ansys瞬态动力分析详解

合集下载

Ansys动力学瞬态动力的分析

Ansys动力学瞬态动力的分析
结果输出
将结果以图表或报告的形式输出,便于分析和评 估。
05 案例分析
案例一:桥梁的瞬态动力分析
总结词
复杂结构模型,高精度模拟,长 期稳定性
详细描述
使用ANSYS动力学瞬态分析对大 型桥梁进行模拟,考虑风载、车 流等动态因素,评估桥梁在不同 频率下的振动响应和稳定性。
案例二:汽车碰撞的瞬态动力分析
根据实际系统建立数学模型,包括确定系统的自由度和约束条件, 以及选择合适的单元类型和材料属性。
加载和求解
根据问题的实际情况,施加适当的边界条件和载荷,然后使用 ANSYS等有限元分析软件进行求解。
结果后处理
对求解结果进行后处理,包括查看位移、应力、应变等输出结果, 并进行必要的分析和评估。
瞬态动力学的应用场景
瞬态动力学是研究系统在随时间变化的载荷作用下的动力响应,其基本原理基于牛 顿第二定律和弹性力学的基本方程。
瞬态动力学考虑了时间的因素,因此需要考虑系统的初始条件和边界条件,以及载 荷随时间的变化。
瞬态动力学中,系统的响应不仅与当前时刻的载荷有关,还与之前的载荷历史有关。
瞬态动力学的分析步骤
建立模型
求解设置
选择求解器
01
根据模型特点选择合适的求解器,如直接求解器或迭代求解器。
设置求解参数
02
设置合适的求解参数,如时间步长、积分器等。
开始求解
03
启动求解过程,ANSYS将计算并输出结果。
结果后处理
查看结果
在后处理模块中查看计算结果,如位移、应力、 应变等。
分析结果
对结果进行分析,判断结构的响应和性能。
06 结论与展望
瞬态动力学的未来发展方向
更加精确的模型

ansys瞬态分析解析

ansys瞬态分析解析
– 作为时间函数的载荷(稍候详细说明)
• 输出数据
– 随时间变化的位移和其它的导出量,如:应力和应变
4-3
瞬态分析
…定义和目的
瞬态动力分析用在以下的设计中:
培训手册
ANSYS80瞬态分析——段志东制作
Hale Waihona Puke • 承受各种冲击载荷的结构,如:汽车中的门和缓冲器、 建筑框架以及悬挂系统等 • 承受各种随时间变化载荷的结构,如:桥梁、地面移 动装置以及其它机器部件 • 承受撞击和颠簸的家庭和办公设备,如:便携式电话 、笔记本电脑和真空吸尘器等
4-9
瞬态分析- 术语和概念
…求解方法
培训手册
• 求解时即可用缩减结构矩阵,也可用完整结构矩阵。 • 缩减法 – 用于快速求解 – 不允许非线性 (除间隙之外) – 根据主自由度写出[K]、[C]和[M]等矩阵,主自由度是所有自 由度的一个子集 – 缩减的 [K] 是精确的,但缩减的 [C] 和 [M] 是近似的。此外 ,还有其它的一些缺陷,但不在此讲座讨论 • 完全法 – 不进行缩减。 采用完整的[K]、 [C] 和 [M]矩阵 – 允许非线性特性 – 在本手册中的全部讨论都是基于此种方法
4-10
ANSYS80瞬态分析——段志东制作
瞬态分析- 术语和概念
积分时间步长
培训手册
• 积分时间步长(亦称为ITS 或 Dt )是时间积分法中的 一个重要概念 – ITS 是从一个时间点到另一个时间点的时间增量 Dt – 积分时间步长决定求解的精确度,因而其数值应仔 细选取 – 瞬态分析中,对于缩减法和模态叠加法, ITS 是一 个常数 – 瞬态分析中,对于完全法, 在使用者定义的范围( 以后讨论)内,ANSYS能够自动调节时间步长

Ansys热分析教程_瞬态分析

Ansys热分析教程_瞬态分析

载荷步和子步
在瞬态分析中,载荷步和子步的定义与非线性稳态分析十分类似。载 荷定义的每个载荷步的终点,并可以随时间阶跃或渐变的施加。 每个载荷步的求解是在子步上得到。 子步长根据时间积分步长得到。 自动时间步 (ATS) 同样适用于瞬态分析, 可以简化ITS选择。
ITS选择将影响到瞬态分析的精度和非线性收敛性 (如果存在)。
K T Q
n 1
K
Equivalent conductivity matrix
Q
Equivalent heat flow vector
If nonlinearities are present, the incremental form of this equation is iterated upon at every time point.
* MASS71热质量单元比较
特殊,它能够存贮热能单不 能传导热能。因此,本单元 不需要热传导系数。
瞬态分析前处理考虑因素(续)
象稳态分析一样,瞬态分析也可以是线性或非线性的。如果是 非线性的,前处理与稳态非线性分析有同样的要求。
稳态分析和瞬态分析对明显的区别在于加载和求解 过程。
在瞬态热分析数值方法的一个简单介绍以后,我们将集中解释 这些过程。
积分。
ANTYPE,TRANS + TIMINT,OFF ANTYPE,STATIC ANTYPE,STATIC + TIMINT,ON ANTYPE,TRANS
另外的时间积分例子
在本例中,不是在分析的开始关闭时间积分 效果来建立初始条件,而是在分析的结束关 闭时间积分来“加速”瞬态。
注意改变到稳态边界时 的突变。最后一个载荷 步的终止时间可以是任 意的,但必须比前面的瞬 态载荷步时间数值要大 。

ansys瞬态动力分析详解

ansys瞬态动力分析详解

M4-6
瞬态分析- 术语和概念
求解方法
求解运动方程
直接积分法
模态叠加法
隐式积分
显式积分
完整矩阵法
缩减矩阵法
完整矩阵法
缩减矩阵法
M4-7
瞬态分析 – 术语和概念
求解方法 (接上页)
运动方程的两种求解法: • 模态叠加法(在第六章中讨论) • 直接积分法: – 运动方程可以直接对时间按步积分。在每个时间点, 需求解一组联立的静态平衡方程(F=ma); – ANSYS 采用Newmark 法这种隐式时间积分法; – ANSYS/LS-DYNA 则采用显式时间积分法; – 有关显式法和隐式法的讨论请参见第一章。
M4-25
瞬态分析步骤
规定边界条件和初始条件(接上页)
实例 - 物体从静止状态下落
• • • 这种情况 a0=g (重力加速度)v0=0 采用静载荷步法 载荷步1: – 关闭瞬态效应。用TIMINT,OFF 命令或 Solution > Time/Frequenc > Time Integration... – 采用小的时间间隔,例, 0.001; – 采用2 个子步, 分步加载(如果采用线性载荷或一个子步, v0 就将是非零的); – 保持物体静止,例如,固定物体的全部自由度; – 施加等于 g 的加速度; – 求解。
• 在此节中只讨论完整矩阵 • 五个主要步骤: – 建模 – 选择分析类型和选项 – 规定边界条件和初始条件 – 施加时间历程载荷并求解 – 查看结果
M4-15
瞬态分析步骤


模型 • 允许所有各种非线性 • 记住要输入密度! • 其余参见第一章建模所要考虑的问题
M4-16
瞬态分析步骤

ANSYS瞬态动力学分析

ANSYS瞬态动力学分析
第八讲 瞬态动力学分析
ANSYS 理论与工程应用
8-1
瞬态动力学分析也称为时间历程分 析,用于确定结构承受任意随时间 变化荷载时的响应。 荷载和时间的相关性使得惯性力和 阻尼的作用不可忽视。
ANSYS 理论与工程应用
8-2
当惯性力和阻尼的作用可以忽视时 ,就可以使用静力学的多载荷步分 析代替瞬态分析。
有加速度。 3. 所有荷载必须施加在用户定义的主自由度
上,限制了实体模型的加载方法的使用。
ANSYS 理论与工程应用
8-7
Reduced 法缺点:
4. 整个瞬态分析过程中,时间步长必须保持 恒定,不允许自动时间步长。
5. 唯一允许的非线性是简单的点点接触
ANSYS 理论与工程应用
8-8
Mode Superposition 法优点:
By Dr Cui Mao , May 2013
ANSYS 理论与工程应用
8-5
Full 法优点:
5. 允许施加各种类型的荷载 6. 允许采用实体模型上所加的荷载
Full 法缺点: 开销大
ANSYS 理论与工程应用
8-6
Reduced法优点: 比Full法快且开销小 Reduced 法缺点:
1. 需要对主自由度的结果进行扩展。 2. 不能施加单元荷载(压力、温度)但允许
ANSYS 理论与工程应用
8-16
节点位移
ANSYS 理论与工程应用
8-17
节点轴向应力
ANSYS 理论与工程应用
8-18
节点Mises应力
ANSYS 理论与工程应用
8-19
例2 理想弹塑性悬臂梁承受时间历程荷
载 。 梁 长 20cm , 横 截 为 正 方 形 , 边 长

ANSYS动力学瞬态分析完全法

ANSYS动力学瞬态分析完全法

完全法完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减)。

它是三种方法中功能最强的,允许包括各类非线性特性(塑性、大变形、大应变等)。

注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。

这是因为完全法是三种方法中开销最大的一种。

完全法的优点是:·容易使用,不必关心选择主自由度或振型。

·允许各种类型的非线性特性。

·采用完整矩阵,不涉及质量矩阵近似。

·在一次分析就能得到所有的位移和应力。

·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。

·允许在实体模型上施加的载荷。

完全法的主要缺点是它比其它方法开销大。

§3.4 完全法瞬态动力学分析首先,讲述完全法瞬态动力学分析过程,然后分别介绍模态叠加法和缩减法与完全法不相同的计算步骤。

完全法瞬态动力分析(在ANSYS/Multiphsics、ANSYS/Mechauioal及ANSYS/Structural中可用)由以下步骤组成:1.建造模型2.建立初始条件3.设置求解控制4.设置其他求解选项5.施加载荷6.存储当前载荷步的载荷设置7.重复步骤3-6定义其他每个载荷步8.备份数据库9.开始瞬态分析10.退出求解器11.观察结果§ 型在这一步中,首先要指定文件名和分析标题,然后用PREP7定义单元类型,单元实常数,材料性质及几何模型。

这些工作在大多数分析中是相似的。

<<ANSYS 建模与网格指南>>详细地说明了如何进行这些工作。

对于完全法瞬态动力学分析,注意下面两点:·可以用线性和非线性单元;·必须指定杨氏模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量)。

材料特性可以是线性的或非线性的、各向同性的或各向异性的、恒定的或和温度有关的。

ansys动力学瞬态分析详解

ansys动力学瞬态分析详解

§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。

可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。

载荷和时间的相关性使得惯性力和阻尼作用比较重要。

如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。

瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。

ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。

两个连续时间点间的时间增量称为积分时间步长(integration time step)。

§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。

可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。

例如,可以做以下预备工作:1.首先分析一个较简单模型。

创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。

2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。

在某些场合,动力学分析中是没必要包括非线性特性的。

3.掌握结构动力学特性。

通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。

同时,固有频率对计算正确的积分时间步长十分有用。

4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。

<<高级技术分指南>>中将讲述子结构。

§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。

【ANSYS动力学】M4-瞬态动力分析

【ANSYS动力学】M4-瞬态动力分析
取在两物体间的动量传递,比此更小 的ITS 会造成能量损失,并且冲击可能 不是完全弹性的。
ITS 1 30 fc
fc
1
2
k m
fc contactfrequency k gap stiffness m effectivemass
M4-13
瞬态分析 - 术语和概念
积分时间步长(接上页)
波传播
建模 选择分析类型和选项: • 进入求解器并选择瞬态分析 • 求解方法和其它选项- 将在下面讨论 • 阻尼 – 将在下面讨论
典型命令: /SOLU ANTYPE,TRANS,NEW
瞬态分析步骤
选择分析类型和选项(接上页)
求解方法 • 完整矩阵方法为缺省方法。允许下列非线
性选项: • 大变形 • 应力硬化 • Newton-Raphson 解法ABiblioteka el瞬态分析 - 术语和概念
积分时间步长(接上页)
响应频率 • 不同类型载荷会在结构中激发不
同的频率(响应频率); • ITS应足够小以获取所关心的最高
响应频率 (最低响应周期); • 每个循环中有20个时间点应是足
够的,即:
Dt = 1/20f
式中 ,f 是所关心的最高响应频率。
响应周期
M4-11
瞬态分析 - 术语和概念
集中质量矩阵 • 主要用于细长梁和薄壁壳或波的传播
公式求解器 • 由程序自行选择
M4-19
M4-20
瞬态分析步骤
选择分析类型和选项(接上页)
阻尼
• α和b阻尼均可用;
• 在大多数情况下,忽略α阻尼(粘性 阻尼),仅规定b阻尼(由滞后造成 的阻尼):
b = 2/w
式中 为阻尼比,w 为主要响应频率 (rad/sec)。

ansys动力学瞬态分析详解

ansys动力学瞬态分析详解

§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。

可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。

载荷和时间的相关性使得惯性力和阻尼作用比较重要。

如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。

瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。

ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。

两个连续时间点间的时间增量称为积分时间步长(integration time step)。

§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。

可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。

例如,可以做以下预备工作:1.首先分析一个较简单模型。

创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。

2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。

在某些场合,动力学分析中是没必要包括非线性特性的。

3.掌握结构动力学特性。

通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。

同时,固有频率对计算正确的积分时间步长十分有用。

4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。

<<高级技术分指南>>中将讲述子结构。

§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。

ANSYS稳态和瞬态分析步骤简述

ANSYS稳态和瞬态分析步骤简述

ANSYS稳态和瞬态分析步骤简述稳态和瞬态分析是工程领域中常用的计算分析方法,用于对系统的运行状态和响应进行评估和优化。

本文将简述ANSYS软件中稳态和瞬态分析的步骤。

稳态分析通常用于评估系统在稳定运行情况下的性能。

稳态分析步骤主要包括几何创建、材料定义、加载和边界条件设定、求解和结果分析。

1.几何创建:稳态分析的第一步是通过ANSYS中的CAD工具创建系统的几何模型。

可以使用ANSYS自带的几何建模工具或导入外部CAD文件。

根据具体问题的要求,可以创建二维或三维模型。

2.材料定义:在稳态分析中,需要确定系统中各个组件的材料特性。

可以从ANSYS软件的材料库中选择标准材料,也可以自定义材料特性。

对于复杂材料特性的模拟,可以使用ANSYS中的材料建模工具进行进一步定义。

3.加载和边界条件设定:在进行稳态分析前,需要确定系统的加载和边界条件。

加载可以是体力加载(如重力、力、压力等)或表面力加载(如热通量、表面摩擦等)。

边界条件设定包括约束和支撑条件,如固定支座、滑动支座等。

4.求解:稳态分析中,需要对系统的方程进行求解,得到系统在稳态运行状态下的响应。

ANSYS中使用有限元法进行求解,将系统离散为有限个单元,并对每个单元进行数学建模,建立线性方程组。

然后采用迭代算法求解方程组,得到系统的稳态响应。

5.结果分析:稳态分析完成后,可以对求解结果进行分析和评估。

ANSYS提供了丰富的结果展示和分析工具,可以对应力、位移、应变等进行可视化展示,也可以进行数据提取和报表输出。

瞬态分析通常用于评估系统在动态或瞬时加载下的响应。

瞬态分析步骤与稳态分析类似,但在加载和求解方面略有不同。

1.几何创建:瞬态分析的几何创建步骤与稳态分析相同。

2.材料定义:瞬态分析时,需要对系统的材料特性进行定义,与稳态分析相同。

3.加载和边界条件设定:在瞬态分析中,加载可以是冲击、脉冲或周期性加载等。

边界条件设定与稳态分析类似。

4.求解:瞬态分析中,需要对系统的动态方程进行求解。

ANSYSMaxwell瞬态分析案例解析

ANSYSMaxwell瞬态分析案例解析

1.Maxwell 2D: 金属块涡流损耗(一)启动W o r k b e n c h并保存1.在windows系统下执行“开始”→“所有程序”→ANSYS 15.0→Workbench 15.0命令,启动ANSYS Workbench 15.0,进入主界面。

2.进入Workbench后,单击工具栏中的 按钮,将文件保存。

(二)建立电磁分析1.双击Workbench平台左侧的Toolbox→Analysis Systems→Maxwell 2D此时在ProjectSchematic中出现电磁分析流程图。

2.双击表A中的A2,进入Maxwell软件界面。

在Maxwell软件界面可以完成有限元分析的流程操作。

3.选择菜单栏中Maxwell 2D→Solution Type命令,弹出Solution Type对话框(1)Geometry Mode:Cylinder about Z(2)Magnetic:Transient(3)单击OK按钮4.依次单击Modeler→Units选项,弹出Set Model Units对话框,将单位设置成mm,并单击OK按钮。

(三)建立几何模型和设置材料1.选择菜单栏中Draw→Rectangle 命令,创建长方形在绝对坐标栏中输入:X=500,Y=0,Z=0,并按Enter键在相对坐标栏中输入:dX=20,dY=0,dZ=500,并按Enter键2.选中长方形,选择菜单栏中Edit→Duplicate along line命令在绝对坐标栏中输入:X=0,Y=0,Z=0,并按Enter键在相对坐标栏中输入:dX=50,dY=0,dZ=0,并按Enter键弹出Duplicate along line对话框,在对话框中Total Number:3,然后单击OK按钮。

3.选中3个长方形右击,在快捷菜单中选择Assign Material命令,在材料库中选择Aluminum,然后单击OK按钮。

ANSYS瞬态动力学分析步骤

ANSYS瞬态动力学分析步骤

瞬态动力学分析步骤进行瞬态动力学分析主要有:FULL(完全法)、Reduced(缩减法)和ModeSuperposition(模态叠加法)。

书上介绍的一般都是FULL法,其分析过程主要有8个步骤:(1)前处理(建立模型和划分网格)(2)建立初始条件(3)设定求解控制器(4)设定其他求解选项(5)施加载荷(6)设定多载荷步(7)瞬态求解(8)后处理(观察结果)1Full法步骤具体步骤如下:第1步:载入模型Plot>Volumes第2步:指定分析标题并设置分析范畴1设置标题等UtilityMenu>File>ChangeTitleUtilityMenu>File>ChangeJobnameUtilityMenu>File>ChangeDirectory2选取菜单途径MainMenu>Preference单击Structure,单击OK第3步:定义单元类型MainMenu>Preprocessor>ElementType>Add/Edit/Delete,出现ElementTypes对话框,单击Add出现LibraryofElementTypes对话框,选择StructuralSolid,再右滚动栏选择Brick20node95,然后单击OK,单击ElementTypes对话框中的Close按钮就完成这项设置了。

第4步:指定材料性能选取菜单途径MainMenu>Preprocessor>MaterialProps>MaterialModels。

出现DefineMaterialModelBehavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。

第5步:划分网格选取菜单途径MainMenu>Preprocessor>Meshing>MeshTool出现MeshTool对话框,一般采用只能划分网格,点击SmartSize下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现MeshVolumes对话框,其他保持不变单击PickAll,完成网格划分。

ansys瞬态分析解析知识讲解

ansys瞬态分析解析知识讲解

培训手册
ITS 1 30 f c
fc
1 2
k m
f c 接触频率 k 间隙刚度 m 有效质量
4-14
ANSYS80瞬态分析——段志东制作
ANSYS80瞬态分析——段志东制作
瞬态分析 - 术语和概念
…积分时间步长
波传播
• 由冲击引起。在细长结 构中更为显著(如下落 时以一端着地的细棒)
• 需要很小的ITS ,并且 在沿波传播的方向需要 精细的网格划分
瞬态分析- 术语和概念
积分时间步长
培训手册
• 积分时间步长(亦称为ITS 或 Dt )是时间积分法中的 一个重要概念
– ITS 是从一个时间点到另一个时间点的时间增量 Dt
– 积分时间步长决定求解的精确度,因而其数值应仔 细选取
– 瞬态分析中,对于缩减法和模态叠加法, ITS 是一 个常数
– 瞬态分析中,对于完全法, 在使用者定义的范围( 以后讨论)内,ANSYS能够自动调节时间步长
utDtutu tDt[1(/2a)u tau tDt]Dt2 u tDtu t[1(d)u tdu tDt]Dt
• 不同的a和d值将导致积分方法的变化(显式 /隐式/平均加速度 ),ansys 可以使用替代参数γ(gamma),只要将γ设置为大于0的数,则方程就是无 条件稳定的。通常设置γ为0.005。
4-10
ANSYS80瞬态分析——段志东制作
瞬态分析- 术语和概念
…积分时间步长
培训手册
• 积分时间步长(ITS) 应小到足够获取下列数据: – 响应频率 – 接触频率(如果存在的话) – 波传播效应(如果存在的话) – 非线性响应 (塑性、蠕变和接触状态)
4-11
瞬态分析 - 术语和概念

ANSYS培训教程:瞬态动力学分析的基本步骤

ANSYS培训教程:瞬态动力学分析的基本步骤

ANSYS培训教程:瞬态动力学分析的基本步骤用不同的瞬态动力学方法进行分析时,进行瞬态动力学分析的过程不尽相同。

下面我们首先描述如何用完全法进行瞬态动力学分析的基本步骤,然后在列出用缩减法和模态叠加法时的不同地方。

完全法瞬态动力学分析过程由三个主要步骤组成:1.建模2.加载及求解3.结果后处理模型的建立建模过程和其它类型的分析类似,但应注意以下几点:1.可以用线性和非线性单元。

2.必须指定弹性模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量),材料特性可以是线性的或非线性的,各向同性的或各向异性的,恒定的或和温度有关的。

在划分网格时需要记住以下几点:1. 有限元网格需要足够精度以求解所关心的高阶模态;2. 感兴趣的应力应变区域的网格密度要比只关系位移的区域相对加密一些;3.如果想包含非线性,网格应当细到能够扑捉到非线性效果。

例如,对于塑性分析来说,它要求在较大塑性变形梯度的平面内有一定的积分点密度,所以网格必须加密;4.如果对波传播效果感兴趣,网格应当细到足以解算出波。

基本准则是沿波的传播方向每一波长至少有20个单元。

加载并求解在这一步中,要定义分析类型及选项,加载,指定载荷步选项,并开始有限元求解。

具体步骤如下:1.进ANSYS求解器命令:/SOLUGUI:Main Menu | Solution2.指定分析类型和分析选项(1)指定分析类型(ANTYPE)选择开始一个新的分析。

如果已经完成了静力学预应力或完全法瞬态动力学分析并准备对时间历程进行延伸,或者想重新启动一次失败的非线性分析,则可用Restart。

(Restart要求初始求解过程中生成的文件Jobname.EMAT,Jobname.ESAV及Jobname.DB存在。

新得到的解结果将被附加在初始结果文件Jobname.RST中)。

从弹出的对话框中选择瞬态动力学分析(Transient),并指定位完全法(Full)。

对于质量阵形成方法(Mass Matrix Formulation)建议在大多数分析应用中采用缺省的质量阵形成方式。

ansys瞬态分析

ansys瞬态分析
图1. 工作台及其四支撑组成系统 的几何模型及载荷图
2 问题描述
已知条件如下: 全部采用A3刚材料,其特性为: 弹性模量=2E11(N/m2),泊松比=0.3,密度=7800kg/m2 工作台面板(板壳):厚度=0.02m 工作台四支撑的几何特性:
截面面积=2E-4m2 惯性矩=2E-8m4 宽度=0.01m 高度=0.02m 压力与时间的关系曲线如图2所示:
3 数值计算
图2. 工作台系统的有限元模型加载图
3 数值计算
图4. 节点146的UZ位移结果
3 数值计算
图4. 节点146的Von Mises应力结果
3 数值计算
图5. 工作台系统Z方向位移变化动画显示
3 数值计算
图6.工作台系统Von Mises应力变化动画显示
5 参考文献
龚曙光.ANSYS工程应用实例解析.机械工业出版社.2003. 周长城、胡仁喜、熊文波.ANSYS11.0基础与典型范例.电子工业出版社.2007
1 研究背景和意义
1 研究背景和意义
1 研究背景和意义
模态叠加法进行瞬态动力分析的基本步骤: (1)建造模型; (2)获取模态解; (3)获取模态叠加法瞬态分析解; (4)扩展模态叠加解; (5)观察结果。
2 问题描述
如图1所示为工作台与其四支撑组成的板-梁结构系统,工作台 上表面施加随时间变化的均布压力。计算在下列已知条件下该系统 的瞬态响应。
LPLOT FLST,2,4,4,ORDE,2 FITEM,2,5 FITEM,2,-8 LMESH,P51X FINISH
附录:数值计算程序(即命令流)
/SOL ANTYPE,4 TRNOPT,FULL LUMPM,0 FLST,2,4,1,ORDE,4 FITEM,2,232 FITEM,2,242 FITEM,2,252 FITEM,2,262 D,P51X, , , , , ,ALL, , , , , DELTIM,0.2,0.05,0.5 OUTRES,ERASE OUTRES,ALL,1 AUTOTS,1 TIME,1 ALPHAD,5 KBC,0 FLST,2,1,5,ORDE,1 FITEM,2,1 SFA,P51X,1,PRES,10000 LSWRITE,1, KBC,1 TIME,2 FLST,2,1,5,ORDE,1 FITEM,2,1

(完整版)ansys动力学瞬态分析详解

(完整版)ansys动力学瞬态分析详解
§
这是缺省的初始条件,即如果 = = 0,则不需要指定任何条件。在第一个载荷步中可以加上对应于载荷/时间关系曲线的第一个拐角处的载荷。
§
可以用IC命令设置这些初始条件。
命令:IC
GUI:Main Menu>Solution>-Loads-Apply>Initial Condit’n>Define
注意:不要定义矛盾的初始条件。例如,在某单一自由度处定义了初始速度,则在所有其它自由度处的初始速度将为0.0,潜在地会产生冲突的初始条件。在大多数情形下要在模型的每个未约束自由度处定义初始条件。如果这些条件对各自由度是不同的,那么就可以较容易地明确指定初始条件,如下所述。
1.建造模型
2.建立初始条件
3.设置求解控制
4.设置其他求解选项
5.施加载荷
6.存储当前载荷步的载荷设置
7.重复步骤3-6定义其他每个载荷步
8.备份数据库
9.开始瞬态分析
10.退出求解器
11.观察结果
§
在这一步中,首先要指定文件名和分析标题,然后用PREP7定义单元类型,单元实常数,材料性质及几何模型。这些工作在大多数分析中是相似的。<<ANSYS建模与网格指南 >>详细地说明了如何进行这些工作。
注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。
完全法的优点是:
·容易使用,不必关心选择主自由度或振型。
·允许各种类型的非线性特性。
·采用完整矩阵,不涉及质量矩阵近似。
·在一次分析就能得到所有的位移和应力。
·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。

ANSYS稳态和瞬态分析步骤简述..

ANSYS稳态和瞬态分析步骤简述..

ANSYS 稳态和瞬态热模拟基本步骤基于ANSYS 9.0一、 稳态分析从温度场是否是时间的函数即是否随时间变化上,热分析包括稳态和瞬态热分析。

其中,稳态指的是系统的温度场不随时间变化,系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:=0q q q +-流入生成流出 在稳态分析中,任一节点的温度不随时间变化。

基本步骤:(为简单起见,按照软件的菜单逐级介绍)1、 选择分析类型点击Preferences 菜单,出现对话框1。

对话框1我们主要针对的是热分析的模拟,所以选择Thermal 。

这样做的目的是为了使后面的菜单中只有热分析相关的选项。

2、 定义单元类型GUI :Preprocessor>Element Type>Add/Edit/Delete 出现对话框2对话框2(3-1)点击Add,出现对话框3对话框3在ANSYS中能够用来热分析的单元大约有40种,根据所建立的模型选择合适的热分析单元。

对于三维模型,多选择SLOID87:六节点四面体单元。

3、选择温度单位默认一般都是国际单位制,温度为开尔文(K)。

如要改为℃,如下操作GUI:Preprocessor>Material Props>Temperature Units选择需要的温度单位。

4、定义材料属性对于稳态分析,一般只需要定义导热系数,他可以是恒定的,也可以随温度变化。

GUI: Preprocessor>Material Props> Material Models 出现对话框4对话框4一般热分析,材料的热导率都是各向同性的,热导率设定如对话框5.对话框5若要设定材料的热导率随温度变化,主要针对半导体材料。

则需要点击对话框5中的Add Temperature选项,设置不同温度点对应的热导率,当然温度点越多,模拟结果越准确。

设置完毕后,可以点击Graph按钮,软件会生成热导率随温度变化的曲线。

ANSYS Workbench 17·0有限元分析:第10章-瞬态动力学分析

ANSYS Workbench 17·0有限元分析:第10章-瞬态动力学分析

第10章 瞬态动力学分析
瞬态动力学分析(亦称时间历程分析)是用于确定承受任意随时间变化的载荷的结构动力学响应的一种方法。

利用瞬态动力学分析可以确定结构在静载荷、瞬态载荷和简谐载荷的随意组合下随时间变化产生的位移、应变、应力及力。

★ 了解瞬态动力学分析。

10.1 瞬态动力学分析概述
瞬态动力学分析(Transient Structural Analysis)给出的是结构关于时间载荷的响应,它不同于刚体动力学分析,在Workbench中瞬态动力学的模型可以是刚体,也可以是柔性体,而对于柔性体可以考虑材料的非线性特征,由此可得出柔性体的应力和应变值。

在进行瞬态动力学分析时,需要注意:
当惯性力和阻尼可以忽略时,采用线性或非线性的静态结构分析来代替瞬态动力学分析。

当载荷为正弦形式时,响应是线性的,采用谐响应分析更为有效。

当几何模型简化为刚体且主要关心的是系统的动能时,采用刚体动力学分析更为有效。

除上述三种情况外,其余情况均可采用瞬态动力学分析,但其所需的计算资源较其他方法要大。

10.2 瞬态动力学分析流程
在ANSYS Workbench左侧工具箱中Analysis
Systems下的Transient Structural上按住鼠标左键拖动到
项目管理区的A6栏,即可创建瞬态动力学分析项目,
如图10-1所示。

当进入Mechanical后,单击选中分析树中的
Analysis Settings即可进行分析参数的设置,如图10-2
图10-1 创建瞬态动力学分析项目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 ITS = 30 f c 1 fc = 2π k m
f c = contact frequency k = gap stiffness m = effective mass
瞬态分析 - 术语和概念
积分时间步长(接上页) 积分时间步长(接上页)
波传播 由冲击引起。在细长结构中更 由冲击引起。 为显著( 为显著(如下落时以一端着地 的细棒) 的细棒) 需要很小的 需要很小的ITS ,并且在沿波 传播的方向需要精细的网格划 分 显式积分法(在ANSYS显式积分法( LS/DYNA采用)可能对此更为 采用) 采用 适用
这是瞬态分析的最一般形式,载荷可为时间的任意函数; 这是瞬态分析的最一般形式,载荷可为时间的任意函数; 按照求解方法, ANSYS 允许在瞬态动力分析中包括各种类 按照求解方法, 型的非线性- 大变形、接触、塑性等等。 型的非线性 大变形、接触、塑性等等。
瞬态分析瞬态分析- 术语和概念
求解方法
求解方法 完整矩阵方法为缺省方法。允许下列非 完整矩阵方法为缺省方法。 线性选项: 线性选项: – 大变形 – 应力硬化 – Newton-Raphson 解法 集中质量矩阵 主要用于细长梁和薄壁壳或波的传播 公式求解器 由程序自行选择
瞬态分析步骤
选择分析类型和选项命令(接上页) 选择分析类型和选项命令(接上页)
瞬态分析
定义和目的(接上页) 接上页)
瞬态动力分析可以应用在以下设计中: 瞬态动力分析可以应用在以下设计中: 承受各种冲击载荷的结构,如:汽车中的门和缓 承受各种冲击载荷的结构, 冲器、建筑框架以及悬挂系统等; 冲器、建筑框架以及悬挂系统等; 承受各种随时间变化载荷的结构,如:桥梁、地 承受各种随时间变化载荷的结构, 桥梁、 面移动装置以及其它机器部件; 面移动装置以及其它机器部件; 承受撞击和颠簸的家庭和办公设备,如:移动电 承受撞击和颠簸的家庭和办公设备, 话、笔记本电脑和真空吸尘器等。 笔记本电脑和真空吸尘器等。
第四章
瞬态动力分析
第四章:瞬态动力分析 第四章:
第一节: 第一节:瞬态动力分析的定义和目的 第二节: 第二节:瞬态分析状态的基本术语和概念 第三节: 第三节:在ANSYS中如何进行瞬态分析 中如何进行瞬态分析 第四节:瞬态分析实例 第四节:
瞬态分析
第一节:定义和目的 第一节:
什么是瞬态动力分析? 什么是瞬态动力分析 它是确定随时间变化载荷(例如爆炸)作用下 它是确定随时间变化载荷(例如爆炸) 结构响应的技术; 结构响应的技术; 输入数据: 输入数据: – 作为时间函数的载荷 输出数据: 输出数据: – 随时间变化的位移和其它的导出量,如:应 随时间变化的位移和其它的导出量, 力和应变。 力和应变。
瞬态分析步骤
规定边界条件和初始条件命令(接上页) 规定边界条件和初始条件命令(接上页)
! 载荷步 1 TIMINT,OFF , TIME,0.001 , NSEL,… , D,ALL,ALL,0 , , , NSEL,ALL , ACEL,… , NSUBST,2 , KBC,1 , SOLVE ! 关闭瞬态效应 ! 小的时间间隔 ! 选择所有小物体的所有节点 ! 并在所有方向上定义固定约束 ! 加速度值 ! 两个子步 ! 阶梯载荷
瞬态分析瞬态分析- 术语和概念
求解方法(接上页) 求解方法(接上页)
求解时即可用缩减结构矩阵,也可用完整结构矩阵; 求解时即可用缩减结构矩阵,也可用完整结构矩阵; 缩减矩阵: 缩减矩阵: – 用于快速求解; 用于快速求解; – 根据主自由度写出 , [C], [M]等矩阵,主自由度是完全自由 根据主自由度写出[K], 等矩阵, , 等矩阵 度的子集; 度的子集; – 缩减的 [K] 是精确的,但缩减的 [C] 和 [M] 是近似的。此外,还 是精确的, 是近似的。此外, 有其它的一些缺陷,但不在此讨论。 有其它的一些缺陷,但不在此讨论。 完整矩阵: 完整矩阵: – 不进行缩减。 采用完整的 K], [C], 和 [M]矩阵; 不进行缩减。 采用完整的[K], 矩阵; , 矩阵 – 在本手册中的全部讨论都是基于此种方法。 在本手册中的全部讨论都是基于此种方法。
DK,… , DL,… , DA,… , ! 或 D或 DSYM 或
ACEL,… , OMEGA,... ,
瞬态分析步骤
规定边界条件和初始条件(接上页) 规定边界条件和初始条件(接上页)
初始条件 时间 = 0时的条件:u0, v0, a0 时间t 时的条件: 时的条件 它们的缺省值为, u0 = v0 = a0 = 0 它们的缺省值为, 可能要求非零初始条件的实例: 可能要求非零初始条件的实例: – 飞机着陆 (v0≠0) – 高尔夫球棒击球 (v0≠0) – 物体跌落试验 (a0≠0)
瞬态分析步骤
规定边界条件和初始条件
建模 选择分析类型和选项 规定边界条件和初始条件 在这种情况下边界条件为载荷或在整 个瞬态过程中一直为常数的条件, 个瞬态过程中一直为常数的条件,例 如: – 固定点(约束) 固定点(约束) – 对称条件 – 重力 初始条件将在下面讨论 Nhomakorabea态分析步骤
规定边界条件和初始条件命令(接上页) 规定边界条件和初始条件命令(接上页)
瞬态分析瞬态分析- 术语和概念
积分时间步长
积分时间步长(亦称为 积分时间步长(亦称为ITS 或 t )是时间积分法中的一个重要概 念 – ITS = 从一个时间点到另一个时间点的时间增量 t ; – 积分时间步长决定求解的精确度,因而其数值应仔细选取。 积分时间步长决定求解的精确度,因而其数值应仔细选取。 ITS 应足够小以获取下列数据: 应足够小以获取下列数据: – 响应频率 – 载荷突变 – 接触频率(如果存在的话) 接触频率(如果存在的话) – 波传播效应(若存在) 波传播效应(若存在)
x x ITS ≤ 3c
x = element size ≤ L / 20 L = length along wave direction c = elastic wave speed = E = Young' s modulus E
ρ
ρ = mass density
瞬态分析
第三节:步骤
在此节中只讨论完整矩阵 五个主要步骤: 五个主要步骤: – 建模 – 选择分析类型和选项 – 规定边界条件和初始条件 – 施加时间历程载荷并求解 – 查看结果
瞬态分析
第二节:术语和概念 第二节:
包括的主题如下: 包括的主题如下: 运动方程 求解方法 积分时间步长
瞬态分析 – 术语和概念
运动方程
用于瞬态动力分析的运动方程和通用运动方程相同; 用于瞬态动力分析的运动方程和通用运动方程相同;
[M ]{u} + [C ]{u} + [K ]{u} = {F (t )}
求解运动方程
直接积分法
模态叠加法
隐式积分
显式积分
完整矩阵法
缩减矩阵法
完整矩阵法
缩减矩阵法
瞬态分析 – 术语和概念
求解方法 (接上页) 接上页)
运动方程的两种求解法: 运动方程的两种求解法: 模态叠加法(在第六章中讨论) 模态叠加法(在第六章中讨论) 直接积分法: 直接积分法: – 运动方程可以直接对时间按步积分。在每个时间点, 运动方程可以直接对时间按步积分。在每个时间点, 需求解一组联立的静态平衡方程( 需求解一组联立的静态平衡方程(F=ma); ); – ANSYS 采用 采用Newmark 法这种隐式时间积分法; 法这种隐式时间积分法; – ANSYS/LS-DYNA 则采用显式时间积分法; 则采用显式时间积分法; – 有关显式法和隐式法的讨论请参见第一章。 有关显式法和隐式法的讨论请参见第一章。
瞬态分析步骤


模型 允许所有各种非线性 记住要输入密度! 记住要输入密度! 其余参见第一章建模所要考虑的问题
瞬态分析步骤
建模命令(接上页) 建模命令(接上页)
/PREP7 ET,... MP,EX,... MP,DENS,… ! 建立几何模型 … ! 划分网格 ...
瞬态分析步骤
选择分析类型和选项
TRNOPT,FULL , NLGEOM,… , SSTIF,… , NROPT,… , LUMPM,… , EQSLV,... ,
瞬态分析步骤
选择分析类型和选项(接上页) 选择分析类型和选项(接上页)
阻尼 α和β阻尼均可用; α和 阻尼均可用; 在大多数情况下,忽略 阻尼(粘性阻 在大多数情况下,忽略α阻尼 阻尼( ),仅规定 阻尼( 仅规定β 尼),仅规定β阻尼(由滞后造成的阻 尼): β = 2ξ/ω ξω 为阻尼比, 式中 ξ 为阻尼比,ω 为主要响应频率 (rad/sec)。 )。 典型命令: 典型命令 ALPHAD,… , BETAD,… ,
响应周期
瞬态分析 - 术语和概念
积分时间步长(接上页) 积分时间步长(接上页)
载荷突变 ITS 应足够小以获取载荷 突变
Load
t
Load
t
瞬态分析 - 术语和概念
积分时间步长(接上页) 积分时间步长(接上页)
接触频率 当两个物体发生接触,间隙或接触表面 当两个物体发生接触, 通常用刚度(间隙刚度)来描述; 通常用刚度(间隙刚度)来描述; ITS应足够小以获取间隙“弹簧”频率 应足够小以获取间隙“ 应足够小以获取间隙 弹簧” ; 建议每个循环三十个点,这才足以获取 建议每个循环三十个点, 在两物体间的动量传递, 在两物体间的动量传递,比此更小的 ITS 会造成能量损失,并且冲击可能不 会造成能量损失, 是完全弹性的。 是完全弹性的。
瞬态分析步骤
规定边界条件和初始条件(接上页) 规定边界条件和初始条件(接上页)
实例 - 物体从静止状态下落
重力加速度) 这种情况 a0=g (重力加速度)v0=0 采用静载荷步法 载荷步1: 载荷步 : – 关闭瞬态效应。用TIMINT,OFF 命令或 关闭瞬态效应。 , Solution > Time/Frequenc > Time Integration... – 采用小的时间间隔,例, 0.001; 采用小的时间间隔, 0.001; – 采用 个子步, 分步加载(如果采用线性载荷或一个子步, v0 采用2 个子步, 分步加载(如果采用线性载荷或一个子步, 就将是非零的); 就将是非零的); – 保持物体静止,例如,固定物体的全部自由度; 保持物体静止,例如,固定物体的全部自由度; – 施加等于 g 的加速度; 的加速度; – 求解。 求解。
相关文档
最新文档