(物理)物理牛顿运动定律的应用练习题含答案
高中物理牛顿运动定律的应用计算题专题训练含答案
高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。
现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。
再经过一段时间,物体的速度变为零。
如果这一过程物体的总位移为15m。
求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。
(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。
(物理)物理牛顿运动定律的应用练习题含解析
(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
(3)木板的最小长度L 是0.7m 。
【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。
木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。
1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。
共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。
(物理)物理牛顿运动定律的应用练习题及答案及解析
(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。
【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。
高中物理牛顿运动定律的应用综合题专题训练含答案
高中物理牛顿运动定律的应用综合题专题训练含答案高中物理牛顿运动定律的应用填空题专题训练含答案姓名:__________班级:__________考号:__________一、填空题(共30题)1、如图所示,在水平方向上加速前进的车厢里,悬挂着小球的悬线与竖直方向保持α=30°角。
同时放在车厢里的水平桌面上的物体A 和车厢保持相对静止,已知A的质量是0.5kg,则A受到摩擦力大小是________N,方向为___________。
(取g=10m/s2)2、如图所示,是一辆汽车在两站间行驶的速度图象。
两站之间是一段平直的公路,汽车所受阻力大小不变,且BC段的牵引力为零,已知汽车的质量为4000kg,则汽车在BC段所受的阻力是________N,3、用水平向右、大小为0.4N的拉力可拉着一个物体在水平面上匀速运动,当用2.0N的水平向左拉力拉着这个物体在同一水平面上从静止开始运动,2s内物体位移是1.6m,则物体运动的加速度为m/s2,物体质量为kg。
4、如图所示,两个用轻线相连的位于光滑水平面上的物块,质量分别为m1和m2,拉力F1和F2方向相反,与轻线沿同一水平直线,且F1>F2。
则两个物块运动的加速度为__________,运动过程中轻线对m2的拉力为__________。
5、如图所示,质量均为的、两球之间系着一根不计质量的弹簧,放在光滑的水平面上,球紧靠竖直墙壁,今用水平力将球向左推压弹簧,平衡后,突然将撤去,在这一瞬间球的加速度大小为??,球的加速度的大小为。
6、两个物块M、N,质量之比和初速度之比都是2∶3,沿同一水平面滑动.它们与水平面间的动摩擦因数之比为2∶1,则它们沿该水平面滑行的最大距离之比是??.7、如图所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m。
现施加水平力F拉B,A、B刚好不发生相对滑动,一起沿水平面运动。
若改为水平力F′拉A,使A、B也保持相对静止,一起沿水平面运动,则F′不得超过。
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析
高考物理牛顿运动定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量为2kg 的物体在与水平方向成37°角的斜向上的拉力F 作用下由静止开始运动.已知力F 的大小为5N ,物体与地面之间的动摩擦因数μ为0.2,(sin37°=0.6,cos37°=0.8)求:(1)物体由静止开始运动后的加速度大小;(2)8s 末物体的瞬时速度大小和8s 时间内物体通过的位移大小; (3)若8s 末撤掉拉力F ,则物体还能前进多远? 【答案】(1)a =0.3m/s 2 (2)x =9.6m (3)x ′=1.44m 【解析】(1)物体的受力情况如图所示:根据牛顿第二定律,得: F cos37°-f =ma F sin37°+F N =mg 又f =μF N联立得:a =cos37(sin 37)F mg F mμ--o o代入解得a =0.3m/s 2(2)8s 末物体的瞬时速度大小v =at =0.3×8m/s=2.4m/s 8s 时间内物体通过的位移大小219.6m 2x at == (3)8s 末撤去力F 后,物体做匀减速运动, 根据牛顿第二定律得,物体加速度大小22.0m/s f mg a g m mμμ===='' 由v 2=2a ′x ′得:21.44m 2v x a =''=【点睛】本题关键是多次根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解运动学参量.2.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;(3)木板在地面上运动的最大位移。
大学物理牛顿运动定律及其应用习题及答案
第2章 牛顿运动定律及其应用 习题解答1.质量为10kg 的质点在xOy 平面内运动,其运动规律为:543x con t =+(m),5sin 45y t =-(m).求t 时刻质点所受的力.解:此题属于第一类问题54320sin 480cos 4x x x x con t dx v t dtdv a t dt=+==-==- 5sin 4520cos 480sin 4y y y t v t a t=-==-12800cos 4()800sin 4()()800()x x y y x y F ma t N F ma t N F F F N ==-==-=+=2.质量为m 的质点沿x 轴正向运动,设质点通过坐标x 位置时其速率为kx 〔k 为比例系数〕,求: 〔1〕此时作用于质点的力;〔2〕质点由1x x =处出发,运动到2x x =处所需要的时间。
解:(1) 2()dv dx F m mk mk x N dt dt=== (2) 22112111ln ln xx x x x dx dx v kx t x dt kx k k x ==⇒===⎰ 3.质量为m 的质点在合力0F F kt(N )=-〔0F ,k 均为常量〕的作用下作直线运动,求: 〔1〕质点的加速度;〔2〕质点的速度和位置〔设质点开始静止于坐标原点处〕.解:由牛顿第二运动定律 200201000232000012111262v t x t F kt dv mF kt a (ms )dt mF t kt F kt dv dt v (ms )m m F t kt F t kt dx dt x (m )m m ---=-⇒=--=⇒=⎰⎰--=⇒=⎰⎰4.质量为m 的质点最初静止在0x 处,在力2F k /x =-(N)〔k 是常量〕的作用下沿X 轴运动,求质点在x 处的速度。
解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒=⎰⎰5.一质量为m 的质点在x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即2/x k f -=(N),k 是比例常数.设质点在 x =A 时的速度为零,求质点在x =A /4处的速度的大小. 解: 由牛顿第二运动定律02120v x x dv dv dx dv F k /x mm mv dt dx dt dx k vdv dx v ms )mx -=-====-⇒===⎰⎰6.质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t m k e v )(0-;(2) 由0到t 的时间内经过的距离为x =(km v 0)[1-t m k e )(-]; (3)停止运动前经过的距离为)(0km v ; (4)当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 证明: (1) t 时刻的速度为v =t m k e v )(0- 0000ln v t k t m v dv F kv mdt dv k v k dt t v v e v m v m -=-==-⇒=-⇒=⎰⎰(2) 由0到t 的时间内经过的距离为x =(k m v 0)[1-t m ke )(-] 00000(1)k t m x tk k t t m m dx v v e dt mv dx v edt x e k ---===⇒=-⎰⎰(3)停止运动前经过的距离为)(0km v 在x 的表达式中令t=0得到: 停止运动前经过的距离为)(0k m v (4)当k m t =时速度减至0v 的e1,式中m 为质点的质量. 在v 的表达式中令k m t =得到:01v v e= 7.质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.解: 由牛顿第二运动定律 (1) dv dv k m kv dt dt v m=-⇒=- 考虑初始条件,对上式两边积分: 000vt k t m v dv k dt v v e v m -=-⇒=⎰⎰ (2) max00max 00x k t m mv dx v e dt x dt k ∞-=-⇒=⎰⎰ 8.质量为m 的雨滴下降时,因受空气阻力,在落地前已是匀速运动,其速率为v = 5.0 m/s .设空气阻力大小与雨滴速率的平方成正比,问:当雨滴下降速率为v = 4.0 m/s 时,其加速度a 多大?(取29.8/g m s =)解: 由牛顿第二运动定律雨滴下降未到达极限速度前运动方程为2mg kv ma -= 〔1〕雨滴下降到达极限速度后运动方程为20mg kv -= 〔2〕将v = 4.0 m/s 代入〔2〕式得2maxmg k v = 〔3〕 由〔1〕、〔3〕式 22424max 16(1)10(1) 3.6/25v v v a g m s v ===-=⨯-= 9.一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力? 解: 由牛顿第二运动定律有sin 0cos 0T N mg T N θθμ+-=-=联立以上2式得 ()cos sin mgT μθθμθ=+上式T 取得最小值的条件为tg θμ==由此得到2.92l m =≈。
高中物理牛顿运动定律的应用试题(有答案和解析)及解析
高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。
高中物理牛顿运动定律经典练习题(含答案)
牛顿运动定律练习一1.(2021年河南省十所名校高三第三次联考试题, 7) 如图甲所示,斜面体固定在水平面上,倾角为θ=30°,质量为m的物块从斜面体上由静止释放,以加速度a=开始下滑,取出发点为参考点,那么图乙中能正确描述物块的速率v、动能E k、势能E P、机械能E、时间t、位移x关系的是2.(2021年河南省十所名校高三第三次联考试题, 2) 如下图,两个物体以相同大小的初速度从O点同时分别向x 轴正、负方向水平抛出,它们的轨迹恰好满足抛物线方程y=,那么以下说法正确的选项是〔曲率半径简单地理解为在曲线上一点附近与之重合的圆弧的最大半径〕A .物体被抛出时的初速度为B.物体被抛出时的初速度为C.O点的曲率半径为kD.O点的曲率半径为2k3.(湖北省七市2021届高三理综4月联考模拟试卷,6)不久前欧洲天文学家在太阳系外发现了一颗可能适合人类居住的行星,该行星的质量是地球质量的5倍,直径是地球直径的1.5倍。
设想在该行星外表附近绕行星沿圆轨道运行的人造卫星的动能为Ek1,在地球外表附近绕地球沿圆轨道运行的相同质量的人造卫星的动能为Ek2,那么Ek1: Ek2为A. 7.5B. 3.33C. 0.34.(山东省淄博市2021届高三下学期4月复习阶段性检测,7)在倾角为的固定光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量分别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态。
现用一平行于斜面向上的恒力F拉物块A 使之向上运动,当物块B刚要离开挡板C时,物块A运动的距离为d,速度为v。
那么此时A .拉力做功的瞬时功率为B .物块B满足C.物块A的加速度为D.弹簧弹性势能的增加量为5.(山东省淄博市2021届高三下学期4月复习阶段性检测,1)用比值法定义物理量是物理学中一种很重要的思想方法,以下物理量由比值法定义正确的选项是〔〕A .加速度B.磁感应强度C.电容D .电流强度6.(四川成都市2021届高中毕业班第三次诊断性检测,7)右图为某节能运输系统的简化示意图。
高中物理必修一 第4章第4节 牛顿运动定律的应用练习)解析版)
第四章运动和力的关系4. 5 牛顿运动定律的应用一、单选题1、航母“辽宁舰”甲板长300m,起飞跑道长100m,目前顺利完成了舰载机“歼-15”起降飞行训练。
“歼-15”降落时着舰速度大小约为70m/s,飞机尾钩钩上阻拦索后,在甲板上滑行50m左右停下,(航母静止不动)假设阻拦索给飞机的阻力恒定,则飞行员所承受的水平加速度与重力加速度的比值约为( )A.2B.5C.10D.50【答案】B【解析】根据速度和位移关系可知:v2−v02=2ax,解得:a=0−7022×50=−49m/s2,故ag=499.8=5,故B正确,A、C、D错误;故选B。
2、交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是15m,假设汽车轮胎与地面间的动摩擦因数恒为0.75,该路段限速60km/h,取g=10m/s2,则汽车刹车前的速度以及是否超速的情况是( )A.速度为7.5m/s,超速B.速度为15m/s,不超速C.速度为15m/s,超速D.速度为7.5m/s,不超速【答案】B【解析】设汽车刹车后滑动时的加速度大小为a,由牛顿第二定律得:μmg=ma解得:a=μg=7.5m/s2由匀变速直线运动的速度位移关系式有:v02=2ax可得汽车刹车前的速度为:v0==15m/s=54km/h<60km/h所以不超速.A.速度为7.5m/s,超速,与结论不相符,选项A错误;B.速度为15m/s,不超速,与结论相符,选项B正确;C.速度为15m/s,超速,与结论不相符,选项C错误;D.速度为7.5m/s,不超速,与结论不相符,选项D错误;3、一物体放在光滑水平面上,初速为零,先对物体施加一向东的恒力F,历时1s,随即把此力改为向西,大小不变,历时1s;,接着又把此力改为向东,大小不变,历时1s;如此反复,只改变力的方向,共历时1min,之后撤去该力。
人教版(2019)高中物理必修第一册同步练习:4.5牛顿运动定律的应用(含答案)
牛顿运动定律的应用一、单项选择题1.2018年10月23日,港珠澳大桥正式开通.建造大桥过程中最困难的莫过于沉管隧道的沉放和精确安装,每节沉管隧道重约G=8×108N,相当于一艘中型航母的重量.通过缆绳送沉管到海底,若把该沉管的向下沉放过程看成是先加速运动后减速运动,且沉管仅受重力和缆绳的拉力,则拉力的变化过程可能正确的是()C2.如图所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r 的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽,从静止出发,由A 滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1B.1∶1C.3∶1 D.1∶3B3.某消防队员从一平台上跳下,下落2 m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5 m,在着地过程中地面对他双脚的平均作用力估计为()A.自身所受重力的2倍B.自身所受重力的5倍C.自身所受重力的8倍D.自身所受重力的10倍B4.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞所引起的伤害,人们设计了安全带.假定乘客质量为70 kg,汽车车速为90 km/h,从踩下刹车闸到车完全停止需要的时间为5 s,安全带对乘客的平均作用力大小约为(不计人与座椅间的摩擦)()A.450 N B.400 NC.350 N D.300 NC5.如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点,竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心,已知在同一时刻:a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道分别沿AM、BM 运动到M点;c球由C点自由下落到M点.则()A.a球最先到达M点B.c球最先到达M点C.b球最先到达M点D.b球和c球都可能最先到达MB6.在设计游乐场中“激流勇进”的倾斜滑道时,小组同学将划艇在倾斜滑道上的运动视为由静止开始的无摩擦滑动,已知倾斜滑道在水平面上的投影长度L是一定的,而高度可以调节,则()A.滑道倾角越大,划艇下滑时间越短B.划艇下滑时间与倾角无关C.划艇下滑的最短时间为2L gD.划艇下滑的最短时间为2L gC7.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车刹车前的速度为()A.7 m/s B.14 m/sC.10 m/s D.20 m/sB8.在汽车内的悬线上挂着一个小球m,实验表明当汽车做匀变速直线运动时,悬线将与竖直方向成某一固定角度θ,如图所示,若在汽车底板上还有一个跟它相对静止的物体M,则关于汽车的运动情况和物体M的受力情况分析正确的是()A.汽车一定向右做加速运动B.汽车的加速度大小为g sin θC.M只受到重力、底板的支持力作用D.M除受到重力、底板的支持力作用外,还一定受到向右的摩擦力的作用D9.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( )A.m 2gh t +mgB.m 2ght -mgC.m gh t +mgD.m gh t-mgA二、多项选择题10.如图所示,5块质量相同的木块并排放在水平地面上,它们与地面间的动摩擦因数均相同,当用力F 推第1块木块使它们共同加速运动时,下列说法中正确的是( )A .由右向左,两块木块之间的相互作用力依次变小B .由右向左,两块木块之间的相互作用力依次变大C .第2块木块与第3块木块之间的弹力大小为0.6FD .第3块木块与第4块木块之间的弹力大小为0.6F解析:选BC11.绷紧的传送带长L =32 m ,铁块与带间动摩擦因数μ=0.1,g =10 m/s 2,下列正确的是( )A .若皮带静止,A 处小铁块以v 0=10 m/s 向B 运动,则铁块到达B 处的速度为6 m/s B .若皮带始终以4 m/s 的速度向左运动,而铁块从A 处以v 0=10 m/s 向B 运动,铁块到达B 处的速度为6 m/sC.若传送带始终以4 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块将一直向右匀加速运动D.若传送带始终以10 m/s的速度向右运动,在A处轻轻放上一小铁块后,铁块到达B 处的速度为8 m/sABD12.如图所示,质量为m=1 kg的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10 m/s时,给物体施加一个与速度方向相反的大小为F=2 N的恒力,在此恒力作用下(取g=10 m/s2)()A.物体经10 s速度减为零B.物体经2 s速度减为零C.物体速度减为零后将保持静止D.物体速度减为零后将向右运动BC13.从某一星球表面做火箭实验.已知竖直升空的实验火箭质量为15 kg,发动机推动力为恒力.实验火箭升空后发动机因故障突然关闭,如图所示是实验火箭从升空到落回星球表面的速度随时间变化的图象,不计空气阻力,则由图象可判断()A.该实验火箭在星球表面达到的最大高度为320 mB.该实验火箭在星球表面达到的最大高度为480 mC.该星球表面的重力加速度为2.5 m/s2D.发动机的推动力F为37.50 NBC三、非选择题14.我国现在服役的第一艘航母“辽宁号”的舰载机采用的是滑跃起飞方式,即飞机依靠自身发动机从静止开始到滑跃起飞,滑跃仰角为θ.其起飞跑道可视为由长度L1=180 m的水平跑道和长度L2=20 m倾斜跑道两部分组成,水平跑道和倾斜跑道末端的高度差h=2 m,如图所示.已知质量m=2×104 kg的舰载机的喷气发动机的总推力大小恒为F=1.2×105 N,方向始终与速度方向相同,若飞机起飞过程中受到的阻力大小恒为飞机重力的0.15,飞机质量视为不变,并把飞机看成质点,航母处于静止状态.(1)求飞机在水平跑道运动的时间;(2)求飞机在倾斜跑道上的加速度大小.解析:(1)设飞机在水平跑道的加速度大小为a1,由牛顿第二定律得F1-f=ma1解得a1=4.5 m/s2由匀加速直线运动公式L1=12at2解得t=45s.(2)设沿斜面方向的加速度大小为a2,在倾斜跑道上对飞机受力分析,由牛顿第二定律得F-f-mg sin θ=ma2,其中sin θ=hL2解得a2=3.5 m/s2.答案:(1)45s(2)3.5 m/s215.如图所示,有一质量m=1 kg的物块,以初速度v=6 m/s从A点开始沿水平面向右滑行.物块运动中始终受到大小为2 N、方向水平向左的力F作用,已知物块与水平面间的动摩擦因数μ=0.1.求:(取g=10 m/s2)(1)物块向右运动时所受摩擦力的大小和方向; (2)物块向右运动到最远处的位移大小;(3)物块经过多长时间回到出发点A ?(结果保留两位有效数字) 解析:(1)物块向右运动时所受摩擦力的大小 F f =μmg =1 N物块向右运动时所受摩擦力的方向水平向左. (2)物块向右运动时的加速度大小 a 1=F +Ff m=3 m/s 2物块向右运动到最远处时的位移大小 2a 1x =v 2,x =v22a1=6 m. (3)物块向右运动的时间:t 1=va1=2 s物块返回时的加速度大小:a 2=F -Ffm =1 m/s 2由x =12a 2t 2得物块返回过程的时间t 2=2xa2=23 s≈3.5 s 物块回到出发点A 的时间 t =t 1+t 2=5.5 s.答案:(1)1 N 水平向左 (2)6 m (3)5.5 s。
高考物理牛顿运动定律题20套(带答案)
高考物理牛顿运动定律题20套(带答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求(1)小物块沿传送带向下滑动的最远距离及此时小物块在传送带上留下的滑痕的长度. (2)小物块离开传送带时的速度大小. 【答案】(1)1.25m;6m (2)55/5m s 【解析】 【分析】 【详解】(1)由题意可知0.8tan 370.75μ=>=o ,即小物块所受滑动摩擦力大于重力沿传送带向下的分力sin 37mg o,在传送带方向,对小物块根据牛顿第二定律有:cos37sin 37mg mg ma μ-=o o解得:20.4/a m s =小物块沿传送带向下做匀减速直线运动,速度为0时运动到最远距离1x ,假设小物块速度为0时没有滑落,根据运动公式有:2112v x a=解得:1 1.25x m =,12Lx <,小物块没有滑落,所以沿传送带向下滑动的最远距离1 1.25x m =小物块向下滑动的时间为11=v t a传送带运动的距离101s v t = 联立解得15s m =小物块相对传送带运动的距离11x s x ∆=+解得: 6.25x m ∆=,因传送带总长度为26L m =,所以传送带上留下的划痕长度为6m ; (2)小物块速度减小为0后,加速度不变,沿传送带向上做匀加速运动 设小物块到达传送带最上端时的速度大小为2v 假设此时二者不共速,则有:22122L v a x ⎛⎫=+ ⎪⎝⎭解得:255/v m s =20v v <,即小物块还没有与传送带共速,因此,小物块离开传送带时的速度大小为55/m s .2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)(1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5s 时离地面的高度h ; (2)当无人机悬停在距离地面高度H =100m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落到地面时的速度v ;(3)接(2)问,无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地(到达地面时速度为零),求飞行器从开始下落到恢复升力的最长时间t 1.【答案】(1)75m (2)40m/s (355s 【解析】 【分析】 【详解】(1)由牛顿第二定律 F ﹣mg ﹣f=ma 代入数据解得a=6m/s 2上升高度代入数据解得 h=75m . (2)下落过程中 mg ﹣f=ma 1 代入数据解得落地时速度 v 2=2a 1H , 代入数据解得 v=40m/s(3)恢复升力后向下减速运动过程 F ﹣mg+f=ma 2 代入数据解得设恢复升力时的速度为v m ,则有由 v m =a 1t 1 代入数据解得.4.如图,竖直墙面粗糙,其上有质量分别为m A =1 kg 、m B =0.5 kg 的两个小滑块A 和B ,A 在B 的正上方,A 、B 相距h =2. 25 m ,A 始终受一大小F 1=l0 N 、方向垂直于墙面的水平力作用,B 始终受一方向竖直向上的恒力F 2作用.同时由静止释放A 和B ,经时间t =0.5 s ,A 、B 恰相遇.已知A 、B 与墙面间的动摩擦因数均为μ=0.2,重力加速度大小g =10 m/s 2.求:(1)滑块A 的加速度大小a A ; (2)相遇前瞬间,恒力F 2的功率P .【答案】(1)2A 8m/s a =;(2)50W P =【解析】 【详解】(1)A 、B 受力如图所示:A 、B 分别向下、向上做匀加速直线运动,对A : 水平方向:N 1F F = 竖直方向:A A A m g f m a -= 且:N f F μ=联立以上各式并代入数据解得:2A 8m/s a =(2)对A 由位移公式得:212A A x a t = 对B 由位移公式得:212B B x a t =由位移关系得:B A x h x =- 由速度公式得B 的速度:B B v a t = 对B 由牛顿第二定律得:2B B B F m g m a -= 恒力F 2的功率:2B P F v = 联立解得:P =50W5.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-=木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.6.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示) 【答案】(1)9J E ∆= (2)8J Q =03313m/s 397m/s 22v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+ 由机械能守恒得:()()222111122222B C m v m v mv =+ 解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:2/c v s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+解得:13/2max c v v s ==同理得:/min v s =0//s v s ≤≤7.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgs inθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.8.一长木板静止在水平地面上,木板长5l m =,小茗同学站在木板的左端,也处于静止状态,现小茗开始向右做匀加速运动,经过2s 小茗从木板上离开,离开木板时小茗的速度为v=4m/s ,已知木板质量M =20kg ,小茗质量m =50kg ,g 取10m/s 2,求木板与地面之间的动摩擦因数μ(结果保留两位有效数字).【答案】0.13 【解析】 【分析】对人分析,由速度公式求得加速度,由牛顿第二定律求人受到木板的摩擦力大小;由运动学的公式求出长木板的加速度,由牛顿第二定律求木板与地面之间的摩擦力大小和木板与地面之间的动摩擦因数. 【详解】对人进行分析,由速度时间公式:v=a 1t 代入数据解得:a 1=2m/s 2 在2s 内人的位移为:x 1=2112a t 代入数据解得:x 1=4m由于x 1=4m <5m ,可知该过程中木板的位移:x 2=l-x 1=5-4=1m 对木板:x 2=2212a t可得:a 2=0.5m/s 2对木板进行分析,根据牛顿第二定律:f-μ(M+m )g=Ma 2 根据牛顿第二定律,板对人的摩擦力f=ma 1 代入数据解得:f=100N 代入数据解得:μ=90.1370≈. 【点睛】本题主要考查了相对运动问题,应用牛顿第二定律和运动学公式,再结合位移间的关系即可解题.本题也可以根据动量定理解答.9.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力. (1)求座舱下落的最大速度; (2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力. 【答案】(1)30m/s (2)5s .(3)75N . 【解析】试题分析:(1)v 2=2gh; v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s 所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg-N=mg解得:N=0根据牛顿第三定律有:N′=N=0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg-N=ma根据匀变速直线运动规律有:a=222vh-=-15m/s2解得:N=75N(2分)根据牛顿第三定律有:N′=N=75N,即球对手的压力为75N考点:牛顿第二及第三定律的应用10.如图所示,质量1m kg=的小球套在细斜杆上,斜杆与水平方向成30α=o角,球与杆之间的滑动摩擦因数36μ=,球在竖直向上的拉力20F N=作用下沿杆向上滑动.(210/g m s=)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.【答案】(1)53N方向垂直于杆向上(2)22.5m/s(3) 0N【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。
物理牛顿运动定律的应用练习题20篇及解析
(2)滑块在 B 点时的速度大小为 滑块从 B 点运动到 C 点过程中,由牛顿第二定律有: 可得加速度 设滑块到达 C 点时的速度大小为 vC,有: 解得:
此过程所经历的时间为: 故滑块通过传送带的过程中,以地面为参考系,滑块的位移 x1=L=6m, 传送带的位移 x2=vt=4m; 传送带和滑块克服摩擦力所做的总功为: 代入数据解得: 【点睛】 此题需注意两点,(1)要利用滑块沿 BC 射入来求解滑块到 B 点的速度;(2)计算摩擦力对物 体做的功时要以地面为参考系来计算位移。
4.如图所示,长 L=10m 的水平传送带以速度 v=8m/s 匀速运动。质量分别为 2m、m 的小 物块 P、Q,用不可伸长的轻质细绳,通过固定光滑小环 C 相连。小物块 P 放在传送带的最 左端,恰好处于静止状态,C、P 间的细绳水平。现在 P 上固定一质量为 2m 的小物块(图中 未画出),整体将沿传送带运动,已知 Q、C 间距大于 10 m,重力加速度 g 取 10m/s2.求:
由牛顿第二定律得:F=m vB2 r
解得:F=5 2 N
由牛顿第三定律知小球对细管作用力大小为 5 2 N,
6.如图所示,在竖直平面内有一倾角 θ=37°的传送带 BC.已知传送带沿顺时针方向运行的 速度 v=4 m/s,B、C 两点的距离 L=6 m。一质量 m=0.2kg 的滑块(可视为质点)从传送带上 端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC 方向滑人传送 带,滑块与传送带间的动摩擦因数 μ=0.5,取重力加速度 g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。求:
(1)经历多长时间 A 相对地面速度减为零;
(物理)物理牛顿运动定律的应用练习题含答案
(物理)物理牛顿运动定律的应用练习题含答案一、高中物理精讲专题测试牛顿运动定律的应用1.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为: v 1112a L 5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.2.如图所示,长木板B 质量为m 2=1.0 kg ,静止在粗糙的水平地面上,长木板左侧区域光滑.质量为m 3=1.0 kg 、可视为质点的物块C 放在长木板的最右端.质量m 1=0.5 kg 的物块A ,以速度v 0=9 m /s 与长木板发生正碰(时间极短),之后B 、C 发生相对运动.已知物块C 与长木板间的动摩擦因数μ1=0.1,长木板与地面间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,整个过程物块C 始终在长木板上,g 取10 m /s 2.(1)若A 、B 相撞后粘在一起,求碰撞过程损失的机械能. (2)若A 、B 发生弹性碰撞,求整个过程物块C 相对长木板的位移.【答案】(1)13.5J (2)2.67m 【解析】(1)若A 、B 相撞后粘在一起,由动量守恒定律得1012()m v m m v =+由能量守恒定律得 22101211()22E m v m m v ∆=-+ 解得损失的机械能 21201213.52()m m v E J m m ∆==+ (2)A 、B 发生完全弹性碰撞,由动量守恒定律得101122m v m v m v =+由机械能守恒定律得222101122111222m v m v m v =+ 联立解得 1210123/m m v v m s m m -==-+, 1201226/m v v m s m m ==+之后B 减速运动,C 加速运动,B 、C 达到共同速度之前,由牛顿运动定律, 对长木板: 2231321-()m m g m g m a μμ+-= 对物块C : 1332m g m a μ=设达到共同速度过程经历的时间为t ,212v a t a t += 这一过程的相对位移为22121211322x v t a t a t m ∆=+-= B 、C 达到共同速度之后,因12μμ<,二者各自减速至停下,由牛顿运动定律, 对长木板: 2231323-()m m g m g m a μμ++=对物块C :1334-m g m a μ=这一过程的相对位移为 2222243()()1223a t a t x m a a ∆=-=-- 整个过程物块与木板的相对位移为 1282.673x x x m m ∆=∆-∆== 点睛:此题是多研究对象、多过程问题,过程复杂,分析清楚物体的运动过程,应用牛顿第二定律、运动学公式、动量守恒定律、机械能守恒定律即可正确解题.3.如图所示,质量为m=2kg 的物块放在倾角为θ=37°的斜面体上,斜面质量为M=4kg ,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,求:(取sin37°=0.6,cos37°=0.8,g=10m/s 2)(1)若斜面与物块间无摩擦力,求m 加速度的大小及m 受到支持力的大小; (2)若斜面与物块间的动摩擦因数为μ=0.2,已知物体所受滑动摩擦力与最大静摩擦力相等,求推力F 的取值.(此问结果小数点后保留一位) 【答案】(1)7.5m/s 2;25N (2)28.8N≤F≤67.2N 【解析】 【分析】(1)斜面M 、物块m 在水平推力作用下一起向左匀加速运动,物块m 的加速度水平向左,合力水平向左,分析物块m 的受力情况,由牛顿第二定律可求出加速度a 和支持力.(2)用极限法把F 推向两个极端来分析:当F 较小(趋近于0)时,由于μ<tanθ,因此物块将沿斜面加速下滑;若F 较大(足够大)时,物块将相对斜面向上滑,因此F 不能太小,也不能太大,根据牛顿第二定律,运用整体隔离法求出F 的取值范围. 【详解】(1)由受力分析得:物块受重力,斜面对物块的支持力,合外力水平向左.根据牛顿第二定律得: mgtanθ=ma得 a=gtanθ=10×tan37°=7.5m/s 2 m 受到支持力20N=25N cos cos37N mg F θ==︒(2)设物块处于相对斜面向下滑动的临界状态时的推力为F 1,此时物块的受力如下图所示:对物块分析,在水平方向有 Nsinθ﹣μNcosθ=ma 1 竖直方向有 Ncosθ+μNsinθ﹣mg=0 对整体有 F 1=(M+m )a 1 代入数值得a 1=4.8m/s 2 ,F 1=28.8N设物块处于相对斜面向上滑动的临界状态时的推力为F 2, 对物块分析,在水平方向有 N ′sin θ﹣μN′cos θ=ma 2 竖直方向有 N ′cos θ﹣μN ′sin θ﹣mg =0 对整体有 F 2=(M +m )a 2 代入数值得a 2=11.2m/s 2 ,F 2=67.2N综上所述可以知道推力F 的取值范围为:28.8N≤F ≤67.2N . 【点睛】解决本题的关键能够正确地受力分析,抓住临界状态,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.4.如图所示,质量为M =10kg 的小车停放在光滑水平面上.在小车右端施加一个F =10N 的水平恒力.当小车向右运动的速度达到2.8m/s 时,在其右端轻轻放上一质量m =2.0kg 的小黑煤块(小黑煤块视为质点且初速度为零),煤块与小车间动摩擦因数μ=0.20.假定小车足够长.(1)求经过多长时间煤块与小车保持相对静止 (2) 求3s 内煤块前进的位移 (3)煤块最终在小车上留下的痕迹长度 【答案】(1) 2s (2) 8.4m (3) 2.8m 【解析】 【分析】分别对滑块和平板车进行受力分析,根据牛顿第二定律求出各自加速度,物块在小车上停止相对滑动时,速度相同,根据运动学基本公式即可以求出时间.通过运动学公式求出位移. 【详解】(1)根据牛顿第二定律,刚开始运动时对小黑煤块有:1N F ma μ=F N -mg =0代入数据解得:a 1=2m/s 2 刚开始运动时对小车有:2N F F Ma μ-=解得:a 2=0.6m/s 2经过时间t ,小黑煤块和车的速度相等,小黑煤块的速度为:v 1=a 1t车的速度为:v 2=v +a 2t解得:t =2s ;(2)在2s 内小黑煤块前进的位移为:21114m 2x a t ==2s 时的速度为:11122m/s 4m/s v a t ==⨯=此后加速运动的加速度为:235m/s 6F a M m ==+ 然后和小车共同运动t 2=1s 时间,此1s 时间内位移为:2212321 4.4m 2x v t a t =+=所以煤块的总位移为:128.4m x x +=(3)在2s 内小黑煤块前进的位移为:21114m 2x a t ==小车前进的位移为:21116.8m 2x v t a t '=+=两者的相对位移为:m 1 2.8x x x '∆=-=即煤块最终在小车上留下的痕迹长度2.8m . 【点睛】该题是相对运动的典型例题,要认真分析两个物体的受力情况,正确判断两物体的运动情况,再根据运动学基本公式求解.5.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g=10m/s2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出.【答案】(1),(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得对滑块,有,解得对平板车,有,解得.设经过t时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.6.图示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A、B 两端相距3m ,另一台倾斜,传送带与地面的倾角θ= 37°,C、D 两端相距4.45m,B、C相距很近。
物理牛顿运动定律的应用专项习题及答案解析
物理牛顿运动定律的应用专项习题及答案解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
2021-2022年高一物理必修一课后作业练习题(19)牛顿运动定律的应用【含答案】
2021-2022年高一物理必修一课后作业练习题(19) 牛顿运动定律的应用1.如图所示,水平地面上一物体以5 m/s 的初速度向右滑行,若物体与地面间的动摩擦因数为0.25,取g =10 m/s 2,则物体在3 s 内的位移大小为( )A .0.5 mB .2.5 mC .3.75 mD .5 mD [根据牛顿第二定律得μmg =ma ,解得a =μg =2.5 m/s 2.物体匀减速运动的时间t =va =52.5 s =2 s ,即物体滑行2 s 后停止运动,物体在3 s 内的位移大小为x =v 2t =52×2 m =5 m .] 2.假设汽车突然紧急制动后所受到的阻力大小与汽车所受的重力大小差不多,当汽车以20 m/s 的速度行驶时突然制动,它还能继续滑动的距离约为( )A .40 mB .20 mC .10 mD .5 mB [由牛顿第二定律得a =F f m =mg m =g =10 m/s 2,由v 2=2ax 得汽车滑动的距离x =v 22a =2022×10m =20 m .] 3.(多选)钢球在足够深的油槽上方某一高度由静止下落,落入油槽中以后,球受的阻力正比于其速率,则球在油中的运动情况可能是( )A .先加速后减速,最后静止B .一直匀速运动C .先加速后匀速D .先减速后匀速BCD [设阻力与速度的比例为k ,则阻力为f =k v ,若落入油槽中时重力大于阻力,则球做加速运动,即mg -k v =ma ,速度增大,f 增大,当f 增大到等于重力时球做匀速运动,此后阻力不变,重力不变,球做匀速运动;即球先加速后匀速,故C 正确;若落入油槽时,重力等于阻力,则球做匀速运动,选项B 正确;若落入油槽中时重力小于阻力,则球做减速运动,即k v -mg =ma ,速度减小,f 减小,当f 减小到等于重力时球做匀速运动,此后阻力不变,重力不变,球做匀速运动,即球先减速后匀速,故D 正确.]4.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m ,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g 取10 m/s 2,则汽车刹车前的速度为( )A .7 m/sB .14 m/sC .10 m/sD .20 m/sB [设汽车刹车后滑动时的加速度为a ,由牛顿第二定律得:-μmg =ma ,解得:a =-μg .由0-v 20=2ax 可得,汽车刹车前的速度为:v 0=-2ax =2μgx =2×0.7×10×14 m/s=14 m/s.]5.甲、乙两球从同一高度同时由静止释放,下落时受到的空气阻力F 与球的速率v 成正比,即F =-k v (k >0),且两球的比例常数k 相等,如图所示为下落时两球的v -t 图像.若甲球与乙球的质量分别为m 1与m 2,则( )A .m 2>m 1,且甲球先抵达地面B .m 2>m 1,且乙球先抵达地面C .m 2<m 1,且甲球先抵达地面D .m 2<m 1,且乙球先抵达地面B [由图像知甲乙两球匀速运动的速度关系:v 乙>v 甲由平衡条件得:mg =k v ,联立得:m 2>m 1 ;故两者位移相等时,即图线与时间轴围成的面积相等,知球乙的运动时间短,即球乙先抵达地面.]6.纳米技术(1纳米=10-9 m)是在纳米尺度(10-9 m ~10-7 m)范围内通过直接操纵分子、原子或分子团使其重新排列从而形成新物质的技术.用纳米材料研制出一种新型涂料喷涂在船体上能使船体在水中航行形成空气膜,从而使水的阻力减小一半.设一货轮的牵引力不变,喷涂纳米材料后航行加速度比原来大了一倍,则牵引力与喷涂纳米材料后的阻力f 之间大小关系是( )A .F =fB .F =32fC .F =2fD .F =3fB [喷涂纳米材料前,由牛顿第二定律,则有F -f =ma ,喷涂纳米材料后,则有F -12f =m ·2a ,联立两式解得:F =32f .]7.如图所示,在地面上固定的两根竖直杆a 、b 之间搭建两个斜面1、2,已知斜面1与a 杆的夹角为60°,斜面2与a 杆的夹角为 30°.现将一小物块先后从斜面1、2的顶端(a 杆处)由静止释放,两次到达斜面底端(b 杆处)所用时间相等,若小物块与斜面1、2之间的动摩擦因数分别为μ1和μ2,则μ1μ2等于( )A .32B .33C .12D .13D [令a 、b 之间的水平距离为L ,当物体从斜面1运动时: L sin 60°=12()g sin 30°-μ1g cos 30°t 2物体在斜面2上运动时: 2L =12()g sin 60°-μ2g cos 60°t 2 联立解得: μ1μ2=13故D 正确,A 、B 、C 错误.]8.一个物体从空中由静止释放做匀加速运动,在t =2 s 的时间内下落了h =18 m ,已知物体的质量为4 kg ,g 取10 m/s 2,求:(1)物体加速度的大小; (2)物体受到的空气阻力的大小.解析 (1)物体下落时间t =2 s 时(物体未着地)下落高度h =12at 2代入数据解得a =9 m/s 2.(2)物体受重力和阻力,根据牛顿第二定律,有 mg -f =ma 解得f =4 N.答案 (1)9 m/s 2 (2)4 N9.如图所示,在竖直平面内建立直角坐标系xOy ,该平面内有AM 、BM 、CM 三条光滑固定轨道,其中A 、C 两点处于同一个圆上,C 是圆上任意一点,A 、M 分别为此圆与y 轴、x 轴的切点.B 点在y 轴上且∠BMO =60°,O ′为圆心.现将a 、b 、c 三个小球分别从A 、B 、C 点同时由静止释放,它们将沿轨道运动到M 点,如所用时间分别为t A 、t B 、t C ,则t A 、t B 、t C 的大小关系是( )A .t A <t C <tB B .t A =tC <t B C .t A =t C =t BD .由于C 点的位置不确定,无法比较时间大小关系B [在等时圆模型中,设圆上某条弦与水平方向的夹角为α,圆的直径为d ,则运动时间t =2x a=2d sin αg sin α=2dg.由此可知,运动时间与弦的倾角、长短无关.A 、C 在圆周上,B 点在圆周外,故t A =t C <t B .]10.某物理兴趣小组用频闪照相机测小球在竖直上拋过程中受到的空气阻力.将一质量为m 的小球靠近墙面竖直向上拋出,用频闪照相机记录了全过程,图甲和图乙分别是上升过程和下降过程的频闪照片,O 是运动的最高点.设小球所受阻力大小不变,则小球受到的阻力大小约为( )A .14mgB .13mgC .12mgD .mgC [设每块砖的厚度是d , 向上运动时:9d -3d =aT 2① 向下运动时:3d -d =a ′T 2② 联立①②得a a ′=31③ 根据牛顿第二定律,向上运动时:mg +f =ma ④ 向下运动时:mg -f =ma ′⑤ 联立③④⑤得f =12mg .]11.法国人劳伦特·菲舍尔在澳大利亚进行了超高空特技跳水表演,他从30 m 高的塔上跳下,假设他以5 m/s 的初速度竖直向下离开塔顶,并准确地落入水池中.已知:他在空气中运动时,空气对他的阻力是他的重力的15;落入水中后,水对他的阻力(包括浮力)是他的重力的3倍.试计算需要准备一个至少多深的水池.(菲舍尔可视为质点,g取10 m/s2)解析当菲舍尔在空气中运动时,受到重力和空气阻力的作用,由牛顿第二定律得mg -f=ma1,f=15mg解得加速度大小a1=8 m/s2.菲舍尔在空中向下运动的过程中,由运动学公式有v2-v20=2a1h1,解得到达水面时的速度大小v=505 m/s.菲舍尔在水中时,受到重力和水的阻力(包括浮力)的作用,由牛顿第二定律得f′-mg=ma2,f′=3mg解得加速度大小a2=20 m/s2.菲舍尔在水中向下运动的过程中,由运动学公式有v2=2a2h2,解得进入水下的深度为h2=12.625 m.故水池深度至少应为12.625 m.答案12.625 m12.某研究性学习小组利用力传感器研究小球与竖直挡板间的作用力,实验装置如图所示,已知斜面倾角为45°,光滑小球的质量m=3 kg,力传感器固定在竖直挡板上.求:(g 取10 m/s2)(1)当整个装置静止时,力传感器的示数;(2)当整个装置向右做匀加速直线运动时,力传感器示数为36 N,此时装置的加速度大小;(3)某次整个装置在水平方向做匀加速直线运动时,力传感器示数恰好为零,此时整个装置的运动方向如何?加速度为多大?解析(1)以小球为研究对象,设小球与力传感器静止时的作用力大小为F,小球与斜面间的作用力大小为F N,对小球受力分析如图所示,由几何关系可知:F=mg=3×10 N=30 N;(2)竖直方向F N cos 45°=mg;水平方向F′-F N sin 45°=ma;解得a=2 m/s2;(3)要使力传感器示数为零,则有:F N cos 45°=mg;F N sin 45°=ma′;解得a′=10 m/s2,方向向左.答案(1)30 N(2)2 m/s2(3)方向向左,加速度大小为10 m/s2。
物理牛顿运动定律练习题含答案及解析
物理牛顿运动定律练习题含答案及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
(物理)物理牛顿运动定律的应用练习题含答案及解析
(物理)物理牛顿运动定律的应用练习题含答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,钉子A 、B 相距5l ,处于同一高度.细线的一端系有质量为M 的小物块,另一端绕过A 固定于B .质量为m 的小球固定在细线上C 点,B 、C 间的线长为3l .用手竖直向下拉住小球,使小球和物块都静止,此时BC 与水平方向的夹角为53°.松手后,小球运动到与A 、B 相同高度时的速度恰好为零,然后向下运动.忽略一切摩擦,重力加速度为g ,取sin53°=0.8,cos53°=0.6.求:(1)小球受到手的拉力大小F ; (2)物块和小球的质量之比M :m ;(3)小球向下运动到最低点时,物块M 所受的拉力大小T【答案】(1)53F Mg mg =- (2)65M m = (3)()85mMg T m M =+(4855T mg =或811T Mg =) 【解析】 【分析】 【详解】 (1)设小球受AC 、BC 的拉力分别为F 1、F 2 F 1sin53°=F 2cos53° F +mg =F 1cos53°+ F 2sin53°且F 1=Mg 解得53F Mg mg =- (2)小球运动到与A 、B 相同高度过程中 小球上升高度h 1=3l sin53°,物块下降高度h 2=2l 机械能守恒定律mgh 1=Mgh 2 解得65M m = (3)根据机械能守恒定律,小球回到起始点.设此时AC 方向的加速度大小为a ,重物受到的拉力为T牛顿运动定律Mg –T =Ma 小球受AC 的拉力T ′=T 牛顿运动定律T ′–mg cos53°=ma解得85mMg T m M =+()(4885511T mg T Mg ==或) 【点睛】本题考查力的平衡、机械能守恒定律和牛顿第二定律.解答第(1)时,要先受力分析,建立竖直方向和水平方向的直角坐标系,再根据力的平衡条件列式求解;解答第(2)时,根据初、末状态的特点和运动过程,应用机械能守恒定律求解,要注意利用几何关系求出小球上升的高度与物块下降的高度;解答第(3)时,要注意运动过程分析,弄清小球加速度和物块加速度之间的关系,因小球下落过程做的是圆周运动,当小球运动到最低点时速度刚好为零,所以小球沿AC方向的加速度(切向加速度)与物块竖直向下加速度大小相等.2.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m,质量M=0.5kg的薄木板,木板的最右端叠放质量为m=0.3kg的小木块.对木板施加一沿传送带向上的恒力F,同时让传送带逆时针转动,运行速度v=1.0m/s。
高中物理牛顿运动定律的应用选择题专题训练含答案
高中物理牛顿运动定律的应用选择题专题训练含答案姓名:__________ 班级:__________考号:__________一、选择题(共30题)1、物体在粗糙的水平面上运动,其位移-时间图线如图所示,已知物体沿运动方向受到恒定的拉力为F,物体在运动过程中受的滑动摩擦力为f,由图线可知二力的关系为A.F>f B.F=fC.F<f D.F与f方向可能相同2、如图,在水平面上的箱子内,带异种电荷的小球a、b用绝缘细线分别系于上、下两边,处于静止状态。
地面受到的压力为,球b所受细线的拉力为。
剪断连接球b的细线后,在球b上升过程中地面受到的压力(A)小于(B)等于(C)等于(D)大于3、一有固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连.小球某时刻正处于如图所示状态.设斜面对小球的支持力为N,细绳对小球的拉力为T,关于此时刻小球的受力情况,下列说法正确的 ( )A.若小车向左运动,N可能为零B.若小车向左运动,T可能为零C.若小车向右运动,N不可能为D.若小车向右运动,T不可能为零4、以下说法正确的是()A.经典力学理论普遍适用,大到天体,小到微观粒子均适用B.经典力学理论的成立具有一定的局限性C.在相对论中,物体的质量不随运动状态而改变D.相对论与量子力学否定了经典理论5、 2018年12月8日2时23分,中国在西昌卫星发射中心用长征三号乙运载火箭成功发射嫦娥四号探测器,开启了月球探测的新旅程。
若运载火箭在发射升空过程中,探测器先做加速运动,后做减速运动。
下列说法正确的是( )A.探测器在加速过程中惯性变大B.探测器先处于超重状态,后处于失重状态C.探测器先处于失重状态,后处于超重状态D.在加速过程,火箭对探测器的作用力大于探测器对火箭的作用力6、下列关于超重与失重的说法正确的是( )A.游泳运动员仰卧在水面静止不动时处于失重状态B.在超重现象中,物体的重力是增大的C.物体处于完全失重状态时,其重力一定为零D.如果物体处于失重状态,那么它必然有竖直向下的加速度(或加速度分量)7、(2019·长春市一模)如图所示,质量为m的木块A放在斜面体B上,对B施加一水平向左的推力F,使A、B保持相对静止向左做匀速直线运动,则B对A的作用力大小为(重力加速度为g)( )A.mgB.mgsin θC.mgcos θD.08、下列说法正确的是 ( )A.物体受到力的作用时,力克服了物体的惯性,使其产生了加速度B.人走在松软土地上下陷时具有向下的加速度,说明人对地面的压力大于地面对人的支持力C.物理公式既能确定物理量之间的数量关系,又能确定物理量间的单位关系D.对静止在光滑水平面上的物体施加一个水平力,当力刚作用的瞬间,加速度为零9、如图,将光滑长平板的下端置于铁架台水平底座上的挡板P 处,上部架在横杆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(物理)物理牛顿运动定律的应用练习题含答案一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M =2kg 的平板车静止在光滑的水平地面上,现有质量均为m =1kg 的小物块A 和B (均可视为质点),由车上P 处开始,A 以初速度=2m/s 向左运动,同时B 以=4m/s 向右运动,最终A 、B 两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B 离小车右端的距离;(2)从A 、B 开始运动计时,经t=6s 小车离原位置的距离。
【答案】(1)B 离右端距离(2)小车在6s 内向右走的总距离:【解析】(1)设最后达到共同速度v ,整个系统动量守恒,能量守恒解得:,A 离左端距离,运动到左端历时,在A 运动至左端前,木板静止,,解得B 离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a 向右加速:小车向右走位移接下来三个物体组成的系统以v 共同匀速运动了小车在6s 内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M 10.5kg =,Q 的质量m 1.5kg =,弹簧的质量不计,劲度系数k 800/N m =,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2s 内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g 210/)m s =【答案】max 168N F =min 72N F = 【解析】试题分析:由于重物向上做匀加速直线运动,故合外力不变,弹力减小,拉力增大,所以一开始有最小拉力,最后物体离开秤盘时有最大拉力 静止时由()M m g kX += 物体离开秤盘时212x at =()k X x mg ma --= max F Mg Ma -=以上各式代如数据联立解得max 168N F =该开始向上拉时有最小拉力则min ()()F kX M m g M m a +-+=+解得min 72N F =考点:牛顿第二定律的应用点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.3.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s 2,求:(1)物体第一次到达A 点时速度为多大?(2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大?(3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少? 【答案】(1)8m/s (2)6.4m (3)1.8m 【解析】 【分析】(1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;(2)当物体滑到传送带最左端速度为零时,AB 间的距离L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可. 【详解】(1)物体由光滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:212mgh mv =解得:8m/s v ==(2)当物体滑动到传送带最左端速度为零时,AB 间的距离L 最小,由动能能力得:2102mgL mv μ-=-解得:228m 6.4m 220.510v L g μ===⨯⨯ (3)因为滑上传送带的速度是8m/s 大于传送带的速度6m/s ,物体在到达A 点前速度与传送带相等,最后以6m/s v =带的速度冲上斜面,根据动能定理得:2102mgh mv '-=-带得:226m 1.8m 2210v h g '===⨯带【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题.4.如图所示,质量为m=5kg 的长木板B 放在水平地面上,在木板的最右端放一质量也为m=5kg 的物块A (可视为质点).木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2.=0.2,现用一水平力F=60N 作用在木板上,使木板由静止开始匀加速运动,经过t=1s ,撤去拉力,设物块与木板间的最大静摩擦力等于滑动摩擦力,210/g m s =,求:(1)拉力撤去时,木板的速度v B ;(2)要使物块不从木板上掉下,木板的长度L 至少为多大; (3)在满足(2)的条件下,物块最终将停在右端多远处.【答案】(1)V B =4m/s ;(2)L=1.2m ;(3)d=0.48m 【解析】【分析】对整体运用牛顿第二定律,求出加速度,判断物块与木板是否相对滑动,对物块和系统分别运用动量定理求出拉力撤去时,长木板的速度;从撤去拉力到达到共同速度过程,对物块和长木板分别运用动量定理求出撤去拉力后到达到共同速度的时间t 1,分别求出撤去拉力前后物块相对木板的位移,从而求出木板的长度对木板和物块,根据动能定理求出物块和木板的相对位移,再由几何关系求出最终停止的位置. (1)若相对滑动,对木板有:212B F mg mg ma μμ--⋅=,得:24/B a m s =对木块有2A mg ma μ=,22/A a m s =所以木块相对木板滑动撤去拉力时,木板的速度4/B B v a t m s ==,2/A A v a t m s == (2)撤去F 后,经时间t 2达到共同速度v ;由动量定理22B mgt mv mv μ=-22122B mgt mgt mv mv μμ--=-,可得20.2t s =,v=2.4m/s在撤掉F 之前,二者的相对位移11122B A v v x t t ∆=- 撤去F 之后,二者的相对位移22222B A v v v v x t t ++∆=- 木板长度12 1.2L x x m =∆+∆=(3)获得共同速度后,对木块,有22102A mgx mv μ-=-, 对木板有()2211202B mg mg x mv μμ-=- 二者的相对位移3A B x x x ∆=-木块最终离木板右端的距离1230.48d x x x m =∆+∆-∆=【点睛】本题综合性很强,涉及到物理学中重要考点,如牛顿第二定律、动能定理、动量定理、运动学公式,关键是明确木板和木块的运动规律和受力特点.5.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g =10m/s 2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出.【答案】(1),(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得对滑块,有,解得对平板车,有,解得.设经过t时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.6.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少?(取g=10m/s2).【答案】(1)2m/s2,0.5m/s2(2)1s,2m/s(3)2.1m【解析】【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可.【详解】(1) 根据牛顿第二定律可得小物块的加速度:m/s2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s小物块与小车相对静止,一起做加速运动且加速度:m/s2这0.5s内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.7.如图所示,水平传送带长为L=11.5m,以速度v=7.5m/s沿顺时针方向匀速转动.在传送带的A 端无初速释放一个质量为m =1kg 的滑块(可视为质点),在将滑块放到传送带的同时,对滑块施加一个大小为F =5N 、方向与水平面成θ=370的拉力,滑块与传送带间的动摩擦因数为μ=0.5,重力加速度大小为g =10m/s 2,sin37°=0.6,cos37°=0.8.求滑块从A 端运动到B 端的过程中:(1)滑块运动的时间;(2)滑块相对传送带滑过的路程. 【答案】(1)2s (2)4m 【解析】 【分析】(1)滑块滑上传送带后,先向左匀减速运动至速度为零,以后向右匀加速运动.根据牛顿第二定律可求得加速度,再根据速度公式可求出滑块刚滑上传送带时的速度以及速度相同时所用的时间; 再对共速之后的过程进行分析,明确滑块可能的运动情况,再由动力学公式即可求得滑块滑到B 端所用的时间,从而求出总时间.(2)先求出滑块相对传送带向左的位移,再求出滑块相对传送带向右的位移,即可求出滑块相对于传送带的位移. 【详解】(1)滑块与传送带达到共同速度前 , 设滑块加速度为1a ,由牛顿第二定律:()13737Fcos mg Fsin ma μ︒+-︒=解得:217.5/a m s =滑块与传送带达到共同速度的时间:111vt s a == 此过程中滑块向右运动的位移:11 3.752vs t m == 共速后 , 因 ()3737Fcos mg Fsin μ︒>-︒ ,滑块继续向右加速运动, 由牛顿第二定律:()23737Fcos mg Fsin ma μ︒--︒=解得:220.5/a m s =根据速度位移关系可得:()22212Bvv a L s -=- 滑块到达 B 端的速度:8/B v m s = 滑块从共速位置到 B 端所用的时间:221B v vt s a -== 滑块从 A 端到 B 端的时间:122t t t s =+=(2)0∼1s 内滑块相对传送带向左的位移:111 3.75s vt s m =-=V ,1s ∼2s 内滑块相对传送带向右的位移: ()2120.25s L s vt m =--=V, 0∼2s 内滑块相对传送带的路程: 124s s s m =+=V V V8.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。