算法设计与分析实验报告

合集下载

算法设计与分析实验报告三篇

算法设计与分析实验报告三篇

算法设计与分析实验报告一实验名称统计数字问题评分实验日期2014 年11 月15 日指导教师姓名专业班级学号一.实验要求1、掌握算法的计算复杂性概念。

2、掌握算法渐近复杂性的数学表述。

3、掌握用C++语言描述算法的方法。

4.实现具体的编程与上机实验,验证算法的时间复杂性函数。

二.实验内容统计数字问题1、问题描述一本书的页码从自然数1 开始顺序编码直到自然数n。

书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。

例如,第6 页用数字6 表示,而不是06 或006 等。

数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9)2、编程任务给定表示书的总页码的10 进制整数n (1≤n≤109) 。

编程计算书的全部页码中分别用到多少次数字0,1,2, (9)三.程序算法将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。

把这些结果统计起来即可。

四.程序代码#include<iostream.h>int s[10]; //记录0~9出现的次数int a[10]; //a[i]记录n位数的规律void sum(int n,int l,int m){ if(m==1){int zero=1;for(int i=0;i<=l;i++) //去除前缀0{ s[0]-=zero;zero*=10;} }if(n<10){for(int i=0;i<=n;i++){ s[i]+=1; }return;}//位数为1位时,出现次数加1//位数大于1时的出现次数for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1){m=1;int i;for(i=1;i<t;i++)m=m*10;a[t]=t*m;}int zero=1;for(int i=0;i<l;i++){ zero*= 10;} //求出输入数为10的n次方int yushu=n%zero; //求出最高位以后的数int zuigao=n/zero; //求出最高位zuigaofor(i=0;i<zuigao;i++){ s[i]+=zero;} //求出0~zuigao-1位的数的出现次数for(i=0;i<10;i++){ s[i]+=zuigao*a[l];} //求出与余数位数相同的0~zuigao-1位中0~9出现的次数//如果余数是0,则程序可结束,不为0则补上所缺的0数,和最高位对应所缺的数if(yushu==0) //补上所缺的0数,并且最高位加1{ s[zuigao]++;s[0]+=l; }else{ i=0;while((zero/=10)>yushu){ i++; }s[0]+=i*(yushu+1);//补回因作模操作丢失的0s[zuigao]+=(yushu+1);//补回最高位丢失的数目sum(yushu,l-i-1,m+1);//处理余位数}}void main(){ int i,m,n,N,l;cout<<"输入数字要查询的数字:";cin>>N;cout<<'\n';n = N;for(i=0;n>=10;i++){ n/=10; } //求出N的位数n-1l=i;sum(N,l,1);for(i=0; i<10;i++){ cout<< "数字"<<i<<"出现了:"<<s[i]<<"次"<<'\n'; }}五.程序调试中的问题调试过程,页码出现报错。

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一...

《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。

1、求n个元素的全排。

(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。

(30分)3、设有n=2k个运动员要进行网球循环赛。

设计一个满足要求的比赛日程表。

(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。

三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。

算法课设实验报告(3篇)

算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。

为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。

二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。

1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。

(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。

- 对每种算法进行时间复杂度和空间复杂度的分析。

- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。

(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。

- 编写三种排序算法的代码。

- 分析代码的时间复杂度和空间复杂度。

- 编写测试程序,生成随机测试数据,测试三种算法的性能。

- 比较三种算法的运行时间和内存占用。

2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。

(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。

- 分析贪心算法的正确性,并证明其最优性。

(3)实验步骤:- 分析活动选择问题的贪心策略。

- 编写贪心算法的代码。

- 分析贪心算法的正确性,并证明其最优性。

- 编写测试程序,验证贪心算法的正确性。

3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。

(2)实验内容:- 实现一个动态规划算法问题,如背包问题。

- 分析动态规划算法的正确性,并证明其最优性。

(3)实验步骤:- 分析背包问题的动态规划策略。

- 编写动态规划算法的代码。

- 分析动态规划算法的正确性,并证明其最优性。

- 编写测试程序,验证动态规划算法的正确性。

三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。

算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。

合并排序和快速排序是两种经典而常用的排序算法。

本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。

二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。

然后,再将这些单个元素两两合并,形成一个有序数组。

合并排序的核心操作是合并两个有序的数组。

1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。

2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。

无论最好情况还是最坏情况,合并排序的复杂度都相同。

合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。

三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。

然后,递归地对这两个子数组进行排序,最后得到有序数组。

快速排序的核心操作是划分。

1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。

2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。

最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。

快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。

四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告一、引言算法是计算机科学的核心,它们是解决问题的有效工具。

算法分析与设计是计算机科学中的重要课题,通过对算法的分析与设计,我们可以优化计算机程序的效率,提高计算机系统的性能。

本实验报告旨在介绍算法分析与设计的基本概念和方法,并通过实验验证这些方法的有效性。

二、算法分析算法分析是评估算法性能的过程。

在实际应用中,我们常常需要比较不同算法的效率和资源消耗,以选择最适合的算法。

常用的算法分析方法包括时间复杂度和空间复杂度。

1. 时间复杂度时间复杂度衡量了算法执行所需的时间。

通常用大O表示法表示时间复杂度,表示算法的最坏情况下的运行时间。

常见的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。

其中,O(1)表示常数时间复杂度,O(log n)表示对数时间复杂度,O(n)表示线性时间复杂度,O(n log n)表示线性对数时间复杂度,O(n^2)表示平方时间复杂度。

2. 空间复杂度空间复杂度衡量了算法执行所需的存储空间。

通常用大O表示法表示空间复杂度,表示算法所需的额外存储空间。

常见的空间复杂度有O(1)、O(n)和O(n^2)等。

其中,O(1)表示常数空间复杂度,O(n)表示线性空间复杂度,O(n^2)表示平方空间复杂度。

三、算法设计算法设计是构思和实现算法的过程。

好的算法设计能够提高算法的效率和可靠性。

常用的算法设计方法包括贪心算法、动态规划、分治法和回溯法等。

1. 贪心算法贪心算法是一种简单而高效的算法设计方法。

它通过每一步选择局部最优解,最终得到全局最优解。

贪心算法的时间复杂度通常较低,但不能保证得到最优解。

2. 动态规划动态规划是一种将问题分解为子问题并以自底向上的方式求解的算法设计方法。

它通过保存子问题的解,避免重复计算,提高算法的效率。

动态规划适用于具有重叠子问题和最优子结构的问题。

3. 分治法分治法是一种将问题分解为更小规模的子问题并以递归的方式求解的算法设计方法。

算法与分析实验报告

算法与分析实验报告

算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。

本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。

二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。

具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。

实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。

三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。

- 实现顺序搜索和二分搜索算法。

2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。

3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。

4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。

- 多次重复同样的操作,取平均值以减小误差。

5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。

四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。

- 插入排序:执行效率一般,在中等规模数据排序中表现良好。

- 快速排序:执行效率最高,适用于大规模数据排序。

2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。

- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。

实验结果表明,不同算法适用于不同规模和类型的问题。

正确选择和使用算法可以显著提高程序的执行效率和性能。

五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。

算法设计与分析实验报告(中南民族大学)

算法设计与分析实验报告(中南民族大学)

院系:计算机科学学院专业:年级:课程名称:算法设计与分析基础班号:组号:指导教师:年月日实验结果及分析1.求最大数2.递归法与迭代法性能比较递归迭代3.改进算法1.利用公式法对第n项Fibonacci数求解时可能会得出错误结果。

主要原因是由于double类型的精度还不够,所以程序算出来的结果会有误差,要把公式展开计算。

2.由于递归调用栈是一个费时的过程,通过递归法和迭代法的比较表明,虽然递归算法的代码更精简更有可读性,但是执行速度无法满足大数问题的求解。

3.在当前计算机的空间较大的情况下,在一些速度较慢的问题中,空间换时间是一个比较周全的策略。

实验原理(算法基本思想)定义:若A=(a ij), B=(b ij)是n×n的方阵,则对i,j=1,2,…n,定义乘积C=A⋅B 中的元素c ij为:1.分块解法通常的做法是将矩阵进行分块相乘,如下图所示:二.Strassen解法分治法思想将问题实例划分为同一问题的几个较小的实例。

对这些较小实例求解,通常使用递归方法,但在问题规模足够小时,也会使用另一种算法。

如果有必要,合并这些问题的解,以得到原始问题的解。

求解矩阵相乘的DAC算法,使用了strassen算法。

DAC(A[],B[],n){If n=2 使用7次乘法的方法求得解ElseDivide(A)//把A分成4块Divide(B)//把B分成4块调用7次strassen算法求得解的4块合并这4块得到解并返回}伪代码Serial_StrassenMultiply(A, B, C) {T1 = A0 + A3;T2 = B0 + B3;StrassenMultiply(T1, T2, M1);T1 = A2 + A3;StrassenMultiply(T1, B0, M2);T1 = (B1 - B3);StrassenMultiply (A0, T1, M3);T1 = B2 - B0;StrassenMultiply(A3, T1, M4);T1 = A0 + A1;StrassenMultiply(T1, B3, M5);T1 = A2 – A0;T2 = B0 + B1;StrassenMultiply(T1, T2, M6);T1 = A1 – A3;T2 = B2 + B3;StrassenMultiply(T1, T2, M7);C0 = M1 + M4 - M5 + M7C1 = M3 + M5C2 = M2 + M4C3 = M1 - M2 + M3 + M6}实验结果及分析时间复杂度1.分块相乘总共用了8次乘法,因而需要Θ(n log28)即Θ(n3)的时间复杂度。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。

2. 了解快速排序的分治算法思想。

【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。

任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。

n个字符的全体排列之间存在一个确定的线性顺序关系。

所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。

每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。

二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。

它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

【实验内容】1.全排列递归算法的实现。

2.快速排序分治算法的实现。

【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。

2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。

【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。

其中Xm-1=,Yn-1=,Zk-1=。

最长公共子序列问题具有最优子结构性质。

由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。

《算法设计与分析》课程实验报告 (贪心算法(一))

《算法设计与分析》课程实验报告 (贪心算法(一))

《算法设计与分析》课程实验报告实验序号:07实验项目名称:实验8 贪心算法(一)一、实验题目1.删数问题问题描述:键盘输入一个高精度的正整数N(不超过250 位),去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的非负整数。

编程对给定的N 和k,寻找一种方案使得剩下的数字组成的新数最小。

若输出前有0则舍去2.区间覆盖问题问题描述:设x1,x2,...xn是实轴上的n个点。

用固定长度为k的闭区间覆盖n个点,至少需要多少个这样的固定长度的闭区间?请你设计一个有效的算法解决此问题。

3.会场安排问题问题描述:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。

设计一个有效的贪心算法进行安排。

(这个问题实际上是著名的图着色问题。

若将每一个活动作为图的一个顶点,不相容活动间用边相连。

使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。

)4.导弹拦截问题问题描述:某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。

但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。

某天,雷达捕捉到敌国的导弹来袭。

由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。

给定导弹依次飞来的高度(雷达给出的高度数据是≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

二、实验目的(1)通过实现算法,进一步体会具体问题中的贪心选择性质,从而加强对贪心算法找最优解步骤的理解。

(2)掌握通过迭代求最优的程序实现技巧。

(3)体会将具体问题的原始数据预处理后(特别是以某种次序排序后),常能用贪心求最优解的解决问题方法。

三、实验要求(1)写出题1的最优子结构性质、贪心选择性质及相应的子问题。

(2)给出题1的贪心选择性质的证明。

(3)(选做题):写出你的算法的贪心选择性质及相应的子问题,并描述算法思想。

算法设计与分析实验报告

算法设计与分析实验报告

实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。

2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。

三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。

递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。

否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。

2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。

在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。

五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。

关于算法的实验报告(3篇)

关于算法的实验报告(3篇)

第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。

2. 掌握快速排序算法的时间复杂度和空间复杂度分析。

3. 通过实验验证快速排序算法的效率。

4. 提高编程能力和算法设计能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。

快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。

在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。

四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。

3. 分析快速排序算法的时间复杂度。

4. 对不同规模的数据集进行测试,验证快速排序算法的效率。

六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。

算法设计与分析实验报告

算法设计与分析实验报告
定义如下标识符:
ቤተ መጻሕፍቲ ባይዱCost(L)=+
Cost(R)=+
如果用W(i,j)表示Q(i)+的和,于是可以得到检索树T的预期成本是:
P(k)+Cost(L)+Cost(R)+W(0.k-1)+W(k,n),
如果T是最优的,则上式必定为最小值。则必须有Cost(L)=C(0,k-1)和Cost(R)=C(k,n),而且k应该选择使得P(k)+ C(0,k-1)+ C(k,n)+W(0,k-1)+W(k,n)最下的k值。
2.最优二分检索树问题设计分析
已知一个固定的标识符集合,希望产生一个构造二分检索树的方法。可以预料,同一个标识符集合有不同的二分检索树,而不同的二分检索树有不用的性能特征。由于一般的检索树具有不同的概率,另外,也要做一些不成功的检索,即对不在这棵树中标识符的检索。假定给出的标识符集合为{},其中,设P(i)是对 的检索概率,Q(i)是正被检索的标识符X的概率,而标识符X满足 <X<,1<=i<=n,那么就是不成功的概率。明显的有=1.
算法设计与分析实验报告
山东技术科技学院
一、
1.掌握贪心方法、动态规划的基本思想
2.了解适用贪心方法、动态规划的问题类型,并能设计相应的贪心法算法
3.掌握贪心算法、动态规划算法时间空间复杂度分析,以及问题复杂性分析方法
二、
1.实现单源点生成最短路径的贪心方法,完善算法,求出长度,并推导路径上的结点序列
1
主函数main
FindWays()函数流程图
Ni=n
Y
Length=0
Y
N
1
2.

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。

二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。

如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。

那末,这类问题可以用分治法求解。

分治法的核心技术1)子问题的划分技术.2)递归技术。

反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。

3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告1. 引言算法是计算机科学中的核心概念之一,它为解决问题提供了一种清晰、有效的方法。

本实验报告旨在通过分析与设计一个特定算法的实验过程,来加深对算法的理解和应用。

2. 实验背景在现代社会中,算法的应用无处不在。

无论是搜索引擎的排序算法,还是社交媒体的推荐算法,都离不开算法的支持。

因此,学习算法的分析与设计,对于计算机科学相关领域的学生来说具有重要的意义。

3. 实验目的本实验的主要目的是通过分析与设计一个特定算法,加深对算法的理解和应用。

通过实际操作,学生将能够熟悉算法的设计过程,并能够分析算法的效率和复杂性。

4. 实验步骤4.1 确定算法目标在开始实验之前,我们需要明确算法的目标。

在本实验中,我们将设计一个排序算法,用于对一组数字进行排序。

4.2 了解算法原理在设计算法之前,我们需要对目标算法的原理进行深入了解。

在本实验中,我们将选择经典的冒泡排序算法作为实现对象。

冒泡排序算法的基本思想是通过比较相邻的元素,并根据需要交换位置,使得每一轮循环都能使最大(或最小)的元素“冒泡”到数组的末尾。

通过多次迭代,最终实现整个数组的排序。

4.3 实现算法在了解算法原理后,我们将根据算法的步骤逐步实现。

具体步骤如下:1.遍历待排序数组,从第一个元素开始。

2.比较当前元素与下一个元素的大小。

3.如果当前元素大于下一个元素,则交换它们的位置。

4.继续比较下一个元素,直到遍历完整个数组。

5.重复上述步骤,直到没有需要交换的元素。

4.4 测试算法在实现算法之后,我们需要对其进行测试,以验证其正确性和效率。

我们可以准备一组随机的数字作为输入,并对算法进行测试。

通过比较输入和输出结果,我们可以判断算法是否正确。

同时,我们还可以通过计算算法的时间复杂性和空间复杂性来评估其效率。

在本实验中,我们将使用时间复杂性分析来评估算法的效率。

4.5 分析与总结通过测试和分析,我们将得出算法的执行时间和空间复杂性。

算法设计与分析 实验报告

算法设计与分析 实验报告

算法设计与分析实验报告1. 引言本实验报告旨在介绍算法设计与分析的相关内容。

首先,我们将介绍算法设计的基本原则和步骤。

然后,我们将详细讨论算法分析的方法和技巧。

最后,我们将通过一个实例来演示算法设计与分析的过程。

2. 算法设计算法设计是解决问题的关键步骤之一。

它涉及确定问题的输入和输出,以及找到解决方案的具体步骤。

以下是算法设计的一般步骤:2.1 理解问题首先,我们需要全面理解给定问题的要求和约束。

这包括确定输入和输出的格式,以及问题的具体要求。

2.2 制定算法思路在理解问题后,我们需要制定解决问题的算法思路。

这涉及确定解决问题的高层次策略和步骤。

通常,我们使用流程图、伪代码等工具来表示算法思路。

2.3 编写算法代码在制定算法思路后,我们可以根据思路编写实际的算法代码。

这可能涉及选择适当的数据结构和算法,以及编写相应的代码来实现解决方案。

2.4 调试和测试编写算法代码后,我们需要进行调试和测试,以确保算法的正确性和可靠性。

这包括检查代码中可能存在的错误,并使用不同的测试样例来验证算法的正确性。

3. 算法分析算法分析是评估算法性能的过程。

它涉及确定算法的时间复杂度和空间复杂度,以及评估算法在不同输入情况下的执行效率。

3.1 时间复杂度时间复杂度是衡量算法执行时间随输入规模增长的速度。

常见的时间复杂度包括常数时间复杂度 O(1)、线性时间复杂度 O(n)、对数时间复杂度 O(log n)、平方时间复杂度 O(n^2) 等。

通过分析算法中的循环、递归等关键部分,可以确定算法的时间复杂度。

3.2 空间复杂度空间复杂度是衡量算法所需空间随输入规模增长的速度。

它通常用于评估算法对内存的使用情况。

常见的空间复杂度包括常数空间复杂度 O(1)、线性空间复杂度 O(n)、对数空间复杂度 O(log n) 等。

通过分析算法中的变量、数组、递归栈等关键部分,可以确定算法的空间复杂度。

3.3 执行效率评估除了时间复杂度和空间复杂度外,我们还可以通过实验和测试来评估算法的执行效率。

算法分析与设计实验报告 完整版

算法分析与设计实验报告 完整版

《算法分析与设计》课程实验实验报告专业:计算机科学与技术班级:姓名:学号:完成时间:2009年6月15日实验一算法实现一一、实验目的与要求熟悉C/C++语言的集成开发环境;通过本实验加深对分治法、贪心算法的理解。

二、实验内容:掌握分治法、贪心算法的概念和基本思想,并结合具体的问题学习如何用相应策略进行求解的方法。

三、实验题1. 【伪造硬币问题】给你一个装有n个硬币的袋子。

n个硬币中有一个是伪造的。

你的任务是找出这个伪造的硬币。

为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。

试用分治法的思想写出解决问题的算法,并计算其时间复杂度。

2.【找零钱问题】一个小孩买了价值为33美分的糖,并将1美元的钱交给售货员。

售货员希望用数目最少的硬币找给小孩。

假设提供了数目有限的面值为25美分、10美分、5美分、及1美分的硬币。

给出一种找零钱的贪心算法。

四、实验步骤理解算法思想和问题要求;编程实现题目要求;上机输入和调试自己所编的程序;验证分析实验结果;整理出实验报告。

五、实验程序1.伪造硬币问题源程序://c语言实现#include<stdio.h>#include<stdlib.h>#include<math.h>#define N 100#define N1 12//只能判断是否相等的天平void solve(int coin[],int count,int first,int last) {if (count==2) {printf("无法判断\n");return;}if (first==last) {//只有一个硬币时候printf("假币的序号为%d, 假币的重量为%d\n", first, coin[first]);}else if(last-first==1){ //如果只剩下两个硬币(此时count不为)if (first > 0) { //不是最开始的硬币if (coin[first] == coin[0]) //如果第first和第个相等,说明first 位置不是伪币solve(coin,count,first+1,last);else//否则,说明first位置是伪币solve(coin,count,first,last-1);}else if(last<count-1){ //不是最后的硬币if (coin[first]==coin[count-1]) //如果第first和最后一个相等,说明last位置不是伪币solve(coin,count,first+1,last);else//否则,说明first位置是伪币solve(coin,count,first,last-1);}}else if (first<last){int temp=(last-first+1)/3; //将硬币分为三组int sum1=0, sum2=0;for(int i=0;i<temp;i++){sum1+=coin[first+i];sum2+=coin[last-i];}if (sum1==sum2){ //两边的总重相等,在中间,递归solve(coin,count,first+temp,last-temp);}else {//在两边,不在中间if (sum1==coin[first+temp]*temp){ //左边的和中间的相等,在右边,递归solve(coin,count,last-temp+1,last);}else {solve(coin,count,first,first+temp-1); //右边的和中间的相等,在左边,递归}}}}void main() {int i;int coin[N]; //定义数组coin用来存放硬币重量for(i=0;i<N;i++) //初始化数组coin[i]=0; //所用硬币初始值为coin[N1]=1; //第N1个设置为,即伪币int cnt = N;printf("硬币个数:%d\n",cnt);solve(coin,cnt,0,cnt-1);}2找零钱问题(1)零钱个数无限制的时候:源程序://c语言实现#include<stdio.h>main(){int T[]={25,10,5,1};int a[5];int money,i,j;printf("输入钱数:\n");scanf("%d",&money);for(i=0;i<4;i++){a[i]=money/T[i];money=money%T[i];}printf("找钱结果:\n硬币:\t");for(i=0;i<=3;i++){printf("%d\t|\t",T[i]);}printf("\n个数:\t");for(i=0;i<=3;i++){printf("%d\t|\t",a[i]);}printf("\n");return(0);}(2)当零钱个数有个数限制的时候:源程序://c语言实现#include<stdio.h>main(){int T[]={25,10,5,1}; //硬币的面值int a[5]; //用来记录找钱的个数int count[]={1,2,10,1000}; //各个面值硬币的个数int money,i;printf("输入钱数:\n");scanf("%d",&money);for(i=0;i<4;i++){if(money>T[i]*count[i]){ //当剩余钱数大于当前硬币总值a[i]=count[i]; //当前硬币个数取现有的最大值money=money-T[i]*count[i];}else{a[i]=money/T[i];money=money%T[i];}}printf("找钱结果:\n硬币:\t");for(i=0;i<=3;i++){printf("%d\t|\t",T[i]);}printf("\n\n个数:\t");for(i=0;i<=3;i++){printf("%d\t|\t",a[i]);}printf("\n");return(0);}六、实验结果1伪造硬币问题运行结果:硬币个数:100假币的序号为12, 假币的重量为1截图:2找零钱问题(1、硬币个数无限制)运行结果:输入钱数:67找钱结果:硬币: 25 | 10 | 5 | 1 |个数: 2 | 1 | 1 | 2 |截图:3找零钱问题(2、硬币个数有限制,其中硬币个数限制分别为1,2,10和1000。

算法分析与设计实验报告

算法分析与设计实验报告

算法分析与设计实验报告算法分析与设计实验报告⼀.实验⽬的1掌握回溯法解题的基本思想以及算法设计⽅法;2.掌握动态规则法和分⽀限界法的基本思想和算法设计⽅法;3掌握深度优先遍历法的基本思想及运⽤;4.进⼀步的对N皇后问题,⼦集和数问题,0-1背包问题做深⼊的了解。

⼆.实验内容1.实现求n 皇后问题和⼦集和数问题的回溯算法。

2.⽤动态规划的⽅法实现0/1背包问题。

3.⽤分⽀限界法实现0/1背包问题。

4.⽤深度优化的⽅法遍历⼀个图,并判断图中是否有回路存在,如果有,请输出回路。

三.实验设计1. N 皇后问题:我是采取了尊循 top-down design 的顺序来设计整个算法和程序。

采⽤ OOP 的思想,先假设存在⼀个 · 表⽰棋盘格局的类 queens ,则定义回溯函数 solve_from(queens configuration),configuration 表⽰当前棋盘格局,算法不断扩展棋盘的当前格局(找到下⼀个⾮冲突位置),当找到⼀个解决⽅案时打印该⽅案。

该递归函数采⽤回溯法求出所有解。

main 函数调⽤ solve_from 时传递的实参是⼀个空棋盘。

对于模拟棋盘的 queens 类,我们可以定义三个数据成员: 1.size :棋盘的边长,即⼤⼩ .2. count :已放置的互不冲突的皇后数 3.array[][]:布尔矩阵,true 表⽰当前格有皇后这⾥需要稍加思考以便稍后可以简化程序:因为每⾏只能放⼀个皇后,从上到下,从左到右放,那么 count 个皇后占⽤的⾏为 0——count -1。

所以count 还表⽰下⼀个皇后应该添加在哪⼀⾏。

这样,和 remove 操作的⼊⼝参数就只需要提供列号就⾏了, add 降低了耦合度:)下⾯是程序运⾏结果:2.⼦集和数问题:本设计利⽤⼤⼩固定的元组来研究回溯算法,在此情况下,解向量的元素X (i )取1或0值,它表⽰是否包含了权数W (i ).⽣成图中任⼀结点的⼉⼦是很容易的。

实验报告

实验报告

合肥师范学院实验报告册2016/ 2017 学年第 1 学期系别计算机学院实验课程算法设计与分析专业软件工程班级一班姓名杨文皇学号1310421071指导教师程敏实验一:分治算法一、实验目的1、理解分治策略的基本思想;2、掌握用分治法解决问题的一般技巧。

二、实验内容利用分治算法在含有n个不同元素的数组a[n]中同时找出它的最大的两个元素和最小的两个元素,编写出完整的算法,并分析算法的时间复杂度。

三、实验源程序。

1、算法设计思想利用分治法思想,n个不同元素的数组不断进行划分,化为若干个个子问题,其与原问题形式相;解决子问题规模较小而容易解决则直接解决:即当n的规模为只有一个或两个,三个或四个;否则再继续直至更小的子问题:即当n的规模大于四时。

将已求得的各个子问题的解,逐步合并原问题的解:即将左右两边求得的子问题进行比较,在四个数据中的得到两个最大(最小)值。

为了简化空间,采用了对每一个小规模问题的排序,以及合并原问题时,对四个数据进行排序,获得当前或合并的最大(最小)值2、算法实现#include<iostream>using namespace std;int a[10]={4,5,6,2,3,9,8,13,1};int b[4];int sort(int i,int j){int temp,k;for(;i<j;i++){for(k=i;k<j;k++)if(a[k]>a[k+1]){temp=a[k];a[k]=a[k+1];a[k+1]=temp;}}return 0;}int sort1(int lmin1,int lmin2,int rmin1,int rmin2){int i,j,temp;b[0]=lmin1;b[1]=lmin2;b[2]=rmin1;b[3]=rmin2;for(i=0;i<=1;i++)for(j=i;j<=3;j++){if(b[i]>b[j]){temp=b[i];b[i]=b[j];b[j]=temp;}}return 0;}int maxmin(int i,int j,int &fmin1,int &fmin2,int &fmax1,int &fmax2) {int mid;int lmin1,lmin2,lmax1,lmax2;int rmin1,rmin2,rmax1,rmax2;if(i==j || i==j-1){sort(i,j);fmin1=a[i];fmin2=a[i];fmax1=a[j];fmax2=a[j];}elseif(i==j-2 || i==j-3){sort(i,j);fmin1=a[i];fmin2=a[i+1];fmax1=a[j-1];fmax2=a[j];}else{mid=(i+j)/2;maxmin(i,mid,lmin1,lmin2,lmax1,lmax2);maxmin(mid+1,j,rmin1,rmin2,rmax1,rmax2);sort1(lmin1,lmin2,rmin1,rmin2);fmin1=b[0];fmin2=b[1];sort1(lmax1,lmax2,rmax1,rmax2);fmax1=b[2];fmax2=b[3];}return 0;}int main(){int fmin1,fmin2,fmax1,fmax2;int i;maxmin(0,8,fmin1,fmin2,fmax1,fmax2);cout<<endl;cout<<"该组数据为:";for(i=0;i<=8;i++)cout<<a[i]<<" ";cout<<endl<<endl<<"最小值是:"<<fmin1<<",第二小值是:"<<fmin2<<endl;cout<<endl<<"第二大值是:"<<fmax1<<",最大值是:"<<fmax2<<endl<<endl;return 0;}3、程序结果4、算法分析用T(n)元素表示数,则导出的递推关系式是:在理想的情况下,即每一小规模的子问题中的数据都是递增序列,则:当n<=4时,T(n)=1; 当n>4时,T(n)= T(n/2)+ T(n/2)(均向下取整);在非理想情况下,即每一小规模的子问题中的数据都是递减序列,则:当n=1时,T(n)=1;当n=2时,T(n)=2;当n=3时,T(n)=3;当n=4时,T(n)=6;当n>4时,T(n)= T(n/2)+ T(n/2)(均向下取整)+12。

算法设计与分析 实验报告

算法设计与分析 实验报告

算法设计与分析实验报告算法设计与分析实验报告一、引言在计算机科学领域,算法设计与分析是非常重要的研究方向。

本次实验旨在通过实际案例,探讨算法设计与分析的方法和技巧,并验证其在实际问题中的应用效果。

二、问题描述本次实验的问题是求解一个整数序列中的最大子序列和。

给定一个长度为n的整数序列,我们需要找到一个连续的子序列,使得其和最大。

三、算法设计为了解决这个问题,我们设计了两种算法:暴力法和动态规划法。

1. 暴力法暴力法是一种朴素的解决方法。

它通过枚举所有可能的子序列,并计算它们的和,最终找到最大的子序列和。

然而,由于需要枚举所有子序列,该算法的时间复杂度为O(n^3),在处理大规模数据时效率较低。

2. 动态规划法动态规划法是一种高效的解决方法。

它通过定义一个状态转移方程,利用已计算的结果来计算当前状态的值。

对于本问题,我们定义一个一维数组dp,其中dp[i]表示以第i个元素结尾的最大子序列和。

通过遍历整个序列,我们可以利用状态转移方程dp[i] = max(dp[i-1]+nums[i], nums[i])来计算dp数组的值。

最后,我们返回dp数组中的最大值即为所求的最大子序列和。

该算法的时间复杂度为O(n),效率较高。

四、实验结果与分析我们使用Python编程语言实现了以上两种算法,并在相同的测试数据集上进行了实验。

1. 实验设置我们随机生成了1000个整数作为测试数据集,其中包含正数、负数和零。

为了验证算法的正确性,我们手动计算了测试数据集中的最大子序列和。

2. 实验结果通过对比实验结果,我们发现两种算法得到的最大子序列和是一致的,验证了算法的正确性。

同时,我们还对两种算法的运行时间进行了比较。

结果显示,暴力法的运行时间明显长于动态规划法,进一步证明了动态规划法的高效性。

五、实验总结通过本次实验,我们深入了解了算法设计与分析的方法和技巧,并通过实际案例验证了其在解决实际问题中的应用效果。

我们发现,合理选择算法设计方法可以提高算法的效率,从而更好地解决实际问题。

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告 (分治法(三))

《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。

用x 坐标表示东西向,用y坐标表示南北向。

各居民点的位置可以由坐标(x,y)表示。

街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。

编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。

2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。

3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。

设计算法求出A的一个近似中值。

如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。

现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。

二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。

三、实验要求(1)写清算法的设计思想。

(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。

(3)根据你的数据结构设计测试数据,并记录实验结果。

(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。

四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。

1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。

需要注意的是,分治法使用递归的思想。

划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。

最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。

1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。

序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。

试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。

对于给定的正整数n,格雷码为满足如下条件的一个编码序列。

(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。

(2)序列中无相同的编码。

(3)序列中位置相邻的两个编码恰有一位不同。

2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。

两位是00 01 11 10。

三位是000 001 011010 110 111 101 100。

n位是前n-1位的2倍个。

N-1个位前面加0,N-2为倒转再前面再加1。

3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。

2.递归出口,递归终止的条件,即最小子问题的求解,可以允许多个出口。

3.界函数,问题规模变化的函数,它保证递归的规模向出口条件靠拢(2)递归与非递归之间如何实现程序的转换?(3)分析二分查找和快速排序中使用的分治思想。

答:1.一般根据是否需要回朔可以把递归分成简单递归和复杂递归,简单递归一般就是根据递归式来找出递推公式(这也就引申出分治思想和动态规划)。

2.复杂递归一般就是模拟系统处理递归的机制,使用栈或队列等数据结构保存回朔点来求解。

(4)分析二次取中法和锦标赛算法中的分治思想。

二次取中法:使用快速排序法中所采用的分划方法,以主元为基准,将一个表划分为左右两个子表,左子表中的元素均小于主元,右子表中的元素均大于主元。

主元的选择是将表划分为r 部分,对找出r个中的中间值,并求r组的中间值中的中间值。

锦标赛算法:两两分组比较,大者进入下一轮,知道剩下1个元素max为止。

在每次比较中淘汰较小元素,将被淘汰元素记录在淘汰它的元素的链表上。

检查max的链表,从中知道最大元素,即second本科实验报告课程名称:算法设计与分析实验项目:贪心算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生:俞梦真指导教师:郝晓丽2018年05月04日实验二贪心算法2.1 实验目的与要求1.理解贪心算法的基本思想;2.运用贪心算法解决实际问题,加深对贪心算法的理解和运用。

2.2 实验课时4学时(课2学时+课外2学时)2.3 实验原理贪心算法的思想:(1)贪心算法(Greedy Approach)能得到问题的最优解,要证明我们所做的第一步选择一定包含着一个最优解,即存在一个最优解的第一步是从我们的贪心选择开始。

(2)在做出第一步贪心选择后,剩下的子问题应该是和原问题类似的规模较小的子问题,为此我们可以用数学归纳法来证明贪心选择能得到问题的最优解。

2.4 实验题目1.上机题目:最小延迟调度问题给定等待服务的客户集合A={1,2,…,n},预计对客户i的服务时长为t i>0,T=(t1,t2,…,t n),客户i希望的服务完成时刻为d i>0,D=(d1,d2,…,d n);一个调度f:A→N,f(i)为客户i的开始时刻。

如果对客户i的服务在d i之前结束,那么对客户i的服务没有延迟,即如果在d i之后结束,那么这个服务就被延迟了,延迟的时间等于该服务的实际完成时刻f(i)+t i减去预期结束时刻d i。

一个调度f的最大延迟是所有客户延迟时长的最大值max i∈A{f(i)+t i d i}。

附图2所示是不同调度下的最大延迟。

使用贪心策略找出一个调度使得最大延迟达到最小。

2.设计思想:贪心思想,按照他们的截止时间从小到大排序,如果截止时间相同按照花费时间从小到大排序。

然后按照f_min(所有客户延迟时长的最大值)=max(works[i].cost+time-works[i].deadline,f_min);寻找最所有客户延迟时长的最大值。

3.代码设计:sort(works,works+n,cmp);int f_min=0;int time=0;for(int i=0;i<n;i++){//if(works[i].cost+time>works[i].deadline)f_min=max(works[i].cost+time-works[i].deadline,f_min);//cout<<f_min<<endl;time+=works[i].cost;}printf("Maximum delay:\n");printf("%d\n",f_min);printf("Complete the order of tasks:\n");for(int i=0;i<n;i++)cout<<works[i].id<<" ";cout<<endl;}return 0;}/*样例输入:55 8 4 10 310 12 15 11 20*/运行结果:2.5 思考题(1)哈夫曼编码问题的编程如何实现?答:哈夫曼树,又名最优树,给定n个权值作为n的叶子结点,构造一颗二叉树,若带权路径长度达到最小,成这样的二叉树为最优二叉树,也称哈夫曼树。

实现步骤:1、初始化: 根据给定的n个权值{w1,w2,…..wn..}构成n棵二叉树的集合F={T1,T2….Tn},其中每棵二叉树中只有一个带权Wi的根结点,左右子树均空。

2、找最小树:在F中选择两棵根结点权值最小的树作为左右子树构造一-棵新的二叉树,且至新的二叉树的根结点的权值为其左右子树,上根结点的权值之和。

3、删除与加入: 在F中删除这两棵树,并将新的二叉树加入F中。

4、判断:重复前两步(2和3),直到F中只含有一棵树为止。

该树即为哈夫曼树。

(2)使用贪心策略求解背包问题。

答:首先计算每种物品单位重量的价值vi/wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。

若将这种物品全部装入背包后,背包的物品总重量未达到w,则选择单位重量价值次高的物品并尽可能多地装入背包。

依此策略一直地进行下去直到背包满重为止。

算法的主要计算时间在于将各种物品依其单位重量的价值从大到小排序。

因此,算法的计算时间上界为O(nlogn)。

(3)分析普里姆算法和克鲁斯卡尔算法中的贪心策略。

答:1、普里姆算法贪心策略:要记录到S中的下一条边(u,v)是一条不在S中,且使得SU{u,v}的权值之和也是最小的边时间复杂度:O(n^2) 空间复杂度:O(n^2)2、克鲁斯卡尔算法中的贪心策略:选取属于不同联通分量且构成权值最小且不形成回路的两个顶点组成的边、本科实验报告课程名称:算法设计与分析实验项目:动态规划实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生:俞梦真指导教师:郝晓丽2018年05月07日实验三动态规划算法3.1 实验目的与要求1.理解动态规划算法的基本思想;2.运用动态规划算法解决实际问题,加深对贪心算法的理解和运用。

3.2 实验课时4学时(课2学时+课外2学时)3.3 实验原理动态规划(Dynamic Programming)算法思想:把待求解问题分解成若干个子问题,先求解子问题,然后由这些子问题的解得到原问题的解。

动态规划求解过的子问题的结果会被保留下来,不像递归那样每个子问题的求解都要从头开始反复求解。

动态规划求解问题的关键在于获得各个阶段子问题的递推关系式:(1)分析原问题的最优解性质,刻画其结构特征;(2)递归定义最优值;(3)自底向上(由后向前)的方式计算最优值;(4)根据计算最优值时得到的信息,构造一个最优解。

3.4 实验题目1.上机题目:最大子段和问题给定n个整数(可以为负数)组成的序列(a1,a2,…,a n),使用动态规划思想求该序列的子段和的最大值。

注:当所有整数均为负整数时,其最大子段和为0。

例如,对于六元组(-2, 11, -4, 13, -5, -2),其最大字段和为:a2 + a3 + a4 = 20。

除了动态规划,该问题可以使用顺序求和+比较(蛮力法)和分治法求解,思考其求解过程。

2.设计思想动态规划思想:dp[i],表示到当前i的最大字段和为多少,而他的字段和时要不就是前面的最大字段和加上本身的数值要不就是自身的数值。

状态转移方程:dp[i]=max(dp[i],dp[i-1]+a[i]);3.代码设计}return 0;}3.5 思考题(1)深刻理解动态规划与递归求解问题的区别是什么?、答:动态规划其实和分治策略是类似的,也是将一个原问题分解为若干个规模较小的子问题,递归的求解这些子问题,然后合并子问题的解得到原问题的解。

区别在于这些子问题会有重叠,一个子问题在求解后,可能会再次求解,于是我们想到将这些子问题的解存储起来,当下次再次求解这个子问题时,直接拿过来就是。

(2)动态规划思想解题的步骤是什么?答:第一步:确定子问题。

在这一步重点是分析那些变量是随着问题规模的变小而变小的,那些变量与问题的规模无关。

第二步:确定状态:根据上面找到的子问题来给你分割的子问题限定状态第三步:推到出状态转移方程:这里要注意你的状态转移方程是不是满足所有的条件,注意不要遗漏。

第四步:确定边界条件:先根据题目的限制条件来确定题目中给出的边界条件是否能直接推导出,如果不行也可以尝试从边界条件反推(举个例子:a(n)→a(2)有递推关系,但是a(2)→a(1)不符合上述递推关系,我们就可以考虑用a(1)来倒推出a(2),然后将递推的终点设置为a(2));第五步:确定实现方式:这个依照个人习惯就像是01背包的两层for循环的顺序第六步:确定优化方法:很多时候你会发现走到这里步的时候你需要返回第1步重来。

相关文档
最新文档