高中不等式的常用证明方法归纳总结
不等式证明的基本方法
不等式证明的基本方法
1.数学归纳法:归纳法是数学证明中最常用的方法之一,通常用来证
明自然数的性质。
对于不等式证明来说,如果我们希望证明不等式对于所
有自然数都成立,可以使用数学归纳法。
首先证明当自然数为1时不等式
成立,然后假设当自然数为k时不等式成立,再证明当自然数为k+1时不
等式也成立。
通过这种逐步推导的方法,可以证明不等式对于所有自然数
都成立。
2.数学推理法:数学推理法是一种基于数学定理和公理的推理方法,
通过逻辑推理来证明不等式的成立。
这种方法通常需要使用一些已知的数
学定理和性质来推导出不等式。
例如,可以使用数学的四则运算定律、平
方差公式、三角不等式等来推导不等式。
3.数学变换法:数学变换法是一种将不等式进行变换的方法,通过变
换不等式的形式来证明不等式的成立。
这种方法通常需要使用一些数学中
常见的变换方法,例如平方去根、换元法、倍加倍减等。
通过适当的变换,可以将不等式转化为更简单的形式,从而更容易证明。
无论采用哪种方法,不等式的证明都需要逻辑严谨、推理正确,以及
对数学定理和性质的熟练应用。
在实际证明中,常常需要综合运用多种方
法来解决问题,使得证明更加简洁和明了。
此外,证明中的每一步变换和
推理都需要严格地说明和证明,避免出现漏洞和错误。
高中数学:不等式题目的七种证明方法
高中数学:不等式题目的七种证明方法压轴题目一般是开放型的题目,每年都是会变化。
但大概率题目是函数、数列、圆锥曲线、不等式等知识的综合问题。
我就来总结一下不等式的证明方法。
01比较法所谓比较法,就是通过两个实数a与b的差或商的符号(范围)确定a与b大小关系的方法,即通过来确定a,b大小关系的方法。
前者为作差法,后者为作商法。
但要注意作差法适用范围较广;作商法再用时注意符号问题,如果同为正的话是没有问题的,同为负的话记得改变不等式的符号。
02分析法和综合这两个方法我们一般会一起使用。
分析法是从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题。
如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
综合法是从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式。
我们来看一个例题,已知如果要用综合法或者分析法的话,对于过程上需要写明,即证,所以要证,也就是说,即等价于……一些转化的语句来过渡我们的题目。
当然这两个方法我们经常一起用,因为分析完条件,分析结论,两个一起分析做题速度更快一些呢。
03反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的。
这个方法其实是按照集合的补集理论来的,正难则反,但是要注意用反证法证明不等式时,必须将命题结论的反面的各种情形都要考虑到,不能少的。
反证法证明一个命题的思路及步骤:1)假定命题的结论不成立;2)进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾;3)由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的;4)肯定原来命题的结论是正确的。
04放缩法在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明有更好的不等式来代替原不等式。
放缩法的目的性强,必须恰到好处,。
同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,灵活性很大。
不等式证明使用技巧
不等式证明使用技巧不等式证明是高中数学中的一个重要内容,掌握不等式证明的技巧对于解题和提升数学水平都有很大的帮助。
下面我将介绍一些常用的不等式证明技巧。
一、代入法代入法是一种常用的证明不等式的方法。
我们可以先假设不等式成立,然后进行推导得出结论。
如果得到的结论与原不等式一致,就证明了不等式的成立。
例如,我们要证明对于任意正实数a、b和c,有$(a^2+b^2+c^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})\ge q 9$。
我们可以假设$a\leq b\leq c$,然后代入得到:$a^2+b^2+c^2=2a^2+(b^2-a^2+c^2)\geq 2a^2=2(a\cdot a)\geq2(ab)$,$\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\fra c{1}{b^2}+\frac{1}{c^2}\geq 3(\frac{1}{ab})=\frac{3}{ab}$。
然后,将两个不等式代入原不等式得到:$(2ab)(\frac{3}{ab})=6\geq 9$。
由此可见,原不等式成立。
二、放缩法放缩法是另一种常用的证明不等式的方法。
我们可以通过放缩不等式的各个部分来改变不等式的形式,从而得到更容易证明的形式。
例如,我们要证明对于任意正实数a、b和c,有$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$。
我们可以通过放缩的方法,将不等式的各个部分放缩至一个更容易证明的形式。
我们注意到,$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ca}\geq \frac{(a+b+c)^2}{ab+bc+ca}$。
然后,我们可以通过平方展开和放缩的方法,得到:$\frac{(a+b+c)^2}{ab+bc+ca}\geq 3$。
不等式证明的常用方法
不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。
高考数学证明不等式的基本方法
知识网络
要点归纳
题型研修
知识网络
要点归纳
题型研修
1.比较法证明不等式 作差比较法是证明不等式的基本方法,其依据 是:不等式的意义及实数大小比较的充要条件. 证明的步骤大致是:作差——恒等变形——判 断结果的符号.
知识网络
要点归纳
题型研修
2.综合法证明不等式 综合法证明不等式的依据是:已知的不等式以及逻辑推理 的基本理论.证明时要注意的是:作为依据和出发点的几个 重要不等式(已知或已证)成立的条件往往不同,应用时要先 考虑是否具备应有的条件,避免错误,如一些带等号的不 等式,应用时要清楚取等号的条件,即对重要不等式中 “当且仅当……时,取等号”的题型研修
例 1 若 x,y,z∈R,a>0,b>0,c>0.求证:b+a cx2+c+b a
y2+a+c bz2≥2(xy+yz+zx).
证明 ∵b+a cx2+c+b ay2+a+c bz2-2(xy+yz+zx)
=bax2+aby2-2xy+bcy2+bcz2-2yz+acz2+acx2-2zx=
∴0< (n+1)n22+ +11+ +( n n+1)<1,即CCn+n1<1,
从而有 Cn+1<Cn.
知识网络
要点归纳
题型研修
跟踪演练 2 若 a,b,m,n 都为正实数,且 m+n=1, 试证: ma+nb≥m a+n b. 证明 ∵a,b,m,n 均为正数,且 m+n=1, ∴( ma+nb)2-(m a+n b)2 =ma+nb-m2a-n2b-2mn ab =m(1-m)a+n(1-n)b-2mn ab =mn( a- b)2≥0,又 ma+nb>0,m a+n b>0, ∴ ma+nb≥m a+n b.
知识网络
不等式的性质与证明方法总结
不等式的性质与证明方法总结在数学中,不等式是一种非常重要的数学工具,用于描述数值之间的大小关系。
不等式可以帮助我们解决各种实际问题,同时也是数学推理和证明的基础。
本文将总结一些常见的不等式性质和证明方法,帮助读者更好地理解和应用不等式。
一、基本不等式性质1. 传递性:如果a < b,b < c,则有a < c。
这个性质是不等式推理的基础,可以用于简化证明过程。
2. 加法性:如果a < b,则a + c < b + c。
这个性质表示在不等式两边同时加上一个相同的数,不等式的大小关系不变。
3. 乘法性:如果a < b,c > 0,则ac < bc;如果a < b,c < 0,则ac > bc。
这个性质表示在不等式两边同时乘以一个正数或负数,不等式的大小关系会发生改变。
4. 对称性:如果a < b,则-b < -a。
这个性质表示如果不等式两边同时取相反数,不等式的大小关系会发生改变。
二、常见不等式1. 平均不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1 * a2 * ... * an)^(1/n)平均不等式可以用于证明其他不等式,如均值不等式、柯西不等式等。
2. 均值不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1^p + a2^p + ... + an^p)^(1/p)其中p为大于0的实数。
均值不等式可以用于证明其他不等式,如柯西不等式、夹逼定理等。
3. 柯西不等式:对于任意实数a1, a2, ..., an和b1, b2, ..., bn,有以下不等式成立:(a1b1 + a2b2 + ... + anbn)^2 <= (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... +bn^2)柯西不等式可以用于证明向量内积的性质,以及其他不等式的推导。
例谈证明不等式的三种常用方法
考点透视不等式证明问题比较常见,且具有较强的综合性,常与向量、集合、数列、函数等知识相结合.求解此类问题的方法很多,掌握一些常用的证明方法,有助于拓展解题的思路,提升解题的效率.本文主要谈一谈证明不等式的三种常用方法:比较法、换元法、放缩法.一、比较法比较法是证明不等式的常用方法,包括作差比较法和作商比较法.运用比较法证明不等式的步骤为:①根据不等式的结构特点,将不等式左右两边的式子作差或作商;②将差式或商式进行因式分解或配方;③将所得差值与0比较,所得的商式与1比较.比较法的适用范围广,适用于解答大多数不等式证明问题.例1.若集合M ={}|x -1<x <1,试证明:当a ,b ∈M 时,||a +b <||1+ab .证明:由题意可知,将不等式两边的式子平方后相减可得:()a +b 2-()1+ab 2=a 2+2ab +b 2-()1+2ab +a 2b 2=()a 2-1()1-b 2,∵-1<a <1,-1<b <1,∴0≤a 2<1,0≤b 2<1,即a 2-1<0,1-b 2>0,∴()a 2-1()1-b 2<0,()a +b 2<()1+ab 2,∴当a ,b ∈M 时,不等式||a +b <||1+ab 成立.不等式两边的式子均为平方式,很难比较出它们的大小,于是将其两边平方并作差,再将其结果与0比较,即可证明不等式.为了便于比较出差式与0的大小,往往要将差式化简为几个因式的积或完全平方式的形式.例2.已知a >0,b >0,试证明:a b +b a≥a +b .证明:∵aba +b =ab a +b=()a +b ()a -ab +bab ()a+b =+1,当a >0,b >0+1≥-1=1(当a =b 时等号成立),∵aba +b≥1,∴+≥a +b成立.要证明的不等式中含有根式,需运用作商比较法证明不等式.在化简商式时,需将商式化为最简形式,以便判断该式与1的大小关系,从而证明不等式成立.二、换元法换元法适用于证明变量的个数较多或结构复杂的不等式.运用换元法证明不等式,需先仔细观察已知条件和所要证明不等式的结构,找到条件与所证目标之间的联系;然后根据二者之间的联系,选择合适的式子或某一部分用新变量替换;再化简换元后的不等式,并根据基本不等式、函数单调性、导函数的性质证明不等式成立.例3.若x ∈()0,+∞,试证明:x +1x -≤2-3,证明:令x +=u,∴u=x ≥2,u 2=x +1x +2,∴只需证明u -u 2-1=1u +u 2-1≤2-3,∵u ≥2,函数y =1u +u 2-1单调递减,∴1u +u 2-1≤2-3,∴x 1≤2-3.仔细观察该不等式,可发现x +1x 与x +1x 之间存在一定的联系:æèçx +2=x +1x+2,于是令x =u ,将不等式转化为关于u 且不含有根式的不等式,运用基本不等式即可证明目标不等式成立.例4.若x ,y 满足xy =100,x ≥10,y ≥10,试证明:34≤lg ()y lg x ≤1.证明:设u =lg ()y lg x=lg x lg y ,∵xy =100,∴y =100x,∴u =lg x ()2-lg x ,陈刚34考点透视∵x≥10,y≥10,∴lg x≥12,lg100x≥12,即lg x≤32,可知lg x∈éëùû12,32,令lg x=t,∴u=-()t-12+1,t∈éëùû12,32,∵函数u()t在æèöø12,1上单调递增,在æèöø1,32上单调递减,∴当lg x=1,即x=10,y=10时,u=lg x lg y=1,该值为函数的最大值,当lg x=12或lg x=32时,x=10,y=1010或x=1010,y=10,∴u=lg x lg y=34,该值为函数的最小值,∵u()t∈éëùû34,1,∴34≤lg()y lg x≤1.根据已知条件和对数函数的运算性质将所证目标不等式进行化简、消元,便可将函数式转化为关于lg x的函数式,再令lg x=t,通过换元,将函数式转化为关于t的简单二次函数,根据二次函数的性质和对数函数的值域即可解题.三、放缩法放缩法是证明不等式的常用方法.运用放缩法证明不等式,需仔细观察所要证明的不等式的结构特点,根据切线的几何意义,通过添项或减项,借助基本不等式,利用函数的单调性等对不等式进行适当的放大或缩小.例5.已知a>12,x>1,试证明:ax2-a-ln x>1x-e1-x成立.证明:由题意可得a>1x-e1-x+ln xx2-1,则当x趋近于1时,1x-e1-x+ln xx2-1趋近12,当x趋近于+∞时,1x-e1-x+ln xx2-1趋近0,可知a>12>1x-e1-x+ln xx2-1,只需证明1x-e1-x+ln xx2-1<12在()1,+∞上恒成立,即证明12x2-12-ln x-1x+e1-x>0在()1,+∞上恒成立,设g()x=12x2-12-ln x-1x+e1-x,则g′()x=x-1x+1x2-e1-x=x-e1-x+1-xx2,令h()x=e1-x,x∈()1,+∞,则h′()x=-e1-x<0,函数h()x在()1,+∞上单调递减,则h()x<1,所以g′()x=x-e1-x+1-x x2>x-1+1-x x2=()x-1æèçöø÷1-1x2>0,故函数g()x在()1,+∞上单调递增,则g()x>g()1=0,因为1x-e1-x+ln xx2-1<12在()1,+∞上恒成立,所以当a>12,x>1时,ax2-a-ln x>1x-e1-x.该不等式中含有指数函数式、对数函数式,较为复杂,需先把参数分离,将问题转化为证明12x2-12-ln x-1x+e1-x>0在()1,+∞上恒成立,然后构造函数,利用函数的单调性求得最值,进而证明不等式成立.例6.已知a,b∈R,且a≠b,若a3-b3=a2-b2,求证:1<a+b<43.证明:由a3-b3=a2-b2可得()a-b()a2+ab+b2=()a-b()a+b,因为a≠b,所以a2+ab+b2=a+b,则()a+b2>a2+ab+b2=a+b,由a+b>0可得a+b>1,且ab<14()a+b2,则a+b=()a+b2-ab>()a+b2-æèöøa+b22,即a+b<43,故不等式1<a+b<43成立.将已知关系式进行变形,可发现a2+ab+b2=a+b与基本不等式a2+b2≥2ab之间有联系,于是两次利用基本不等式将代数进行放缩,从而证明结论.在运用基本不等式放缩不等式时,要注意三个前提条件:一正、二定、三相等,尤其要注意等号成立的条件.总之,证明不等式,需仔细观察不等式的结构特征,建立已知条件和所要求证不等式之间的联系,再通过作差、作商、换元、放缩等方式来进行合理的变形、化简.(作者单位:江苏省苏州市昆山经济技术开发区高级中学)35。
不等式证明基本方法
不等式证明基本方法一、数学归纳法数学归纳法是证明自然数性质的一种基本方法,对于与整数有关的不等式,我们也可以利用数学归纳法进行证明。
其基本思路是先证明当n=1时不等式成立,再假设当n=k时不等式成立,然后通过数学推理证明当n=k+1时不等式也成立。
二、反证法当我们尝试利用数学归纳法证明不等式时,有时可能会遇到困难,这时我们可以尝试使用反证法。
反证法的证明过程是:先假设不等式不成立,然后推导出与已知条件或已证明的定理矛盾的结论,从而证明原不等式的正确性。
三、插值法插值法也是一种常见的不等式证明方法。
其基本思路是在待证不等式的两边加入适当的不等式,并利用不等式的传递性和可加减性进行推导,最终得到待证不等式的真假结论。
四、绝对值法对于涉及绝对值的不等式,我们可以利用绝对值的性质进行证明。
例如,对于,a-b,>c这样的绝对值不等式,我们可以根据绝对值的定义将其拆分为两个不等式,再分别进行证明。
另外,利用绝对值不等式的性质,我们还可以进行变量替换等操作,将原不等式化简为更简单的形式进行证明。
五、特殊化方法特殊化方法是指将不等式中的一些变量或参数取特殊值,从而达到简化不等式的目的。
例如,对于含有幂函数的不等式,我们可以通过取特殊值使得幂函数变为常数或者线性函数,从而将原不等式化简为更简单的形式。
综上所述,不等式证明的基本方法包括数学归纳法、反证法、插值法、绝对值法和特殊化方法等。
在具体的证明过程中,我们需要根据待证不等式的特点选择合适的方法,并灵活运用各种数学工具和技巧,从而得到准确的证明结论。
不等式证明方法大全
不等式证明方法大全1.推导法:推导法是指通过逻辑推理从已知不等式得出要证明的不等式。
常用的推导法有数学归纳法、递推法、代入法等。
其中,数学归纳法是一种常见的证明不等式的方法,它基于以下两个基本原理:基准步和归纳假设。
(1)基准步:证明当一些特定的变量取一些特定的值时,不等式成立。
(2)归纳假设:假设当一些特定的变量取小于等于一些特定值时,不等式成立。
通过利用以上两个原则,可以通过递推关系不断推导得出要证明的不等式。
2.数学运算法:数学运算法是指通过对不等式进行各种数学运算来得到要证明的不等式。
常用的数学运算包括加法、减法、乘法、除法等。
在进行这些运算时,需要注意运算规则和要证明的不等式所满足的条件,避免运算过程中引入新的限制条件。
3.几何法:几何法是指通过将不等式转化为几何问题进行证明。
几何法常用于证明平面图形的不等式定理,如三角形的不等式定理、平行四边形的不等式定理等。
通过将要证明的不等式几何化,可以通过几何性质和定理进行证明。
4.广义的带参数的方法:广义的带参数的方法是指将要证明的不等式引入参数,通过参数的取值范围来证明不等式的成立。
这种方法常用于证明含有多个变量的复杂不等式,通过引入参数使得不等式简化或者更易处理。
5.分情况讨论法:分情况讨论法是指将要证明的不等式拆分为几个不同的情况进行讨论,分别证明每个情况下不等式的成立。
通过逐个讨论每种情况,可以得出要证明的不等式的证明。
6.反证法:反证法是指假设要证明的不等式不成立,通过推理推出与已知条件矛盾的结论,从而证明不等式的成立。
反证法常用于证明不等式的唯一性和存在性。
7.递推法:递推法是指通过依次推导出不等式的前一项和后一项之间的关系,逐步逼近要证明的不等式。
通过不断进行递推,可以逐步证明不等式的成立。
以上是一些常见的不等式证明方法,它们可以单独使用,也可以结合使用。
在进行不等式证明时,需要注意逻辑严谨、计算准确和推导合理,同时还需要根据具体的题目和要求选择合适的证明方法。
证明不等式的基本方法
x2
例7(1)设
y2
1, 求x
y的最大值,
16 9
并求此时的x, y值。 三角换元
(2)设 x, y R,且 x2 y 2 1,
求证:| x2 2xy y 2 | 2 ;
(1)设 x r sin, y r cos,且 | r | 1
证明:∵ a, b 是正数,且 a b , ∴要证 aabb abba ,只要证 lg (aabb ) lg(abba ) ,
只要证 a lg a b lgb b lg a a lgb .
(a lg a b lg b) (b lg a a lg b) = (a b)(lg a lg b)
= (a2 b2 )(a b) = (a b)(a b)2
∵ a,b 是正数,且 a b ,∴ a b 0, (a b)2 >0
∴ (a3 b3 ) (a2b ab2 ) >0,∴ a3 b3 a2b ab2
注:比较法是证明不等式的基本方法,也是 最重要的方法,另外,有时还可作商比较.
当且仅当(a b)(b c)≥0 时,等号成立.
四.反证法:
假设命题结论的反面成立,经过正确的推理, 引出矛盾,因此说明假设错误,从而证明原命题 成立,这样的证明方法叫反证法.(正难则反)
例、已知 f (x) x2 px q,求证:
1
| f (1) |,| f (2) |,| f (3) |中至少有一个不小于2 。
求证:已知a, b, c R+,求证 :书P25页2(2)
不等式证明的几种方法
不等式证明的几种方法1.直接证明法直接证明法是最常用的证明方法之一、该方法是通过运用数学定义、公理和已知条件,直接推导出要证明的不等式。
例如,要证明a+b≥2√ab,我们可以通过平方两边的方式将不等式变形为(a-b)^2≥0的形式,再通过数学运算的方式得出结论。
2.反证法反证法是常用的证明方法之一,尤其适用于不等式证明。
该方法是先假设要证明的不等式为假,然后通过推导得出与已知条件矛盾的结论,从而证明所假设的不等式为真。
例如,要证明3√ab≥2(a+b)不成立,我们可以先假设不等式成立,然后通过运算推导出与已知条件不符的结果。
由此可知,不等式不成立。
3.数学归纳法数学归纳法适用于一类特殊的不等式,即对于其中一自然数n,当n=1时不等式成立,且当n=k时不等式成立,则当n=k+1时不等式也成立。
通过反证法证明。
例如,要证明n^2<2^n,首先当n=1时,不等式成立。
假设当n=k时,不等式也成立,即k^2<2^k成立。
我们需要证明当n=k+1时,不等式也成立,即(k+1)^2<2^(k+1)成立。
通过反证法推导出与已知条件矛盾的结果,即可证明不等式成立。
4.几何法几何法可以通过将不等式转化为几何问题来证明。
例如,要证明a^2+b^2≥2ab,可以将不等式转化为平面上两点的距离的问题。
通过建立几何模型,可以直观地看出不等式成立的原因。
例如,可以将两个正方形的面积进行比较,或者使用勾股定理来解决问题。
5.代数方法代数方法是通过将不等式转化为代数方程或函数的性质来证明。
例如,要证明3a^2+3b^2+2c^2≥4ab+4bc+4ca,可以通过将不等式整理为一个二次函数的形式,然后通过对函数进行研究来得出结论。
以上是几种常见的不等式证明方法,其中每种方法都有其独特的适用范围和优势。
在实际应用中,根据具体的题目和情况选择合适的证明方法可以更高效地解决问题。
证明不等式的常用技巧
证明不等式的常用技巧证明方法有比较法、综合法、分析法、放缩法、数学归纳法、反证法、换元法、构造法等。
作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0。
换元法:换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简。
1不等式证明方法比较法①作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0;②作商比较法:根据a/b=1,当b>0时,得a>b;当b>0时,欲证a>b,只需证a/b>1;当b<0 时,得 a<b。
综合法由因导果。
证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。
分析法执果索因。
证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。
放缩法将不等式一侧适当的放大或缩小以达到证题目的。
数学归纳法证明与自然数n有关的不等式时,可用数学归纳法证之。
用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
换元法换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
构造法通过构造函数、图形、方程、数列、向量等来证明不等式。
2基本不等式基本不等式是主要应用于求某些函数的最值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。
证明不等式的几种常用方法
证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。
第2节证明不等式的基本方法
第2节证明不等式的基本方法证明不等式的基本方法总结如下:一、利用数学分析中的中值定理、极值、单调性等性质进行证明。
1.利用中值定理:利用连续函数介值定理或拉格朗日中值定理,根据函数的一些性质,可以推出不等式的成立。
例如,证明一个凸函数在区间上的函数值不小于端点的函数值。
2.利用极值:通过求导或其他方法,找到函数的极值点,然后证明这些极值点就是不等式的最小(最大)值点。
例如,证明两数之积不大于它们的平方和,可以通过求导得到函数的极值点,然后通过证明这个极值点为最小值点来完成。
3.利用单调性:如果已知函数在一些区间上是严格递增(递减)的,可以通过证明不等式在一些特殊点成立,并通过函数的单调性推出在整个区间上成立。
例如,证明一个正数的倒数小于它自己,则可以先证明在0到1之间成立,然后利用单调性推出在整个正数范围内成立。
二、利用数学归纳法进行证明。
如果不等式中的变量是正整数,可以利用数学归纳法进行证明。
首先证明当n=1时不等式成立,然后假设当n=k时不等式成立,再证明当n=k+1时不等式也成立。
例如,证明n个正数的平均值不小于它们的几何平均值,可以先证明当n=1时成立,然后假设当n=k时成立,再证明当n=k+1时也成立,最后利用数学归纳法推出结论。
三、利用代数方法。
1.利用等价变形:对于一个复杂的不等式,可以通过进行等价变形来简化证明。
通过将不等式的两边同时加上或减去一些式子,或者将不等式两边同时乘以或除以一些式子,可以得到一个等价的不等式,然后证明这个等价的不等式。
例如,证明正数的n次方大于等于它的平方,可以将不等式两边同时开方,然后证明这个等价的不等式。
2. 利用加减法、乘除法不等式:对于一个分式或多项式不等式,可以通过利用加减法、乘除法的不等式性质,将不等式化简为更简单的形式,再进行证明。
例如,证明a+b≤2ab,则可以将两边同时减去a+b再加上2,利用不等式的性质简化后得到ab≥1,再证明这个等价的不等式。
不等式的证明方法总结
不等式的证明方法总结一.比较法(作差比较,作商比较)例1.已知x<y<0,求证(x 2+y 2)(x-y)>(x 2-y 2)(x+y).证明:∵(x 2+y 2)(x-y)-(x 2-y 2)(x+y)=(x-y)[(x 2+y 2)-(x+y)2]=-2xy(x-y)>0∴(x 2+y 2)(x-y)>(x 2-y 2)(x+y).例2.已知a>b>c ,求证a 2b+b 2c+c 2a>ab 2+bc 2+ca 2.证明:∵(a 2b+b 2c+c 2a)-(ab 2+bc 2+ca 2)=a 2(b-c)+a(c 2-b 2)+bc(b-c)=(b-c)(a 2-ac-ab+bc)=(b-c)[a(a-c)-b(a-c)]=(a-b)(a-c)(b-c)>0∴a 2b+b 2c+c 2a>ab 2+bc 2+ca 2.例3.已知a ,b>0,a ≠b ,求证a a b b >a b b a . 证明:b a a b b a a b b a )ba (b a b a b a ---==. 当a>b>0时, a-b>0,1ba > ∴上式>1; 当b>a>0时, a-b<0,0<1b a < ∴上式>1; ∴a a b b >a b b a .二.综合法例4.已知a ,b ,c>0,求证c b a cab b ca a bc ++≥++. 证明:∵c 2bca a bc 2b ca a bc =⋅≥+, 同理a 2cab b ca ≥+, b 2abc c ab ≥+, ∴)c b a (2)cab b ca a bc (2++≥++, 即c b a c ab b ca a bc ++≥++. 例5.已知a ,b ,c>0,a+b+c=1,求证8)1c1)(1b 1)(1a 1(≥---. 证明:)1c1)(1b 1)(1a 1(--- =c c 1b b 1a a 1-⋅-⋅-=cb a bc a a c b +⋅+⋅+ c ab 2b ac 2a bc 2⋅⋅≥=8三.分析法例6.已知a ≥3,求证3a 2a 1a a ---≤--. 证明:要证原式,只需证2a 1a 3a a -+-≤-+, 即证22)2a 1a ()3a a (-+-≤-+ 即证)2a )(1a (23a 2)3a (a 23a 2--+-≤-+- 即证)2a )(1a ()3a (a --≤- 即证a 2-3a ≤a 2-3a+2即证0≤2因为上式成立,所以原式也成立.四.换元法例7.已知0<x<1,a ,b>0,求证222)b a (x1b x a +≥-+. 证明:方法一.令x=sin 2α,则1-x=cos 2α.x 1b x a 22-+ =a 2csc 2α+b 2sec 2α=a 2(1+cot 2α)+b 2(1+tan 2α)=a 2+b 2+a 2cot 2α+b 2tan 2α≥a 2+b 2+2acot α·btan α=(a+b)2 方法二. 222222222)(1)1()]1()[1(1b a xx b x x a b a x x x b x a x b x a +≥-+-++=-+-+=-+. 五.放缩法例8.已知a ,b ,c ,d>0,求证2ca d db dc c a c b bd b a a 1<+++++++++++<. 证明:ca d db dc c a c b bd b a a +++++++++++ >1bc ad d a b d c c d a c b b c d b a a =+++++++++++++++; c a d d b d c c a c b b d b a a +++++++++++<2cd d d c c a b b b a a =+++++++. 六.反证法例10.已知p 3+q 3=2,求证p+q ≤2.证明:假设p+q>2,则(p+q)3>23,即p 3+3p 2q+3pq 2+q 3>8,即p 2q+pq 2>2,即p 2q+pq 2>p 3+q 3,即pq(p+q)>(p+q)(p 2-pq+q 2),即pq>p 2-pq+q 2,即p 2 +q 2<2pq ,与p 2 +q 2>2pq 矛盾,所以p+q ≤2.例11.已知f(x)=x 2+px+q ,求证⑴f(3)+f(1)-2f(2)=2;⑵|f(1)|,|f(2)|,|f(3)|中至少有一个不小于0.5.证明:⑴f(3)+f(1)-2f(2)=(9+3p+q)+(1+p+q)-2(4+2p+q)=2;⑵假设|f(1)|,|f(2)|,|f(3)|<0.5,则|f(1)|+2|f(2)|+|f(3)|<2,而|f(1)|+2|f(2)|+|f(3)|>|f(1)-2f(2)+f(3)|=2,矛盾.所以|f(1)|,|f(2)|,|f(3)|中至少有一个不小于0.5.七.判别式法例12.已知a ,b ,c ,d ∈R ,求证(a 2+b 2)(c 2+d 2)≥(ac+bd)2.证明:当a=b=0时,上式显然成立;当a ,b 不全为0时,因为关于x 的不等式(ax-c)2+(bx-d)2≥0恒成立,即(a 2+b 2)x 2-2(ac+bd)x+(c 2+d 2)≥0恒成立,由△≤0,即得(a 2+b 2)(c 2+d 2)≥(ac+bd)2.综上所述(a 2+b 2)(c 2+d 2)≥(ac+bd)2.八.构造向量例13.已知a ,b ,c ,d ∈R ,求证(a 2+b 2)(c 2+d 2)≥(ac+bd)2. 证明:设向量x =(a ,b),y =(c ,d). ∵y x y x ⋅≤⋅,∴|ac+bd|≤2222d c b a +⋅+,平方即得(a 2+b 2)(c 2+d 2)≥(ac+bd)2.九.构造函数例14.已知△ABC 的三边长是a ,b ,c ,且m>0,求证m c c m b b m a a +>+++. 证明:令函数f(x)=).0x (,mx x >+ 由f(x)=,mx m 1m x m m x +-=+-+知f(x)在(0,+∞)上是增函数.∵a+b>c∴f(a+b)>f(c) ∴m c c )c (f )b a (f m b a b a m b a b m b a a m b b m a a +=>+=+++=+++++>+++,得证.例15.已知b>a>e ,求证a b >b a . 证明:令)e x (,x xln )x (f >=,0x xln 1)x (f 2'<-= ,∴f(x)在(e ,+∞)上是减函数.∵b>a>e ,∴f(b)<f(a), 即a aln b b ln <,∴alnb<blna ,∴lnb a <lna b , ∴a b >b a .。
高中不等式的证明方法
高中不等式的证明方法在高中数学学习中,不等式是一个非常重要的内容。
在解决不等式问题的过程中,常常需要使用一些证明方法。
下面我将介绍一些高中不等式的证明方法。
一、计算法对于一般的不等式,我们可以通过计算来证明。
该方法常常适用于直接证明不等式的正确性。
示例:对于不等式a + b ≥ 2√(ab),我们可以对其两边进行平方运算,化简得到(a + b)² ≥ 4ab,继续化简得到a² + 2ab + b² ≥ 4ab,最后得到a² + b² ≥ 2ab。
由于a²,b²为非负数,所以a² + b² ≥ 2ab成立,从而不等式得到证明。
二、数轴法数轴法是一种简便的证明不等式的方法。
示例:对于不等式x+1>2,我们可以画出数轴,将不等式变形为x>1,即x的取值范围在1的右侧。
通过观察数轴即可发现x的取值大于1,所以不等式成立。
三、加减法对于含有多个项,且项之间存在加减关系的不等式,我们可以通过加减法将不等式转化为一个已知不等式来证明。
示例:对于不等式a+b+c>3,我们可以将不等式两边都减去c,得到a+b>3-c。
由于c是一定的,所以不等式a+b>3-c成立,即不等式得到证明。
四、乘法当不等式中存在连续的乘法关系时,我们可以通过乘法来证明不等式。
示例:对于不等式(x+1)(x+2)>0,我们可以使用因式分解法将不等式化简为(x+1)(x+2)≠0。
由于(x+1)(x+2)的乘积肯定不为0,所以不等式成立。
五、数学归纳法对于有一定规律的不等式,我们可以使用数学归纳法来证明。
示例:对于不等式2ⁿ>n²,我们首先验证n=1时不等式成立,然后假设对于一些自然数k,不等式成立。
即2ᵏ>k²。
然后再证明当n=k+1时,也成立。
即2^(k+1)>(k+1)²。
高中证明不等式的四大方法
高中证明不等式的四大方法
研究不等式是很重要的,它作为数学、物理和其他领域的基础,对日常生活也有着十分重要的意义。
高中时期学习不等式的过程中,常常会遇到如何证明不等式所带来的问题,证明不等式一般可以有四种方法:
一、函数极值法
函数极值法是借助函数及其导数的性质来证明不等式,判断函数的极值的性质,然后用极值来证明不等式。
这种方法适用于不等式中带有 x 的函数及其导数,比如函数 f ( x ) = x^2 + ax + b ( a,b 为常数) 的大于、小于及其证明,都可以用函数极值法来证明。
二、不等式组合法
不等式组合法是利用不等式和其他熟悉的性质,把不等式组合起来,以有效证明一个不等式的方法,一般可用自然数的定理、AM-GM 定理、费马平方和定理、牛顿黎曼不等式等方法结合不等式证明原不等式。
三、几何法
几何法是一种综合的方法,它的核心是运用间接证明的思想,通过几何形象中的定理,证明几何形象和不等式之间的关系,如正方形边长和正数之间的关系等。
四、数学归纳法
数学归纳法是一种经典的元素数学思想,包括数学归纳和数学归纳法,它利用数学归纳法的思想,由简到难,从某一特定情况,以及一切类似的情况中得出一般性的结论和推论,最终证明某个不等式。
以上就是证明不等式的四大方法。
不等式是所有科目中都有用到的知识,学习不等式也需要一定技巧,上面介绍的四大方法可以帮助我们更好的学习不等式,并有助于我们准确地研究不等式。
在数学学习中,不要把不等式搞混、弄回,按照上面介绍的四大方法认真学习,才能更好的掌握不等式的学习方法,正确地解答各种不等式的问题。
例谈证明不等式的四种常用措施
=
cos2 a, a
∈
(0,
π 2
)
,
æ è
x
+
1 x
öøæèç
y
+
1 y
ö
÷
ø
=
æ
ç
sin2
a
è
+
1 sin2a
öæ
֍
cos2
a
øè
+
1 cos2a
ö
÷
ø
=
sin4 a
+
cos4a - 2 sin2a 4 sin22a
cos2 a
+
2
,
( ) =
4 - sin2a 2 + 16 , 4 sin22a
(x)
=
(
cos sin
α β
)x
+
(
cos sin
β α
)x,
且x < 0,
α,β ∈
æ è
0,
π 2
öø,若
f (x) > 2, 求证:α + β >
π 2
.
证明:假设0
<
α
+
β
≤
π 2
,
由α, β
∈
(0,π2 )可得0
<
α
≤
π 2
-
β
≤
π 2
,
则
cos
α
≥
cosæè
π 2
-
β
ö ø
=
sin
β
>
1)
=
2n2
+
证明函数不等式的六种方法
证明函数不等式的六种方法在高中数学中,函数的不等式是一个重要的主题。
证明函数不等式是一个基本的技能,它可以帮助学生更好地理解函数的性质并提高数学思维能力。
下面我们介绍六种证明函数不等式的方法。
1. 代数法这种方法是最常用的方法之一。
我们可以将不等式两边的函数展开,并进行简单的代数计算,以确定不等式的正确性。
例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)展开,然后将它们相减,得到:f(x) - g(x) = x + 1因此,f(x) > g(x) 当且仅当 x > -12. 消元法这种方法通常适用于含有多个变量的不等式。
我们可以将其中一个变量消去,从而使不等式简化。
例如,我们要证明:f(x, y) > g(x, y)其中f(x, y) = x^2 + y^2g(x, y) = x^2 - y^2我们可以将y消去,得到:f(x, y) - g(x, y) = 2y^2因此,f(x, y) > g(x, y) 当且仅当 y ≠ 03. 极限法这种方法通常适用于连续函数的不等式。
我们可以将不等式两边取极限,以确定不等式的正确性。
例如,我们要证明:f(x) > g(x)其中f(x) = x^2 + 2x + 1g(x) = x^2 + x我们可以将f(x)和g(x)的极限计算出来,得到:lim (f(x)) = +∞x→+∞lim (g(x)) = +∞x→+∞因此,f(x) > g(x) 当 x → +∞4. 导数法这种方法通常适用于在区间内单调的函数不等式。
我们可以计算函数的导数,以确定函数的单调性和不等式的正确性。
例如,我们要证明:f(x) > g(x)其中f(x) = x^3 + 3x^2 + 3x + 1g(x) = x^2 + 2x + 1我们可以计算f(x)和g(x)的导数,得到:f'(x) = 3x^2 + 6x + 3g'(x) = 2x + 2由于f'(x) > g'(x) 在 [-1, +∞) 上成立,并且f(-1) > g(-1) ,因此,f(x) > g(x) 在 [-1, +∞) 上成立。
不等式的八种证明方法及一题多证
不等式的证明:一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种: 1.作差比较法方法:欲证A>B,只需要证A-B>0 步骤:“作差----变形----判断符号”。
使用此法作差后主要变形形式的处理:○将差变形为常数或一个常数与几个平方和的形式常用配方法或实数特征a2≥0判断差的符号。
○将差变形为几个因式的积的形式,常用因式分解法。
○若变形后得到二次三项式,常用判别式定符号。
总之,变形的目的是有利于判断式子的符号,而变形方法不限定,也就是说,关键是变形的目标。
2.作商比较法方法:要证A>B,常分以下三种情况:若B>0,只需证明1AB >; 若B=0,只需证明A>0; 若B<0,只需证明1AB<。
(3)步骤:“作商-----变形-----判断商数与1的大小” 例:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b - a > 0 ∴0)()(>+-m b b a b m 即:b a m b m a >++ 例:已知a>b>0,求证:()2a ba ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba ababb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>例:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。
注意ab b a 222≥+的变式应用。
常用2222ba b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。
一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。
1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 证明:∵a,b 均为正数, ∴0)(4)(44)()(14141)(2≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理0)(414141)(2≥+=+-+-c b bc c b c b c b ,0)(414141)(2≥+=+-+-c a ac a c a c a c 三式相加,可得0111212121≥+-+-+-++ac c b b a c b a ∴ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。
2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a证:2222)(1)(3c b a c b a ++=≥++⇔∴2222)()(3c b a c b a ++-++0)()()(222222222222≥-+-+-=---++=a c c b b a cabc ab c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++证:∵22442b a b a >+22442c b c b >+22442a c a c >+∴222222444a c c b b a c b a ++>++∵ c ab c b b a c b b a 22222222222=⋅>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+∴)(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++证明:∵)(22222222)(22b a b a b a b aab ab +≥++≥+∴≥+即2)(222b a b a+≥+,两边开平方得)(222222b a b a b a+≥+≥+ 同理可得)(2222c b c b+≥+)(2222a c a c+≥+三式相加,得 )(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。
证:)1)(1()11)(11(y y x x y x y x ++++=++)(25)2)(2(y xx y y x x y ++=++=9225=⋅+≥ 6、已知.9111111,,≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=+∈+b a b a R b a 求证: 策略:由于的背后隐含说明1,,4121,,2=+∈≤⇒⎪⎩⎪⎨⎧⎪⎭⎫⎝⎛+≤=+∈++b a R b a ab b a ab b a R b a .41 ≤ab 着一个不等式 证明:411,,≤∴=+∈+ab b a R b a 。
.91111.981211111111111 ≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∴=+≥+=+++=+++=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+b a ab ab ab b a ab b a b a 而三、分析法分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。
7、已知a 、b 、c 为正数,求证:)3(3)2(23abc c b a ab b a -++≤-+证:要证:)3(3)2(23abc c b a ab b a -++≤-+只需证:332abc c ab -≤- 即:332abc ab c ≥+∵ 3333abc ab ab c ab ab c =≥++成立∴ 原不等式成立8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。
证:3≤++c b a 3)(2≤++⇔c b a 即:2222≤++ac bc ab∵b a ab +≤2 c b bc +≤2 c a ac +≤2即2)()()(222=+++++≤++c a c b b a ac bc ab ∴原命题成立 四、换元法换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。
9、1<b ,求证:1)1)(1(22≤--+b a ab 。
证明:令αsin =a 2ππα+≠k Z ∈k βsin =b2ππβ+≠k Z ∈k左βαβαβαβαcos cos sin sin cos cos sin sin ±=⋅+=1)cos(≤±=βα∴1)1)(1(22≤--+b a ab10、122=+y x ,求证:22≤+≤-y x 证:由122=+y x 设αcos =x ,αsin =y ∴ ]2,2[)4sin(2sin cos -∈+=+=+παααy x∴ 22≤+≤-y x11、已知a>b>c,求证:.411ca cb b a -≥-+- 证明:∵a -b>0, b -c>0, a -c>0 ∴可设a -b=x, b -c=y (x, y>0) 则a -c= x + y, 原不等式转化为证明y x y x +≥+411即证4)11)((≥++y x y x ,即证42≥++x y y x ∵2≥+xy y x ∴原不等式成立(当仅x=y 当“=”成立)12、已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2),∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3∴ 21≤x 2-xy +y 2≤3. 13、已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2. ∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan 21)|≤r 5≤10. 14、解不等式15+--x x >21解:因为22)1()5(++-x x =6,故可令 x -5 =6 sin θ,1+x =6 cos θ,θ∈[0,2π] 则原不等式化为 6 sin θ-6 cos θ >21所以6 sin θ >21+6 cos θ 由θ∈[0,2π]知21+6 cos θ>0,将上式两边平方并整理,得48 cos 2θ+46 cos θ-23<0解得0≤cos θ<246282-所以x =6cos 2θ-1<124724-,且x ≥-1,故原不等式的解集是{x|-1≤x <124724-} .15、-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π.则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π),∵-4π≤θ-4π≤43π,∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 五、增量代换法在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简. 16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R)则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225.∴(a +2)2+(b +2)2≥225.六、利用“1”的代换型17、.9111 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知策略:做“1”的代换。
证明: c c b a b c b a a c b a c b a ++++++++=++111922233=+++≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=c b b c c a a c b a a b .七、反证法反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。
18、若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 ⇒ p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2<0,矛盾.故假设p +q >2不成立,∴p +q ≤2.19、已知a 、b 、∈c (0,1),求证:b a )1(-,c b )1(-,a c )1(-,不能均大于41。
证明:假设b a ⋅-)1(,c b ⋅-)1(,a c ⋅-)1(均大于41∵ )1(a -,b 均为正 ∴2141)1(2)1(=>⋅-≥+-b a b a同理2141)1(2)1(=>⋅-≥+-c b c b212)1(>+-a c ∴ 2121212)1(2)1(2)1(++>+-++-++-a c c b b a∴ 2323>不正确 ∴ 假设不成立 ∴ 原命题正确20、已知a,b,c ∈(0,1),求证:(1-a )b, (1-b )c, (1-c )a 不能同时大于41。