbab0975f46527d3e195.png)
株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.﹣3的倒数是 A .13-B .13C .﹣3D .32A .B .4CD . 3.下列各式中,与233x y 是同类项的是A .52x B .323x y C .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .3 6.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?A .第一象限B .第二象限C .第三象限D .第四象限 7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为A .2B .3C .4D .5 8.下列各选项中因式分解正确的是A .221(1)x x -=- B .3222(2)a a a a a -+=- C .2242(2)y y y y -+=-+ D .222(1)m n mn n n m -+=- 9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 32 10.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4 二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第9题 第13题 第15题16.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = 度. 17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走 步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜I ,在y 轴处放置一个有缺口的挡板II ,缺口为线段AB ,其中点A(0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板III ,从点O 发出的光线经反光镜I 反射后,通过缺口AB 照射在挡板III 上,则落在挡板III 上的光线的长度为 .第16题 第18题 三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tan α=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行. (1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率; (3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足25≤T <30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG . (1)求证:△DOG ≌△COE ; (2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM =12,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)my m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC AP ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P . (1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”.(2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC =∠ABC .FA 的延长线与BC 的延长线相交于点P ,若PC PA =,求该二次函数的表达式.。
2019年湖南省株洲市中考数学试题(word版,含答案)
![2019年湖南省株洲市中考数学试题(word版,含答案)](https://img.taocdn.com/s3/m/cdc21ea2482fb4daa48d4b1c.png)
株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.﹣3的倒数是 A .13-B .13C .﹣3D .32A .B .4CD .3.下列各式中,与233x y 是同类项的是A .52x B .323x y C .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .3 6.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?A .第一象限B .第二象限C .第三象限D .第四象限 7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为A .2B .3C .4D .5 8.下列各选项中因式分解正确的是A .221(1)x x -=- B .3222(2)a a a a a -+=- C .2242(2)y y y y -+=-+ D .222(1)m n mn n n m -+=- 9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 32 10.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4 二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第9题 第13题 第15题16.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = 度. 17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走 步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜I ,在y 轴处放置一个有缺口的挡板II ,缺口为线段AB ,其中点A(0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板III ,从点O 发出的光线经反光镜I 反射后,通过缺口AB 照射在挡板III 上,则落在挡板III 上的光线的长度为 .第16题 第18题三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tan α=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行. (1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足25≤T <30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG . (1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM=12,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)my m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC AP ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P . (1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”.(2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC=∠ABC .FA 的延长线与BC 的延长线相交于点P ,若PC PA =,求该二次函数的表达式.实用文档精心整理 11。
2019年湖南省株洲市中考数学试题
![2019年湖南省株洲市中考数学试题](https://img.taocdn.com/s3/m/9874b94303d8ce2f0166233b.png)
绝密★启用前湖南省株洲市2019年中考数学试题第I卷(选择题)评卷人得分一、单选题1.3-的倒数是()A.13-B.13C.3-D.3【答案】A【解析】【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【详解】互为倒数的两个数乘积为1,1(3)( 1.3-⨯-=故选A.【点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2=()A.B.4 D.【答案】B【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】4=.故选:B.【点睛】此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.3.下列各式中,与233x y是同类项的是()A.52x B.323x y C.2312x y- D.513y-【答案】C根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解:A.52x 与233x y 不是同类项,故本选项错误;B.3x 3y 2与233x y 不是同类项,故本选项错误;C.2312x y -与233x y 是同类项,故本选项正确;D.513y -与233x y 不是同类项,故本选项错误;故选:C .【点睛】本题考查了同类项的知识,解答本题的关键是理解同类项的定义.4.对于任意的矩形,下列说法一定正确的是()A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形【答案】C 【解析】【分析】直接利用矩形的性质分析得出答案.【详解】解:A.矩形的对角线相等,但不垂直,故此选项错误;B 、矩形的邻边都互相垂直,对边互相平行,故此选项错误;C.矩形的四个角都相等,正确;D.矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:C .【点睛】此题主要考查了矩形的性质,正确把握矩形的性质是解题关键.5.关于x 的分式方程2503x x -=-的解为()A.3- B.2- C.2D.3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:2650x x --=,解得:2x =-,经检验2x =-是分式方程的解,故选:B .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.6.在平面直角坐标系中,点()2,3A -位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点A 坐标为()2,3-,则它位于第四象限,故选:D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(),++;第二象限(),-+;第三象限(),--;第四象限(),+-.7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为()A .2B .3C .4D .5【答案】A 【解析】【分析】根据平均数与中位数的定义分三种情况x≤1,1<x<3,3≤x<6,x≥6时,分别列出方程,进行计算即可求出答案.【详解】当x ⩽1时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2(舍去);当1<x<3时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2;当3⩽x<6时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2(舍去);当x ⩾6时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2(舍去).所以x 的值为2.故选:A.【点睛】此题考查中位数,算术平均数,解题关键在于分三种情况x≤1,1<x<3,3≤x<6,x≥6,进行求解8.下列各选项中因式分解正确的是()A.()2211x x -=- B.()32222a a a aa -+=-C.()22422y y y y -+=-+ D.()2221m n mn n n m -+=-【答案】D 【解析】【分析】直接利用公式法以及提取公因式法分解因式进而判断即可.【详解】解:A.()()2111x x x -=+-,故此选项错误;B.()32221a a a aa -+=-,故此选项错误;C.()22422y y y y -+=--,故此选项错误;D.()2221m n mn n n m -+=-,正确.故选:D .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.9.如图所示,在直角平面坐标系Oxy 中,点、、A B C 为反比例函数(0)ky k x=>上不同的三点,连接OA OB OC 、、,过点A 作AD y ⊥轴于点D ,过点B C 、分别作,BE CF 垂直x 轴于点E F 、,OC 与BE 相交于点M ,记AOD ∆、BOM ∆、四边形CMEF 的面积分别为1S 、2S 、3S ,则()A.123S S S =+B.23S S =C.321S S S >>D.2123S S S <【答案】B 【解析】【分析】根据反比例函数系数k 的几何意义得到231S S S =<,即可得到结论.【详解】解:∵点A B C 、、为反比例函数(0)ky k x=>上不同的三点,AD y ⊥轴,,BE CF 垂直x 轴于点E F 、,∴111,22BOE COF S k S S k ∆∆===,∵0BOE OME C F OME S S S S ∆∆∆-=-,∴231S S S =<,(故B 正确、故A.C 错误)∵22312313331()0S S S S S S S S S -=-=-<∴2123S S S >,即D 错误.故选:B .【点睛】本题考查了反比例函数系数k 的几何意义,反比例函数的性质,正确的识别图形是解题的关键.10.从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,,k S =,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值()A.10B.6C.5D.4【答案】C 【解析】【分析】找出i i a b +的值,结合对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,即可得出S 的最大值.【详解】解:∵110,121-+=-+=,143,123-+=+=,145,246+=+=,∴i i a b +共有5个不同的值.又∵对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,∴S 的最大值为5.故选:C .【点睛】本题考查了规律型:数字的变化类,找出i i a b +共有几个不同的值是解题的关键.第II 卷(非选择题)评卷人得分二、填空题11.若二次函数2y ax bx =+的图象开口向下,则a _____0(填“=”或“>”或“<”).【答案】<【解析】【分析】由二次函数2y ax bx =+图象的开口向下,可得0a <.【详解】解:∵二次函数2y ax bx =+的图象开口向下,∴0a <.故答案是:<.【点睛】考查了二次函数图象与系数的关系.二次项系数a 决定抛物线的开口方向和大小.当0a >时,抛物线向上开口;当0a <时,抛物线向下开口;a 还可以决定开口大小,a 越大开口就越小.12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是_____.【答案】12【解析】【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【详解】解:∵布袋中有6个白球,4个黑球,2个红球,共有12个球,∴摸到白球的概率是61122=;故答案为:12.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.如图所示,在Rt ABC ∆中,90ACB ∠=︒,CM 是斜边AB 上的中线,E F 、分别为MB BC 、的中点,若1EF =,则AB =_____.【答案】4【解析】【分析】根据三角形中位线定理求出CM ,根据直角三角形的性质求出AB .【详解】解:∵E F 、分别为MB BC 、的中点,∴22CM EF ==,∵90ACB ∠=︒,CM 是斜边AB 上的中线,∴24AB CM ==,故答案为:4.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.14.若a 为有理数,且2a -的值大于1,则a 的取值范围为_____.【答案】1a <且a 为有理数【解析】【分析】根据题意列出不等式,解之可得,【详解】解:根据题意知21a ->,解得1a <,故答案为:1a <且a 为有理数.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.【答案】66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.16.如图所示,AB 为O 的直径,点C 在O 上,且OC AB ⊥,过点C 的弦CD与线段OB 相交于点E ,满足65AEC ∠=︒,连接AD ,则BAD ∠=_____度.【答案】20【解析】【分析】由直角三角形的性质得出25OCE ∠=︒,由等腰三角形的性质得出25ODC OCE ∠=∠=︒,求出130DOC ∠=︒,得出40BOD DOC COE ∠=∠-∠=︒,再由圆周角定理即可得出答案.【详解】解:连接OD ,如图:∵OC AB ⊥,∴90COE ∠=°,∵65AEC ∠=︒,∴906525OCE ∠=︒-︒=︒,∵OC OD =,∴25ODC OCE ∠=∠=︒,∴1802525130DOC ∠=︒-︒-︒=︒,∴40BOD DOC COE ∠=∠-∠=︒,∴1202BAD BOD ∠=∠=︒,故答案为:20.【点睛】本题考查了圆周角定理、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握圆周角定理是解题的关键.17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走_____步才能追到速度慢的人.【答案】250【解析】【分析】设走路快的人追上走路慢的人所用时间为t ,根据二者的速度差×时间=路程,即可求出t 值,再将其代入路程=速度×时间,即可求出结论.【详解】解:设走路快的人追上走路慢的人所用时间为t ,根据题意得:()10060100t -=,解得: 2.5t =,∴100100 2.5250t =⨯=.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.如图所示,在平面直角坐标系xOy 中,在直线1x =处放置反光镜Ⅰ,在y 轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB ,其中点()0,1A ,点B 在点A 上方,且1AB =,在直线1x =-处放置一个挡板Ⅲ,从点O 发出的光线经反光镜Ⅰ反射后,通过缺口AB 照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为_____.【答案】1.5【解析】【分析】当光线沿O G B C 、、、传输时,由tan tan OGH CGE ∠=∠,即:OH BFGH GF=,即:112a a=-,解得:1a =,求出123C y =+=,同理可得: 1.5D y =,即可求解.【详解】解:当光线沿O G B C 、、、传输时,过点B 作BF GH ⊥于点F 过点C 作CE GH ⊥于点E ,则OGH CGE α∠=∠=,设GH a =,则2GF a =-,则tan tan OGH CGE ∠=∠,即:OH BFGH GF=,即:112a a=-,解得:1a =,则45α=︒,∴2GE CE ==,123C y =+=,当光线反射过点A 时,同理可得: 1.5D y =,落在挡板Ⅲ上的光线的长度3 1.5 1.5CD ==-=,故答案为1.5.【点睛】本题考查的是坐标与图形的变化,涉及到一次函数、解直角三角形等知识,本题关键是弄懂题意,正确画图.评卷人得分三、解答题19.计算:02cos30π-︒.【答案】1【解析】【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案.【详解】解:原式122=+-⨯1=+-1=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20.先化简,再求值:221(1)a a a a a-+--,其中12a =.【答案】1(1)a a -,-4.【解析】【分析】根据分式的减法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】解:221(1)a a a a a-+--2(1)1(1)a a a a a -+=--11a a a a+=--2(1)(1)(1)a a a a a --+=-221(1)a a a a -+=-1(1)a a =-,当12a =时,原式1411122==-⎛⎫- ⎪⎝⎭.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且1tan 3α=,若直线AF 与地面1l 相交于点B ,点A 到地面1l 的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线2l 与地面1l 平行.(1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),1MN l ⊥,若小强的爸爸将汽车沿直线1l 后退0.6米,通过汽车的前端1F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点1F 为点F 的对应点),求障碍物的高度.【答案】(1)4.8m ;(2)0.6米.【解析】【分析】(1)由题意得到ABC α∠=∠,解直角三角形即可得到结论;(2)过D 作DH BC ⊥于H ,于是得到四边形ADHC 是矩形,根据矩形的性质得到0.6AD CH BE ===,根据线段的中点的定义得到 2.4BM CM ==米,求得 1.8EM BM BE =-=,根据相似三角形的性质即可得到结论.【详解】解:(1)由题意得,ABC α∠=∠,在Rt ABC ∆中,11.6,tan tan 3AC ABC α=∠==,∴1.64.81tan 3AC BC m ABC===∠,答:BC 的长度为4.8m ;(2)过D 作DH BC ⊥于H,则四边形ADHC 是矩形,∴0.6AD CH BE ===,∵点M 是线段BC 的中点,∴ 2.4BM CM ==米,∴ 1.8EM BM BE =-=,∵MN BC ⊥,∴MN DH ∕∕,∴EMN EHD ∆∆∽,∴MN EMDH EH =,∴ 1.81.6 4.8MN =,∴0.6MN =,答:障碍物的高度为0.6米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题问题,牢固掌握仰角俯角的定义是解题的关键.22.某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)最高气温T (单位:℃)需求量(单位:杯)25T <2002530T ≤<25030T ≥400(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足2530T ≤<(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?【答案】(1)8天;(2)25;(3)730元.【解析】【分析】(1)由条形图可得答案;(2)用25T <的天数除以总天数即可得;(3)根据利润=销售额-成本计算可得.【详解】解:(1)由条形统计图知,去年六月份最高气温不低于30℃的天数为628+=(天);(2)去年六月份这种鲜奶一天的需求量不超过200杯的概率为392305+=;(3)250835041001730⨯-⨯+⨯=(元),答:估计这一天销售这种鲜奶所获得的利润为730元.【点睛】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC BD 、的交点,连接CE DG 、.(1)求证:DOG COE ∆∆≌;(2)若DG BD ⊥,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,12AM =,求正方形OEFG 的边长.【答案】(1)见解析;(2)【解析】【分析】(1)由正方形ABCD 与正方形OEFG ,对角线AC BD 、,可得90DOA DOC ∠=∠=︒,90GOE ∠=︒,即可证得GOD COE ∠=∠,因,DO OC GO EO ==,则可利用“边角边”即可证两三角形全等(2)过点M 作MH DO ⊥交DO 于点H ,由于45MDB ∠=︒,由可得,DH MH 长,从而求得HO ,即可求得MO ,再通过MH DG ∕∕,易证得OHM ODG ∆∆∽,则有OH MOOD GO=,求得GO 即为正方形OEFG 的边长.【详解】解:(1)∵正方形ABCD 与正方形OEFG ,对角线AC BD 、,∴DO OC =,∵DB AC ⊥,∴90DOA DOC ∠=∠=︒,∵90GOE ∠=︒,∴90GOD DOE DOE COE ∠+∠=∠+∠=︒,∴GOD COE ∠=∠,∵GO OE =,∴在DOG ∆和COE ∆中,DO OC GOD COE GD OE =⎧⎪∠=∠⎨⎪=⎩,∴()DOG COE SAS ∆∆≌.(2)如图,过点M 作MH DO ⊥交DO 于点H ,∵1,22AM DA ==,∴32DM =,∵45MDB ∠=︒,∴sin 454MH DH DM ==︒⋅=,cos 45DO DA =︒⋅=,∴44HO DO DH =-=-=,∴在Rt MHO ∆中,由勾股定理得:2MO ===,∵,DG BD MH DO ⊥⊥,∴MH DG ∕∕,∴易证OHM ODG ∆∆∽,∴42OH MO OD GO GO===,得GO =,则正方形OEFG 的边长为【点睛】本题主要考查对正方形的性质,全等三角形的性质和判定,相似三角形的性质和判定,比例的性质,直角三角形的性质等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.24.如图所示,在平面直角坐标系Oxy 中,等腰OAB ∆的边OB 与反比例函数(0)my m x=>的图象相交于点C ,其中OB AB =,点A 在x 轴的正半轴上,点B 的坐标为()2,4,过点C 作⊥CH x 轴于点H .(1)已知一次函数的图象过点,O B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC =,过点P 作PQ x ⊥轴于点Q ,连结OP ,记OPQ ∆的面积为OPQ S ∆,设AQ t =,2OPQ T OH S ∆=-.①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.【答案】(1)2y x =;(2)244T t t =-;②32m =.【解析】【分析】(1)将点O B 、的坐标代入一次函数表达式:y kx =,即可求解;(2)①sin sinQA t APQ PA a α∠====,则PA a ==,则点,)C ,()2221(sin )42442OPQ T OH S OC t t t t α∆=-=⋅-⨯-⨯=-;②当12t =时,T取得最小值,而点,)C ,即可求解.【详解】解:(1)将点O B 、的坐标代入一次函数表达式:y kx =得:42k =,解得:2k =,故一次函数表达式为:2y x =,(2)①过点B 作⊥BM OA ,则OCH QPA OAB ABM α∠=∠=∠=∠=,则1tan ,sin2αα==∵OB AB =,则2OM AM ==,则点()4,0A ,设:AP a =,则OC =,在APQ ∆中,sin sinQA t APQ PA a α∠====同理2tan tPQ t α==,则,PA a OC ===,则点,)C ,()2221(sin )42442OPQ T OH S OC t t t t α∆=-=⋅-⨯-⨯=-,②∵40>,∴T 有最小值,当12t =时,T 取得最小值,而点,)C ,故:32m =⨯=.【点睛】本题为反比例函数综合运用题,涉及到等腰三角形性质、解直角三角形、一次函数等知识,其中(2)①,确定点C 的坐标,是本题解题的关键.25.四边形ABCD 是O 的圆内接四边形,线段AB 是O 的直径,连结AC BD 、.点H 是线段BD 上的一点,连结AH CH 、,且,ACH CBD AD CH ∠=∠=,BA 的延长线与CD 的延长线相交与点P .(1)求证:四边形ADCH 是平行四边形;(2)若,AC BC PB ==,1)AB CD +=+①求证:DHC ∆为等腰直角三角形;②求CH 的长度.【答案】(1)见解析;(2)①见解析;②CH =.【解析】【分析】(1)由圆周角的定理可得DBC DAC ACH ∠=∠=∠,可证AD CH ∕∕,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH 是平行四边形;(2)①由平行线的性质可证90ADH CHD ∠=∠=︒,由45CDB CAB ∠=∠=︒,可证DHC ∆为等腰直角三角形;②通过证明ADP CBP ∆∆∽,可得AD PDBC PB =,可得CH BC =,通过证明CHD ACB ∆∆∽,可得CD CH AB BC ==,可得AB =,可求2CD =,由等腰直角三角形的性质可求CH 的长度.【详解】证明:(1)∵,DBC DAC ACH CBD ∠=∠∠=∠,∴DAC ACH ∠=∠,∴AD CH ∕∕,且AD CH =,∴四边形ADCH 是平行四边形,(2)①∵AB 是直径,∴90ACB ADB ∠=︒=∠,且AC BC =,∴45CAB ABC ∠=∠=︒,∴45CDB CAB ∠=∠=︒,∵AD CH ∕∕,∴90ADH CHD ∠=∠=︒,且,45CDB ∠=︒∴45CDB DCH ∠=∠=︒,∴CH DH =,且90CHD ∠=︒,∴DHC ∆为等腰直角三角形;②∵四边形ABCD 是O 的圆内接四边形,∴ADP PBC ∠=∠,且P P ∠=∠,∴ADP CBP ∆∆∽,∴AD PD BC PB=,且PB =,∴AD BC =,AD CH =,∴CH BC =∵45,90CDB CAB CHD ACB ∠=∠=︒∠=∠=︒,∴CHD ACB ∆∆∽,∴CD CH AB BC ==,∴AB =,∵1)AB CD +=+,1)CD +=,∴2CD =,且DHC ∆为等腰直角三角形,∴CH =,【点睛】本题是圆的综合题,考查了圆的有关知识,平行四边形的判定和性质,相似三角形的判定和性质等知识,求CD 的长度是本题的关键.。
(高清版)2019年湖南省株洲中考数学试卷
![(高清版)2019年湖南省株洲中考数学试卷](https://img.taocdn.com/s3/m/252fa697a8114431b90dd8b5.png)
无
连结 AC、BD.点 H 是线段 BD 上的一点,连结 AH、CH,且 ACH CBD ,
AD CH ,BA 的延长线与 CD 的延长线相交于点 P.
(1)求证:四边形 ADCH 是平行四边形; 数学试卷 第 5页(共 20页)
效
数学试卷 第 6页(共 20页)
湖南省株洲市 2019 年初中学业水平考试
.
13.如图所示,在 Rt△ABC 中, ACB 90 ,CM 是斜边 AB 上的中线,E、F 分别为
MB、BC 的中点,若 EF 1 ,则 AB
.
14.若 a 为有理数,且 2 a 的值大于 1,则 a 的取值范围为
.
15.如图所示,过正五边形 ABCDE 的顶点 B 作一条射线与其内角 EAB 的角平分线相交
于点 P,且 ABP 60 ,则 APB
度.
数学试卷 第 2页(共 20页)
16.如图所示,AB 为 O 的直径,点 C 在 O 上,且 OC⊥AB ,过点 C 的弦 CD 与线段
OB 相交于点 E,满足 AEC 65 ,连接 AD,则 BAD
度.
17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者
B.四边都互相垂直
C.四个角都相等
5.关于
x
的分式方程
2 x
x
5
3
0
的解为
D.是轴对称图形,但不是中心对称图形 ()
A. 3
B. 2
C.2
题
6.在平面直角坐标系中,点 A2, 3 位于哪个象限?
D.3 ()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
7.若一组数据 x,3,1,6,3 的中位数和平均数相等,则 x 的值为
2019年湖南省株洲市中考数学试卷(含解析)完美打印版
![2019年湖南省株洲市中考数学试卷(含解析)完美打印版](https://img.taocdn.com/s3/m/6a64e5e783d049649b6658d2.png)
2019年湖南省株洲市中考数学试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)﹣3的倒数是()A.﹣B.C.﹣3D.32.(3分)×=()A.4B.4C.D.23.(3分)下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.﹣x2y3D.﹣y54.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形5.(3分)关于x的分式方程﹣=0的解为()A.﹣3B.﹣2C.2D.36.(3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为()A.2B.3C.4D.58.(3分)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)29.(3分)如图所示,在平面直角坐标系xOy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC 与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S3210.(3分)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4二、填空题(本题共8小题,每小题3分,共24分)11.(3分)若二次函数y=ax2+bx的图象开口向下,则a0(填“=”或“>”或“<”).12.(3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是.13.(3分)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB=.14.(3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为.15.(3分)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=度.16.(3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.17.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.(3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣|+π0﹣2cos30°.20.(6分)先化简,再求值:﹣,其中a=.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F的俯角为α,且tanα=,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.24.(8分)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ 的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.26.(11分)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.F A的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.2019年湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)﹣3的倒数是()A.﹣B.C.﹣3D.3【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.2.(3分)×=()A.4B.4C.D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:×==4.故选:B.3.(3分)下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.﹣x2y3D.﹣y5【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【解答】解:A、2x5与3x2y3不是同类项,故本选项错误;B、3x3y2与3x2y3不是同类项,故本选项错误;C、﹣x2y3与3x2y3是同类项,故本选项正确;D、﹣y5与3x2y3是同类项,故本选项错误;故选:C.4.(3分)对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形【分析】直接利用矩形的性质分析得出答案.【解答】解:A、矩形的对角线相等,但不垂直,故此选项错误;B、矩形的邻边都互相垂直,对边互相平行,故此选项错误;C、矩形的四个角都相等,正确;D、矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:C.5.(3分)关于x的分式方程﹣=0的解为()A.﹣3B.﹣2C.2D.3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.6.(3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点A坐标为(2,﹣3),则它位于第四象限,故选:D.7.(3分)若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为()A.2B.3C.4D.5【分析】根据平均数与中位数的定义分三种情况x≤1,1<x<3,3≤x<6,x≥6时,分别列出方程,进行计算即可求出答案.【解答】解:当x≤1时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去);当1<x<3时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2;当3≤x<6时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去);当x≥6时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去).所以x的值为2.故选:A.8.(3分)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2【分析】直接利用公式法以及提取公因式法分解因式进而判断即可.【解答】解:A、x2﹣1=(x+1)(x﹣1),故此选项错误;B、a3﹣2a2+a=a(a﹣1)2,故此选项错误;C、﹣2y2+4y=﹣2y(y﹣2),故此选项错误;D、m2n﹣2mn+n=n(m﹣1)2,正确.故选:D.9.(3分)如图所示,在平面直角坐标系xOy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC 与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32【分析】根据反比例函数系数k的几何意义得到S3=S2,即可得到结论.【解答】解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S1=k,S△BOE=S△COF=k,∵S△BOE﹣S OME=S△CDF﹣S△OME,∴S3=S2,故选:B.10.(3分)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4【分析】找出a i+b i的值,结合对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,即可得出S的最大值.【解答】解:∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∴a i+b i共有5个不同的值.又∵对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,∴S的最大值为5.故选:C.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)若二次函数y=ax2+bx的图象开口向下,则a<0(填“=”或“>”或“<”).【分析】由二次函数y=ax2+bx图象的开口向下,可得a<0.【解答】解:∵二次函数y=ax2+bx的图象开口向下,∴a<0.故答案是:<.12.(3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是.【分析】先求出总球的个数,再用白球的个数除以总球的个数即可得出答案.【解答】解:∵布袋中有6个白球,4个黑球,2个红球,共有12个球,∴摸到白球的概率是=;故答案为:.13.(3分)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB=4.【分析】根据三角形中位线定理求出CM,根据直角三角形的性质求出AB.【解答】解:∵E、F分别为MB、BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,∴AB=2CM=4,故答案为:4.14.(3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为a<1且a为有理数.【分析】根据题意列出不等式,解之可得,【解答】解:根据题意知2﹣a>1,解得a<1,故答案为:a<1且a为有理数.15.(3分)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=66度.【分析】首先根据正五边形的性质得到∠EAB=108度,然后根据角平分线的定义得到∠P AB=54度,再利用三角形内角和定理得到∠APB的度数.【解答】解:∵五边形ABCDE为正五边形,∴∠EAB=108度,∵AP是∠EAB的角平分线,∴∠P AB=54度,∵∠ABP=60°,∴∠APB=180°﹣60°﹣54°=66°.故答案为:66.16.(3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=20度.【分析】由直角三角形的性质得出∠OCE=25°,由等腰三角形的性质得出∠ODC=∠OCE=25°,求出∠DOC=130°,得出∠BOD=∠DOC﹣∠COE=40°,再由圆周角定理即可得出答案.【解答】解:连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,∴∠BAD=∠BOD=20°,故答案为:20.17.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走250步才能追到速度慢的人.【分析】设走路快的人追上走路慢的人所用时间为t,根据二者的速度差×时间=路程,即可求出t值,再将其代入路程=速度×时间,即可求出结论.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.18.(3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为 1.5.【分析】当光线沿O、G、B、C传输时,由tan∠OGH=tan∠CGE,即:,即:,解得:a=1,求出y C=1+2=3,同理可得:y D=1.5,即可求解.【解答】解:当光线沿O、G、B、C传输时,过点B作BF⊥GH于点F,过点C作CE⊥GH于点E,方法一:∵△GOB为等腰三角形,∴G(1,1),∵B为CG中点,∴C(﹣1,3),同理D(﹣1,1.5),∴CD=3﹣1.5=1.5方法二:∠OGH=∠CGE=α,设GH=a,则GF=2﹣a,则tan∠OGH=tan∠CGE,即:,即:,解得:a=1,则α=45°,∴GE=CE=2,y C=1+2=3,当光线反射过点A时,同理可得:y D=1.5,落在挡板Ⅲ上的光线的长度=CD=3﹣1.5=1.5,故答案为1.5.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣|+π0﹣2cos30°.【分析】直接利用绝对值的性质以及零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=+1﹣2×=+1﹣=1.20.(6分)先化简,再求值:﹣,其中a=.【分析】根据分式的减法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:﹣=====,当a=时,原式==﹣4.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F的俯角为α,且tanα=,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.【分析】(1)由题意得到∠ABC=∠α,解直角三角形即可得到结论;(2)过D作DH⊥BC于H,于是得到四边形ADHC是矩形,根据矩形的性质得到AD=CH=BE=0.6,根据线段的中点的定义得到BM=CM=2.4米,求得EM=BM﹣BE=1.8,根据相似三角形的性质即可得到结论.【解答】解:(1)由题意得,∠ABC=∠α,在Rt△ABC中,AC=1.6,tan∠ABC=tanα=,∴BC===4.8m,答:BC的长度为4.8m;(2)过D作DH⊥BC于H,则四边形ADHC是矩形,∴AD=CH=BE=0.6,∵点M是线段BC的中点,∴BM=CM=2.4米,∴EM=BM﹣BE=1.8,∵MN⊥BC,∴MN∥DH,∴△EMN∽△EHD,∴=,∴=,∴MN=0.6,答:障碍物的高度为0.6米.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?【分析】(1)由条形图可得答案;(2)用T<25的天数除以总天数即可得;(3)根据利润=销售额﹣成本计算可得.【解答】解:(1)由条形统计图知,去年六月份最高气温不低于30℃的天数为6+2=8(天);(2)去年六月份这种鲜奶一天的需求量不超过200杯的概率为=;(3)250×8﹣350×4+100×1=700(元),答:估计这一天销售这种鲜奶所获得的利润为700元.23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG 的边长.【分析】(1)由正方形ABCD与正方形OEFG,对角线AC、BD,可得∠DOA=∠DOC=90°,∠GOE =90°,即可证得∠GOD=∠COE,因DO=OC,GO=EO,则可利用“边角边”即可证两三角形全等(2)过点M作MH⊥DO交DO于点H,由于∠MDB=45°,由可得DH,MH长,从而求得HO,即可求得MO,再通过MH∥DG,易证得△OHM∽△ODG,则有=,求得GO即为正方形OEFG 的边长.【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD ∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为224.(8分)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ 的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.【分析】(1)将点O、B的坐标代入一次函数表达式:y=kx,即可求解;(2)①sin∠APQ===sinα=,则P A=a=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t;②当t=时,T取得最小值,而点C(t,2t),即可求解.【解答】解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QP A=∠OAB=∠ABM=α,则tanα=,sinα=,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则P A=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.【分析】(1)由圆周角的定理可得∠DBC=∠DAC=∠ACH,可证AD∥CH,由一组对边平行且相等的是四边形是平行四边形可证四边形ADCH是平行四边形;(2)①由平行线的性质可证∠ADH=∠CHD=90°,由∠CDB=∠CAB=45°,可证△DHC为等腰直角三角形;②通过证明△ADP∽△CBP,可得,可得,通过证明△CHD∽△ACB,可得,可得AB=CD,可求CD=2,由等腰直角三角形的性质可求CH的长度.【解答】证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P∴△ADP∽△CBP∴,且PB=PD,∴,AD=CH,∴∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°∴△CHD∽△ACB∴∴AB=CD∵AB+CD=2(+1)∴CD+CD=2(+1)∴CD=2,且△DHC为等腰直角三角形∴CH=26.(11分)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.F A的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.【分析】(1)①把a、b、c的值代入二次函数解析式并配方得顶点式,即求得顶点坐标.②根据定义,把y=x代入二次函数y=x2﹣2x﹣1,得x2﹣2x﹣1=x,根据根的判别式可知满足此方程的x有两个不相等的值,即原二次函数有两个不同的“不动点”.(2)由条件∠AFC=∠ABC与=联想到证△PFC∽△PBA的对应边的比,即有.由DF⊥y轴且OC=OD可得DF∥x轴,由平行线分线段定理可证E也为CF中点,其中CE=,CF=2CE可用含c的式子表示.AB可用含x2﹣x1表示,通过韦达定理变形和b=c3代入可得用a、c表示AB的式子.又由∠AFC=∠ABC和∠AEF=∠CEB可证△AEF∽△CEB,对应边成比例可得式子AE•BE=CE•EF,把含c、x2、x1的式子代入再把韦达定理得到的x1+x2=﹣,x1x2=代入化简,可得c=﹣2a.即能用a表示CF、AB,代回到解方程即求得a 的值,进而求b、c的值,得到二次函数表达式.【解答】解:(1)①∵a=1,b=﹣2,c=﹣1∴y=x2﹣2x﹣1=(x﹣1)2﹣2∴该二次函数图象的顶点坐标为(1,﹣2)②证明:当y=x时,x2﹣2x﹣1=x整理得:x2﹣3x﹣1=0∴△=(﹣3)2﹣4×1×(﹣1)=13>0∴方程x2﹣3x﹣1=0有两个不相等的实数根即二次函数y=x2﹣2x﹣1有两个不同的“不动点”.(2)把b=c3代入二次函数得:y=ax2+c3x+c∵二次函数与x轴交于点A(x1,0),B(x2,0)(x1<0,x2>0)即x1、x2为方程ax2+c3x+c=0的两个不相等实数根∴x1+x2=﹣,x1x2=∵当x=0时,y=ax2+c3x+c=c∴C(0,c)∵E(1,0)∴CE=,AE=1﹣x1,BE=x2﹣1∵DF⊥y轴,OC=OD∴DF∥x轴∴∴EF=CE=,CF=2∵∠AFC=∠ABC,∠AEF=∠CEB∴△AEF∽△CEB∴,即AE•BE=CE•EF∴(1﹣x1)(x2﹣1)=1+c2展开得:1+c2=x2﹣1﹣x1x2+x11+c2=﹣﹣1﹣c3+2ac2+2c+4a=0c2(c+2a)+2(c+2a)=0(c2+2)(c+2a)=0∵c2+2>0∴c+2a=0,即c=﹣2a∴x1+x2=﹣=4a2,x1x2==﹣2,CF=2=2∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16a4+8∴AB=x2﹣x1=∵∠AFC=∠ABC,∠P=∠P∴△PFC∽△PBA∴∴解得:a1=1,a2=﹣1(舍去)∴c=﹣2a=﹣2,b=c3=﹣4∴二次函数的表达式为y=x2﹣4x﹣2。
2019湖南省株洲市中考数学试题(含答案)
![2019湖南省株洲市中考数学试题(含答案)](https://img.taocdn.com/s3/m/59e877cda0116c175f0e4876.png)
株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.﹣3的倒数是A .13-B .13C .﹣3D .32A ..4 C .3.下列各式中,与233x y 是同类项的是A .52xB .323x yC .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .36.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?A .第一象限B .第二象限C .第三象限D .第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为A .2B .3C .4D .58.下列各选项中因式分解正确的是A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)k y k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 3210.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”).12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第9题第13题第15题16.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜I,在y 轴处放置一个有缺口的挡板II,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板III,从点O发出的光线经反光镜I反射后,通过缺口AB照射在挡板III上,则落在挡板III上的光线的长度为.第16题第18题三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tanα=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行.(1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)m y m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC AP ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P .(1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”.(2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC =∠ABC .FA 的延长线与BC的延长线相交于点P ,若PC PA =,求该二次函数的表达式.1112。
2019湖南省株洲市中考数学试题(含答案)
![2019湖南省株洲市中考数学试题(含答案)](https://img.taocdn.com/s3/m/ad4ec664f8c75fbfc77db2d8.png)
株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.﹣3的倒数是A .13-B .13C .﹣3D .32A .B .4CD .3.下列各式中,与233x y 是同类项的是A .52xB .323x yC .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .36.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?A .第一象限B .第二象限C .第三象限D .第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为A .2B .3C .4D .58.下列各选项中因式分解正确的是A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)k y k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 3210.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”).12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第9题 第13题 第15题 16.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = 度.17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走 步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜I ,在y 轴处放置一个有缺口的挡板II ,缺口为线段AB ,其中点A(0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板III ,从点O 发出的光线经反光镜I 反射后,通过缺口AB 照射在挡板III 上,则落在挡板III 上的光线的长度为 .第16题 第18题三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒. 20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tan α=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行.(1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足25≤T <30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG .(1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM =12,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)m y m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P .(1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”. (2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC=∠ABC .FA 的延长线与BC 的延长线相交于点P ,若PC PA =,求该二次函数的表达式.11。
2019年株洲市数学中考试题(附答案)
![2019年株洲市数学中考试题(附答案)](https://img.taocdn.com/s3/m/c52c5a4580eb6294dd886cd1.png)
2019年株洲市数学中考试题(附答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.62.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.73.下列四个实数中,比1-小的数是()A.2-B.0 C.1 D.24.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1065.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分6.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD 为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.2003米C.2203米D.100(31)+米7.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.188.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m B.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D .斜坡的坡度为1:29.若点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数k y x=(k >0)的图象上,且x 1=﹣x 2,则( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .y 1=﹣y 2 10.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q11.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .312.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n50 100 200 400 500 800 1000 1200 1500 2000 色盲患者的频数m3 7 13 29 37 55 69 85 105 138 色盲患者的频率m/n 0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.15.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .16.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.18.如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为_____.19.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE+PC 的最小值是 .20.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .三、解答题21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m 3污水所用的时间比现在多用10小时. (1)原来每小时处理污水量是多少m 2?(2)若用新设备处理污水960m 3,需要多长时间?22.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?23.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E .(1)求证:直线CD 是⊙O 的切线.(2)求证:CD BE AD DE ⋅=⋅.24.如图,AB 是半圆O 的直径,AD 为弦,∠DBC=∠A .(1)求证:BC 是半圆O 的切线;(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.25.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60 B组60≤x<70 C组70≤x<80 D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 3.A解析:A【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.4.C解析:C【解析】试题分析:384 000=3.84×105.故选C.考点:科学记数法—表示较大的数.5.B解析:B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.6.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD∴AB=AD+BD=100(故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.7.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.8.A解析:A【解析】分析:求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.详解:当y=7.5时,7.5=4x ﹣12x 2, 整理得x 2﹣8x+15=0,解得,x 1=3,x 2=5, ∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5侧面cm ,A 错误,符合题意;y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 则小球落地点距O 点水平距离为7米,C 正确,不符合题意;∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意;故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.9.D解析:D【解析】由题意得:1212k k y y x x ==-=- ,故选D. 10.C解析:C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.11.B解析:B【解析】【分析】【详解】过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=12 BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=12S S =12.故选B.12.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】延长AD和BC交于点E在直角△ABE中利用三角函数求得BE的长则EC的长即可求得然后在直角△CDE中利用三角函数的定义求解【详解】如图延长ADBC相交于点E∵∠B=90°∴∴BE=∴解析:6 5【解析】【分析】延长AD和BC交于点E,在直角△ABE中利用三角函数求得BE的长,则EC的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.15.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106. 故答案为9.6×106. 16.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.17.30【解析】【分析】由图象可以V 甲=9030=3m/sV 追=90120-30=1m/s 故V 乙=1+3=4m/s 由此可求得乙走完全程所用的时间为:12004=300s 则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V 甲==3m/s ,V 追==1m/s ,故V 乙=1+3=4m/s ,由此可求得乙走完全程所用的时间为:=300s ,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V 甲==3m/s ,V 追==1m/s ,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.18.6【解析】试题解析:∵DE是BC边上的垂直平分线∴BE=CE∵△EDC的周长为24∴ED+DC+EC=24①∵△ABC与四边形AEDC的周长之差为12∴(AB+AC+BC)-(AE+ED+DC+AC解析:6【解析】试题解析:∵DE是BC边上的垂直平分线,∴BE=CE.∵△EDC的周长为24,∴ED+DC+EC=24,①∵△ABC与四边形AEDC的周长之差为12,∴(AB+AC+BC)-(AE+ED+DC+AC)=(AB+AC+BC)-(AE+DC+AC)-DE=12,∴BE+BD-DE=12,②∵BE=CE,BD=DC,∴①-②得,DE=6.考点:线段垂直平分线的性质.19.【解析】试题分析:要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解试题解析:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间5【解析】试题分析:要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC 的值,从而找出其最小值求解.试题解析:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为2,E是BC边的中点,∴BE=1,∴AE=22+=.125考点:1.轴对称-最短路线问题;2.正方形的性质.20.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B 沿AE 折叠,使点B 落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A 、B′、C 共线,即∠B 沿AE 折叠,使点B 落在对角线AC 上的点B′处, ∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x ,则EB′=x ,CE=4-x ,在Rt △CEB′中,∵EB′2+CB′2=CE 2,∴x 2+22=(4-x )2,解得,∴BE=;②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为或3. 故答案为:或3. 三、解答题21.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.22.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人,根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x =500是该方程的实数根.23.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,由角平分线的定义得到∠CAD=∠BAD ,根据等腰三角形的性质得到∠BAD=∠ADO ,求得∠CAD=∠ADO ,根据平行线的性质得到CD ⊥OD ,于是得到结论;(2)连接BD ,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD ,∵AD 平分BAC ∠,∴CAD BAD ∠=∠,∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=, ∴CD BE AD DE ⋅=⋅.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.24.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.25.(1)答案见解析;(2)a=15,72°;(3)700人.【解析】试题分析:(1)用随机抽取的总人数减去A 、B 、C 、E 组的人数,求出D 组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.试题解析:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%;C组扇形的圆心角θ的度数为360×=72°(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.考点:(1)条形统计图;(2)用样本估计总体;(3)扇形统计图。
2019湖南省株洲市中考数学试题(含答案)
![2019湖南省株洲市中考数学试题(含答案)](https://img.taocdn.com/s3/m/888bef9480eb6294dd886ce4.png)
株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.﹣3的倒数是 A .13-B .13C .﹣3D .32A ..4 C .3.下列各式中,与233x y 是同类项的是 A .52x B .323x y C .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .36.在平面直角坐标系中,点A(2,﹣3)位于哪个象限? A .第一象限B .第二象限C .第三象限D .第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为 A .2 B .3 C .4 D .5 8.下列各选项中因式分解正确的是A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=- 9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 3210.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是.13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB =.14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为.15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB =度.第9题第13题第15题16.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD =度. 17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜I ,在y 轴处放置一个有缺口的挡板II ,缺口为线段AB ,其中点A(0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板III ,从点O 发出的光线经反光镜I 反射后,通过缺口AB 照射在挡板III 上,则落在挡板III 上的光线的长度为.第16题第18题三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tan α=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行. (1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表) (最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足25≤T <30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG . (1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM=12,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)my m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P . (1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”.(2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC=∠ABC .FA 的延长线与BC 的延长线相交于点P ,若PC PA =,求该二次函数的表达式.。
2019年湖南省株洲市中考数学试题与答案
![2019年湖南省株洲市中考数学试题与答案](https://img.taocdn.com/s3/m/593d936243323968001c921b.png)
2019年湖南省株洲市中考数学试题与答案(试卷满分120分,考试时间120分钟)一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.﹣3的倒数是( ) A .﹣13- B .13-C .﹣3D .32. ×=( )A .4B .4C .D .23.下列各式中,与3x 2y 3是同类项的是( ) A .2x 5B .3x 3y 2C .﹣2312x y -D .513y -4.对于任意的矩形,下列说法一定正确的是( ) A .对角线垂直且相等 B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为( ) A .﹣3B .﹣2C .2D .36.在平面直角坐标系中,点A (2,﹣3)位于哪个象限?( ) A .第一象限B .第二象限C .第三象限D .第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为( ) A .2B .3C .4D .58.下列各选项中因式分解正确的是( ) A .x 2﹣1=(x ﹣1)2B .a 3﹣2a 2+a =a 2(a ﹣2)C .﹣2y 2+4y =﹣2y (y +2)D .m 2n ﹣2mn +n =n (m ﹣1)29.如图所示,在直角平面坐标系Oxy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF 垂直x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则( )A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S3210.从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i ={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10 B.6 C.5 D.4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数y=ax2+bx的图象开口向下,则a0(填“=”或“>”或“<”).12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是.13.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC 的中点,若EF=1,则AB=.14.若a为有理数,且2﹣a的值大于1,则a的取值范围为.15.如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=度.16.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣|+π0﹣2cos30°.20.(6分)先化简,再求值:221(1)a a aa a-+--,其中a=12.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=13,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)最高气温T(单位:℃)需求量(单位:杯)T<25 20025≤T<30 250T≥30 400 (1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE 、DG .(1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM =12,求正方形OEFG 的边长.24.(8分)如图所示,在平面直角坐标系Oxy 中,等腰△OAB 的边OB 与反比例函数(0)my m x=>的图象相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)已知一次函数的图象过点O ,B ,求该一次函数的表达式; (2)若点P 是线段AB 上的一点,满足OC =AP ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ ①用t 表示T (不需要写出t 的取值范围); ②当T 取最小值时,求m 的值.25.(11分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交与点P .(1)求证:四边形ADCH 是平行四边形; (2)若AC =BC ,PB =PD ,AB +CD =2(+1)①求证:△DHC 为等腰直角三角形; ②求CH 的长度.26.(11分)已知二次函数y =ax 2+bx +c (a >0) (1)若a =1,b =﹣2,c =﹣1 ①求该二次函数图象的顶点坐标;②定义:对于二次函数y =px 2+qx +r (p ≠0),满足方程y =x 的x 的值叫做该二次函数的“不动点”.求证:二次函数y =ax 2+bx +c 有两个不同的“不动点”. (2)设b =312c ,如图所示,在平面直角坐标系Oxy 中,二次函数y =ax 2+bx +c 的图象与x 轴分别相交于不同的两点A (x 1,0),B (x 2,0),其中x 1<0,x 2>0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点F ,满足∠AFC =∠ABC .FA 的延长线与BC 的延长线相交于点P ,若2PC 5PA 51a =+,求二次函数的表达式.参考答案一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.A 2.B 3.C 4.C 5.B 6.D 7.A 8.D 9.D 10.C二、填空题(本题共8小题,每小题3分,共24分)11.< 12.1213.4 14.a<1且a为有理数 15.66 16.20 17.250 18.1.5.三、解答题(本大题共8小题,共66分)19.解:原式=+1﹣2×=+1﹣=1.20.解:﹣====当a=12时,原式==﹣4.21.解:(1)由题意得,∠ABC=∠α,在Rt△ABC中,AC=1.6,tan∠ABC=tanα=,∴BC===4.8m,答:BC的长度为4.8m;(2)过D作DH⊥BC于H,则四边形ADHC是矩形,∴AD=CH=BE=0.6,答:障碍物的高度为0.6米.22.解:(1)由条形统计图知,去年六月份最高气温不低于30℃的天数为6+2=8(天);(2)去年六月份这种鲜奶一天的需求量不超过200杯的概率为;(3)250×8﹣350×4+100×1=730(元),答:估计这一天销售这种鲜奶所获得的利润为730元.以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H24.解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,。
2019年湖南省株洲中考数学试卷-答案
![2019年湖南省株洲中考数学试卷-答案](https://img.taocdn.com/s3/m/a57f33f5a1c7aa00b52acb3e.png)
湖南省株洲市2019年初中学业水平考试数学答案解析 【解析】133⎛-⨯- ⎝的倒数是13-。
2.【答案】B4=。
故选:B 。
【提示】直接利用二次根式的乘法运算法则计算得出答案。
【考点】二次根式的乘法运算。
3.【答案】C【解析】A .52x 与233x y 不是同类项,故本选项错误;B .323x y 与233x y 不是同类项,故本选项错误;C .2312x y -与233x y 是同类项,故本选项正确; D .513y -与233x y 是同类项,故本选项错误;故选:C 。
【提示】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可。
【考点】同类项的知识。
4.【答案】C【解析】A .矩形的对角线相等,但不垂直,故此选项错误;B .矩形的邻边都互相垂直,对边互相平行,故此选项错误;C .矩形的四个角都相等,正确;D .矩形是轴对称图形,也是中心对称图形,故此选项错误。
故选:C 。
【提示】直接利用矩形的性质分析得出答案。
【考点】矩形的性质。
5.【答案】B【解析】去分母得:2650x x --=,解得:2x =-,经检验2x =-是分式方程的解,故选:B 。
【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解。
【考点】解分式方程。
6.【答案】D【解析】点A 坐标为()2,3-,则它位于第四象限,故选:D 。
【提示】根据各象限内点的坐标特征解答即可。
【考点】各象限内点的坐标的符号特征。
7.【答案】A【解析】当1x ≤时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =(舍去); 当13x <<时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =; 当36x ≤<时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =(舍去); 当6x ≥时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =(舍去)。
【数学】2019年湖南省株洲市中考真题 (解析版)
![【数学】2019年湖南省株洲市中考真题 (解析版)](https://img.taocdn.com/s3/m/fff87f8d284ac850ad02426e.png)
2019年湖南省株洲市中考数学试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.﹣3的倒数是()A.﹣B.C.﹣3 D.3【答案】A【解析】∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.2.×=()A.4B.4 C.D.2【答案】B【解析】×==4.故选:B.3.下列各式中,与3x2y3是同类项的是()A.2x5B.3x3y2C.﹣x2y3 D.﹣y5【答案】C【解析】A.2x5与3x2y3不是同类项,故本选项错误;B.3x3y2与3x2y3不是同类项,故本选项错误;C.﹣x2y3与3x2y3是同类项,故本选项正确;D.﹣y5与3x2y3是同类项,故本选项错误;故选:C.4.对于任意的矩形,下列说法一定正确的是()A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形【答案】C【解析】A.矩形的对角线相等,但不垂直,故此选项错误;B.矩形的邻边都互相垂直,对边互相平行,故此选项错误;C.矩形的四个角都相等,正确;D.矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:C.5.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.3【答案】B【解析】去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.6.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】点A坐标为(2,﹣3),则它位于第四象限,故选:D.7.若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为()A.2 B.3 C.4 D.5【答案】A【解析】当x≤1时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去);当1<x<3时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2;当3≤x<6时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去);当x≥6时,中位数与平均数相等,则得到:(x+3+1+6+3)=3,解得x=2(舍去).所以x的值为2.故选:A.8.下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2【答案】D【解析】A.x2﹣1=(x+1)(x﹣1),故此选项错误;B.a3﹣2a2+a=a2(a﹣1),故此选项错误;C.﹣2y2+4y=﹣2y(y﹣2),故此选项错误;D.m2n﹣2mn+n=n(m﹣1)2,正确.故选:D.9.如图所示,在直角平面坐标系Oxy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3 C.S3>S2>S1D.S1S2<S32【答案】D【解析】∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S3=k,S△BOE=S△COF=k,∵S△BOE﹣S OME=S△CDF﹣S△OME,∴S1=S2,∴S1<S3,S2<S3,∴A,B,C选项错误,故选:D.10.从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10 B.6 C.5 D.4【答案】C【解析】∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∴a i+b i共有5个不同的值.又∵对于任意的M i={a i,b i}和M j={a i,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,∴S的最大值为5.故选:C.二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数y=ax2+bx的图象开口向下,则a<0(填“=”或“>”或“<”).【解析】∵二次函数y=ax2+bx的图象开口向下,∴a<0.故答案是:<.12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是.【解析】∵布袋中有6个白球,4个黑球,2个红球,共有12个球,∴摸到白球的概率是=;故答案为:.13.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF=1,则AB=4.【解析】∵E、F分别为MB、BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,∴AB=2CM=4,故答案为:4.14.若a为有理数,且2﹣a的值大于1,则a的取值范围为a<1且a为有理数.【解析】根据题意知2﹣a>1,解得a<1,故答案为:a<1且a为有理数.15.如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=66度.【解析】∵五边形ABCDE为正五边形,∴∠EAB=108度,∵AP是∠EAB的角平分线,∴∠P AB=54度,∵∠ABP=60°,∴∠APB=180°﹣60°﹣54°=66°.故答案为:66.16.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=20度.【解析】连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,∴∠BAD=∠BOD=20°,故答案为:20.17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走250步才能追到速度慢的人.【解析】设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.18.如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为 1.5.【解析】当光线沿O、G、B、C传输时,过点B作BF⊥GH于点F,过点C作CE⊥GH于点E,则∠OGH=∠CGE=α,设GH=a,则GF=2﹣a,则tan∠OGH=tan∠CGE,即:,即:,解得:a=1,则α=45°,∴GE=CE=2,y C=1+2=3,当光线反射过点A时,同理可得:y D=1.5,落在挡板Ⅲ上的光线的长度=CD=3﹣1.5=1.5,故答案为1.5.三、解答题(本大题共8小题,共66分)19.(6分)计算:|﹣|+π0﹣2cos30°.解:原式=+1﹣2×=+1﹣=1.20.(6分)先化简,再求值:﹣,其中a=.解:﹣=====,当a=时,原式==﹣4.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.解:(1)由题意得,∠ABC=∠α,在Rt△ABC中,AC=1.6,tan∠ABC=tanα=,∴BC===4.8m,答:BC的长度为4.8m;(2)过D作DH⊥BC于H,则四边形ADHC是矩形,∴AD=CH=BE=0.6,∵点M是线段BC的中点,∴BM=CM=2.4米,∴EM=BM﹣BE=1.8,∵MN⊥BC,∴MN∥DH,∴△EMN∽△EHD,∴=,∴=,∴MN=0.6,答:障碍物的高度为0.6米.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?解:(1)由条形统计图知,去年六月份最高气温不低于30℃的天数为6+2=8(天);(2)去年六月份这种鲜奶一天的需求量不超过200杯的概率为=;(3)250×8﹣350×4+100×1=730(元),答:估计这一天销售这种鲜奶所获得的利润为730元.23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=,求正方形OEFG的边长.解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD,∴DO=OC,∵DB⊥AC,∴∠DOA=∠DOC=90°,∵∠GOE=90°,∴∠GOD+∠DOE=∠DOE+∠COE=90°,∴∠GOD=∠COE,∵GO=OE,∴在△DOG和△COE中,∴△DOG≌△COE(SAS).(2)如图,过点M作MH⊥DO交DO于点H,∵AM=,DA=2,∴DM=,∵∠MDB=45°,∴MH=DH=sin45°•DM=,DO=cos45°•DA=,∴HO=DO﹣DH=﹣=,∴在Rt△MHO中,由勾股定理得MO===,∵DG⊥BD,MH⊥DO,∴MH∥DG,∴易证△OHM∽△ODG,∴===,得GO=2,则正方形OEFG的边长为2.24.(8分)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,解得:k=2,故一次函数表达式为:y=2x.(2)①过点B作BM⊥OA,则∠OCH=∠QP A=∠OAB=∠ABM=α,则tanα=,sinα=,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=a,在△APQ中,sin∠APQ===sinα=,同理PQ==2t,则P A=a=t,OC=t,则点C(t,2t),T=OH2﹣S△OPQ=(OC•sinα)2﹣×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=时,T取得最小值,而点C(t,2t),故:m=t×2t=.25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=PD,AB+CD=2(+1)①求证:△DHC为等腰直角三角形;②求CH的长度.证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD,∴∠DAC=∠ACH,∴AD∥CH,且AD=CH,∴四边形ADCH是平行四边形.(2)①∵AB是直径,∴∠ACB=90°=∠ADB,且AC=BC,∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°,∵AD∥CH,∴∠ADH=∠CHD=90°,且∠CDB=45°,∴∠CDB=∠DCH=45°,∴CH=DH,且∠CHD=90°,∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P,∴△ADP∽△CBP,∴,且PB=PD,∴,AD=CH,∴,∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°,∴△CHD∽△ACB,∴,∴AB=CD,∵AB+CD=2(+1),∴CD+CD=2(+1),∴CD=2,且△DHC为等腰直角三角形,∴CH=.26.(11分)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x 轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.F A的延长线与BC的延长线相交于点P,若=,求二次函数的表达式.解:(1)①∵a=1,b=﹣2,c=﹣1,∴y=x2﹣2x﹣1=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2),②证明:当y=x时,x2﹣2x﹣1=x,整理得:x2﹣3x﹣1=0,∴△=(﹣3)2﹣4×1×(﹣1)=13>0,∴方程x2﹣3x﹣1=0有两个不相等的实数根,即二次函数y=x2﹣2x﹣1有两个不同的“不动点”.(2)把b=c3代入二次函数得:y=ax2+c3x+c,∵二次函数与x轴交于点A(x1,0),B(x2,0)(x1<0,x2>0),即x1、x2为方程ax2+c3x+c=0的两个不相等实数根,∴x1+x2=﹣,x1x2=,∵当x=0时,y=ax2+c3x+c=c,∴C(0,c),∵E(1,0),∴CE=,AE=1﹣x1,BE=x2﹣1,∵DF⊥y轴,OC=OD,∴DF∥x轴,∴,∴EF=CE=,CF=2,∵∠AFC=∠ABC,∠AEF=∠CEB,∴△AEF∽△CEB,∴,即AE•BE=CE•EF,∴(1﹣x1)(x2﹣1)=1+c2,展开得:1+c2=x2﹣1﹣x1x2+x1,1+c2=﹣﹣1﹣,c3+2ac2+2c+4a=0,c2(c+2a)+2(c+2a)=0,(c2+2)(c+2a)=0,∵c2+2>0,∴c+2a=0,即c=﹣2a,∴x1+x2=﹣=4a2,x1x2==﹣2,CF=2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16a4+8,∴AB=x2﹣x1=,∵∠AFC=∠ABC,∠P=∠P,∴△PFC∽△PBA,∴,∴,解得:a1=1,a2=﹣1(舍去),∴c=﹣2a=﹣2,b=c3=﹣4,∴二次函数的表达式为y=x2﹣4x﹣2.。
2019年湖南省(株洲)中考数学试题(共1套 附答案)
![2019年湖南省(株洲)中考数学试题(共1套 附答案)](https://img.taocdn.com/s3/m/e9a373b9767f5acfa0c7cda8.png)
1
∴∠BAD= 2∠BOD=20°,
故答案为:20.
17.
(3 分)
《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:
“今有善行者行一百步,不善
行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走 100 步,
速度慢的人只走 60 步,现速度慢的人先走 100 步,速度快的人去追赶,则速度快的人要走 250 步才能追
B、矩形的邻边都互相垂直,对边互相平行,故此选项错误;
C、矩形的四个角都相等,正确;
D、矩形是轴对称图形,也是中心对称图形,故此选项错误.
故选:C.
2
5
−3
5.
(3 分)关于 x 的分式方程 −
=0 的解为(
)
A.﹣3
B.﹣2
C.2
D.3
【解答】解:去分母得:2x﹣6﹣5x=0,
解得:x=﹣2,
【解答】解:∵点 A、B、C 为反比例函数 y= (k>0)上不同的三点,AD⊥y 轴,BE,CF 垂直 x 轴于点
E、F,
1
2
1
2
∴S1= k,S△BOE=S△COF= k,
∵S△BOE﹣SOME=S△CDF﹣S△OME,
∴S3=S2,
故选:B.
10.
(3 分)从﹣1,1,2,4 四个数中任取两个不同的数(记作 ak,bk)构成一个数组 MK={ak,bk}(其中 k=
(1)求 BC 的长度;
(2)假如障碍物上的点 M 正好位于线段 BC 的中点位置(障碍物的横截面为长方形,且线段 MN 为此长方
形前端的边)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5. 关于 x 的分式方程���2���-������−53=0 的解为(
)
A. -3
B. -2
C. 2
D. 3
【答案】B
【解析】解:去分母得:2x-6-5x=0,
解得:x=-2,
经检验 x=-2 是分式方程的解,
故选:B.
分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式
第 3 页,共 16 页
的关键.
10. 从-1,1,2,4 四个数中任取两个不同的数(记作 ak,bk)构成一个数组 MK={ak, bk}(其中 k=1,2…S,且将{ak,bk}与{bk,ak}视为同一个数组),若满足:对于任 意的 Mi={ai,bi}和 Mj={ai,bj}(i≠j,1≤i≤S,1≤j≤S)都有 ai+bi≠aj+bj,则 S 的最大 值( )
8. 下列各选项中因式分解正确的是( )
A. x2-1=(x-1)2
B. a3-2a2+a=a2(a-2)
C. -2y2+4y=-2y(y+2)
D. m2n-2mn+n=n(m-1)2
【答案】D
【解析】解:A、x2-1=(x+1)(x-1),故此选项错误;
B、a3-2a2+a=a2(a-1),故此选项错误;
当 x≥6 时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3, 解得 x=2(舍去).
第 2 页,共 16 页
所以 x 的值为 2. 故选:A. 根据平均数与中位数的定义分三种情况 x≤1,1<x<3,3≤x<6,x≥6 时,分别列出方程, 进行计算即可求出答案. 本题考查平均数和中位数.求一组数据的中位数时,先将该组数据按从小到大(或按从 大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间 的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均 数即为这组数据的中位数.同时运用分类讨论的思想解决问题.
【解析】解:当 x≤1 时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,
解得 x=2(舍去);
当 1<x<3 时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,
解得 x=2;
当 3≤x<6 时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3, 解得 x=2(舍去);
C. S3>S2>S1
D. S1S2<S32
【解析】解:∵点 A、B、C 为反比例函数 y=������������(k>0)上不同的三点,AD⊥y 轴,BE, CF 垂直 x 轴于点 E、F,
∴S3=12k,S△BOE=S△COF=12k,
∵S△BOE-SOME=S△CDF-S△OME, ∴S1=S2, ∴S1<S3,S2<S3, ∴A,B,C 选项错误, 故选:D. 根据反比例函数系数 k 的几何意义得到 S1=S2,S1<S3,S2<S3,用排除法即可得到结论. 本题考查了反比例函数系数 k 的几何意义,反比例函数的性质,正确的识别图形是解题
2. √2×√8=( )
A. 4√2
B. 4
C. √10
D. 2√2
【答案】B
【解析】解:√2×√8=√16=4.
故选:B.
直接利用二次根式的乘法运算法则计算得出答案.
此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.
3. 下列各式中,与 3x2y3 是同类项的是( )
A. 2x5
B. 3x3y2
2019 年湖南省株洲市中考数学试卷
副标题
题号 得分
一
二
三
四
总分
一、选择题(本大题共 10 小题,共 30.0 分) 1. -3 的倒数是( )
A. -13
B.
1 3
C. -3
D. 3
【答案】A
【解析】解:∵-3×(-13)=1,
∴-3 的倒数是-13.
故选:A. 根据倒数的定义,若两个数的乘积是 1,我们就称这两个数互为倒数. 主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是 1,我们就称这两个数互 为倒数,属于基础题.
4. 对于任意的矩形,下列说法一定正确的是( )
A. 对角线垂直且相等 B. 四边都互相垂直
第 1 页,共 16 页
C. 四个角都相等 D. 是轴对称图形,但不是中心对称图形
【答案】C 【解析】解:A、矩形的对角线相等,但不垂直,故此选项错误; B、矩形的邻边都互相垂直,对边互相平行,故此选项错误; C、矩形的四个角都相等,正确; D、矩形是轴对称图形,也是中心对称图形,故此选项错误. 故选:C. 直接利用矩形的性质分析得出答案. 此题主要考查了矩形的性质,正确把握矩形的性质是解题关键.
C. -12x2y3
【答案】C 【解析】解:A、2x5 与 3x2y3 不是同类项,故本选项错误; B、3x3y2 与 3x2y3 不是同类项,故本选项错误;
C、-12x2y3 与 3x2y3 是同类项,故本选项正确;
D. -13y5
D、-13y5 与 3x2y3 是同类项,故本选项错误;
故选:C. 根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可. 本题考查了同类项的知识,解答本题的关键是理解同类项的定义.
C、-2y2+4y=-2y(y-2),故此选项错误;
D、m2n-2mn+n=n(m-1)2,正确.
故选:D.
直接利用公式法以及提取公因式法分解因式法分解因式,正确应用公式是解题关键.
9. 如图所示,在直角平面坐标系 Oxy 中,点 A、B、C 为反比例函数 y=������(k>0)上不
方程的解.
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
6. 在平面直角坐标系中,点 A(2,-3)位于哪个象限?( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
【答案】D
【解析】解:点 A 坐标为(2,-3),则它位于第四象限,
故选:D.
根据各象限内点的坐标特征解答即可.
������
同的三点,连接 OA、OB、OC,过点 A 作 AD⊥y 轴于点 D,过点 B、C 分别作 BE, CF 垂直 x 轴于点 E、F,OC 与 BE 相交于点 M,记△AOD、△BOM、四边形 CMEF 的面积分别为 S1、S2、S3,则( )
A. S1=S2+S3
【答案】D
B. S2=S3
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,
四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);
第四象限(+,-).
7. 若一组数据 x,3,1,6,3 的中位数和平均数相等,则 x 的值为( )
A. 2
B. 3
C. 4
D. 5
【答案】A