大学物理复习资料资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章

8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.

解: 如题8-2图示

⎪⎩

⎨⎧

===220)sin 2(π41

sin cos θεθθl q F T mg T e

解得 θπεθtan 4sin 20mg l q =

8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.

解: 高斯定理0

d ε∑⎰=⋅q

S E s

取同轴圆柱形高斯面,侧面积rl S π2=

则 rl E S E S

π2d =⋅⎰

对(1) 1R r < 0,0==∑E q

(2) 21R r R << λl q =∑ ∴ r

E 0π2ελ

=

沿径向向外

(3) 2R r >

=∑q ∴ 0=E

题8-12图

8-12两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.

解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,

两面间, n E )(21210σσε-= 1σ面外, n E

)(21210

σσε+-=

2σ面外, n E )(21210

σσε+= n

:垂直于两平面由1σ面指为2σ面. 8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.

解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).

(1) ρ+球在O 点产生电场010=E , 球在O 点产生电场'd π4π343

0320

OO r E ερ=

∴ O 点电场'd 33

030OO r E ερ

= ;

(2) ρ+在O '产生电场'd

π4d 343

0301OO E ερπ='

球在O '产生电场002='E

∴ O ' 点电场 0

03ερ

=

'E

'OO

题8-13图(a) 题8-13图(b)

(3)设空腔任一点P 相对O '的位矢为r

',相对O 点位矢为r (如题8-13(b)图)

则 03ερr E PO =, 0

3ερr E O P '

-=' ,

∴ 0

003'3)(3ερερερd OO r r E E E O P PO P =

='-=+=' ∴腔内场强是均匀的. 8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.

解: 如题8-16图示 0π41ε=

O U 0)(=-R

q

R q

0π41ε=

O U )3(R q

R q -R q 0π6ε-

= ∴R

q q U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.

解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =

则θλd d R q =产生O 点E

d 如图,由于对称性,O 点场强沿y 轴负方向

题8-17图

θ

εθ

λπ

π

cos π4d d 22

20⎰⎰-==R R E E y R 0π4ελ=[)2sin(π-2sin π-]R 0π2ελ-= (2) AB 电荷在O 点产生电势,以0=∞U

⎰===A

B

20

0012ln π4π4d π4d R R x x x x U ελ

ελελ 同理CD 产生2ln π402ελ=

U 半圆环产生0

034π4πελ

ελ==R R U ∴ 0

032142ln π2ελ

ελ+=

++=U U U U O 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2

,A 和B 相距4.0mm ,A 与C 相距2.0

mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7

C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ

题8-22图

(1)∵ AB AC U U =,即

∴AB AB AC AC E E d d = ∴

2d d 21===AC

AB

AB AC E E σσ 且 1σ+2σS q A =

得,32S q A =σ S

q A

321=σ 而711023

2

-⨯-=-

=-=A C q S q σC C

10172-⨯-=-=S q B σ

(2) 30

1

103.2d d ⨯==

=AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:

(1)外球壳上的电荷分布及电势大小;

(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势

题8-23图

==⋅=2

2

2

0π4π4d d R R R q

r r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42

02

0=-

=

R q R q U εε

(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'

π4'π4'2

02

01

0=+-+

-

=

R q q R q R q U A εεε

得q R R q 21=

' 外球壳上电势 ()22

021202020π4π4'π4'π4'R q R R R q q R q R q U B εεεε-=+-+-= 8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两

相关文档
最新文档