模拟信号数字化传输系统的设计与仿真分析

合集下载

浅析模拟信号数字化研究及Simulink仿真技术

浅析模拟信号数字化研究及Simulink仿真技术
样值量化为N= 4 比特编码序列 。 S i mu l i n k 通信 库 中提供 了DP CM编码 解 码模 块 “ DP CM E n c o d e r ” 和 “ DP C M De c o d e r ” 。 DP C M解码模块的设置参数要和编码模块相对应 。其 输出为解码恢复信 号以及量化预测误差 。 DP C M编码模块 的输入为被编码的样值序列 ,输出为量化 电平序号 以 及 相应 的量化信号值 , 设置参数如下: 预测器 滤波分子分母系数响亮, 一般 采 用F I R滤波器, 分母系数设置为 1 , 分子系数可 由实例所示 的有 话方法进 行确定 ; 量化分割 电平集合 ; 量化输出电平集 合; 当给定被量化的样本信号 时, 可 以通过 函数a p c mo p t 来计算最优化 的预 测器抽 头系数, 最佳量化分割 电平 以及 最 佳 量化 输 出 电平 。 DP C M解码模块的设置参数要和编码模块相对应。其输 出为解码恢复 信 号以及量化预测误差 。DP CM编解码模 块的构成细节可以通过选 中模块 以鼠标右键打开内部子系统来观察, 其D P C M传输误码 与解码话音质量仿
3 . 1 构建测试模型及仿真 基 于上面 的原理构建一个DP C M编解码仿真系统。其 中预测器为5 阶 F I R滤波器 ,抽头系数设置为实例1 的计 算结果 ,被编码信 号为语音文件 “ GDGv o i c e 8 0 0 0 . ww” , 量化器采用均匀量化方式 , 将 卜1 , 1 ] 上的归一化信号
1引言
是: E[

】= .
』V I = 1
x , + , = 0… . , P代 入归一化 自相关 函
随着通信技术的发展, 数字通信成为主流技术 。 那模拟信源提供 的模拟 信号如何在数字通信系统中传输呢?模拟信号要想在数字通信系统进行传

AM模拟调制系统的设计与仿真

AM模拟调制系统的设计与仿真

AM模拟调制系统的设计与仿真AM调制是一种将基带信号调制到载频上的调制技术,广泛应用于无线电通信、广播电视、音频传输等领域。

本文将介绍AM模拟调制系统的设计与仿真。

AM调制系统主要由三个部分组成:基带信号产生器、载波信号产生器和调制器。

基带信号产生器用于产生模拟调制信号,载波信号产生器用于产生载波信号,调制器将基带信号和载波信号进行调制。

通过仿真可以验证系统的正确性和性能。

首先,需要设计基带信号产生器。

基带信号可以是音频信号、语音信号或其他需要传输的信号。

可以使用软件工具如MATLAB来产生基带信号,也可以使用硬件电路如函数发生器来产生基带信号。

其次,设计载波信号产生器。

载波信号通常是一个高频正弦波信号,频率根据具体应用需求决定。

可以使用软件工具如MATLAB来产生载波信号,也可以使用硬件电路如震荡器来产生载波信号。

最后,设计调制器。

调制器主要是将基带信号和载波信号进行调制,实现信号的叠加。

调制器可以使用模拟电路如放大器和混频器来实现,也可以使用数字电路如FPGA来实现。

在调制过程中,可以选择不同的调制方式,如DSB-SC调制、SSB调制或VSB调制,根据需求选择适合的调制方式。

设计完整的调制系统后,可以进行系统的仿真。

仿真可以使用软件工具如MATLAB、Simulink或Multisim等来实现。

通过输入不同的基带信号,观察经过调制后的信号,检查是否满足要求。

可以使用示波器来显示信号的时域和频域特性,分析调制效果和系统性能。

在进行系统仿真时,可以对系统的不同参数进行调整和优化,如基带信号的频谱、带宽、载波信号的频率、调制指数等。

通过调整参数,可以优化系统性能,提高信号的质量和传输效果。

在设计和仿真过程中,需要考虑系统的线性度、功率效率、频率响应等指标。

根据具体应用需求,可以对系统进行优化和改进。

总之,AM模拟调制系统的设计与仿真是一个综合性的工程项目,需要综合考虑基带信号产生器、载波信号产生器和调制器的设计与实现。

DSB调制解调系统设计与仿真通信原理

DSB调制解调系统设计与仿真通信原理

DSB调制解调系统设计与仿真通信原理概述:DSB调制解调系统是一种常用的调制解调技术,用于在通信系统中传输模拟信号。

本文将详细介绍DSB调制解调系统的设计原理和仿真方法,包括调制器和解调器的设计流程、相关参数的计算和仿真结果分析。

一、DSB调制器设计原理:1. 调制器功能:DSB调制器用于将基带模拟信号调制为高频信号,实现信号的传输。

其主要功能包括信号的频带变换、频谱的移频和功率的放大。

2. 调制器设计流程:(1)信号采样和量化:从模拟信号源中采样并将其转换为数字信号,以便进行后续处理。

(2)滤波器设计:设计低通滤波器对信号进行滤波,去除高频噪声和不必要的频谱成分。

(3)频带变换:使用频率乘法器将信号的频带变换到较高的频率范围,以便进行高频传输。

(4)功率放大:使用功率放大器将信号的幅度放大,以增加传输距离和抵抗噪声干扰。

3. 调制器参数计算:(1)采样率:根据信号的最高频率成分,选择适当的采样率,以避免采样失真和混叠现象。

(2)滤波器截止频率:根据信号的带宽和滤波器的设计要求,计算滤波器的截止频率。

(3)频率乘法器的倍频系数:根据需要将信号的频带变换到较高的频率范围,选择适当的倍频系数。

(4)功率放大器的放大倍数:根据传输距离和接收端的灵敏度要求,计算功率放大器的放大倍数。

4. 调制器仿真分析:使用MATLAB或其他仿真工具,搭建DSB调制器的仿真模型,并进行以下分析:(1)时域波形分析:观察信号在调制器各个模块中的时域波形变化,检查是否存在失真现象。

(2)频谱分析:计算信号在调制器输出端的频谱,验证频带变换和滤波器设计的效果。

(3)功率分析:计算信号在调制器输出端的功率,验证功率放大器的放大效果。

(4)误码率分析:通过引入噪声信号,计算解调器输出信号的误码率,评估系统的性能。

二、DSB解调器设计原理:1. 解调器功能:DSB解调器用于将接收到的高频信号解调为基带模拟信号,实现信号的恢复和处理。

数字模拟混合设计及其仿真

数字模拟混合设计及其仿真

数字模拟混合设计及仿真数模混合电路的设计,一直是硬件电路设计中性能提高的瓶颈。

众所周知,现实的世界都是模拟的,如果将模拟的信号转变成数字信号,可以方便的做进一步的处理。

模拟信号和数字信号的转变是否实时、精确,是电路设计的重要指标。

除了器件工艺,算法的进步会影响系统数模变换的精度外,实际工作环境中的众多干扰,噪声也是影响数模电路性能的主要因素。

在使用计算机来进行仿真时,选择合适电路设计的仿真方式会使该问题得到一定的解决,一般情况下的仿真多是解决线性、连续工作的稳态电路。

也有既可解决线性电路,也适合非线性电路;既可解决模拟电路,也适合数字电路;既可解决连续状态工作问题,也适合不连续状态工作的问题;既可解决连续稳定工作电路,也适合开关调节的启动工作电路。

总之,电气工程电路均可仿真。

仿真时,要读取电路中任何一点电流、任何两点间的电压都很容易,还可以进行频率响应、频谱分析、温度分析、参数变化分析、蒙特卡罗分析、最坏情况分析、噪声分析等等。

可以说,后面几种分析在面包板实验中是无法模拟进行的,加之,仿真软件是在计算机上运行,所以有使用方便、简单的优点。

数字模拟混合设计的特点1. 数模混合设计中的困难点1.1 数模混合电路设计当中,如何来分辨干扰源、干扰对象和干扰的路径是相当重要的,这是分析数模混合设计干扰的基础。

通常的电路中,模拟信号上由于存在随时间变化的连续变化的电压和电流有效成分,在设计和调试过程中,需要同时控制这两个变量,而且他们对于外部的干扰尤其敏感,因而通常作为被干扰对象做分析;数字信号上只有随时间变化的门限量化后的电压成分,相比模拟信号对干扰有较高的承受能力,但是这类信号变化快,特别是上升下降沿速度快,尤其是一些高速信号,一般上升下降沿在几百纳秒的级别,并且同时还伴随有较高的高频谐波成分,对外释放能量,通常作为干扰源。

t/ = t7(r)模拟电路r 数字电路7 = J⑴图1模拟电路和数字电路的信号一般的干扰源分为电压型干扰源和电流型干扰源。

PCM(脉冲编码调制)介绍及PCM编码的原理 毕业论文---PCM量化13折线

PCM(脉冲编码调制)介绍及PCM编码的原理  毕业论文---PCM量化13折线

PCM(脉冲编码调制)介绍及PCM编码的原理摘要在数字通信信道中传输的信号是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。

另外,还可以存储,时间标度变换,复杂计算处理等。

而模拟信号数字化属信源编码范围,当然信源编码还包括并/串转换、加密和数据压缩。

这里重点讨论模拟信号数字化的基本方法——脉冲编码调制,而模拟信号数字化的过程(得到数字信号)一般分三步:抽样、量化和编码。

本文讲述了PCM(脉冲编码调制)的简单介绍,以及PCM编码的原理,并分别对PCM的各个过程,如基带抽样、带通抽样、13折线量化、PCM编码以及PCM 译码进行了详细的论述,并对各过程在MATLAB7.0上进行仿真,通过仿真结果,对语音信号的均匀量化以及非均匀量化进行比较,我们得出非均匀量化教均匀量化更加有优势。

关键词:脉冲编码调制抽样非均匀量化编码译码AbstractIn the digital communication channel signal is digital signal transmission, digital transmission with the microelectronics and computer technology, its advantages become increasingly evident, the advantage of strong anti-interference, distortion, transmission characteristics of stable, long-distance relay is not the accumulation of noise Can also be effective encoding, decoding and security codes to improve the effectiveness of communications systems, reliability and confidentiality.Digitized analog signal range of source coding is, of course, also include the source code and / serial conversion, encryption and data compression. This focus on the simulation of the basic methods of digital signals - pulse code modulation, while the analog signal the digital process (to get digital signals) generally three steps: sampling, quantization and coding.This paper describes the PCM (pulse code modulation) in a brief introduction, and the PCM coding theory, and were all on the PCM process, such as baseband sampling, bandpass sampling, 13 line quantization, PCM encoding and decoding PCM a detailed Are discussed and the process is simulated on MATLAB7.0, the simulation results, the uniformity of the speech signal quantification and comparison of non-uniform quantization, we have come to teach non-uniform quantization advantage of more than uniform quantizationKeywords:Pulse Code Modulation Sampling Non-uniform quantization Coding Decoding目录1 前言 (1)2 PCM原理 (2)2.1 引言 (2)2.2 抽样(Sampling) (3)2.2.1. 低通模拟信号的抽样定理 (3)2.2.2 抽样定理 (4)2.2.3. 带通模拟信号的抽样定理 (7)2.3 量化(Quantizing) (8)2.3.1 量化原理 (8)2.3.2均匀量化 (10)2.3.3 非均匀量化 (11)2.4 编码(Coding) (18)2.5 译码 (24)2.6 PCM处理过程的其他步骤 (26)2.7 PCM系统中噪声的影响 (27)3 算例分析 (29)3.1 无噪声干扰时PCM编码 (30)3.2 噪声干扰下的PCM编码 (36)结论 (42)致谢 (43)参考文献 (44)附录 (45)1 前言数字通信系统中信道中传输的是数字信号,数字传输随着微电子技术和计算机技术的发展,其优越性日益明显,优点是抗干扰强、失真小、传输特性稳定、远距离中继噪声不积累、还可以有效编码、译码和保密编码来提高通信系统的有效性,可靠性和保密性。

基于MATLAB的模拟信号数字化系统的研究与仿真

基于MATLAB的模拟信号数字化系统的研究与仿真
所谓脉冲编码调制:就是将模拟信号的抽样量化值转换成二进制码组的过程。下图给 出了脉冲编码调制的示意图。
脉冲编码调制(PCM)原理:
图 1-9 脉冲编码调制示意图
PCM 系统的原理方框图如下图所示,同种,输入的模拟信号 m(t)经抽样、量化、
编码后变换成数字信号,经心道传送到接收端的译码器,由译码器还原出抽样值,再经过
定理内容:抽样定理在时域上可以表述为:对于一个频带限制在(0,fH)Hz 内的时间 连续信号 f(t),如果以 Ts≤1/(2fH)秒间隔对其进行等间隔抽样,则 f(t)将被所得到的 抽样值完全确定。模拟信号的抽样过程如下图。
图 1-2 模拟信号抽样的过程示意图
下图分析可知模拟信号抽样过程中各个信号的波形与频谱。
模拟信号数字化系统的研究与仿真
5
通信原理课程设计
图 1-4 两种情况下的抽样信号频谱分析
应该注意的一点是:抽样频率并不是越高越好。只要能满足抽样频率大于奈奎斯特频 率,并留有一定的防卫带即可。
1.1.2 带通信号的抽样定理
实际中遇到的许多信号时带通型信号,模拟信号的频道限制在 fL~fH 之间,fL 为信号 最低频率,fH 为最高频率。而且当 fH>B,其中 B=fH-fL 时,该信号通常被成为带通型信号, 其中 B 为带通信号的频带。
对于带通信号,如果采用低通抽样定理的抽样速率 fs≥2fh,对频率限制在 fL 与 fH 之间 的带通型信号抽样,肯定能满足频谱不混叠的要求,如图所示。
模拟信号数字化系统的研究与仿真
6
通信原理课程设计
图 1-5 带通信号的抽样频谱
定理内容:一个带通信号 f(t),其频率限制在 fL 与 fH 之间,带宽为 B=fh-fl,如果 最小抽样速率 fs=2fh/n,n 是一个不超过 fh/B 的最大整数,那么 f(t)就可以完全由抽 样值确定。 下面两种情况说明:

(完整word版)数字通信系统的设计与仿真

(完整word版)数字通信系统的设计与仿真

数字通信系统的设计与仿真摘要:数字通信系统是数字传输的过程,模拟信号到达接收端必须先将模拟信号转换成数字信号,数字信号在信道中传输会有损耗,因此合理的采用信道的编/译码和调制、解调是十分重要的,本实验采用systemview 进行仿真.关键字:眼图、误码率、调制、解调.1数字通信系统模型与原理1.1数字通信系统模型数字通信系统是利用数字信号来传递信息的通信系统,如图1所示.图1数字通信系统模型1.1.1 信源编码与译码信源编码有两个基本功能:一是提高信息传输的有效性,即通过某种数据压缩技术设计减少码元数目和降低码元速率.二是完成模/数(A/D)转换,即当信息源给出的是模拟信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输.信源译码是信源编码的逆过程.1.1.2 信道编码与译码信道编码的目的是增强数字信号的抗干扰能力.数字信号在信道传输时受到噪声等影响后将会引起差错.为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分,组成所谓“抗干扰编码”.接收端的信道译码器按相应的规则进行解码,从中发现错误或纠正错误,提高通信系统的可靠性.1.1.3 加密与解密在需要实现保密通信的场合,为了保证所穿信息的安全,认为地将被传输的数字序列扰乱,即加上密码,这种处理过程叫加密.在接收端利用与发送端相同的密码复制品对收到的数字序列进行解密,恢复原来信息.1.1.4 数字调制与解调数字调制就是把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号.基带的数字调制方式有振幅键控(ASK)、频移键控(FSK)、绝对相移键控、相对相移键控(DPSK).在接收端可以采用相干解调或非相干解调还原数字基带信号.对高斯噪声下的信号检测,一般用相关器或匹配滤波器来实现.1.1.5 同步同步是使收发两端的信号在时间上保持步调一致,是保证数字通信系统有序、准确、可靠工作的前提条件.按照同步的公用不同,分为载波同步、位同步、群同步和网同步.数字通信的主要特点(1) 抗干扰能力强,尤其是数字信号通过中继再生后可消除噪声积累(2) 数字信号通过差错控制编码,可提高通信的可靠性.(3) 由于数字通信传输一般采用二进制码,所以可使用计算机对数字信号进行处理,实现复杂的远距离大规模自动控制系统和自动数据处理系统,实现以计算机为中心的通信网.(4) 在数字通信中,各种消息(模拟的和离散的)都可变成统一的数字信号进行传输.在系统对数字信号传输情况的监视信号、控制信号及业务信号都可采用数字信号.数字传输和数字交换技术结合起来组成的ISDN 对于来自不同信源的信号自动地进行变换、综合、传输、处理、存储和分离,实现各种综合业务.(5) 数字信号易于加密处理,所以数字通信保密性强.数字通信的缺点是比模拟信号占带宽,然而,由于毫米波和光纤通信的出现,带宽已不成问题.2 系统的设计过程为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配.这种用数字基带信号控制载波,把数字基带信号变换为数字带同信号的过程称为数字调制.在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调.通常把包括调制和解调过程的数字传输系统叫做数字带通传输系统.一般来说,数字调制与模拟调制技术有的方法:把数字基带信号当作模拟信号的特殊情况处理;是利用数字信号的离散取值特点通过开关键控载波,2.1 信源编码模拟信号转换成数字信号包括三个步骤:抽样,量化,编码.(1) 抽样:把模拟信号在时间上离散化,变换为模拟抽样信号.(2) 量化:将抽样信号在幅度上离散化,变换成量化信号.(3) 编码:用二进制码元来表示有限的量化电平.抽样定理指出:设一个连续模拟信号m(t)中的最高频率〈f h ,则以间隔时间T〈1/2f h的周期性冲激脉冲对它抽样时,m(t)将被这些抽样值所完全确定.由于抽样时间间隔相等,所以此定理又称均匀抽样定理.例如模拟信号的最高频率为10hz,则采样频率为30hz.2.2 信道格雷码的编/译码数字信号在传输过程中,由于受到干扰的影响,码元波形将变坏,,接收端收到后可能发生错误判决,故采用GRAY编\译码方式来进行差错控制. 格雷码的编码和译码设备都不太复杂,而且检错的能力较强.格雷码除了具有线性码的一般性质外,还具有循环性.循环性是指任一码组循环一位(即将最右端的一个码元移至左端,或反之)后,仍为该码中的一个码组.2.3 2FSK信号的调制与非相干解调2.3.1 调制原理键控法:在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率进行选通,使其在每一个码元T s 期间输出 f1或f0两个载波之一, 图2所示.键控法产生的2FSK信号,是由于电子开关在两个独立的频率源之间转换形成,故相邻码元之间的相位不一定连续. 2FSK信号可以看成两个ASK的相加,图3所示.图2 键控法产生2FSK 信号的原理图图3 相位连续的2FSK 信号波形2.3.2 2FSK 信号的非相干解调2FSK 的非相干解调:其原理是将2FSK 信号分解为上下两路2ASK 信号分别进行解调,然后进行判决.这里的抽样判决是直接比较两路信号抽样值的大小,可以不专门设置门限.判决规则应与调制规则相呼应,调制时若规定“1”符号对应载波频率w 1,则接收时上支路的样值较大,应判为“1”;反之则判为“0”.2FSK 信号的非相干解调方框图如图4所示,其可视为由两路2ASK 解调电路组成.这里,两个带通滤波器(带宽相同,皆为相应的2ASk 信号带宽;中心频率不同,分别为w 1、w 2 起分路作用,用以分开两路2ASK 信号. 振荡器f 1选通开关 反相器 想加器 振荡器f 2 选通开关基带信号 2FSK 信号图4 2FSK信号非相干解调方框图2.4 模拟FIR滤波器的设计通过选择菜单上的”Filter/Analog”按扭,可以设计五种模拟滤波器.它们是:巴特沃斯,巴赛尔,切比契夫,椭圆,线性相位.这些滤波器可以是低通、高通或带通,所选滤波器的一般形状由滤波器的类型决定,需要输入的数据是滤波器的极点数、-3db带通或截止频率、相位纹波系数、增益等参数,按”finish”完成设计.低通滤波器:去掉信号中不必要的高频成分,降低采样频率,避免频率混淆,去掉高频干扰.带通滤波器:高通滤波器同低通滤波器的组合.对滤波器而言,所有频率都应是采样速率的分数,即相对的百分比系数.例如,系统的采样速率为1MHZ,所涉及的FIR低通滤波器的截止频率为50KH Z,则滤波器涉及窗口输入的截止频率为0.05(50KH Z/1MH Z),如果在滤波器前面连接的是抽样器或采样器的图符,则这些图符的频率也必须是滤波器采样速率的分数. 2.5 眼图分析眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形.观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”.从“眼图”上可以观察出码间串扰和噪声的影响,从而估计系统优劣程度.另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能.眼图的“眼睛” 张开的大小反映着码间串扰的强弱.“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清.若同时存在码间串扰,“眼睛”将张开得更小.与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正.噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正.眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱,有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰.(1) 最佳抽样时刻应在“眼睛” 张开最大的时刻.(2) 对定时误差的灵敏度可由眼图斜边的斜率决定.斜率越大,对定时误差就越灵敏. 在抽样.(3) 时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变.眼图中央的横轴位置应对应判决门限电平.(4) 在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决.(5) 对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响.2.6 误码率分析对于二进制双极性信号,假设它在抽样时刻的点平取值为+A或-A(分别对应信码“1或“0”),在-A 和+A之间选择一个适当的电平V d作为判决门限,根据判决准则将会出现以下几种情况:(1) 对“1”码:当X>V d,判为“1”码(正确);当X<V d,判为“0”码(错误).(2) 对“0”码:当X<V d,判为“0”码(正确);当X>V d,判为“1”码(错误).假设信源发送“1”码的概率为P(1),发送“0”码的概率为P(0),则二进制基带传输系统的总误码率Pe= P(1) P(0/1)+ P(0) P(1/0) 其中P(0/1)= P(X<V d),P(1/0) = P(X>V d)3参数的设定(1)模拟信源:正弦函数,频率fs=10hz,幅度A=1V;。

基于Muhisim的信号抽样与恢复仿真设计与分析

基于Muhisim的信号抽样与恢复仿真设计与分析
SHI Ba n g l i , ZHANG Ro ng q i n g , CHEN Xi n g a n g ( 1 . C o l l e g e o f E l e c t r o n i c s a n d A u t o ma t i o n ,C h o n g q i n g Un i v e r s i t y o f T e c h n o l o g y ,C h o n g q i n g 4 0 0 0 5 4,C h i n a ; 2 . B a s h u S e n i o r H i s h S c h o o l i n C h o n g q i n g ,C h o n g q i n g 4 0 0 0 0 0,C h i n a )
第 1 1 卷
第 4期
实验科学与技术
Ex pe r i me n t S c i e nc e a n d Te c h no l o g y
V0 1 .1 1 No . 4 Aug . 2 01 3
2 0 1 3年 8月
基于 M u h i s i m 的信 号 抽 样 与 恢 复 仿 真 设 计 与 分 析
抽样定理是模拟信号数字化传输 的理论基础 ,是
元器件数据库和与实物十分接近的仪器库 ,以及强
大 的分析 功能 ,还 可在 电路 中设置 人为故 障 ,如开 路 、短路 及 不 同 程 度 的漏 电 ,观 察 电 路 的不 同状 态 ,以加深对 基 本 概 念 的 理 解 J 。 文 中所 有 仿 真
结果 均 用 M u l t d r e c o v e r y h a s b e e n c a r r i e d - o u t b y u s i n g Mu h i s i m s y n t h e t i c a l l y . T h e r e s u l t i s c o i n c i d e n t w i t h t h e a n ly a s i s o f t h e c i r c u i t i n t e a c h i n g

数字基带传输系统的MATLAB仿真实现

数字基带传输系统的MATLAB仿真实现

通信工程专业综合设计报告(仿真部分)内容:数字基带传输系统的MATLAB仿真实现2PSK的调制、信道模拟、判决及解调班级:通信08-1学号:姓名:指导教师:仿真成绩:同组人姓名:内蒙古工业大学课程设计任务书课程名称:现代通信网络课程设计学院:信息工程学院班级:通信08-1班学生姓名:贾美玲学号: 200810204020 _ 指导教师:黎玉玲一、题目数字基带/频带通信系统设计二、目的与意义‘“数字基带/频带通信系统设计”是针对通信专业学生的实践教学环节,通过设计,要求学生利用所学专业知识和软件、硬件工具,掌握通信系统的分析、设计、仿真及调试技巧,深入理解通信系统的基本组成,扩张专业背景知识,培养工程技能和实际操作能力。

三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等)1.系统软件仿真:通过MATLAB编程对典型通信系统(如数字基带传输系统和数字频带传输系统)的各组成部分进行建模和仿真分析,实现通信系统仿真。

2.系统硬件设计:基于通信原理实验平台,按照系统设计方案,搭建硬件调试电路,实现通信系统的硬件设计与调试。

3.分析结果,完成报告:分析比较软件仿真结果与硬件调试结果,完成设计报告。

四、工作内容、进度安排1.查阅资料:搜集通信系统相关资料,熟悉通信系统相关内容(1天)2.方案选择与设计:根据要求选择通信系统设计方案,定义各模块仿真函数,确定所使用的硬件电路板,写出硬件设计思想与步骤。

(1天)3.子模块实现:利用MATLAB仿真语言编写模块函数,仿真实现各模块功能,搭建硬件电路调试。

(5天)4.系统实现:将各子模块连接,调试主程序实现系统功能,完成硬件调试。

(2天)5.考试与设计报告撰写:完成课程设计考试,整理设计资料及内容,撰写设计报告。

(1天)五、主要参考文献1、《基于MATLAB的通信系统仿真》,赵静等,北京航空航天大学出版社。

3、《通信原理》,樊昌信等,国防工业出版社。

审核意见系(教研室)主任(签字)指导教师下达时间年月日指导教师签字:_______________一、设计内容:数字频带传输系统的MATLAB仿真实现[1]个人部分:2PSK的调制、信道模拟、抽样判决及解调1、2PSK的调制基本任务:原始PCM脉冲编码信号的2PSK调制1)、主要步骤和要求:对原始的PCM脉冲编码信号进行2PSK调制。

模拟信号数字化传输系统的建模与分析

模拟信号数字化传输系统的建模与分析

模拟信号数字化传输系统的建模和分析涉及到将连续的模拟信号转换为离散的数字信号,并进行传输和恢复的过程。

以下是一个常见的模拟信号数字化传输系统的建模和分析步骤:
1. 采样:使用采样器以一定的时间间隔对模拟信号进行采样,将连续的模拟信号转换为离散的样本值。

采样频率需要满足奈奎斯特采样定理,即采样频率要大于信号最高频率的两倍。

2. 量化:采样后,使用量化器将每个采样值映射为离散的数字数值。

量化器将连续的采样值近似为有限个离散的数值级别,这个过程引入了量化误差,决定了数字信号的精度。

3. 编码:对量化后的数字信号进行编码,将其转换为二进制形式,便于传输和存储。

常见的编码方式有二进制编码、格雷码等。

4. 信道传输:将编码后的数字信号通过信道进行传输。

在传输过程中,信号可能会受到噪声、失真和干扰等影响,导致信号质量下降。

5. 解码:在接收端,对传输过程中的数字信号进行解码,恢复为经过量化和编码前的数字信号。

6. 重构:解码后的数字信号经过一个重构滤波器进行重构,以去除
量化误差,并还原为连续的模拟信号。

7. 分析与评估:对传输系统的性能进行分析和评估,包括信号失真度、信噪比、位错误率等指标的计算和评估。

可以通过信道容量、传输延迟等指标来评估系统的效率和可靠性。

在模拟信号数字化传输系统的建模和分析过程中,需要考虑信号的采样率、量化精度、编码方式、信道特性、解码算法等参数的选择和优化,以及信号处理算法的设计和实现。

这些步骤和参数的选择会影响到数字信号的质量和传输系统的性能。

QAM传输系统的设计与实现

QAM传输系统的设计与实现

谢谢大家!
祝大家新年快乐!
qam调制解调技术在数字通信领域的应用优势以wcdmacdma2000和tdscdma为代表的第三代移动通信网络除了支持传统的话音业务以外还推出了大容量的宽带数据服务与以gsmcdma1595标准为代表的第二代移动通信系统相比在技术上3g系统的上下行速率理论上可以达到2mbits左右的水平它可以提供包括视频在内的各种多媒体宽带应用服务诸如下载或流媒体类业务需要系统提供更高的传输速率和更多的延迟
QAM调制解调技术在数字通信领域的应用优势
以WCDMA、CDMA2000和TD-SCDMA为代表的第三代移动通信网络除了支持传统的话音 业务以外,还推出了大容量的宽带数据服务,与以GSM、CDMA1595标准为代表的第二代移动 通信系统相比,在技术上,3G系统的上下行速率理论上可以达到2Mbit/s左右的水平,它可以提 供包括视频在内的各种多媒体宽带应用服务,诸如下载或流媒体类业务,需要系统提供更高的 传输速率和更多的延迟。为了满足此要求,WCDMA对空口接口作了改进,引入了HSDPA技术, 使之可支持高达10Mbit/s的峰值速率。在HSDPA系统中引进了AMC技术,在HSDPA系统中 AMC的调制选择了低阶的QPSK和高阶的16QAM,作为其调制方式。同样,作为宽带无线接入 技术,韩国引入了WIBro技术,它可采用三种调制方式,包括QPSK、16QAM、64QAM等。而 目前作为中国国内唯一拥有自主知识产权的高速率无线宽带接入技术—McWiLL,McWiLL终端 接入设备CPE亦采用QPSK/8PSK/QAM16/QAM64自适应调制技术。IEEE802.16a标准即 WiMAX有很强的的市场竞争力,真正成为城域网的无线接入手段。为了抵抗多径效应等, WIMAX协议中引入了新的物理层技术,而WiMAX协议物理层的OFDM符号的构造方案亦采用 QAM调制方式[4-5]。 移动通信系统中的另一研究热点即数字集群移动通信系统,也采用QAM数字调制技术[4-5]。与 频率调制MSK、GMSK,相位调制OQPSK、π/4-QPSK等相比, QAM是一种相位和振幅联合 控制的数字调制技术。它不仅可以得到更高的频谱效率,而且可以在限定的频带内传输更高速 率的数据。 在数字广播电视传输中,QAM成为DVB-C系统标准的调制方式。QAM除了是 DOCSISl.1标准 中规定的调制方式之外,而且成为现代CATV双向网、宽带接入技术ADSL、VADSL中规定的调 制方式[4-5]。

通信原理实验二 ZSTU

通信原理实验二 ZSTU

通信原理实验二:模拟信号数字化传输系统的建模与分析信息电子学院一.实验目的1. 进一步掌握 Simulink 软件使用的基本方法;2. 熟悉信号的压缩扩张;3. 熟悉信号的量化;4. 熟悉PCM 编码与解码。

二.实验仪器带有MATLAB 和SIMULINK 开发平台的微机三.实验原理3.1 信号的压缩和扩张非均匀量化等价为对输入信号进行动态范围压缩后再进行均匀量化。

中国和欧洲的PCM 数字电话系统采用A 律压扩方式,美国和日本则采用μ律方式。

设归一化的话音输入信号为[1,1]x ∈-,则A 律压缩器的输出信号y 是:()11ln sgn 1(1ln )11ln Ax x A A y x A x x A A ⎧≤⎪+⎪=⎨⎪+<≤⎪⎩+其中,sgn(x) 为符号函数。

A 律PCM 数字电话系统国际标准中,参数A=87.6。

Simulink 通信库中提供了“A-Law Compressor ”、“A-Law Expander ”以及“Mu-Law Compressor ”和“Mu-Law Expander ”来实现A 律和Ö 律压缩扩张计算。

压缩系数为87.6的A 律压缩扩张曲线可以用折线来近似。

16段折线点坐标是111111*********,,,,,,,,0,,,,,,,,1248163264128128643216842765432112345671,,,,,,,,0,,,,,,,,188888888888888x y ⎡⎤=--------⎢⎥⎣⎦⎡⎤=--------⎢⎥⎣⎦其中靠近原点的4段折线的斜率相等,可视为一段,因此总折线数为13段,故称13段折线近似。

用Simulink 中的“Look-Up Table ”查表模块可以实现对13段折线近似的压缩扩张计算的建模,其中,压缩模块的输入值向量设置为[-1,-1/2,-1/4,-1/8,-1/16,-1/32,-1/64,-1/128,0,1/128,1/64,1/32,1/16,1/8,1/4,1/2,1]输出值向量设置为[-1:1/8:1]扩张模块的设置与压缩模块相反。

面向5G通信系统的无线信道建模与仿真性能分析

面向5G通信系统的无线信道建模与仿真性能分析

面向5G通信系统的无线信道建模与仿真性能分析随着技术的不断发展,5G通信系统已经成为了当前的热门话题。

然而,在5G通信系统中,无线信道的建模与仿真性能分析是一个至关重要的领域。

本文将探讨面向5G通信系统的无线信道建模与仿真性能分析的相关内容。

首先,我们来介绍一下无线信道建模的概念。

无线信道是指无线通信中传输信号的媒介,其质量直接影响到通信系统的性能。

因此,准确地对无线信道进行建模是非常重要的。

在5G通信系统中,由于采用了更高频率的毫米波通信,信道传输特性变得更加复杂。

因此,建模工作必须考虑到这些特殊情况,以更好地反映实际通信环境。

无线信道建模方法主要分为统计方法和物理方法两种。

统计方法是通过采集实际信道数据并进行统计分析,从而得到信道模型。

物理方法则是基于无线传播理论,通过数学建模和仿真,对信道进行建模。

这两种方法各有优劣,可以根据具体需求选择合适的方法。

在5G通信系统中,传统的统计方法可能不再适用。

由于毫米波通信的特殊性,传统的统计方法很难获得足够的数据进行分析。

因此,物理方法在5G通信系统中的应用显得更加重要。

物理方法可以通过数学模型和仿真工具,准确地预测无线信道的传输特性。

接下来,我们来讨论无线信道建模与仿真性能分析的相关工作。

首先是无线信道建模方面。

在进行无线信道建模时,我们需要考虑到多径衰落、阴影衰落、干扰等因素。

通过合适的数学模型和仿真工具,可以模拟出不同通信环境下的无线信道,从而提供给系统设计者和研究人员参考。

例如,可以使用莱斯衰落模型、戴利衰落模型等来模拟不同类型的信道环境。

在仿真性能分析方面,我们可以通过无线信道建模得到的模型,结合合适的仿真工具,对5G通信系统进行性能评估。

例如,可以通过计算误码率、传输速率、信号质量等指标,来评估5G通信系统在不同信道环境下的性能表现。

这些性能分析结果可以帮助系统设计者进行优化和改进,从而提高系统的性能。

在进行无线信道建模与仿真性能分析时,我们还需考虑到通信系统所具备的特定要求。

基于systemview的模拟通信通信系统的仿真毕业设计

基于systemview的模拟通信通信系统的仿真毕业设计
模拟调制和解调是实现是实现模拟通信系统的重要组成部分。调制是将原始电信号变换成其频带适合信道传输的信号;解调是在接收端将信道中传输的信号还原成原始的电信号;经过调制后的信号成为已调信号;发送端调制前和接收端解调后的信号成为基带信号。因此,原始电信号又称为基带信号,而已调信号又称为频带信号。
模拟信号的调制与解调是通信原理课程的经典内容,也是模拟通信时代的核心技术。虽然当代技术已发展为数字通信新时代,但模拟信号的调制与解调理论仍然是通信技术中的基础内容之一。
图1-1模拟通信系统模型图
模拟通信在信道中传输的信号频谱比较窄,因此可通过多路复用使信道的利用率提高,但它的缺点是:
1)传输的信号是连续的,叠加噪声干扰后不易消除,即抗干扰能力较差;
2)不易保密通信;
3)设备不易大规模集成;
4)不适应飞速发展的计算机通信的要求
1.2模拟信号调制解调
模拟通信系统中,调制与解调是通信系统中的重要环节,它使信号发生本质性的变化。本文主要对线性调制(AM,DSB,SSB)与非线性调制(FM,NBFM)的信号产生(调制)与接受(解调)的基本原理,方法技术加以讨论,并通过System View仿真验证常规双边带调幅(AM),双边带调幅(DSB),单边带调幅(SSB),频率调制(FM),窄带频率调制(NBFM)。通过此软件观察信号的调制与解调过程,并对输出波形进行分析。
systemview是一个用于电路与通信系统设计仿真的动态分析工具它实现了功能的软件化避开了复杂的硬件搭建在不具备先进仪器的条件下同样也能完成复杂的通信系统设计与仿真本文利用systemview软件设计模拟调制和解调电路通过分析其输入输出波形验证所设计电路的正确性
毕业实践报告
题目:基于System View的模拟通信系统的仿真

谈通信系统中的模拟信号的数字传输

谈通信系统中的模拟信号的数字传输

”i:
图 2 P M通信 系统方框 图 C
的量化误差 , 同时 A律十三折线和 律十五折 曲线对打信 号的处理方式相似 , 两者 的差 别在 于对 小信号的量化编码方 式上 。 图5 S o ( 是 c p 示波器) e 的运行结果 , 中黄 其
科技创新导报 Sce c a d in e n Te h oo y n o a in er l c n lg In v to H ad
S mpe Qu n ie En o e和 S mpe a ld a tz r cd a ld
{ 1

鞍 皇 髋 竣 事

{ ●
≤ 盼


Qu nie n o e ( 样量化编码器)按照 A a t r E c d l抽 z , 律 十三折 曲线 和 律 十五折 曲线 产生量 化输 出信号 , 然后把 这两 个量化其计算 得到 量化误 差均方值通过一个 Mu ( 用器) x复 输入到 S o e cp ( 示波器 )这时候 从示波器上 就可 以观 察到这 , 两 种量 化编码 器产生 的量化 误差 。为 了 比较 量 化之前和量化之 后的正弦信号 , 正弦信号产 生 器和两 个抽 样量化 编码 器第二 个输 出端 口 的 输 出 信 号 通 过 另 外 一 个 复 用 器 联 结 到 S o e( 波器) c p l示 运行结 果及分析 。 图中黄颜 色线 条表示 抽样之 前的 正弦信 号, 蓝颜 色的线 条表示通过S mpe a t e a ld Qu ni r z 换。 E cd ( n o e第一个抽样 量化编码器 ) 后的信号 。 之 粉 颜 色线 则表 示通 过 S mp e Qua tz r a ld n ie 3仿真 系统设计 noe( 之后 的信 仿 真模 型设计 的 目的。如 果在 发送端 的 E c d l第二 个抽 样量 化 编码 器 ) 信息源 中包括一个模 /数转 换装置 , 而在接收 号 。 从图3 和图 4 的上 图可 以看到 , 样量化 抽 端 包含一 个数 /模转换装 置 , 则可以在数字 系

MatlabSimulink通信系统设计与仿真

MatlabSimulink通信系统设计与仿真

课程设计报告目录一、课程设计内容及要求....................................... 错误!未定义书签。

(一)设计内容............................................. 错误!未定义书签。

(二)设计要求............................................. 错误!未定义书签。

二、系统原理介绍................................................... 错误!未定义书签。

(一)系统组成结构框图............................. 错误!未定义书签。

(二)各模块原理......................................... 错误!未定义书签。

1.信源模块............................................. 错误!未定义书签。

2.信源编码模块..................................... 错误!未定义书签。

3.QPSK调制模块 ................................. 错误!未定义书签。

4.信道模块............................................. 错误!未定义书签。

5.QPSK解调模块 ................................. 错误!未定义书签。

6.误码率模块......................................... 错误!未定义书签。

三、系统方案设计................................................... 错误!未定义书签。

(一)方案论证............................................. 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

唐山学院通信原理课程设计题目模拟信号数字化传输系统的设计与仿真分析系 (部)班级姓名学号指导教师2017 年 6 月 26 日至2017 年7月 8 日共 2 周通信原理课程设计任务书一、设计题目、内容及要求设计题目:模拟信号数字化传输系统的设计与仿真分析内容及要求:1.了解Matlab/Simulink的运行环境及应用领域;2.逐步熟悉模拟信号数字化传输系统的仿真过程,由简到难;3.系统仿真及波形分析(1) 模拟信号抽样过程原理与仿真分析;(2) 模拟信号量化过程原理与仿真分析;(3) PCM编译码系统设计与仿真分析;(4) DPCM编译码系统设计与仿真分析。

(5) 在高斯信道下对PCM系统的性能进行仿真分析。

(可选)二、设计原始资料通信原理;软件Matlab;计算机一台三、要求的设计成果(课程设计说明书、设计实物、图纸等)设计说明书1份,不少于2000字,应包含模拟信号数字化传输系统原理、相关系统设计、相关软件Matlab/Simulink介绍、系统仿真及波形分析。

四、进程安排第1-2天课设理论讲解及仿真软件介绍、学生练习使用软件第3-4天相关系统设计第5-6天系统仿真及波形分析第7-8天整理、撰写说明书第9-10天进行测试或答辩五、主要参考资料[1]樊昌信、曹丽娜.通信原理.北京:国防工业出版社,2006[2]刘学勇.详解MATLAB/Simulink通信系统建模与仿真.北京:电子工业出版社,2011[3]邵玉斌.MATLAB/Simulik通信系统建模与仿真实例分析.北京:清华大学出版社,2008[4]张水英,徐伟强.通信原理及MATLAB/Simulink仿真.北京:人民邮电出版社,2012[5]邵佳,董辰辉. MATLAB/Simulink通信系统建模与仿真实例精讲.北京:电子工业出版社,2009指导教师(签名):教研室主任(签名):课程设计成绩评定表出勤情况出勤天数缺勤天数成绩评定出勤情况及设计过程表现(20分) 课设答辩(20分)设计成果(60分)总成绩(100分)提问(答辩) 问题情况综合评定指导教师签名:年月日目录前言................................................................. 1模拟信号抽样过程原理...............................................1.1抽样原理......................................................1.1.1低通型连续信号的抽样.....................................1.1.2带通信号的抽样定理.......................................1.2量化原理......................................................1.2.1均匀量化.................................................1.2.2非均匀量化...............................................1.2.3 A律压缩律...............................................1.2.4 13折线...................................................1.3脉冲编码调制(PCM)..........................................1.4差分脉冲编码调制(DPCM)....................................2 Matlab/Simulink的简介.............................................3 基于Simulink的模拟信号数字化传输的设计与仿真分析..................3.1抽样过程的设计与仿真分析......................................3.2量化过程的设计与仿真分析......................................3.3 PCM编译码系统设计与仿真分析 .................................3.3.1 PCM编码器设计 ..........................................3.3.2 PCM解码器设计 ..........................................3.3.3有干扰信号的PCM编码与解码...............................3.4 DPCM编译码系统的设计与仿真分析..............................4 总结............................................................... 5参考文献...........................................................前言通信系统中的信息传输已经基本数字化。

在广播系统中,当前还是以模拟方式为主,但数字化的趋向也已经明显,为了改进质量,数字声频广播和数字电视广播已经提到日程上来,21世纪数字系统已经逐步取代模拟系统。

尤为甚者,设备的数字化,更是日新月异。

近年来提出的软件无线电技术,试图在射频进行模数转换,把调制解调和锁相等模拟运算全部数字化,这使设备超小型化并具有多种功能,所以数字化进程还在发展。

Simulink工具是MATLAB软件提供的可以实现动态系统建模和仿真的软件包,它让用户把精力从语言编程转向仿真模型的构造,为用户省去了很多重复的代码编写工作。

Simulink中的每个模块对我们来说都是透明的,我们只须知道模块的输入、输出和每个模块的功能,而不需要关心模块内部是如何实现的,留给我们的事情就是如何利用这些模块来建立仿真模型以完成自己的任务。

至于Simulink中的各个模块在运行时是如何执行,时间是如何采样的,事件是如何驱动的等问题,我们可以不去关心。

正是由于Simulink具有这些特点,所以它被广泛应用在通信仿真中。

1模拟信号抽样过程原理1.1抽样原理抽样是按照等时间等间隔进行的,模拟信号被抽样后成为抽样信号,把该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。

抽样的抽样速率下限是由抽样定理确定的。

抽样定理告诉我们,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输抽样定理得到的抽样值。

因此该定理就为模拟信号的数字化传输提供了理论基础。

1.1.1低通型连续信号的抽样定理内容:抽样定理在时域上可以表述为:对于一个频带限制在(0,f H)Hz内的时间连续信号f(t),如果以Ts≤1/(2f H)秒间隔对其进行等间隔抽样,则f(t)将被所得到的抽样值完全确定。

模拟信号抽样过程中各个信号的波形与频谱。

(a)模拟信号的波形及频谱(b)冲激函数的波形及频谱(c)抽样信号的波形及频谱图1-1抽样过程中的信号波形与频谱以下为两种情况下的频谱分析结果。

但抽样频率小于奈奎斯特频率时,即如果ωs<2ωH,则抽样后信号的频谱在相邻的周期内发生混叠,如图1-2所示,当抽样频率大于或等于奈奎斯特频率时,接收端回复出来的信号才与原信号基本一致。

(a)信号的频谱(b)f s>2f m时抽样信号的频谱(c)f s<2f m时抽样信号的频谱图1-2两种情况下的抽样信号频谱分析应该注意的一点是:抽样频率并不是越高越好。

只要能满足抽样频率大于奈奎斯特频率,并留有一定的防卫带即可。

1.1.2带通信号的抽样定理实际中遇到的许多信号是带通型信号,模拟信号的频率限制在f L~f H之间,f L为信号最低频率,f H为最高频率。

而且当f H>B,其中B=f H-f L时,该信号通常被成为带通型信号,其中B为带通信号的频带。

对于带通信号,如果采用低通抽样定理的抽样速率f s≥2f h,对频率限制在f L 与f H之间的带通型信号抽样,肯定能满足频谱不混叠的要求,如图1-3所示:图1-3带通信号的抽样频谱定理内容:一个带通信号f(t),其频率限制在f L与f H之间,带宽为B=f h-f l,如果最小抽样速率f s=2f h/n,n是一个不超过f h/B的最大整数,那么f(t)就可以完全由抽样值确定。

下面两种情况说明:(1)若最高频率f h为带宽的整数倍,即f h=nB。

此时f h/B=n是整数,m=n,所以臭氧速率f s=2f h/m=2B。

(2)若最高频率f h不为带宽的整数倍,即f h=nB+kB,0<k<1此时,f h/B=n+k,由定理知,m是一个不超过n+k的最大整数,显然,m=n,所以能恢复出原信号f(t)的最小抽样速率为:f s=2(f L+f H)/(2n+1)式中n是一个不超过f H/B的最大整数,0<k<1通常k取1。

1.2量化原理量化就是把经过抽样的得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。

量化的结果使抽样信号变成量化信号,其值是离散的。

故量化信号已经是数字信号了,可以看成是多进制脉冲信号。

量化在连续抽样值和量化值之间产生误差,称为量化误差。

1.2.1均匀量化如果用相等的量化间隔对抽样得到的信号做量化,那么这种量化方法称为均匀量化。

工作原理:在均匀量化中,每个量化区间的量化电平取在各区间的中点。

其量化间隔△i取决于输入信号的变化范围和量化电平数。

若设输入信号的最小值和最大值分别为a和b表示,量化电平数为M,则均匀量化时的量化间隔为△i=(b-a)/M量化器输出为x=x l。

图1-4均匀量化特性与量化误差曲线量化器的输入与输出关系可用量化特性来表示,语言编码常采用上图所示输入-输出特性的均匀量化器,当输入m在量化区间m i-1≤m≤m i变化时,量化电平q i是该区间的中点值。

而相应的量化误差e q=m-m q与输入信号幅度m之间的关系曲线如上图所示。

过载区的误差特性是线性增长的,因而过载误差比量化误差大,对重建信号有很坏的影响。

在设计量化器时,应考虑输入信号的幅度范围,是信号幅度不进入过载区,或者只能以极小的概率进去过载区。

上述的量化误差e q=m-m q通常称为绝对量化误差,它在每一个量化间隔内的最大值均为△/2。

均匀量化广泛应用于现行A/D变换接口,例如在计算机中,M为A/D变化的位数,常用的有8位、12位、16位等不同精度。

相关文档
最新文档