八年级上册数学第一章单元测试卷(A卷)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册第一章单元测试卷(A 卷)
说明:请将答案或解答过程直接写在各题的空白处.本卷满分100分.考试时间90分钟
一、选择题:(每小题3分,共36分)
1.等腰三角形的底边长为6,底边上的中线为4,它的腰长为( )
A .7
B .6
C .5
D .4
2.一直角三角形的两条边长分别为3和4,则第三边的长的平方为( )
A .25
B .7
C .5
D .25或7
3.在△ABC 中,AB =15,BC =12,AC =9,则△ABC 的面积为( )
A .180
B .90
C .54
D .108
4.如图所示,AB ⊥CD 于点B ,△ABD 和△BCE 都是等腰三角形,如果CD =17,BE =5,那么AC 的长为
( )
A .12
B .7
C .5
D .13
5.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离为( )
A .365
B .1225
C .94
D .33
4
6.如果一个三角形的三边长a ,b ,c 满足a 2+b 2+c 2+338=10a +24b +26c ,则这个三角形一定是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
7.一架2.5米长的梯子,斜立在一竖直的墙上,这时梯子的底端离墙0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子底部在水平方向上滑动( )
A .0.9米
B .0.8米
C .0.5米
D .0.4米
8.如图所示,圆柱高8 cm ,底面圆的半径为6
π
cm ,一只蚂蚁从点A 爬到点B 处吃蜂蜜,则要爬行的最短
路程是( )
A .20 cm
B .10 cm
C .14 cm
D .无法确定
9.在△ABC 中,若AC =15,BC =13,AB 边上的高CD =12,那么△ABC 的周长为( )
A .32
B .42
C .32或42
D .以上都不对
10.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处,若AB =3,AD =4,则ED 的长为( )
A .32
B .3
C .1
D .43
11.如图,以直角三角形a 、b 、c 为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S 1+S 2=S 3图形个数有( )
A .1
B .2
C .3
D .4
12.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( ) A . B .2
C .
D .10﹣5
二、填空题(每小题3分,共12分)
13.如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为___.
14.△ABC 的两边分别为5,12,另一边c 为奇数,a +b +c 是3的倍数,则c 应为___,此三角形为____三角形. 15.小红从家里出发向正北方向走80米,接着向正东方向走150米,现在她离家的距离是____米.
16.小雨用竹竿扎了一个长80 cm ,宽60 cm 的长方形框架,由于四边形容易变形,需要用一根竹竿作斜拉竿将四边形定形,则斜拉竿的长是____ cm .
三、解答题(本部分共7题,合计52分)
17.(6分)如图,正方形网格中有△ABC ,若小方格边长为1,请你根据所学的知识解答下列问题:
(1)求△ABC 的面积;
(2)判断△ABC 是什么形状,并说明理由.
学校 姓名 年级
密 封 线 内 不 要 答 题 密 封
线
18.(6分)如图,AF⊥DE于F,且DF=15 cm,EF=6 cm,AE=10 cm.求正方形ABCD的面积.
19.(7分)一写字楼发生火灾,消防车立即赶到距大楼9米的A点处,升起云梯到发火的窗口点C.已知云梯BC长15米,云梯底部B距地面A为2.2米,问发生火灾的窗口距地面有多少米?
20.(8分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE⊥DF,交AB于点E,交BC于点F,若AE=4,FC=3,求EF的长.21.(8分)如图,∠AOB=90°,OA=45 cm,OB=15 cm,一机器人在点B处看见一个小球从点A出发沿着AO 方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?
22.(8分) 如图,已知∠MBN=60°,在BM,BN上分别截取BA=BC,P是∠MBN内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.
(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;
(2)若PA∶PB∶PC=3∶4∶5,连接PQ,求证∠PQC=90°.
23.(9分)如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN的距离为80 m,现有一拖拉机在公路MN上以18 km/h的速度沿PN方向行驶,拖拉机行驶时周围100 m以内都会受到噪音的影响,试问该校受影响的时间为多长?
密
封
线