积分变换第二章习题课

合集下载

第二章_Laplace变换(答案)

第二章_Laplace变换(答案)

积分变换练习题 第二章 Laplace 变换________系_______专业 班级 姓名______ ____学号_______§1 Laplace 变换的概念 §2 Laplace 变换的性质一、选择题1.设()(1)t f t e u t -=-,则[()]f t =L [ ](A )(1)1s e s --- (B )(1)1s e s -++ (C )1s e s -- (D )1se s -+11[(1)][()];1[(1)](1)ss t s u t e u t se e u t s e --+⎛⎫-== ⎪ ⎪ ⎪-= ⎪+⎝⎭由延迟性质可得,再由位移性质可得,L L L2.设2sinh ()tf t t =,则[()]f t =L [ ] (A )1ln 1s s -+ (B )1ln 1s s +- (C )12ln 1s s -+ (D )12ln 1s s +-见课本P84二、填空题1.设2()(2)f t t u t =-,则[]()f t =L。

22''222321[(2)][()];1442[(1)]ss s s u t e u t se s s t u t se s e -⎛⎫-== ⎪ ⎪++ ⎪⎛⎫-== ⎪ ⎪⎝⎭⎝⎭由延迟性质可得,再由象函数的微分性质P83(2.7)可得,L L L 2.设2()t f t t e =,则[]()f t =L。

(1)00''231[](Re()1);112[]1(1)t t st s t te e e dt e dt s s t e s s +∞+∞---⎛⎫===> ⎪- ⎪ ⎪⎛⎫== ⎪ ⎪--⎝⎭⎝⎭⎰⎰再由象函数的微分性质P83(2.7)可得,L L 三、解答题1.求下列函数的Laplace 变换:(1)302()12404t f t t t ≤<⎧⎪=-≤<⎨⎪≥⎩242242422402[()]()3(1)33334ststst st st s s s s s f t f t e dt e dt e dte e e e e e e s s s s s s s+∞----------==+--+=+=-++-=-⎰⎰⎰L(2)3,2()cos ,2t f t t t ππ⎧<⎪⎪=⎨⎪>⎪⎩20222222()22202222[()]()3cos 3333,cos cos()sin 2133[()].1stst st sst stst s s sts ssf t f t e dt e dt te dtee e dt ss se te dt ed ee d s e ef t s s sπππππππτππττππππττττ+∞+∞--------=+∞+∞+∞-+-----==+==-+-=+=-=-+=--++⎰⎰⎰⎰⎰⎰⎰,从而L L(3)()sin2tf t = 222002[()]sin 2sin .241t st s t f t e dt e d s ττττ=+∞+∞--===+⎰⎰L(4)()cos ()sin ()f t t t t u t δ=⋅-⋅200[()][cos ()sin ()]cos ()sin ()1cos sin 1.1st stst stst t f t t t t u t e dtt t e dt t u t e dttete dt s δδ-+∞-+∞+∞--+∞--==⋅-⋅=⋅-⋅=-=-+⎰⎰⎰⎰L2.求以2b 为周期的函数1,0()1,2t bf t b t b<≤⎧=⎨-<≤⎩的Laplace 变换。

积分变换 ppt课件

积分变换 ppt课件

16
可将d-函数用一个长度等于1的有向线段表示,
这个线段的长度表示d-函数的积分值, 称为d-函数
的强度.
d (t)
1
O
t
d-函数有性质:
d d (t)f(t)dtf(0)及 (tt0)f(t)dtf(t0).
( ft为 连 续 函 数 )
可见d-函数和任何连续函数的乘积在实轴上的
这表明在通常意义下的函数类中找不到一个
函数能够表示这样的电流强度. 为了确定这样的电
流强度, 引进一称为狄拉克(Dirac)的函数, 简单记
成d-函数:
d
t
0
t 0 t 0
有了这种函数, 对于许多集中于一点或一瞬时的量,
例如点电荷, 点热源, 集中于一点的质量及脉冲技
பைடு நூலகம்
术中的非常窄的脉冲等, 就能够象处理连续分布的
F() f(t)eitdt 1 eitdt eit 1
1
i
1
1 eiei 2sin
i
f(t)21
F()eitd1
F()costd
0
102s incostd20sin costd
9
例 2求 指 数 衰 减 函 数 f(t) e 0 ,t,
t0的 傅 氏 变 换 及 其 t0
积 分 表 达 式 ,其 中 0.
如果成立
F(w) f(t)ejwdt t
f(t)1 F(w)ejwdt w
2
并称F(ω)为f (t)的象函数
或付里叶变换,记为
F[f(t)];称f (t)为F(ω)的象 原函数或付里叶逆变换,
记为F-1[F(ω)]
8
例1
求矩形脉冲函数

积分变换-2 拉普拉斯变换

积分变换-2 拉普拉斯变换

f (t + T ) = f (t) t > 0
且 f (t)在一个周期内分段连续,则有 T 1 st F(s) = f (t)e dt (Re s > 0) sT ∫ 0 1 e
2-2 Laplace变换的基本性质 Laplace变换的基本性质
1、线性性质 2、相似性质 3、延迟性质 4、位移性质 5、微分性质 6、积分性质 7、卷积与卷积定理
2-1 Laplace变换的概念 Laplace变换的概念
(1)Laplace变换实际上就是一种单边的广 Laplace变换实际上就是一种单边的广 义的Fourier变换。 义的Fourier变换。 (2)Laplace变换的复反演积分公式: Laplace变换的复反演积分公式 复反演积分公式:
1[F(s)] = 1 β + j∞F(s)est ds (t > 0) f (t) = L 2πj ∫β j∞
2-1 Laplace变换的概念 Laplace变换的概念
如何克服上述两个缺点? (1)单位阶跃函数
1, t ≥ 0 H(t) = 0, t < 0 用H(t)乘以 f (t),这样得到的 f (t)H(t),在
t < 0时就等于零,在 t ≥ 0 时仍为 f (t) , 就有可能使其积分区间由 ( ∞,+∞) 变为 [0,+∞)
2-1 Laplace变换的概念 Laplace变换的概念
Fourier变换的局限: Fourier变换的局限: (1)绝对可积的条件较强,许多简单的常见函数 (如单位阶跃函数、正弦函数、余弦函数以及线 性函数等)都不满足这个条件,都不能作古典的 Fourier变换。 Fourier变换。 (2)可以进行Fourier变换的函数必须在整个数轴 )可以进行Fourier变换的函数必须在整个数轴 上有定义,但在物理和无线电技术等实际应用中, 许多以时间t 许多以时间t作为自变量的函数往往在 t <0 时是无意义的或是不需要考虑的,像这样的函数 都不能取Fourier变换。 都不能取Fourier变换。

积分变换课后题答案

积分变换课后题答案

第一章 傅里叶变换内容提要:一 傅里叶变换定义1定义2定义34傅里叶积分定理二 δ函数型序列的充分条件构成δ1.)(21)(,)(21)(,)()( 为傅里叶积分公式即称则若设:dw e dx e x f t f dw e w F t f dt e t f w F iwt iwx iwt iwt ⎰⎰⎰⎰∞+∞--∞+∞-+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡===ππ=)(t f [])(1-w F ℱ;)()()(21逆变换的傅里叶为Fourier w F dw e w F iwt ⎰+∞∞-=π=)(w F [])(t f ;)()()(变换的傅里叶为Fourier t f dt e t f iwt -+∞∞-⎰=ℱ .)(21)(,)(21)(,)()( 为傅里叶积分公式即称则若设:dw e dx e x f t f dw e w F t f dt e t f w F iwt iwx iwt iwt ⎰⎰⎰⎰∞+∞--∞+∞-+∞∞--+∞∞-⎥⎦⎤⎢⎣⎡===ππ满足如下两个条件:若函数)(t f 限个极值点;类间断点,且至多有有上连续或有有限个第一在即条件上满足狄利克雷在实轴的任何有限区间],[)( ,)(],[)( )b a t f Dirichlet b a t f i .],[)( )的反常积分收敛在区间+∞-∞t f ii .)()(,)(21)]0()0([21)(dt e t f w F dw e w F t f t f t f iwtiwt -∞+∞-∞+∞-⎰⎰==-++其中且的傅里叶变换存在,则函数π函数列的该趋向下,,则在)(的某种趋向下,函数若在参数可积,且满足在实轴的任何有限区间设普通函数βεβϕβ++∞∞→==⎰0,1)()(-dt t f t f ).()( )0)(( ))(1()(1)(t t f t f t f δδβϕβϕβϕββ→>=即:型序列,构成一个型序列几个常用 2δ⎪⎩⎪⎨⎧<<===⎩⎨⎧<<=. 0)0( 1)1(1)( . 0)10( 1)( )1其它,,则令其它,εεεεβεεt t f t f t t f ).()(lim 00t t δδδεεε=→+→+型序列,即时为当.)()1(1)(,1)(,)1(1)( )2(22-2πεεεεδπεw w f w dt t f t t f R +===+=⎰+∞∞构造:显然).()(lim 00w w R δδδεεε=→+→+即型序列,时为当.)cos(21sin )()(,sin ,sin )( )3(-⎰⎰-+∞∞=====RRIR dw wt t Rt Rt Rf t dt tt t tt f ππδππ构造:因为).()(lim t t R IR R δδδ=+∞→+∞→型序列,即时为当.2)1(1)(,2,2)( )4(2222-22πβββδππββw G t t ew f w dt eet f -∞+∞--====⎰构造:因为).()(lim 00w w G δδδβββ=→+→+型序列,即时为当函数的积分3δ).)(()()(lim )()()1-00-0处处无穷次可微,定义:t f dt t f t t dt t f t t ⎰⎰+∞∞→+∞∞-=-+εεδδ三 傅立叶变换的性质四 几个常用函数傅里叶变换对1.线性性质2.位移性质)( t f 若ℱ, )(w F 3.微分性质)( n1k ∑=t f C k k . )(1∑=nk k k w F C ℱ )( )1 a t f ±ℱ ;)( )(为实数a w F e iwa ±t iw et f 0)( )2±.)( )(00为实数w w w F ℱ)( t f k 若),,2,1( )(n k w F k =ℱ)( t f 若ℱ, )(w F )( )1 )(t fn ;)( )()(为自然数n w F iw n ℱ)()( )2t f -it n .)( )()(为自然数n w F n ℱ)( t f 若ℱ)(w F 4.积分性质 则ℱ []).(1)(w F iw t g =).( )10)((lim )(1lim )()(lim)()()2000-00-000t f t f dt t f dtt f t t dt t f t t t t =<<+==-=-+++→+→+∞∞→+∞∞⎰⎰⎰θεθεδδδεεεεε函数的筛选性质:2sin 2τw w E).2( 0),2( )()1⎪⎩⎪⎨⎧><=ττt t E t f ℱ)0( )0( 0)0( )()2>⎩⎨⎧<>=-ββt t e t f t 1iw+βℱ习题1.11. 求下列函数的Fourier 变换. (1)ℱ)]([t f =dt e A t i ⎰-τω0=0τωωt i e i A --=)1(ωτωi e i A --.(2) ℱ)]([t f =dt te e t i t⎰+∞∞---ωcos =dt te t i ⎰+∞+-0)1(cos ω+dt te t i ⎰∞--0)1(cos ω由201cos a a dt te at +=⎰+∞-,2001cos cos aa dt te dt te at at +==⎰⎰+∞-∞-, 可知:ℱ)]([t f =22)1(11)1(11ωωωωi i i i -+-++++=22424ωω-+.2. 求Fourier 逆变换. ℱ)]([1ωF -=ωπωωβd e et i ⎰+∞∞--21=ωωπωβωβd e d e it it ⎰⎰∞-++∞+-+0)(0)([21=⎥⎦⎤⎢⎣⎡∞-++∞++-++-010121)()(ωβωβββπit it e it e it=22221t +ββπ=)(22t +βπβ.3. ℱ)]([t f =⎰--⋅ππωdt e t t i sin=-⎰--ππωt d e t i cos =-⎰---⋅--⋅ππωωωππdt e t i te t i t i cos cos=()⎰-----ππωωωωπt d e i e e t i t i t i sin cos=⎰----⋅+-ππωωωωωdt te i i e e t i t i t i sin )(=⎰---+-ππωωωωdt teeeti ti ti sin 2ℱ)(1w iwπδ+)( )5t u )( )3t δℱ 1)( 2w πδ1)4ℱℱ)]([t f =1sin 22-ωωπi由ℱ)()]([1t f F =-ω可知下面的等式成立.4. 求下列函数的Fourier 积分。

(完整版)《复变函数与积分变换》习题册(2)

(完整版)《复变函数与积分变换》习题册(2)

第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。

一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 .8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________. 9、设i z 21=,i z -=12,则)(21z z Arg = _ _____。

10、设4i e 2z π=,则Rez=____________. Im()z = 。

z11、。

方程0273=+z 的根为_________________________________。

12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 . 13、方程3)Im(=-z i 表示的曲线是__________________________.14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________。

15、不等式114z z -++<所表示的区域是曲线 的内部.16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。

《工程数学-复变函数与积分变换》吉林大学数学学院 习题详解

《工程数学-复变函数与积分变换》吉林大学数学学院 习题详解

《工程数学-复变函数与积分变换》课后习题详解 吉林大学数学学院 (主编:王忠仁 张静)高等教育出版社 习题一(P12)1.1 对任何z ,22z z =是否成立?如果是,就给出证明。

如果不是,对哪些z 值才成立?解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。

所以,对任何z ,22z z =不成立,只对z 为实数时才成立。

1.2 求下列各式的值:(1)5(3)i -; (2)6(1)i +; (3)61- ; (4)13(1)i -。

解:(1)因为632ii eπ--=,所以5555566631(3)223232()16(3)22i i i i e e e i i πππ--⨯-⎛⎫-====--=-+ ⎪⎝⎭(2)因为412ii e π+=,所以63663442(1)2288i i i e e e i πππ⨯⎛⎫+====- ⎪⎝⎭(3)因为1cos sin i ππ-=+,所以()166221cos sin cossin66k k k w i i ππππππ++=-=+=+,其中0,1k =;即031cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=, 25531cossin 6622w i i ππ=+=-+,37731cos sin 6622w i i ππ=+=--,433cossin 22w i i ππ=+=-,5111131cos sin 6622w i i ππ=+=-。

(4)因为12cos()sin()44i i ππ⎡⎤-=-+-⎢⎥⎣⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。

工程数学-复变函数与积分变换吉林大学数学学院习题详解

工程数学-复变函数与积分变换吉林大学数学学院习题详解

《工程数学-复变函数与积分变换》课后习题详解 吉林大学数学学院 (主编:王忠仁 张静)高等教育出版社 习题一(P12)对任何z ,22z z =是否成立如果是,就给出证明。

如果不是,对哪些z 值才成立解:设z x iy =+,则2222z x y xyi =-+,222z x y =+;若22z z =成立,则有22222x y xyi x y -+=+,即222220x y x yxy ⎧-=+⎨=⎩,解得0y =,即z x =。

所以,对任何z ,22z z =不成立,只对z 为实数时才成立。

求下列各式的值:(1)5)i ; (2)6(1)i +; (3; (4)13(1)i -。

解:(162ii eπ-=,所以555556661)223232())2i i i i e e e i i πππ--⨯-⎛⎫====-=- ⎪⎝⎭(2)因为41ii e π+=,所以63663442(1)288i i i e e e i πππ⨯⎫+====-⎪⎭(3)因为1cos sin i ππ-=+,所以()1622cos sin cossin66k k k w i i ππππππ++==+=+,其中0,1,2,3,4,5k =;即01cossin6622w i i ππ=+=+,1cos sin 22w i i ππ=+=,2551cossin 662w i i ππ=+=+,3771cos sin 662w i i ππ=+=-,433cossin 22w i i ππ=+=-,511111cos sin 662w i i ππ=+=-。

(4)因为1cos()sin()44i i ππ⎤-=-+-⎥⎦,所以11362244(1)2cos sin 33k k k w i i ππππ⎡⎤-+-+⎢⎥=-=+⎢⎥⎢⎥⎣⎦,其中0,1,2k =;即1602cos()sin()1212w i ππ⎡⎤=-+-⎢⎥⎣⎦,161772cos sin1212w i ππ⎡⎤=+⎢⎥⎣⎦,162552cos sin 44w i ππ⎡⎤=+⎢⎥⎣⎦。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

积分变换_(Laplace)课件与习题

积分变换_(Laplace)课件与习题
5
§1 Laplace变换的概念
设指数衰减函数
(t
)
0, e
t
,
t0
( 0).
t0
考虑 f t t ,,有 f t u t =f t t 0.
若存在 0,使 lim et f t =0,则 + et f t dt .
t
-
那麽 f t u t et的傅氏积分总是存在的。
F [ f (t)u(t)et ] f (t)u(t)ete jtdt
L[ f (t)] F s f (t)estdt 0
f (t)称为F (s)的Laplace逆变换,记为f (t) L1[F (s)]. F (s)称为象函数,f (t)称为象原函数.
8
例1
求单位阶跃函数
u(t)
0 1
t 0 的拉氏变换. t 0
根据拉氏变换的定义, 有
L[u(t)] estd t 0

smL
t m
1 s
m!
L
t m
1 s m1
m!
(Re(s) 0).
26
练习: 求 f (t) cost 的Laplace变换.
解 因为
参见上节例3, 与这里方法不同
f (0) 1, f (0) 0, f (t) 2cost,
根据 微分性质 和线性性质
[2 cost] s2 [cost] sf (0) f (0),
对正整数n, 有
L[f
2
(n)
[(ct )o]sstn]F(
s2
s)
[scnos1
t] s,
f (0)
f (n1)(0).
所以
特[c别os地,t] 当sf2

积分变换_(Laplace)课件与习题

积分变换_(Laplace)课件与习题
2
当函数f (t)在t<0时没有定义或者不需 要知道时, 可以认为当t<0时, f (t)0. 这时, Fourier变换的表达式为
[ f (t )] f (t )eitdt. 0
但是仍然需要f (t)在[0, )上绝对可积的条件,
这个要求限制了它的应用.
对定义在 [0,) 上的函数 f (t), 如果考虑
L[sin kt] sin kt estd t 0 1 (e jkt e jkt ) estd t 2j 0
j e(sjk)td t e(sjk)td t
20
0
j
2
s
1 jk
s
1 jk
s2
k
k2
,(Re(s)>0)
k L[sin kt] s2 k 2
5
§1 Laplace变换的概念
设指数衰减函数
(t
)
0, e
t
,
t0
( 0).
t0
考虑 f t t ,,有 f t u t =f t t 0.
若存在 0,使 lim et f t =0,则 + et f t dt .
t
-
那麽 f t u t et的傅氏积分总是存在的。
F [ f (t)u(t)et ] f (t)u(t)ete jtdt
0
0
这个积分在Re(s)>k时收敛, 而且有
e(sk )td t 1 e (sk )t 1
0
sk
0 sk
所以 L[ekt ] 1 (Re(s) k). sk
其实k为复数时上式也成立, 只是收敛区间为
Re(s)>Re(k)
10
练习: 求单位斜坡函数

复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案

复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案
(3) .
解:f(z)除 外处处可导,且 .
(4) .
解:因为
.所以f(z)除z=0外处处可导,且 .
6.试判断下列函数的可导性与解析性.
(1) ;
解: 在全平面上可微.
所以要使得
, ,
只有当z=0时,
从而f(z)在z=0处可导,在全平面上不解析.
(2) .
解: 在全平面上可微.
只有当z=0时,即(0,0)处有 , .
它们分别为

∴满足C-R条件.
(3)当z沿y=x趋向于零时,有
∴ 不存在.即f(z)在z=0处不可导.
11.设区域D位于上半平面,D1是D关于x轴的对称区域,若f(z)在区域D内解析,求证 在区域D1内解析.
证明:设f(z)=u(x,y)+iv(x,y),因为f(z)在区域D内解析.
所以u(x,y),v(x,y)在D内可微且满足C-R方程,即 .
15.计算下列各值.
(1)
(2)
(3)ln(ei)=ln1+iarg(ei)=ln1+i=i
(4)
16.试讨论函数f(z)=|z|+lnz的连续性与可导性.
解:显然g(z)=|z|在复平面上连续,lnz除负实轴及原点外处处连续.
设z=x+iy,
在复平面内可微.
故g(z)=|z|在复平面上处处不可导.
所以f(z)在z=0处可导,在全平面上不解析.
(3) ;
解: 在全平面上可微.
所以只有当 时,才满足C-R方程.
从而f(z)在 处可导,在全平面不解析.
(4) .
解:设 ,则
所以只有当z=0时才满足C-R方程.
从而f(z)在z=0处可导,处处不解析.

复变函数与积分变换第二章_解析函数

复变函数与积分变换第二章_解析函数

z0 可微等价.
与一元实函数类似, 记
df ( z0 ) f ( z0 ) z f ( z0 ) dz ,
称之为 f ( z ) 在 z0 处的微分. 如果函数 f ( z ) 在区域D内处处可微, 则称
f ( z ) 在区域D内可微, 并记为
df ( z ) f ( z ) dz .
也称 z0 是 f ( z ) 的解析点. (2) 若 f ( z ) 在区域D内每一点都解析,则称
f ( z ) 在区域D内解析, 或者称 f ( z ) 是区域D内的
解析函数.
(3) 设G是一个区域,若闭区域 D G , 且 f ( z ) 在G内解析,则称 f ( z ) 在闭区域 D 上 解析. 函数 f ( z ) 在 z0 处解析和在 z0 处可导意义 不同,前者指的是在 z0 的某一邻域内可导, 但后者只要求在 z0 处可导. 函数 f ( z ) 在 z0 处解析和在 z0的某一个邻 域内解析意义相同.
连续,但处处不可导.
定理1.1
例2.2 证明 f ( z ) x 2 yi 在复面内处处
设 f ( z ) u( x , y ) iv ( x , y ), 则 f (x)
(3) 求导法则
复变函数中导数的定义与一元实函数
导数的定义在形式上完全一致,同时,复变函
数中的极限运算法则也和实函数中一样,因而
当 z0 0 时, 由 z zz , z0 z0 z0 得
2
2
f ( z ) f ( z0 ) z 2 z z0 2 z0
( z 2 z z0 2 z ) ( z0 2 z z0 2 z0 ).
f ( z ) f ( z0 ) 2 z z0 ( z z0 ) z z 0 . 故 z z0 z z0

复变函数与积分变换课件第2章

复变函数与积分变换课件第2章

例:设f(z)在z0处连续,且f(z0)不等于0,那么可以
找到z0的一个邻域,在这个邻域内f(z)不等于0
1 导数的定义
定义 设函数w=f(z)在包含z0的某邻域D内有定义 ,点z0+⊿z∈D. 如果极限
f ( z0 Δ z ) - f ( z0 ) lim Δ z 0 Δz
存在, 则称f(z)在z0可导, 此极限值就称为f(z)在z0 的导数, 记作
பைடு நூலகம்
定义 如果函数f(z)不仅在z0可导,而且在z0的某 个邻域内的任一点都可导, 则称f(z)在z0解析。 如果f(z)在区域D内每一点解析, 则称f(z)在D内解 析, 或称f(z)是D内的一个解析函数(全纯函数 或正则函数)
如果f (z)在点z0不解析,就称z0是f (z)的奇 点。
(1) w=f (z) 在 D 内解析等价于在D内可导。 (2) 函数f (z)在 z0 点可导,未必在z0解析。 (3)函数在区域D内的点z处解析,则z 一 定是D的内点。
(4) f ( z ) z Re( z )
例3. 证明 sin ' z cos z
例4 如果f '(z)在区域D处处为零, 则f(z)在D内为一常
数 .
4.高阶导数
二阶及二阶以上的导数称为高阶导数
例 应用公式
sin( z

2
) cos z ,
(n) 求 sin z
1.解析函数的概念
例2
求f ( z) z 在z 0时的极限. z
z z0
例3 求极限 lim cos z 例4 证明 f ( z ) Re z
在z 0时的极限不存在 .
z
定理2
若 lim f ( z ) A lim g ( z ) B, 则

复变函数与积分变换 第二章课后答案

复变函数与积分变换 第二章课后答案

e z sin z e z sin z 则 dz z 2i dz 2 z 2i z 4 z 3 z 2 i 1
2i
e 2i sin 2i e 2i sin 2i e 2i sin 2i e 2i sin( 2i ) 2i 2i 2i 2i 2i 2 2 sin 2i e 2i e 2i sin 2i cosh 2i . 2
i
i
i i
= 2 cos i .
7. 沿指定曲线的正向计算下列各积分: (1)

C
ez dz , C : z 2 1 ; z2 dz (a 0) , C : z a a ; z a2
2
(2)
C
(3)
C
eiz 3 dz , C : z 2i ; 2 z 1 2 f ( z) dz , C : z 1 ; f ( z ) 在 z 1 上解析, z0 1 ; z z0
z 0
0.
4
(8) f ( z ) 有四个奇点, 其中 z i在c 内,作互不相交互不包含且 在 C 内的小圆周 c1和c2 包含 i 与-i,则
c1
(z
2
1 dz 1 dz 2 4)( z i ) z i c2 ( z 4)( z i ) z i
(2) 由于被积函数在全平面上解析,利用柯西积分定理得

求积分
C
3 z 2 dz 0 .
2. 设 C 是由点 0 到点 3 的直线段与点 3 到点 3 i 的直线段组成的折线,

C
Re zdz .
解 将 C 分为两段,从 z=0 到 z=3, c1 的方程为 z 3 x, 0 x 1,

复变函数与积分变换课堂PPT第二章

复变函数与积分变换课堂PPT第二章
由加法定理, 可以推出exp z的周期性。 它的周期是 ,即
其中k为任何整数。这个性质是实变指数函数没有的。
2.对数函数
和实变函数一样,对数函数定义为指数函数的反 函数。将满足方程
的函数w = f (z)称为对数函数。令
,则
所以 因此
由于Arg z为多值函数,所以对数函数 w = f (z)为多 值函数,并且每两个值相差 的整数倍,记作
是两个互为
反函数的单值函数,且

iv) 微分的概念 设函数w =f (z)在z0可导, 则有
其中
因此,
是 的高阶无穷
小量, 而
是函数w=f (z) 的改变量 的线性部
分, 称为函数w = f (z)在点z0的微分, 记作
如果函数在z0的微分存在, 则称函数 f (z)在z0可微。
特别, 当f (z) = z时, 得
如果在曲线交点处 uy与 vy都不为零,由隐函数求导
法则知曲线族中任一条曲线的斜率分别为

利用柯西-黎曼方程得
例4 如果 f (z) = u + iv为一解析函数,且 f '(z)0, 则曲线族 u(x,y)=c1和 v(x,y)=c2必互相正交,其中c1, c2为 常数。
[证] 利用柯西-黎曼方程得
例3 研究函数

的解析性。
[解] 由解析函数的定义与前面的例题可知,
在复平面内是解析的,而
却是处
处不解析的。下面研究
的解析性。
由于
如果 ,那么当
时,上式的极限是零。如果
,令
沿直线
趋于 ,由于k 的任意性,
不趋于一个确定的值。所以当
时,
的极限不存在。
因此,

复变函数与积分变换课后习题答案(北京邮电大学出版社)

复变函数与积分变换课后习题答案(北京邮电大学出版社)

复变函数与积分变换课后答案(北京邮电大学出版社)复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案1 / 37习题一1.用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解:()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解:()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① : ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩ . ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明:z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z w z w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e i i =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πi sin πi 662=+=z3991cos πi sin πi 662=+=-z ⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos i sin 332=+=+z2cos πisin π1=+=-z3551cos πi sin π332=+=-z的平方根.πi 4e ⎫=⎪⎪⎝⎭∴)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2.∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换(马柏林)课后的习题答案

复变函数与积分变换(马柏林)课后的习题答案

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,kn kn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,()()1332π+π2ππ1cos πisin πcosisin 0,1,233k k k +-=+=+=∴1ππ13cos isin i 3322=+=+z2cos πisin π1=+=-z35513cos πisin πi 3322=+=--z⑶33i +的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换课后习题答案详解

复变函数与积分变换课后习题答案详解

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解: ()()()()35i 17i 35i 1613i7i 11+7i 17i 2525+-+==-++-③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i ① :∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++,()222Im z a xy z a x a y-⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy ∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+=2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++=()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==.∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(1);.cos sin 7199i i i i +⎛⎫--+ ⎪+⎝⎭ ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--==其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3)的平方根.⑴i 的三次根. 解:()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cosisin i 662=+=+z .2551cos πisin πi 662=+=+z3991cos πisin πi 662=+=-z⑵-1的三次根 解:()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.解: πi 42233i=6i 6e 22⎛⎫+⋅+=⋅ ⎪ ⎪⎝⎭∴()()1π12i 44ππ2π2π4433i 6e6cos isin 0,122k k k ⎛⎫++ ⎪+=⋅=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬ ⎪⎝⎭⎩⎭,其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件.解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图.(1)arg π;(2);1(3)1|2;(4)Re Im ;(5)Im 1 2.z z z z i z z z z ==-<+<>><且解:(1)、argz =π.表示负实轴.(2)、|z -1|=|z |.表示直线z =12.(3)、1<|z +i|<2 解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

积分变换第二章拉氏变换

积分变换第二章拉氏变换
L [ f ( t )] = F ( s )
则:
∞ f (t ) L = ∫s F ( s )d s . t
∞ ∞ ∞ f (t ) 一般地 , 有L n = ∫ d s ∫ d s⋯ ∫ F ( s )d s s s s t n次
17
例9 求函数
sht f (t ) = t
d L [ f ( t )] = −L [ tf ( t )] Re( s ) > c ds
推论
d n n L [ f ( t )] = ( −1) L[t f ( t )] Re( s ) > c n ds
n
10
f ( t ) = t 2 cos kt (k为实数 的拉氏变换 为实数) 例4 求 为实数 的拉氏变换.
2
2.拉氏变换的存在定理 若函数 (t)满足 拉氏变换的存在定理 若函数f 满足 满足: (1) 在t ≥ 0的任一有限区间上分段连续 的任一有限区间上分段连续; 的任一有限区间上分段连续 (2) 当t→+∞时, f (t)的增长速度不超过某一指数函数 即存 →+∞时 的增长速度不超过某一指数函数, →+∞ 的增长速度不超过某一指数函数 在常数 M > 0及c ≥ 0, 使得 及 |f (t)|≤ M e ct, 0≤ t <+∞ ≤ ≤ +∞ (t)的拉氏变换 则 f (t)的拉氏变换
f ( n) ( t ) = s n F ( s ) L
( Re s > c ) ( n = 1,2,⋯)
此性质可以使我们有可能将f 的微分方程 此性质可以使我们有可能将 (t)的微分方程 转化为F(s)的代数方程 的代数方程. 转化为 的代数方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 e sk
kt
n
1 u (t ) s
k n! t n 1 sin kt 2 s s k2
cos kt
s s2 k 2
拉氏逆变换的性质

1
F1(s) F2 (s) f1(t ) f2 (t )
st0 e F (s) f (t t0 )u (t t0 )
ℒ F (s) tf (t )
1
f (t ) t ℒ 1 F (s)
2.4 积分性质
(1)象原函数的积分性质 若 ℒ f (t ) F (s),

F ( s) ℒ [ 0 f (t )dt ] s t 1 F ( s ) f (t )dt ℒ s 0
二、典型例题
例1 求 cos2 t的Laplace变换。
例2 求函数f (t ) e 4t sin 3t的Laplace变换。
例3 求函数f (t ) te
3 t
sin 2t的Laplace变换.
例4
求下列函数的Fourier逆变换。 1 (1) F ( s ) 4 s 5 s2 4 1 (2) F ( s ) 2 2 (s 2 s 2)
例5 求下列函数的卷积:
(1) sin t cos t; (2) t *sin t .
例6 利用Laplace变换解常微分方程的初值问题:
y 4y 3y e t y(0) y(0) 1
第二章 Laplace变换
1 内容提要
2 典型例题
1
拉普拉斯变换
1.1拉普拉斯变换的概念 定义1 设函数 f (t ) 当 t 0 有定义,而且积分

0
f (t ) e st dt
(s 是一个复参量)
在 s 所确定的某一域内收敛,则由此积分所确定的 函数可写为 F (s) f (t ) e st dt
1
F ( s )ds s
一般地
f (t ) ℒ [ t n ] s ds s ds n 次

s
ds F ( s)
3 拉普拉斯逆变换
根据拉普拉斯变换的定义 1 j st f t F s e ds 2 j j
4 拉氏变换的卷积与卷积定理
(1) [0, ) 上的卷积定义 若函数 f1 (t ), f 2 (t ) 满足, t 0 时都为零,
则可以证明卷积
f1 (t ) f 2 (t )

f1 ( ) f 2 (t )d f1 ( ) f 2 (t )d
ℒ f1 (t ) f2 (t ) F 1 ( s) F 2 ( s) ℒ
1
F1(s) F2 (s) f1(t ) f2 (t )
2.2位移性质 (1)象原函数的位移性质 若 ℒ f (t ) F ( s) t 0 为非负实常数,则
5 拉普拉斯变换的应用
常系数线性微分方程的拉普拉斯变换解法
利用拉普拉斯变换可以比较方便地求解常系 数线性微分方程(或方程组)的初值问题,其 基本步骤如下: (1)根据拉普拉斯变换的微分性质和线性 性质,对微分方程(或方程组)两端取拉普拉 斯变换,把微分方程化为象函数的代数方程; (2)从象函数的代数方程中解出象函数; (3)对象函数求拉普拉斯逆变换,求得微分 方程(或方程组)的解.
t 0
右端的积分称为拉氏反演积分.它是一 个复变函数的积分,但计算比较麻烦.
• 求拉普拉斯逆变换的方法主要有留数法、部 分分式法、查表法等. 我们简单介绍留数法和查 表法.
利用拉普拉斯变换表和性质求拉普拉斯逆变 换
一些常用函数的拉氏变换
(t ) 1 ( n) (t ) s n
t F ( s) f (t )dt s 0
ℒ 1 F (s a) f (t ) ea t


1
1
ℒ F (s) tf (t )
1

1
F ( s )ds f (t ) s t

1
F1(s)F2 (s) f1t 0 dt
n 次
t
t

t 0
1 f (t )dt ] n F ( s) s
(2)象函数的积分性质 若 ℒ f (t ) F (s), 且积分

s
F (s)ds 收敛


f (t ) ] F ( s )ds ℒ [ s t
1 f (t ) ℒ t
0
t
称为函数 f1 (t ), f 2 (t ) 在 [0, ) 上的卷积.
(2)拉氏变换的卷积定理 若 ℒ f1 (t ) F1 (s), ℒ f 2 (t ) F2 (s), 则 ℒ ℒ
f1(t) f2 (t) F1(s)F2 (s)
1
F1(s)F2 (s) f1(t) f2 (t)
st ℒ f (t t0 )u(t t0 ) e 0 F (s)
st0 ℒ e F ( s) f (t t0 )u (t t0 ) (2)象函数的位移性质 1
at ℒ e f (t ) F ( s a)
2.3 微分性质 (1)象原函数的微分性质 若 ℒ f (t ) F (s), 则
0
我们称上式为函数 f (t ) 的拉普拉斯变换式 ,记做 F ( s ) ℒ f (t ) F ( s) 叫做 f (t ) 的拉氏变换,象函数.
f (t ) 叫做 F ( s ) 的拉氏逆变换,象原函数, f (t ) = ℒ
1
F ( s)
一些常用函数的拉氏变换
(t ) 1 ( n) (t ) s n
ℒ f (t ) sF (s) f (0) 一般地,
(n) n n 1 n 2 f ( t ) s F ( s ) s f (0) s f (0) ℒ
(Re s C)
f ( n 1) (0)
特别地,当
f (0) f (0) f (0)
1 e sk
kt
n
1 u (t ) s
k n! t n 1 sin kt 2 s s k2
cos kt
s s2 k 2
2 拉普拉斯变换的性质
2.1 线性性质 设 ℒ f1 (t ) F1 (s) ℒ f2 (t ) F2 (s) , 为常数则
f ( n1) (0) 0
时,
(n) n f ( t ) s F ( s) ℒ
可以证明
(n) n ( t ) s ℒ
(2)象函数的微分性质
若 ℒ f (t ) F (s),
从而 ℒ tf (t ) F (s) 则
F (s) ℒ tf (t )
相关文档
最新文档