算法与分析实验报告模板
算法设计与分析实验报告
算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (6)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (9)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (11)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (14)4、装载问题 (17)5、N皇后问题(非递归) (18)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。
二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。
如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n,而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。
那末,这类问题可以用分治法求解。
分治法的核心技术1)子问题的划分技术。
2)递归技术。
反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。
3)合并技术。
(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。
算法设计与分析的实验报告
实验一递归与分治策略一、实验目的1.加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
二、实验内容1、①设a[0:n-1]是已排好序的数组。
请写二分搜索算法,使得当搜索元素x不在数组中时,返回小于x的最大元素位置i和大于x的最小元素位置j。
当搜索元素在数组中时,i和j相同,均为x在数组中的位置。
②写出三分搜索法的程序。
三、实验要求(1)用分治法求解上面两个问题;(2)再选择自己熟悉的其它方法求解本问题;(3)上机实现所设计的所有算法;四、实验过程设计(算法设计过程)1、已知a[0:n-1]是一个已排好序的数组,可以采用折半查找(二分查找)算法。
如果搜索元素在数组中,则直接返回下表即可;否则比较搜索元素x与通过二分查找所得最终元素的大小,注意边界条件,从而计算出小于x的最大元素的位置i和大于x的最小元素位置j。
2、将n个元素分成大致相同的三部分,取在数组a的左三分之一部分中继续搜索x。
如果x>a[2(n-1)/3],则只需在数组a的右三分之一部分中继续搜索x。
上述两种情况不成立时,则在数组中间的三分之一部分中继续搜索x。
五、实验结果分析二分搜索法:三分搜索法:时间复杂性:二分搜索每次把搜索区域砍掉一半,很明显时间复杂度为O(log n)。
(n代表集合中元素的个数)三分搜索法:O(3log3n)空间复杂度:O(1)。
六、实验体会本次试验解决了二分查找和三分查找的问题,加深了对分治法的理解,收获很大,同时我也理解到学习算法是一个渐进的过程,算法可能一开始不是很好理解,但是只要多看几遍,只看是不够的还要动手分析一下,这样才能学好算法。
七、附录:(源代码)二分搜索法:#include<iostream.h>#include<stdio.h>int binarySearch(int a[],int x,int n){int left=0;int right=n-1;int i,j;while(left<=right){int middle=(left+right)/2;if(x==a[middle]){i=j=middle;return 1;}if(x>a[middle])left=middle+1;else right=middle-1;}i=right;j=left;return 0;}int main(){ int a[10]={0,1,2,3,4,5,6,7,8,9};int n=10;int x=9;if(binarySearch(a,x,n))cout<<"找到"<<endl;elsecout<<"找不到"<<endl;return 0;}实验二动态规划——求解最优问题一、实验目的1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
算法设计与分析实验报告_3
实验一全排列、快速排序【实验目的】1.掌握全排列的递归算法。
2.了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集, 用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应, 因此在此就以n个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外, 都有一个后继;除第一个排列外, 都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到, 全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是: 通过一趟排序将要排序的数据分割成独立的两部分, 其中一部分的所有数据都比另外一部分的所有数据都要小, 然后再按此方法对这两部分数据分别进行快速排序, 整个排序过程可以递归进行, 以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1.全排列:快速排序:实验二最长公共子序列、活动安排问题【实验目的】了解动态规划算法设计思想, 运用动态规划算法实现最长公共子序列问题。
了解贪心算法思想, 运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=<x1, x2, …, xm>和Y=<y1, y2, …, yn>的一个最长公共子序列Z=<z1, z2, …, zk>, 则:..i.若xm=yn, 则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列...ii.若xm≠yn且zk≠x., 则Z是Xm-1和Y的最长公共子序列...iii.若xm≠yn且zk≠y.,则Z是X和Yn-1的最长公共子序列.其中Xm-1=<x1, x2, …, xm-1>, Yn-1=<y1, y2, …, yn-1>, Zk-1=<z1, z2, …, zk-1>。
算法分析实验三报告
《算法设计与分析》实验报告目录一、实验内容描述和功能分析.二、算法过程设计.三、程序调试及结果(附截图).四、源代码(附源代码).一、实验内容描述和功能分析.1.矩阵连乘问题内容描述:给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
功能分析:输入包含多组测试数据。
第一行为一个整数C,表示有C 组测试数据,接下来有2*C行数据,每组测试数据占2行,每组测试数据第一行是1个整数n,表示有n个矩阵连乘,接下来一行有n+1个数,表示是n个矩阵的行及第n个矩阵的列,它们之间用空格隔开。
输出应该有C行,即每组测试数据的输出占一行,它是计算出的矩阵最少连乘积次数。
例如:输入:1输出:7500310 100 5 502.Pebble Merging内容描述:在一个圆形操场的四周摆放着n 堆石子。
现要将石子有次序地合并成一堆。
规定每次只能选相邻的2 堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。
试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。
编程任务:对于给定n堆石子,编程计算合并成一堆的最小得分和最大得分。
功能分析:输入由多组测试数据组成。
每组测试数据输入的第1 行是正整数n,1≤n≤100,表示有n堆石子。
第二行有n个数,分别表示每堆石子的个数。
对应每组输入,输出的第1 行中的数是最小得分;第2 行中的数是最大得分。
例如:输入:4 输出:434 45 9 54二、算法过程设计.1.矩阵连乘问题矩阵连乘问题是通过设置数组,利用数组的横竖坐标来进行矩阵对应行与列的计算。
2.Pebble Merging这个问题也是跟数组相关,通过寻找数组中的最大和最小值来进行计算。
三、程序调试及结果(附截图).1.矩阵连乘问题2.Pebble Merging四、源代码(附源代码).1.矩阵连乘问题#include <stdio.h>int main(){ int a[ 50 ] , b[ 50 ][ 50 ] , c[ 50 ][50 ] , z , n;int i , r , j , k , t;scanf("%d",&z);while (z --){ scanf("%d",&n);for (i = 0 ; i <= n ; ++ i) scanf("%d",& a[ i ]);for (i = 1 ; i <= n ; ++ i) b[ i ][ i ] = 0;for (r = 2 ; r <= n ; ++ r)for (i = 1 ; i <= n - r + 1 ; ++ i){ j = i + r - 1;b[ i ][ j ] = b[i + 1][ j ] + a[i - 1] * a[ i ] * a[ j ];c[ i ][ j ] = i;for (k = i + 1 ; k < j ; ++ k){ t = b[ i ][ k ] + b[k + 1][ j ] + a[i - 1] * a[ k ] * a[ j ];if (t < b[ i ][ j ])b[ i ][ j ] = t , c[ i ][ j ] = k;}}printf ("%d\n" , b[ 1 ][ n ]);}return 0;}2.Pebble Merging#include <stdio.h>int main(){ int dpmin[ 200 ][ 200 ] , min[ 200 ][ 200 ] , mins;int dpmax[ 200 ][ 200 ] , max[ 200 ][ 200 ] , maxs;int a[ 200 ] , i , n , j , k , temp , l;while (scanf ("%d" , & n) != EOF){ for (i = 1 ; i <= n ; ++ i) scanf ("%d" , & a[ i ]);for (i = 1 ; i < n ; ++ i) a[i + n] = a[ i ];for (i = 1 ; i < 2 * n ; ++ i){ min[ i ][ i ] = max[ i ][ i ] = 0;dpmax[ i ][ i ] = dpmin[ i ][ i ] = a[ i ];dpmax[ i ][i + 1] = dpmin[ i ][i + 1] = a[ i ] + a[i + 1];min[ i ][i + 1] = max[ i ][i + 1] = a[ i ] + a[i + 1];}for (i = 1 ; i < n - 1; ++ i)for (l = 1 , j = 2 + i ; j < 2 * n ; ++ j , ++ l){ for (k = l + 1 ; k <= j ; ++ k){ if (k == l + 1){ dpmin[ l ][ j ] = dpmin[ l ][k - 1] + dpmin[ k ][ j ] + min[ l ][k - 1] + min[ k ][ j ];if ( l == k - 1 && k != j)min[ l ][ j ] = a[ l ] + min[ k ][ j ];elseif (l != k - 1 && k == j)min[ l ][ j ] = min[ l ][k - 1] + a[ k ];elsemin[ l ][ j ] = min[ l ][k - 1] + min[ k ][ j ]; dpmax[ l ][ j ] = dpmax[ l ][k - 1] + dpmax[ k ][ j ] + max[ l ][k - 1] + max[ k ][ j ];if ( l == k - 1 && k != j)max[ l ][ j ] = a[ l ] + max[ k ][ j ];elseif (l != k - 1 && k == j)max[ l ][ j ] = max[ l ][k - 1] + a[ k ];elsemax[ l ][ j ] = max[ l ][k - 1] + max[ k ][ j ];continue ;}temp = dpmin[ l ][k - 1] + dpmin[ k ][ j ] + min[ l ][k - 1] + min[ k ][ j ];if (temp < dpmin[ l ][ j ]){ dpmin[ l ][ j ] = temp;if ( l == k - 1 && k != j)min[ l ][ j ] = a[ l ] + min[ k ][ j ];elseif (l != k - 1 && k == j)min[ l ][ j ] = min[ l ][k - 1] + a[ k ];elsemin[ l ][ j ] = min[ l ][k - 1] + min[ k ][ j ];}temp = dpmax[ l ][k - 1] + dpmax[ k ][ j ] + max[ l ][k - 1] + max[ k ][ j ];if (temp > dpmax[ l ][ j ]){ dpmax[ l ][ j ] = temp;if ( l == k - 1 && k != j)max[ l ][ j ] = a[ l ] + max[ k ][ j ];elseif (l != k - 1 && k == j)max[ l ][ j ] = max[ l ][k - 1] + a[ k ];elsemax[ l ][ j ] = max[ l ][k - 1] + max[ k ][ j ];} } }mins = dpmin[ 1 ][ n ]; maxs = dpmax[ 1 ][ n ];for (i = 2 ; i <= n ; ++ i){ if (mins > dpmin[ i ][i + n - 1])mins = dpmin[ i ][i + n - 1];if (maxs < dpmax[ i ][i + n - 1])maxs = dpmax[ i ][i + n - 1];}printf ("%d\n%d\n" , mins , maxs);}return 23;}。
算法设计与分析实验报告(模版)
武汉工程大学计算机科学与工程学院《算法设计与分析》实验报告专业班级实验地点学生学号指导教师学生姓名实验时间实验项目算法基本工具和优化技巧实验类别基本性实验实验目的及要求目的与要求:练习算法基本工具和优化技巧的使用实验内容要点:1、熟悉循环和递归的应用2、熟悉数据结构在算法设计中的应用3、了解优化算法的基本技巧4、掌握优化算法的数学模型成绩评定表类别评分标准分值得分合计上机表现积极出勤、遵守纪律主动完成实验设计任务30分实验报告及时递交、填写规范内容完整、体现收获70分说明:评阅教师:日期:年月日一、狼找兔子问题:一座山周围有n个洞,顺时针编号为0,1,2.,…,n-1。
一只狼从0号洞开始,顺时针方向计数,每当经过第m个洞时,就进洞找兔子。
输入m,n,问兔子有没有幸免的机会?如果有,该藏哪里?代码设计:。
结果:。
二、有52张牌,使他们全部正面朝上,第一轮是从第2张开始,凡是2的倍数位置上的牌翻成正面朝下;第二轮从第3张牌开始,凡是3的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上;第三轮从第4张开始,凡是4的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上,以此类推,直到翻的牌超过104张为止。
统计最后有几张正面朝上,以及他们的位置号。
代码设计:。
结果:。
三、A、B、C、D、E 5人为某次竞赛的前5名,他们在名次公布前猜名次。
A说:B得第三名,C得第五名。
B说:D得第二名,E得第四名。
C说:B得第一名,E得第四名。
D说:C得第一名,B得第二名。
E说:D得第二名,A得第三名。
结果每个人都猜对了一半,实际名次是什么呢?代码设计:。
结果:。
算法课设实验报告(3篇)
第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
《算法设计与分析》课程实验报告 (贪心算法(一))
《算法设计与分析》课程实验报告实验序号:07实验项目名称:实验8 贪心算法(一)一、实验题目1.删数问题问题描述:键盘输入一个高精度的正整数N(不超过250 位),去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的非负整数。
编程对给定的N 和k,寻找一种方案使得剩下的数字组成的新数最小。
若输出前有0则舍去2.区间覆盖问题问题描述:设x1,x2,...xn是实轴上的n个点。
用固定长度为k的闭区间覆盖n个点,至少需要多少个这样的固定长度的闭区间?请你设计一个有效的算法解决此问题。
3.会场安排问题问题描述:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。
设计一个有效的贪心算法进行安排。
(这个问题实际上是著名的图着色问题。
若将每一个活动作为图的一个顶点,不相容活动间用边相连。
使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。
)4.导弹拦截问题问题描述:某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。
但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。
某天,雷达捕捉到敌国的导弹来袭。
由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
给定导弹依次飞来的高度(雷达给出的高度数据是≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
二、实验目的(1)通过实现算法,进一步体会具体问题中的贪心选择性质,从而加强对贪心算法找最优解步骤的理解。
(2)掌握通过迭代求最优的程序实现技巧。
(3)体会将具体问题的原始数据预处理后(特别是以某种次序排序后),常能用贪心求最优解的解决问题方法。
三、实验要求(1)写出题1的最优子结构性质、贪心选择性质及相应的子问题。
(2)给出题1的贪心选择性质的证明。
(3)(选做题):写出你的算法的贪心选择性质及相应的子问题,并描述算法思想。
算法设计与分析实验报告
实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。
2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。
三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。
递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。
否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。
2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。
在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。
五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
常见算法设计实验报告(3篇)
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
关于算法的实验报告(3篇)
第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。
2. 掌握快速排序算法的时间复杂度和空间复杂度分析。
3. 通过实验验证快速排序算法的效率。
4. 提高编程能力和算法设计能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。
快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。
在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。
四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。
3. 分析快速排序算法的时间复杂度。
4. 对不同规模的数据集进行测试,验证快速排序算法的效率。
六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。
《算法设计与分析》实验报告模板 (1)
《算法设计与分析》实验报告
学号:姓名:
实验一分治法求解众数问题
一、实验目的
1.掌握分治法的设计思想并能熟练应用;
2.理解分治与递归的关系。
二、实验题目
在一个序列中出现次数最多的元素称为众数,根据分治法的思想设计算法寻找众数。
三、实验程序
四、程序运行结果
实验二动态规划法求解单源最短路径问题
一、实验目的
1.深刻掌握动态规划法的设计思想;
2.熟练应用以上算法思想求解相关问题。
二、实验题目
设有一个带权有向连通图,可以把顶点集划分成多个互不相交的子集,使得任一条边的两个顶点分属不同子集,称该图为多段图。
采用动态规划法求解多段图从源点到终点的最小代价路径。
三、实验程序
四、程序运行结果
实验三贪心法求解单源点最短路径问题
一、实验目的
1.掌握贪心法的设计思想;
2.分析比较同一个问题采用不同算法设计思想求解的结果。
二、实验题目
设有一个带权有向连通图,可以把顶点集划分成多个互不相交的子集,使得任一条边的两个顶点分属不同子集,称该图为多段图。
采用贪心法求解多段图从源点到终点的最小代价路径。
三、实验程序
四、程序运行结果
实验四回溯法求解0/1背包问题
一、实验目的
1.掌握回溯法的设计思想;
2.掌握解空间树的构造方法,以及在求解过程中如何存储求解路径;
二、实验题目
给定n种物品和一个容量为C的背包,选择若干种物品(物品不可分割),使得装入背包中物品的总价值最大。
采用回溯法求解该问题。
三、实验程序
四、程序运行结果。
《算法设计与分析》课程实验报告
《算法设计与分析》课程实验报告实验序号:实验项目名称:随机化算法一、实验题目1.N后问题问题描述:在n*n格的棋盘上放置彼此不受攻击的n个皇后,任何两个皇后不放在同一行同一列,同一斜线上,问有多少种放法。
2.主元素问题问题描述:设A是含有n个元素的数组,如果元素x在A中出现的次数大于n/2,则称x是A的主元素。
给出一个算法,判断A中是否存在主元素。
二、实验目的(1)通过N后问题的实现,体会拉斯维加斯随机算法的随机特点:运行次数随机但有界,找到的解一定为正确解。
但某次运行可能找不到解。
(2)通过实现主元素的不同算法,了解蒙特卡罗算法的随机特性:对于偏真的蒙特卡罗算法,找到为真的解一定是正确解;但非真的解以高概率给出解的正确率------即算法找到的非真解以小概率出现错误。
同时体会确定性算法与随机化算法的差异及各自的优缺点。
(3)通过跳跃表的实现,体会算法设计的运用的广泛性,算法设计的思想及技巧不拘泥独立问题的解决,而在任何需要计算机解决的问题中,都能通过算法设计的技巧(无论是确定性还是随机化算法)来灵巧地解决问题。
此实验表明,通过算法设计技巧与数据组织的有机结合,能够设计出高效的数据结构。
三、实验要求(1)N后问题分别以纯拉斯维加斯算法及拉斯维加斯算法+回溯法混合实现。
要求对同一组测试数据,完成如下任务a.输出纯拉斯维加斯算法找到解的运行次数及运行时间。
b.输出混合算法的stopVegas值及运行时间c.比较a、b的结果并分析N后问题的适用情况。
(2)主元素问题,要求对同一组测试数据,完成如下任务:a.若元素可以比较大小,请实现O(n )的确定性算法,并输出其运行时间。
b.(选做题)若元素不可以比较大小,只能比较相同否,请实现O(n) 确性算法,并输出其运行时间。
c.实现蒙特卡罗算法,并输出其运行次数及时间。
d.比较确定性算法与蒙特卡罗算法的性能,分析每种方法的优缺点。
(3)参照教材实现跳跃表(有序)及基本操作:插入一个结点,删除一个结点。
算法分析与设计课程实验报告
算法分析与设计课程实验报告班级: 131213学号: 13121XXX姓名: XXX指导老师:邓凡目录算法分析与设计课程实验报告 (1)实验一排序 (1)1. 课本练习2.3-7 (1)2. 实现优先队列 (2)3.快速排序 (2)4. 第k大元素 (3)实验二动态规划 (4)1. 矩阵链乘 (4)2. 最长公共子序列 (5)3. 最长公共子串 (7)4. 最大和 (9)5. 最短路径 (10)实验三贪心策略 (11)1. 背包问题 (11)2. 任务调度 (14)3. 单源点最短路径 (15)4. 任意两点间最短路径 (16)实验四回溯法 (18)1. 0-1背包问题 (18)2. 8-Queen问题 (21)实验一排序1.课本练习2.3-7(1)问题描述描述一个运行时间为 (nlgn)的算法,给定n个整数的集合S和另一个整数x,该算法能确定S中是否存在两个其和刚好是x的元素。
(2)问题分析该问题首先要进行排序,然后用二分查找法判断S中是否存在两个其和刚好是x的元素,因为时间复杂度为(nlgn),所以可以采用归并排序。
(3)算法分析归并排序的思想是将n个元素分成各含n/2个元素的子序列,然后对两个子序列递归地进行排序,最后合并两个已排序的子序列得到排序结果。
二分查找的思想是对于集合中的每一个数字,用二分法找到x-S[i]的位置,若存在且不为其本身,则输出S中存在有两个和等于x的元素;否则,不存在。
(4)实验结果2.实现优先队列(1)问题描述实现优先队列,维护一组元素构成的集合S。
(2)问题分析优先队列是基于堆排序的。
首先将集合S中的元素进行堆排序。
当进行操作时,要不断维护集合S的有序性,即要不断地调整堆。
(3)算法分析本程序中主要的函数有INSERT():需要调用INCREASE_KEY()来维护堆,其时间复杂度为O(lgn),函数MAXIMUM()仅需要返回S[1],时间复杂度为 (1),函数EXTRACT_MAX()需要调用堆排序中的MAX_HEAPIFY,时间复杂度为O(lgn),函数INCREASE_KEY()更新结点到根结点的路径长度为O(lgn),时间复杂度为O(lgn)。
算法设计与分析实验报告三篇
算法设计与分析实验报告一实验名称统计数字问题评分实验日期2014 年11 月15 日指导教师姓名专业班级学号一.实验要求1、掌握算法的计算复杂性概念。
2、掌握算法渐近复杂性的数学表述。
3、掌握用C++语言描述算法的方法。
4.实现具体的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。
书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。
例如,第6 页用数字6 表示,而不是06 或006 等。
数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。
编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。
把这些结果统计起来即可。
四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){ if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{ s[0]-=zero;zero*=10;} }if(n<10){for(int i=0;i<=n;i++){ s[i]+=1; }return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1){m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){ zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){ s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){ s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{ s[zuigao]++;s[0]+=l; }else{ i=0;while((zero/=10)>yushu){ i++; }s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){ int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){ n/=10; } //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){ cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n'; }} 五.程序调试中的问题调试过程,页码出现报错。
算法与分析实验报告模板
算法与分析实验报告模板贵州大学计算机科学与技术学院计算机科学与技术系上机实验报告课程名称:算法设计与分析班级:姓名:实验序号:一学号:实验日期:YYYY-MM-DD 指导教师:程欣宇实验成绩:一、实验名称分治算法实验 - 棋盘覆盖问题二、实验目的及要求 1、熟悉递归算法编写; 2、理解分治算法的特点; 3、掌握分治算法的基本结构。
三、实验环境 Visual C++ 四、实验内容根据教材上分析的棋盘覆盖问题的求解思路,进行验证性实验;要求完成棋盘覆盖问题的输入、分治求解、输出。
有余力的同学尝试消去递归求解。
五、算法描述及实验步骤分治算法原理:分治算法将大的分解成形状结构相同的子问题,并且不断递归地分解,直到子问题规模小到可以直接求解。
棋盘覆盖问题描述:在一个2k x 2k个方格组成的棋盘中恰有一个方格与其他的不同称为特殊方格,想要求利用四种L型骨牌(每个骨牌可覆盖三个方格)不相互重叠覆盖的将除了特殊方格外的其他方格覆盖。
实验步骤: 1、定义用于输入和输出的数据结构; 2、完成分治算法的编写; 3、测试记录结构; 4、有余力的同学尝试不改变输入输出结构,将递归消除,并说明能否不用栈,直接消除递归,为什么?六、调试过程及实验结果详细记录程序在调试过程中出现的问题及解决方法。
记录程序执行的结果。
七、总结对上机实践结果进行分析,问题回答,上机的心得体会及改进意见。
八、附录源程序(核心代码)清单或使用说明书,可另附纸贵州大学计算机科学与技术学院计算机科学与技术系上机实验报告课程名称:算法设计与分析班级:姓名:实验序号:二学号:实验日期:2021-11-25 指导教师:程欣宇实验成绩:一、实验名称动态规划实验 - 滑雪问题二、实验目的及要求 1、学会使用在线测评的算法题目评分系统; 2、通过直观的应用问题,加深对动态规划算法的理解;三、实验环境任意C或C++编写调试工具,北京大学ICPC在线测评系统POJ 四、实验内容 1、找到题号为1088的题目-滑雪,阅读题目,建立其最优解的递归表达式; 3、使用备忘录式的动态规划算法,实现本题; 4、进行简单测试,完成之后提交到POJ系统。
算法设计与分析实验报告格式
算法设计与分析实验报告一实验名称统计数字问题评分实验日期年月日指导教师刘长松姓名刘飞初专业班级计算机0901 学号10一.实验要求1、掌握算法的计算复杂性概念。
2、掌握算法渐近复杂性的数学表述。
3、掌握用C++语言描述算法的方法。
4.实现具体的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。
书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。
例如,第6 页用数字6 表示,而不是06 或006 等。
数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。
编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。
把这些结果统计起来即可。
四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{s[0]-=zero;zero*=10;}}if(n<10){for(int i=0;i<=n;i++){s[i]+=1;}return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1) {m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{s[zuigao]++;s[0]+=l;}else{i=0;while((zero/=10)>yushu){i++;}s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){n/=10;} //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n';}}五.程序调试中的问题调试过程中总是有这样那样的问题,通过一步步的修改,最终得以实现。
算法设计与分析学习报告(优秀范文5篇)
算法设计与分析学习报告(优秀范文5篇)第一篇:算法设计与分析学习报告算法课程学习报告持续13周的高级算法设计与分析课程结束了。
选修了这门课程的同学们即将迎来最后的考试。
回顾这半年以来关于这么课程的学习情况,我体会最深的是:不论是从深度还是从广度上,现在所习的算法比曾经学习的算法难度增加了很多。
但是邓教授极富经验的教学和详细的课件,为我的学习提供了很大的方便。
可是毕竟我以前的底子不够厚,基础不够劳,在听课中会出现跟不上教师思路的现象。
我也积极的采取措施,争取处理好这种情况。
总体说来,上完算法课,我还是学到了很多东西的。
下面我就对所学的内容进行梳理归纳,总结一下我在学习中的体会和研究心得。
算法课程的开课阶段,邓教授为我们简单介绍了算法,课堂上可能用到的参考资料,以及一些著名的算法方面的书籍,为我的学习提供潜在的工具。
我购买了一本教材——《算法导论》。
这本书够厚,够详细。
但是我一直没有机会仔细的研读。
我想有一天希望能够好好读一下。
在介绍算法的课堂上,我还了解了算法相关的一些基本概念,算法的重要性,还有算法的历史。
我印象最深的就是一个叫图灵的外国人。
对计算机科学与技术这个领域做出了图书贡献。
我个人认为,堪比爱因斯塔发现相对论的贡献。
都揭示了某个领域的本质。
开辟的一个领域的发展。
对于整个人类来说,他们这类人都是功不可没的。
已经不能简单的用伟人来形容他们。
但是人类社会需要这样的人,社会需要一些人的推动才能进步。
说到这里,我不禁要想,算法到底有什么用,也许答案是简单的,为了方便写程序实现系统功能。
这只是表面的用途。
我觉得最本质的作用是为了社会进步。
辩证唯物主义自然观中有关于科学技术的详细定义。
之所以产生科学技术是为了发挥人的主观能动性去改造自然。
学习和研究算法正是为了让人在一定的限度内改造自然。
我不是在扯,而是在写算法报告和背自然辩证法资料的时候产生的心得体会,不知道算不算邓教授要求的心得。
介绍完算法历史以后,就进入的真正的算法设计与分析的学习。
算法设计与分析实验报告
算法设计与分析实验报告《算法设计与分析》实验报告实验⼀递归与分治策略应⽤基础学号:**************姓名:*************班级:*************⽇期:2014-2015学年第1学期第九周⼀、实验⽬的1、理解递归的概念和分治法的基本思想2、了解适⽤递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析⽅法⼆、实验内容任务:以下题⽬要求应⽤递归与分治策略设计解决⽅案,本次实验成绩按百分制计,完成各⼩题的得分如下,每⼩题要求算法描述准确且程序运⾏正确。
1、求n个元素的全排。
(30分)2、解决⼀个2k*2k的特殊棋牌上的L型⾻牌覆盖问题。
(30分)3、设有n=2k个运动员要进⾏⽹球循环赛。
设计⼀个满⾜要求的⽐赛⽇程表。
(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运⾏报告。
三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; icout << list[i] << " ";cout << endl;return;}else{for (int i=m; i{swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输⼊排列数据总个数:"; cin>>n;cout<<"请输⼊数据:";{cin>>a[i];}cout<<"该数据的全排列:"<Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验⼆递归与分治策略应⽤提⾼学号:**************姓名:*************班级:*************⽇期:2014-2015学年第1学期⼀、实验⽬的1、深⼊理解递归的概念和分治法的基本思想2、正确使⽤递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析⽅法⼆、实验内容任务:从以下题⽬中任选⼀题完成,要求应⽤递归与分治策略设计解决⽅案。
计算机算法设计与分析实验报告
计算机算法设计与分析实验报告专业:软件技术学号:************姓名:覃立煜指导老师:***实验一:最长公共子序列问题一、实验目的与要求1、明确子序列公共子序列的概念2、最长公共子序列(Longest Common Subsequence,简称LCS) 的概念3、利用动态规划解决最长公共子序列问题二、实验题:问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。
令给定的字符序列X=“x0,x1,…,x m-1”,序列Y=“y0,y1,…,y k-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,i k-1>,使得对所有的j=0,1,…,k-1,有x ij=y j。
例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。
给定两个序列A和B,称序列Z是A和B的公共子序列,是指Z同是A和B的子序列。
问题要求已知两序列A和B的最长公共子序列。
三、实验代码#include<stdlib.h>#include<stdio.h>#include<string.h>#define Size 100void LCSLength(int m,int n,char *x,char *y,int c[Size][Size],int b[Size][Size]){ int i,j;for(i=1;i<=m+1;i++) c[i][0]=0;for(i=1;i<=n+1;i++) c[0][i]=0;for(i=1;i<=m+1;i++)for(j=1;j<=n+1;j++){ if(x[i]==y[j]){ c[i][j]=c[i-1][j-1]+1; b[i][j]=0; }else if(c[i-1][j]>=c[i][j-1]){ c[i][j]=c[i-1][j];b[i][j]=1; }else { c[i][j]=c[i][j-1];b[i][j]=2; }}}void LCS(int i,int j,char *x,int b[Size][Size]){ if(i==0||j==0) return;if(b[i][j]==0){ LCS(i-1,j-1,x,b);printf("%c",x[i]); }else if(b[i][j]==1) LCS(i-1,j,x,b);else LCS(i,j-1,x,b);}main(){ int m,n,i;int c[Size][Size],b[Size][Size];char x[Size],y[Size];printf("输入序列x的长度(小于100):");scanf("%d",&m);printf("输入序列y的长度(小于100):");scanf("%d",&n);i=1;printf("输入x的成员(不用空格,直接输入字符串):\n");while(i<m+2){ scanf("%c",&x[i]);if(x[i]!='\0') i++;}i=1;printf("输入y的成员(不用空格,直接输入字符串):\n");while(i<n+2){ scanf("%c",&y[i]);if(y[i]!='\0') i++;}LCSLength(m,n,x,y,c,b);printf("最长公共子序列:\n");LCS(m+1,n+1,x,b);printf("\n"); }四、实验结果实验二:0-1背包问题一、实验目的与要求1、明确0-1背包问题的概念2、利用动态规划解决0-1背包问题问题二、实验题:0-1背包问题(knapsack problem),某商店有n个物品,第i个物品价值为vi,重量(或称权值)为wi,其中vi和wi为非负数, 背包的容量为W,W为一非负数。
《算法设计与分析》课程实验报告 (分治法(三))
《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。
用x 坐标表示东西向,用y坐标表示南北向。
各居民点的位置可以由坐标(x,y)表示。
街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。
编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。
2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。
3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。
设计算法求出A的一个近似中值。
如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。
二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。
三、实验要求(1)写清算法的设计思想。
(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。
(3)根据你的数据结构设计测试数据,并记录实验结果。
(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。
四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵州大学计算机科学与技术学院计算机科学与技术系上机实验报告课程名称:算法设计与分析班级:实验日期:YYYY-MM-DD姓名:学号:指导教师:程欣宇实验序号:一实验成绩:一、实验名称分治算法实验- 棋盘覆盖问题二、实验目的及要求1、熟悉递归算法编写;2、理解分治算法的特点;3、掌握分治算法的基本结构。
三、实验环境Visual C++四、实验内容根据教材上分析的棋盘覆盖问题的求解思路,进行验证性实验;要求完成棋盘覆盖问题的输入、分治求解、输出。
有余力的同学尝试消去递归求解。
五、算法描述及实验步骤分治算法原理:分治算法将大的分解成形状结构相同的子问题,并且不断递归地分解,直到子问题规模小到可以直接求解。
棋盘覆盖问题描述:在一个2k x 2k个方格组成的棋盘中恰有一个方格与其他的不同称为特殊方格,想要求利用四种L型骨牌(每个骨牌可覆盖三个方格)不相互重叠覆盖的将除了特殊方格外的其他方格覆盖。
实验步骤:1、定义用于输入和输出的数据结构;2、完成分治算法的编写;3、测试记录结构;4、有余力的同学尝试不改变输入输出结构,将递归消除,并说明能否不用栈,直接消除递归,为什么?六、调试过程及实验结果详细记录程序在调试过程中出现的问题及解决方法。
记录程序执行的结果。
七、总结对上机实践结果进行分析,问题回答,上机的心得体会及改进意见。
八、附录源程序(核心代码)清单或使用说明书,可另附纸贵州大学计算机科学与技术学院计算机科学与技术系上机实验报告课程名称:算法设计与分析班级:实验日期:2014-11-25姓名:学号:指导教师:程欣宇实验序号:二实验成绩:一、实验名称动态规划实验- 滑雪问题二、实验目的及要求1、学会使用在线测评的算法题目评分系统;2、通过直观的应用问题,加深对动态规划算法的理解;三、实验环境任意C或C++编写调试工具,北京大学ICPC在线测评系统POJ四、实验内容1、找到题号为1088的题目-滑雪,阅读题目,建立其最优解的递归表达式;3、使用备忘录式的动态规划算法,实现本题;4、进行简单测试,完成之后提交到POJ系统。
五、算法描述及实验步骤动态规划算法原理:分治算法将大的问题变成小的问题来解决,但是如果划分过程中出现重叠子问题,就可能导致大量的重复计算。
为了避免这些重复的计算,可以考虑的一个办法就是动态规划算法。
为了使用动态规划算法,问题还必须具备最优子结构,即问题的最优解包含了子问题的最优解。
滑雪问题描述:Michael喜欢滑雪百这并不奇怪,因为滑雪的确很刺激。
可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。
Michael想知道载一个区域中最长底滑坡。
区域由一个二维数组给出。
数组的每个数字代表点的高度。
下面是一个例子1 2 3 4 516 17 18 19 615 24 25 20 714 23 22 21 813 12 11 10 9一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。
在上面的例子中,一条可滑行的滑坡为24-17-16-1。
当然25-24-23-...-3-2-1更长。
事实上,这是最长的一条。
Input输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。
下面是R行,每行有C个整数,代表高度h,0<=h<=10000。
Output输出最长区域的长度。
实验步骤:1、建立滑雪问题的解的递归表达式请建立!2、构造算法框架请构造!3、分析出算法复杂度请分析!六、调试过程及实验结果详细记录程序在调试过程中出现的问题及解决方法。
记录程序执行的结果。
七、总结对上机实践结果进行分析,问题回答,上机的心得体会及改进意见。
八、附录#include<stdio.h>#include<memory.h>int R, C;int a[101][101];//各点高度int f[101][101];//各点最大滑雪长度inline int max(int a, int b){ //inline表示编译时直接嵌入至调用处,节省调用函数的时间return a>b?a:b;}inline int max(int a, int b, int c, int d){return max(max(a, b), max(c, d));}int dfs(int row, int col, int h){ //递归深搜if(row < 1 || row > R || col < 1 || col > R || h <= a[row][col]) //超出范围或上一点高度低于该点高度return 0; //则返回0if(f[row][col] >= 0) //如果已经搜索过return f[row][col]; //则直接返回该点最大化学长度f[row][col] = max(dfs(row - 1, col, a[row][col]), dfs(row, col + 1, a[row][col]), dfs(row + 1, col, a[row][col]), dfs(row, col - 1, a[row][col])) + 1; //动规,当前最大滑雪长度为四周比该点低的最大滑雪长度加1return f[row][col]; }int main(){ int T, i, j;scanf("%d", &T);while(T--){ int max = 0;memset(f, -1, sizeof(f));scanf("%d%d", &R, &C);for(i = 1; i <= R; ++i){ for(j = 1; j <= R; ++j){ scanf("%d", &a[i][j]); }} for(i = 1; i <= R; ++i){ for(j = 1; j <= R; ++j){ int num = dfs(i, j, 0xffffff); //通过16进制0xffffff方便地给出一个足够大的int型if(max < num) max = num; }} printf("%d\n", max); }return 0; }贵州大学计算机科学与技术学院计算机科学与技术系上机实验报告课程名称:算法设计与分析班级:124班(12级)实验日期:2014-12-02姓名:何航学号:1208060365 指导教师:程欣宇实验序号:三实验成绩:一、实验名称贪心算法实验- 包装问题二、实验目的及要求1、使用在线测评的算法题目评分系统来测试所写代码;2、通过直观的应用问题,加深对贪心算法的理解;三、实验环境任意C或C++编写调试工具,北京大学ICPC在线测评系统POJ四、实验内容1、登陆POJ系统,找到题号为1017的题目-包装;2、阅读题目,分析出求解该问题的思路;3、使用贪心算法,实现本题;4、进行简单测试,完成之后提交到POJ系统。
五、算法描述及实验步骤贪心算法原理:贪心算法通过一系列的选择来达到子问题的解。
它所做的每一步选择都是当前状态下局部最好选择,即贪心选择。
这种启发式的策略虽不能总是奏效,但大多数情况下确能达到预期目的,得到最优解。
要使用贪心算法,问题必须具备两个基本要素。
贪心选择性质和最优子结构性质。
贪心选择性质指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。
通常采用自顶向下的方式进行,这样每做一次贪心选择就将所求问题化为规模更小的子问题。
当然,前提是所求问题本身的最优解包含其子问题的最优解,即具有最优子结构性质。
包装问题描述:有一个工厂生产一种长宽为1*1、2*2、3*3、4*4、5*5、6*6的产品,这些产品交付到客户手中都是用6*6的包裹包装。
因为费用问题,工厂希望使用最少的包裹寄送给订购货物的客户。
一个好的程序能够根据订单找到最少需要的包裹数量。
你被要求写这样一个程序。
输入输入文件由若干行组成,每一行市一个订单,所有的订单都由6个整数组成,分别对应1*1产品到6*6产品的需求量。
输入文件的最后一行由6个0组成。
输出输出文件的每一行对应输入文件的每一行,它包含了最少需要的包裹数量。
输入示例0 0 4 0 0 1 //4个3*3的产品和1个6*6的产品7 5 1 0 0 0 //7个1*1的产品、5个2*2的产品和1个3*3的产品0 0 0 0 0 0 //0结束输出示例2 //至少需要2个包裹1 //至少需要1个包裹实验步骤:1、建立包装问题的解题思路装箱问题,利用贪心的思想,从最大的开始装6×6,5×5和4×4的每个都需要一个箱子5×5的和11个1×1的装一起,4×4的和5个2×2的装一起3×3的分4种情况1.正好装满2.剩一个,则装5个2×2的,7个1×1的3.剩两个,则装3个2×2,6个1×1的4.剩三个,则装1个2×2的,5个1×1的还要多余的2×2的,装完后用1×1的填充若2×2的不够,原来用2×2的用1×1的填充2、构造算法框架3、分析出算法复杂度六、调试过程及实验结果七、总结对上机实践结果进行分析,问题回答,上机的心得体会及改进意见。
八、附录#include<iostream>#include<cstdio>using namespace std;int main(){int p[4]={0,5,3,1},a[10]; //3×3的放完后,余下的放入新箱子后,还可以放几个2×2的包裹(下标对应余数)while(1){int sum=0;for(int i=1;i<=6;i++){scanf("%d",&a[i]);sum+=a[i];}if(sum==0)break;sum=0;sum=a[4]+a[5]+a[6]+(a[3]+3)/4; //6*6,5*5,4*4每个都要用一个箱子(画图),3×3的对4向上取整int need2=a[4]*5+p[a[3]%4]; //需要的2×2的个数if(need2<a[2]) //上取整sum+=(a[2]-need2+8)/9;int need1=sum*36-a[2]*4-a[3]*9-a[4]*16-a[5]*25-a[6]*36; //需要的1×1的个数,即所有箱子的总面积减去后5种盒子的总面积if(need1<a[1])sum+=(a[1]-need1+35)/36; //上取整printf("%d\n",sum);}return 0;}贵州大学计算机科学与技术学院计算机科学与技术系上机实验报告课程名称:算法设计与分析班级:实验日期:YYYY-MM-DD姓名:学号:指导教师:程欣宇实验序号:四实验成绩:一、实验名称回溯算法实验- 频道分配问题二、实验目的及要求1、使用在线测评的算法题目评分系统来测试所写代码;2、通过直观的应用问题,加深对回溯算法的理解;三、实验环境任意C或C++编写调试工具,北京大学ICPC在线测评系统POJ四、实验内容1、登陆POJ系统,找到题号为1129的题目-频道分配;2、阅读题目,分析出求解该问题的思路;3、使用回溯算法,实现本题;4、进行简单测试,完成之后提交到POJ系统。