初一数学因式分解习题精选
七年级因式分解刷题练习92题-答案版
第X 讲因式分解刷题练习(92题)-7上复习用【例题1】()()()()23222336x y x y y x y x x y -++---+【分析】 原式()()3221x y x =--【例题2】222944a b bc c -+-【分析】 原式()()()()22222944923232a b bc c a b c a b c a b c =--+=--=+--+【例题3】3223x x xy y y ----【分析】 原式()()221x xy y x y =++--【例题4】54323331x x x x x -+-+-【分析】 原式()()()223111x x x x x =-++-+【例题5】222595121824x y z xy yz zx --+-+【分析】 原式()()3553x y z x y z =++--【例题6】22121115x xy y --【分析】 原式()()4335x y x y =+-【例题7】2408124848x x --【分析】 原式()()204612x x =+-【例题8】633619216x x y y --【分析】 原式()()()()2222232439x y x y x xy y x xy y =+--+++【例题9】2222x yz axyz yz xy xz az ++---【分析】 原式()()xy z az xz y =-+-【例题10】222222444222a b b c c a a b c ++---原式()()()()b c a b c a c a b a b c =+++-+-+-【例题11】22015201420162015x x -⨯-【分析】 原式()()201512015x x =+-【例题12】()()()22592791a a a +---【分析】 原式()()()242728a a a a =-+--【例题13】()()()()26121311x x x x x ----+【分析】 原式()22661x x =-+【例题14】()()()()461413119x x x x x ----+【分析】 原式()22971x x =-+【例题15】343115x x -+【分析】 原式()()()21253x x x =--+【例题16】322772x x x -+-【分析】 原式()()()1221x x x =---【例题17】3331x y xy ++-【分析】 原式()()2211x y x y xy x y =+-++-++【例题18】432655x x x x ++++【分析】 原式()()2251x x x =+++【例题19】()()()()222222261561121x x x x x x ++++++++ 【分析】 原式()()229141x x x =+++【例题20】()()()322223a b c a a c b a b c abc +-+-++-【分析】 原式()()()a b a c a b c =+-+-【例题21】322222422x x z x y xyz xy y z --++-【分析】 原式()()22x z x y =--【例题22】()()()2122xy x y x y xy -++-+-【分析】 原式()()2211x y =--【例题23】32542071227x y x xy --【分析】 原式()()22223293293x x xy y x xy y =-++-+【例题24】43241x x x x +-++【分析】 原式()()22131x x x =-++【例题25】()()22222a a b b ab a -+--【分析】 原式()222a b b =-【例题26】43214599448x x x x -+-+【分析】 原式()()()()1238x x x x =----【例题27】432673676x x x x +--+【分析】 原式=()()()()221331x x x x -++-【例题28】()22223122331x x x x -+-+- 【分析】 原式()()()23323x x x x =--+【例题29】2244661124864x y x y x y -+-【分析】 原式()()331212xy xy =+-【例题30】()()()333222222x y z x y z ++--+ 【分析】 原式()()()()22223x y y z z x z x =-+++-【例题31】32221x ax ax a --+-【分析】 原式()()211x a x x a =--+-+【例题32】42201520142015x x x +++【分析】 原式()()2212015x x x x =++-+【例题33】22()()1ab a b a b +-++【分析】 原式22(1)(1)a ab b ab =+-+-【例题34】()()66x x y z y z y x +-+--【分析】 原式()()()()()2222x y z x y x y x xy y x xy y =+--+++-+【例题35】432227447x x x x ---+【例题36】()()()2222223241x x x x x x -+++-++ 【分析】 原式()()()2112x x x x =--++【例题37】323233332a a a b b b ++++++【分析】 原式()()222a b a b ab a b =+++-++【例题38】()322312b a a b a a -++--++【分析】 ()()212a b ab a b b =-+-+++【例题39】()()211ab ab ab a b a b +-+--+【分析】 原式()()()2111ab ab a b ab =+-+++(以1ab +为主元) ()()()()22111111a ab b ab a b a ab b =+-+-⎡⎤⎡⎤⎣⎦⎣⎦=+-+-【例题40】()()()333222x y z y z x z x y -+-+-【分析】 原式()()()()x y y z z x xy yz zx =---++【例题41】()()()()3311x a xy x y a b y b +---++【分析】 原式()()22x xy y ax x y by =-++++【例题42】22()()()()ax by ay bx ay ax by ay bx ay +++-+++-原式2222()()a ab b x xy y =++++【例题43】22222612523171319322312520a b c d ab ac ad bc bd cd a b c d ---+--+-+-+-+-【分析】 原式()()23423455a b c d a b c d =+-+--+-+【例题44】()()()()()()2222326232x y a b m n xy a b m n xy a b m n ++-+++++【分析】 原式()()()32421xy a b m n ax bx my ny =+++--+【例题45】22223273x xy y xz yz z ---+-【分析】 原式()()232x y z x y z =+--+【例题46】2299x x +-【分析】 原式()()119x x =+-【例题49】632827x x -+【分析】 原式()()()()2211339x x x x x x =-++-++【例题50】32374a a +-【分析】 原式()()()1322a a a =+-+【例题51】4464a b +【分析】 原式()()22224848a ab b a ab b =++-+【例题52】()()3211x y xy x y ++---【分析】 原式()()2211x y x y x y =+-++++【例题53】()()()2113212xy xy xy x y x y ⎛⎫+++-++-+- ⎪⎝⎭ 【分析】 原式()()()()1111x y x y =++--【例题54】22243x y x y ----【分析】 原式()()13x y x y =++--【例题55】2231032x xy y x y ---++【分析】 原式()()5221x y x y =--+-【例题56】32256x x x +--【分析】 原式()()()123x x x =+-+【例题57】4322111236x x x x --++【分析】 原式()()2223x x =+-【例题58】432262x x x x ---+【分析】 原式()()()22121x x x =--+【例题59】()()22213260x x x x -+-+ 【分析】 原式()()()()2165x x x x =-+-+【例题60】()()222248415x x x x x x ++++++ 【分析】 原式()()22264x x x =+++【例题62】()()()()11359x x x x -+++-【分析】 原式()()22246x x x =++-【例题63】()()()()245610123x x x x x ++++-【分析】 原式()()()22158235120x x x x =++++【例题64】()()42424413110x x x x x -++++【分析】 原式()()()()22221111x x x x x x =+-++-+【例题65】2222232a x acx bcx b x c ++--【分析】 原式()()2ax bx c ax bx c =-++-【例题66】()()()2222a b a b c a b ++-++ 【分析】 原式()()222a b c =++【例题67】()()()3332a b c a b b c ++-+-+【分析】 原式()()()32a b b c a b c =++++【例题68】()()ab bc ca a b c abc ++++-【分析】 原式()()()a b b c c a =+++【例题69】86421x x x x ++++【分析】 86421x x x x ++++()()()4322221x x x =+++()()()()551111x x x x +-=+-551111x x x x +-=⋅+- ()()43243211x x x x x x x x =-+-+++++【例题70】已知2220x y z --=,试将333x y z --分解成一次因式之积.【分析】 由已知,222z x y =-,222y x z =-,故()3333322x y z x y z x y --=---()()()()22x y x xy y x y x y z =-++--+()()22x y x xy y x y z ⎡⎤=-++-+⎣⎦()()222x y x xy z xz yz =-+---()()()()2x y x z x z y x z =--++-⎡⎤【例题71】证明:220162014201520172018+⨯⨯⨯是一个完全平方数【分析】 设2016x =,故原式()()()()22112x x x x x =+--++()()22222x x x x x =+--+-()222x =-()2220162=-,得证.【例题72】证明:20132014201520172018201936⨯⨯⨯⨯⨯+是一个完全平方数【分析】 设2016n =,则原式()()()()()()32112336n n n n n n =---++++()()()22214936n n n =---+()()42254936n n n =-+-+6421449n n n =-+()2227n n =-()227n n ⎡⎤=-⎣⎦ ()22201620167⎡⎤=⨯-⎣⎦,得证.【例题73】证明:22222016201620172017+⨯+是一个完全平方数【分析】 令2016n =,则2222(1)(1)a n n n n =++++()2432223211n n n n n n =++++=++, 故()22201620161a =++【例题74】证明:3320162016201620182016201720162015⨯-⨯是一个完全立方数【分析】 令20162016m =,则原数()()()()333323211812612140324033m m m m m m m m =+-+-=+++=+=【例题75】333333()()()a b b c c a a b c ++++++++【解析】 原式333333222[()][()][()]3()()a b c b c a c a b a b c a b c =++++++++=++++;【例题76】42222222()()x a b x a b -++-.【解析】 ()()()()()222242222222222222x a b x a b x a b a b a b ⎡⎤-++-=-+-++-⎣⎦ ()222224x a b a b =---()()22222222x a b ab x a b ab =--+---()()2222x a b x a b ⎡⎤⎡⎤=---+⎣⎦⎣⎦()()()()x a b x a b x a b x a b =+--+--++【例题77】()()()()()2222221ab x y a b xy a b x y ---+-++【解析】 原式2222[(1)()]()[()(1)]b xy x y ab x y a x y xy =+-++--+++2222(1)(1)()(1)(1)b x y ab x y a x y =--+--++[(1)(1)][(1)(1)]x b y a y b x a =--+-++【解析】 2227()()ab a b a ab b +++【例题79】33(1)()()(1)x a xy x y a b y b +---++ 【解析】33(1)()()(1)x a xy x y a b y b +---++33(1)()[(1)(1)](1)x a xy x y a b y b =+--+-+++ 322322(1)()(1)()a x x y xy b y x y xy =+-++++-2222(1)()(1)()x a x xy y b x xy y =+-+++-+ 22()()x xy y ax by x y =-++++【例题80】32()(32)(23)2()l m x l m n x l m n x m n +++-+---+【解析】 如果多项式的系数的和等于0,那么1一定是它的根;如果多项式的偶次项系数的和减去奇次项系数的和等于0,那么1-一定是它的根.现在正是这样:()(32)(23)2()0l n l m n l m n m n -+++-----+=所以1x +是原式的因式,并且32()(32)(23)2()l m x l m n x l m n x m n +++-+---+322[()()][(2)(2)][2()2()]l m x l m x l m n x l m n x m n x m n =+++++-++--+++ 2(1)[()(2)2()]x l m x l m n x m n =++++--+(1)(2)()x x lx mx m n =+++--【例题81】21(1)(3)2()(1)2xy xy xy x y x y +++-++-+- 【解析】 设xy u =,x y v +=,原式(1)(1)(1)(1)(1)(1)u v u v y x x y =+--+=++--【例题82】()()()()22222222ab cd a b c d ac bd a b c d +-+-+++--【分析】 原式()()()()()()()()22222222ab cd a d ab cd b c ac bd a d ac bd b c =+--+-++-++-()()()()()()()()()()()()()()()()()()()()222222ab cd ac bd a d ac bd ab cd b c a d b c a d a d b c d a b c b c a d b c a d b c a d b c a d b c a d b c =+++-++---=+++-+---+⎡⎤=-++--⎣⎦=-++-+++-【例题83】432234a b a b a b ab +--【分析】 ⑴原式432234332()()()()()()a b a b a b ab a b a b ab a b ab a b a b =+-+=+-+=-+【例题84】22(2)9x x -- 【分析】 原式222(23)(23)(23)(1)(3)x x x x x x x x =-+--=-++-【例题85】3139k +()1【分析】 原式2221(44)1(2)(12)(12)x xy y x y x y x y =--+=--=+--+【例题87】()()()333ax by by cz ax cz -+---【分析】 原式()()()333ax by bx cz cz ax =-+-+- ()()()3ax by bx cz cz ax =---【例题88】333()()()a b c bc b c ca c a ab a b ++++++++【分析】 原式222()()a b c a b c =++++【例题89】326116x x x +++【分析】 原式326126x x x x =-+++()()()21161x x x x =+-++()()()()22166156x x x x x x x =+-++=+++()()()()()21236123x x x x x x x =++++=+++【例题90】32254x x x +--【分析】 ()()()()232225515115x x x x x x x x x x =++--=+-+=++-【例题91】521171x x x +-+【分析】 设522321171(1)(1)x x x x ax x bx cx +-+=+-++-展开得5254321171()(1)(1)()1x x x x a b x ab c x ac b x a c x +-+=++++-+---++比较对应系数得0101117a b ab c ac b a c +=⎧⎪+-=⎪⎨--=⎪⎪+=⎩,解得225a b c =⎧⎪=-⎨⎪=⎩,∴原式232(21)(251)x x x x x =+--+-【例题92】54321x x x +-+【分析】 设()()5423232111x x x x ax x bx cx +-+=+++++展开得()()()()545432321111x x x x a b x ab c x b ac x a c x +-+=+++++++++++比较对应系数得31010a b ab c b ac +=⎧⎪++=⎪⎨++=⎪,解得12a b =⎧⎪=⎨⎪,∴原式()()2321231x x x x x =+++-+。
七年级因式分解练习题100道
1.)3a³b²c-12a²b²c2+9ab²c³2.)16x²-813.)xy+6-2x-3y4.)x²(x-y)+y²(y-x)5.)2x²-(a-2b)x-ab6.)a4-9a²b²7.)x³+3x²-4 8.)ab(x²-y²)+xy(a²-b²)9.)(x+y)(a-b-c)+(x-y)(b+c-a) 10.)a²-a-b²-b 11.)(3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12.)(a+3) ²-6(a+3)13.)(x+1) ²(x+2)-(x+1)(x+2) ²14.)16x²-8115.)9x²-30x+25 16.)x²-7x-30 17.) x(x+2)-x 18.) x²-4x-ax+4a 19.) 25x²-49 20.) 36x²-60x+25 21.) 4x²+12x+9 22.) x²-9x+18 23.) 2x²-5x-3 24.) 12x²-50x+8 25.) 3x²-6x 26.) 49x²-25 27.) 6x²-13x+5 28.) x²+2-3x29.) 12x²-23x-24 30.) (x+6)(x-6)-(x-6) 31.) 3(x+2)(x-5)-(x+2)(x-3) 32.) 9x²+42x+49 33.) x4-2x³-35x 34.) 3x6-3x²35.)x²-25 36.)x²-20x+10037.)x²+4x+3 38.)4x²-12x+539.)3ax²-6ax 40.)(x+2)(x-3)+(x+2)(x+4) 41.)2ax²-3x+2ax-3 42.)9x²-66x+12143.)8-2x²44.)x²-x+1445.)9x²-30x+25 46.)-20x²+9x+2047.)12x²-29x+15 48.)36x²+39x+949.)21x²-31x-22 50.)9x4-35x²-451.)(2x+1)(x+1)+(2x+1)(x-3) 52.)2ax²-3x+2ax-3 53.)x(y+2)-x-y-1 54.) (x²-3x)+(x-3) ²55.) 9x²-66x+121 56.) 8-2x²57.) x 4-1 58.) x ²+4x -xy -2y +459.) 4x ²-12x +5 60.) 21x ²-31x -2261.) 4x ²+4xy +y ²-4x -2y -3 62.) 9x 5-35x 3-4x63.) 若(2x)n −81 = (4x 2+9)(2x+3)(2x−3),那么n 的值是( )64.) 若9x ²−12xy+m 是两数和的平方式,那么m 的值是( )65) 把多项式a 4− 2a ²b ²+b 4因式分解的结果为( )66.) 把(a+b) ²−4(a ²−b ²)+4(a−b) ²分解因式为( )67.) 200020012121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-68) 已知x ,y 为任意有理数,记M = x ²+y ²,N = 2xy ,则M 与N 的大小关系为( )69) 对于任何整数m ,多项式( 4m+5) ²−9都能( )A .被8整除B .被m 整除C .被(m−1)整除D .被(2m −1)整除70.) 将−3x ²n −6x n 分解因式,结果是( )71.) 多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )72.) 若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
因式分解法例题20道
因式分解法例题20道嘿,同学们,今天咱就来好好讲讲这因式分解法的 20 道例题哈。
例 1:分解因式x² - 4。
这就是个简单的平方差公式,x² - 2² = (x + 2)(x - 2)。
例 2:分解因式9x² - 4y²,同样是平方差,(3x)² - (2y)² = (3x +2y)(3x - 2y)。
例 3:x³ - x,先提出公因式 x,得到x(x² - 1),然后再用平方差,x(x + 1)(x - 1)。
例 4:2x² + 4x,直接提公因式 2x 就行,2x(x + 2)。
例 5:4x² - 9,还是平方差,(2x)² - 3² = (2x + 3)(2x - 3)。
例 6:a³ + 2a² + a,先提 a 出来,a(a² + 2a + 1),再把括号里的化成完全平方,a(a + 1)²。
例 7:x² - 6x + 9,这是个完全平方,(x - 3)²。
例 8:4x² - 12xy + 9y²,也是完全平方,(2x - 3y)²。
例 9:x² + 5x + 6,用十字相乘法,分解成(x + 2)(x + 3)。
例 10:x² - 2x - 3,同样十字相乘,(x - 3)(x + 1)。
例 11:3x² + 7x + 2,十字相乘,(3x + 1)(x + 2)。
例 12:5x² - 7x - 6,还是十字相乘,(5x + 3)(x - 2)。
例 13:x³ - 3x² + 2x,先提 x 出来,x(x² - 3x + 2),然后再十字相乘,x(x - 1)(x - 2)。
例 14:2x³ - 3x² - 2x,提 2x 后,2x(x² - 3/2x - 1),再十字相乘,2x(x - 2)(x + 1/2)。
七年级因式分解练习题100道
1.)3a³b²c-12a²b²c2+9ab²c³2。
)16x²-813。
)xy+6-2x-3y 4。
) x²(x-y)+y²(y-x)5.) 2x²-(a-2b)x-ab 6。
)a4-9a²b²7。
)x³+3x²-4 8.) ab(x²-y²)+xy(a²-b²)9。
) (x+y)(a-b-c)+(x-y)(b+c-a)10.)a²-a-b²-b11.) (3a-b)²-4(3a-b)(a+3b)+4(a+3b)²12。
)(a+3) ²-6(a+3)13.) (x+1)²(x+2)-(x+1)(x+2)²14.)16x²-8115。
)9x²-30x+25 16.)x²-7x-3017。
) x(x+2)-x 18。
) x²-4x-ax+4a 19。
)25x²-49 20.)36x²-60x+25 21。
) 4x²+12x+9 22.) x²-9x+18 23。
)2x²-5x-3 24。
) 12x²-50x+8 25。
)3x²-6x 26.)49x²-25 27.) 6x²-13x+5 28.) x²+2-3x29.) 12x²-23x-24 30.)(x+6)(x-6)-(x-6)31。
)3(x+2)(x-5)-(x+2)(x-3)32。
)9x²+42x+49 33.)x4-2x³-35x 34.)3x6-3x²35.)x²-25 36.) x²-20x+10037。
初中数学因式分解50题专题训练含答案
初中数学因式分解50题专题训练含答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.分解因式(1)()()22-1-41-m m m (2)()()23812a a b b a ---2.把下列各式分解因式:(1)22344x y xy y -+;(2)41x -.3.因式分解(1) 322m -8mn(2)a (a+4)+44.因式分解:(1)x 2﹣9(2)4y 2+16y+165.分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-6.把下列各式因式分解:(1)216y -(2)32232a b a b ab -+7.计算(1))10122-⎛⎫-- ⎪⎝⎭(2)分解因式:()222224a b a b +-8.分解因式:(1) 3x x -(2) 2363x y xy y -+9.把下列各式分解因式:(1)2221218a ab b -+; (2)222(2)(12)x y y ---.10.因式分解:(1)()()35a x y b y x --- (2)32231025ab a b a b -+11.把下列各式进行因式分解(1)22818x y - (2)322a b a b ab -+12.因式分解:(1) 33a b ab -; (2) 44-b a13.因式分解:(1)3m 2n-12mn+12n ; (2)a 2(x-y)+9(y-x)14.分解因式:(1)269y y -+(2)228x -15.因式分解(1)4a 2-25b 2(2)-3x 3y 2+6x 2y 3-3xy 416.把下面各式分解因式:(1)x 2﹣4xy +4y 2;(2)3a 3﹣27a .17.将下列各式因式分解:(1)x 3﹣x ;(2)x 4﹣8x 2y 2+16y 4.18.分解因式:(1)ax 2﹣9a ; (2)4ab 2﹣4a 2b ﹣b 3.19.因式分解:(1)ax 2-9a ;(2)(y+2)(y+4)+1.20.分解因式:(1)()()22x x y y y x -+-(2)324812x x x -++21.因式分解:(1)()()323x x x --- ;(2)3231827a a a -+-22.因式分解:(1)m 2(x +y )﹣n 2(x +y );(2)x 4﹣2x 2+1.23.因式分解(1)2(2)(2)m a m a -+- (2)()222224a b a b +-24.(1)分解因式:22344a b ab b -+(2)解方程:1224x x x x -=--25.因式分解:(1)9x 2﹣1 (2)3a 2﹣18a+27.参考答案1.(1)(m -1)(m -2)2;(2) 4(a -b )2(5a -3b )【解析】【分析】(1)先提公因式,再用完全平方公式;(2)提公因式法分解因式.【详解】解:(1)原式()()2=-1-44m m m + ()()2=-1-2m m ;(2)原式()()22-343a b a a b -+= ()()245-3a b a b =-.【点睛】本题考查因式分解的方法,熟练掌握提公因式法和完全平方公式是关键..2.(1)2(2)y x y -;(2)2(1)(1)(1)x x x ++-.【解析】【分析】(1)先提公因式,然后了利用完全平方公式进行因式分解,解题得到答案.(2)利用平方差公式进行因式分解,即可得到答案.【详解】解:(1)原式=22(44)y x xy y -+=2(2)y x y -; (2)原式=22(1)(1)x x +-=2(1)(1)(1)x x x ++-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握提公因式法、公式法进行因式分解. 3.(1)2m (m+2n )(m-2n );()22a +.【解析】【分析】本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
初中数学因式分解100题及答案
初中数学因式分解100题及答案一、提取公因式(1)(53)(35)(53)(54)-----x y x y(2)(74)(25)(74)(52)----+x y x y(3)(54)(73)(54)(72)a b a b--+--(4)(45)(23)(71)(45)---+-m n n m(5)(25)(41)(25)(92)(25)(63)-++--+--a b a b a b(6)(1)(51)(1)(83)+-++-a b a b(7)(35)(85)(31)(35)-+---a b b a(8)4424322-+283521xy z y z x y z(9)22242x y z x yz x y+-15615(10)(21)(34)(23)(21)--+---m n n m(11)4232+x z x y z126(12)3222-x y x y39(13)343-ab c c2114(14)2333+xyz x y z820(15)(45)(2)(45)(33)a b a b+-+++-(16)(5)(25)(5)(53)(5)(42)--+--+-+m n m n m n (17)(72)(25)(72)(31)--+-+m x m x(18)33231435a c a b c-(19)3423234664xy z x y z x y z --(20)(2)(34)(2)(25)a b a b -----二、公式法(21)224253681x y x -+-(22)2262550x xy y ++(23)2324625x -(24)22729324m n -(25)2281324m n -(26)22364816a b a -+-(27)22900225a b -(28)22289340100a ab b -+(29)2361140900x x -+(30)22495616m n n -+-三、分组分解法(31)45408172mx my nx ny--+(32)455273xy x y --+(33)224835182186a c ab bc ca+-+-(35)60125010+--mn m n(36)12402480----xy x y(37)22++--54224545x y xy yz zx (38)28327080+++mn m n(39)22++++x z xy yz zx635102529 (40)54451815+--mx my nx ny (41)40802856+--ax ay bx by (42)245637--+xy x y(44)351573+--ax ay bx by (45)36541624+--ab a b (46)981981mx my nx ny+--(47)183060100+++ab a b (48)48641216-+-mx my nx ny (49)22-+--a c ab bc ca93326 (50)45253620--+ax ay bx by四、拆添项(51)22-+++936361235x y x y(52)223610489a b a b ---+(53)2299364828x y x y ----(54)2249161127217x y x y --+-(55)229366368x y x y ----(56)4224256936a a b b -+(57)2264254830m n m n-++(58)2281181880m n m n ----(59)22164641255m n m n -+++(60)2249649814432x y x y ----五、十字相乘法(61)22----+a ab b a b5412333018 (62)22+-+--x xy y x y283152815 (63)2++--a ab a b32828749(64)22x xy y x y-+-++327635564412 (65)22--+-+x xy y x y212025352514 (66)222x y z xy yz xz++-+-491512563656 (67)222x y z xy yz xz-+-+-28182031851 (68)222-++--48182030964a b c ab bc ac(69)22691523167x xy y x y +-+-+(70)2227216542321x xy y x y -----(71)22429149171415x xy y x y -++--(72)2229108471614x y z xy yz xz+----(73)22849293535a ab a b ++--(74)22629282315x xy y x y -++--(75)2293299x xy y y --+-(76)222141211165x xy y x y -+-++(77)2254697302224x xy y x y +++--(78)2215241231210a ab b a b --+-+(79)227222242712x xy y x y+-+-(80)2274342512814x xy y x y +-+-+六、双十字相乘法(81)22185914592814x xy y x y +-+--(82)2226341219260x y z xy yz xz-++++(83)2261121483142x xy y x y +-+-+(84)2227216282513x y z xy yz xz++--+(85)22263312342060x y z xy yz xz+++--(86)2146592135x xy x y +--+(87)22499849707024x xy y x y -+-++(88)22151910252110x xy y x y +-+++(89)242723x xy x y ++++(90)2728455x xy x y-+-七、因式定理(91)32672912x x x ---(92)326132015x x x --+(93)32896x x x ++-(94)321529173x x x +++(95)322536x x x +--(96)32384x x x -++(97)3220191312a a a --+(98)32463x x x +--(99)3231024x x x --+(100)32515136x x x +++初中数学因式分解100题答案一、提取公因式(1)(53)(21)x y --+(2)(74)(37)x y --+(3)(54)(145)a b --(4)(45)(54)m n --+(5)(25)(194)a b --(6)(1)(134)a b +-(7)(35)(56)a b -+(8)2222237(453)y z xy z z x -+(9)223(525)x y yz z x y +-(10)(21)(57)m n ---(11)326(2)x z xz y +(12)223(3)x y x -(13)337(32)c ab c -(14)2224(25)xyz x y z +(15)(45)(21)a b +-(16)(5)(116)m n --(17)(72)(54)m x --(18)2237(25)a c ac b -(19)3332(332)xy z z x xz --(20)(2)(1)a b -+二、公式法(21)(259)(259)x y x y ++-+(22)2(25)x y +(23)(1825)(1825)x x +-(24)(2718)(2718)m n m n +-(25)(918)(918)m n m n +-(26)(64)(64)a b a b ++-+(27)(3015)(3015)a b a b +-(28)2(1710)a b -(29)2(1930)x -(30)(74)(74)m n m n +--+三、分组分解法(31)(59)(98)m n x y --(32)(53)(91)x y --(33)(67)(835)a c a b c ---(34)(41)(310)m n --(35)2(65)(51)m n -+(36)4(2)(310)x y -++(37)(625)(9)x y z x y +-+(38)2(25)(78)m n ++(39)(357)(25)x y z x z+++(40)3(3)(65)m n x y-+(41)4(107)(2)a b x y-+(42)(81)(37)x y--(43)2(5)(310)m n+-(44)(5)(73)a b x y-+(45)2(94)(23)a b-+(46)9()(9)m n x y-+(47)2(310)(35)a b++(48)4(4)(34)m n x y+-(49)(3)(9)a c ab c-++(50)(54)(95)a b x y--四、拆添项(51)(365)(367)x y x y++-+(52)(61)(69)a b a b+---(53)(332)(3314)x y x y++--(54)(7417)(741)x y x y+--+ (55)(362)(364)x y x y++--(56)2222(536)(536)a ab b a ab b+---(57)(85)(856)m n m n+-+(58)(98)(910)m n m n++--(59)(425)(4211)m n m n++-+ (60)(782)(7816)x y x y++--五、十字相乘法(61)(563)(26)a b a b+---(62)(453)(75)x y x y++--(63)(47)(87)a b a++-(64)(852)(476)x y x y----(65)(757)(352)x y x y++-+ (66)(752)(736)x y z x y z----(67)(435)(764)x y z x y z+---(68)(665)(834)a b c a b c+---(69)(331)(257)x y x y-+++ (70)(337)(923)x y x y--++ (71)(675)(773)x y x y-+--(72)(52)(924)x y z x y z---+(73)(75)(477)a a b-++ (74)(345)(273)x y x y-+--(75)(33)(323)x y x y+--+ (76)(65)(221)x y x y----(77)(676)(94)x y x y+++-(78)(365)(522)a b a b-+++(79)(863)(94)x y x y++-(80)(77)(762)x y x y++-+六、双十字相乘法(81)(277)(922)x y x y++--(82)(72)(946)x y z x y z-+++ (83)(676)(37)x y x y-+++ (84)(776)(3)x y z x y z-+-+ (85)(732)(96)x y z x y z+-+-(86)(27)(735)x x y-+-(87)(774)(776)x y x y----(88)(352)(525)x y x y++-+ (89)(1)(423)x x y+++(90)(9)(85)x y x-+七、因式定理(91)(3)(21)(34)x x x-++ (92)2(3)(655)x x x-+-(93)2(2)(63)x x x++-(94)(1)(53)(31)x x x+++ (95)2(1)(236)x x x++-(96)2(1)(354)x x x---(97)(1)(43)(54)a a a--+ (98)2(1)(423)x x x++-(99)(3)(4)(2)x x x+--(100)2(2)(553)x x x+++。
七年级因式分解50道题及答案和过程
七年级因式分解50道题及答案和过程1.因式分解:(1)2218x -(2)()()244m n m n +-++2.因式分解:(1)2129xyz x y -;(2)2464x -.3.因式分解:(1)249x -;(2)322242m m n mn ++.4.因式分解:(1)2464x -;(2)232a a a -+-.5.因式分解:(1)2422ax ay -.(2)4224817216x x y y -+.6.因式分解:(1)228a -(2)()()24129a b a b +-++7.因式分解:(1)244x x -+;(2)2327x -.8.分解因式:(1)533416m n m n-(2)32221218x x y xy -+9.分解因式:(2)32232x y x y xy ++.10.因式分解:(1)2416x -;(2)23216164a b a ab --.11.因式分解:(1)2296x xy y -+.(2)(1)(3)4x x +-+.12.因式分解:(1)222a ab b -+(2)24()()a ab b a -+-13.因式分解(1)242025x x ++;(2)()()2293a b a b -+-.14.因式分解:(1)a 3-4a 2+4a ;(2)a 4b 4-81;(3)16(x -2y )2-4(x +y )2.15.因式分解:(1)32288a a a -+;(2)328x x -16.因式分解:(1)33a b ab -(2)22363x xy y -+-17.因式分解:(1)2x 2-8(2)4221x x -+18.因式分解:(2)228x -19.因式分解(1)a 2(x+y )﹣b 2(x+y )(2)x 4﹣8x 2+16.20.因式分解:(1)2693x xy x -+;(2)2xy x -;21.因式分解:(1)x 3y ﹣xy 3;(2)(x +2)(x +4)+x 2﹣422.因式分解:(1)322369x y x y xy -+(2)()()236x x y x y x -+-23.因式分解:(1)32246x x x -+-;(2)222(4)16a a +-.24.因式分解:(1)236x x -;(2)2441a a -+(3)()()229m n m n +--;25.因式分解:(1)4ab b+(2)232x x -+(3)2214a b b -+-(4)2464a -参考答案1.(1)()()21313x x +-(2)()22m n +-【分析】(1)先提公因式2,再按照平方差公式分解即可;(2)把m n +看整体,直接利用完全平方公式分解即可.(1)解:2218x -()2219x =-()()21313x x =+-(2)()()244m n m n +-++()22m n =+-2.(1)()343xy z x -(2)()()444x x +-【分析】(1)提取公因式3xy 即可;(2)先提取公因式4,再利用平方差公式分解因式即可.(1)解:2129xyz x y-()343xy z x =-(2)()()()22464416444.x x x x -=-=+-3.(1)()()2323x x +-(2)()22m m n +【解析】(1)根据平方差公式因式分解即可求解;(2)提公因式2m ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2223x -()()2323x x =+-;(2)原式=()2222m m mn n ++()22m m n =+.4.(1)()()444x x +-(2)()21a a --【解析】(1)后利用平方差公式分解因式;(2)先提取公因数,再结合完全平方公式分解因式;(1)解:原式()()()2416444x x x =-=+-;(2)原式()()22211a a a a a =--+=--.5.(1)()()222a x y x y +-(2)22(32)(32)x y x y +-【解析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用完全平方公式分解,整理后,再利用平方差公式分解即可.(1)解:2422ax ay -()242a x y =-()()222a x y x y =+-;(2)解:4224817216x x y y -+()22294x y =-()()223232x y x y =+-.6.(1)()()222a a +-(2)()2223a b +-【解析】(1)先提公因式2,再用平方差公式分解;(2)将2()a b +看成一个整体,利用完全平方公式直接分解.(1)解:228a -()224a =-()()222a a =+-;(2)()()24129a b a b +-++()()22129a b a b ⎡⎤=+-++⎣⎦()223a b ⎡⎤=+-⎣⎦=()2223a b +-.7.(1)()22x -(2)()()333x x +-【解析】(1)利用完全平方公式法进行因式分解即可;(2)先对整式进行提公因式,再利用平方差公式进行因式分解即可.(1)解:原式=()22x -(2)原式=()239x -=()()333x x +-8.(1)()()3422m n mn mn +-(2)()223x x y -【解析】(1)先提公因式34,m n 再利用平方差公式分解即可;(2)先提公因式2,x 再按照完全平方公式分解因式即可.(1)解:533416m n m n-()32244m n m n =-()()3422m n mn mn =+-(2)解:32221218x x y xy -+()22269x x xy y =-+()223x x y =-9.(1)()()244x x +-(2)()2xy x y +【解析】(1)提出公因式2,然后根据平方差公式因式分解即可求解;(2)提公因式xy ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2216x -()()244x x =+-;(2)解:原式=()222xy x xy y ++()2xy x y =+.10.(1)4(2)(2)x x +-(2)24(2)a a b --【分析】(1)根据提公因式法和公式法即可求解.(2)先利用提公因式法,再利用公式法即可求解.(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b ⎡⎤=--+⎣⎦24(2)a a b =--.11.(1)(3x-y)2(2)(x-1)2【分析】(1)直接利用完全平方公式进行因式分解;(2)先拆开括号,然后利用完全平方公式继续进行因式分解.(1)解:原式=()2236x xy y -+=()23x y -.(2)原式=221x x -+=()21x -.12.(1)2()a b -(2)()(21)(21)a b a a -+-【解析】(1)利用完全平方公式解答,即可求解;(2)先提出公因式,再利用平方差公式解答,即可求解.(1)解:()2222a ab b a b -+=-;(2)解:24()()a ab b a -+-()()241a b a =--()()()2121a b a a =-+-13.(1)2(25)x +(2)(3)(31)a b a b -++【解析】(1)根据完全平方公式因式分解即可求解;(2)根据平方差公式与提公因式法因式分解即可求解.(1)242025x x ++=()2222255x x +⋅⋅+=2(25)x +(2)()()2293a b a b -+-=()()2233a b a b ⎡⎤-+-⎣⎦=()()()333a b a b a b +-+-=(3)(31)a b a b -++14.(1)()22a a -(2)()()()22933a b ab ab ++-(3)()()125x y x y --【解析】(1)先提出公因式,再利用完全平方公式解答,即可求解;(2)利用平方差公式解答,即可求解;(3)先利用平方差公式,再提出公因式,即可求解.(1)解:3244a a a-+()244a a a =-+()22a a =-(2)解:4481a b -()()222299a b a b =+-()()()22933a b ab ab =++-(3)解:()()221624x y x y --+()()()()422422x y x y x y x y =-++--+⎡⎤⎡⎤⎣⎦⎣⎦()()66210x y x y =--()()125x y x y =--15.(1)()222a a -(2)()()21212x x x +-【解析】(1)先提公因式,然后利用公式法因式分解,即可得到答案;(2)先提公因式,然后利用公式法因式分解,即可得到答案.(1)解:()()232228824422a a a a a a a a -+=-+=-;(2)解:()()()322821421212x x x x x x x -=-=+-;16.(1)()()ab a b a b +-(2)23()x y --【解析】(1)先提取公因式,再利用平方差公式分解因式;(2)先提取公因式,再利用完全平方公式分解因式.(1)解:33a b ab -()22ab a b =-()()ab a b a b =+-;(2)解:22363x xy y -+-()2232x xy y =--+()23x y =--.17.(1)()()222.x x +-(2)()()2211.x x +-【解析】(1)利用提公因式法提公因式后,再按照平方差公式分解即可。
因式分解100题试题附答案精选全文完整版
100题搞定因式分解计算因式分解100题(试题版)日期:________时间:________姓名:________成绩:________一、解答题(共100小题)1.因式分解:4a2b﹣b.2.因式分解:a2(a﹣b)+25(b﹣a).3.因式分解:x3+3x2y﹣4x﹣12y.4.因式分解:9(x+y)2﹣(x﹣y)2.5.因式分解:2a2b﹣12ab+18b.6.因式分解:﹣x3y+4x2y2﹣4xy3.7.因式分解:a2(x﹣y)+4b2(y﹣x).8.因式分解:4a3b+4a2b2+ab3.9.因式分解:(a+b)2﹣4a2.10.因式分解:3ax2﹣6axy+3ay2.11.因式分解:6x4﹣5x3﹣4x2.12.因式分解:(x﹣3y)(x﹣y)﹣(﹣x﹣y)213.因式分解:2m(a﹣b)﹣3n(b﹣a)14.因式分解:m2﹣(2m+3)2.16.因式分解:x2﹣4xy+4y2﹣117.因式分解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)18.因式分解:a2﹣4﹣3(a+2)19.因式分解:(x﹣1)2+2(x﹣5).20.因式分解:4x3﹣8x2+4x.21.因式分解:x3﹣2x2﹣3x22.因式分解:2x2﹣4xy+3x﹣6y24.因式分解:9x2﹣6x+1.25.因式分解:4ma2﹣mb2.26.因式分解:x2﹣2xy﹣8y2.27.因式分解:a2+4a(b+c)+4(b+c)2.28.因式分解:x2﹣4y2+4﹣4x29.因式分解:xy2﹣4xy+4x.30.因式分解:x4﹣5x2﹣36.31.因式分解:x3﹣2x2y+xy2.32.在实数范围内因式分解:x2﹣4xy﹣3y2.33.因式分解:9a2(x﹣y)+4b2(y﹣x)34.因式分解:x4﹣10x2+9.35.因式分解:x2﹣y2﹣2x+1.36.因式分解:(2x﹣y)(x+3y)﹣(x+y)(y﹣2x).37.因式分解:6(x+y)2﹣2(x﹣y)(x+y).38.因式分解:2m4n﹣12m3n2+18m2n3.39.因式分解:a2(x﹣y)+4(y﹣x).40.在实数范围内因式分解:﹣2a2b2+ab+2.41.因式分解:x2﹣9+3x(x﹣3)42.因式分解:4xy2+4x2y+y3.43.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.44.因式分解:6xy2+9x2y+y3.45.因式分解:x3﹣3x2+2x.46.因式分解:x(a﹣b)+y(b﹣a)﹣3(b﹣a).47.因式分解:3ax﹣18by+6bx﹣9ay48.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)49.因式分解:(a﹣3)2+(3﹣a)50.因式分解:(a+b)﹣2a(a+b)+a2(a+b)51.因式分解:12x4﹣6x3﹣168x252.因式分解:(2m+3n)(2m﹣n)﹣n(2m﹣n)53.因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)54.因式分解:(x﹣1)(x+1)(x﹣2)﹣(x﹣2)(x2+2x+4)55.因式分解:8x2y2﹣10xy﹣1256.因式分解:6(x+y)2﹣2(x+y)(x﹣y)57.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)258.因式分解:4xy(x+y)2﹣6x2y(x+y)59.因式分解:﹣24m2x﹣16n2x.60.因式分解:4a(x﹣y)﹣2b(y﹣x)61.因式分解:ax4﹣14ax2﹣32a.62.因式分解:x3+5x2y﹣24xy2.63.因式分解:(1﹣3a)2﹣3(1﹣3a)64.因式分解:x(x﹣y)3+2x2(y﹣x)2﹣2xy(x﹣y)2.65.因式分解:x5﹣2x3﹣8x.366.因式分解:x2-y2+2x+y+467.因式分解:2(x+y)2﹣20(x+y)+50.68.因式分解:1+a+a(1+a)+a(1+a)2+a(1+a)3.69.因式分解:x2y﹣x2z+xy﹣xz.70.因式分解:(x2﹣x)2﹣8x2+8x+12.71.因式分解:x4﹣(3x﹣2)2.72.因式分解:(3m﹣1)2﹣(2m﹣3)2.73.因式分解:(2x+5)2﹣(2x﹣5)2.74.因式分解:(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)275.因式分解:(m+1)(m﹣9)+8m.76.因式分解:9(a﹣b)2+36(b2﹣ab)+36b277.因式分解:(a2+4)2﹣16a2.78.因式分解:9(m+n)2﹣(m﹣n)279.因式分解:x4﹣8x2y2+16y4.80.因式分解:25x2﹣9(x﹣2y)281.因式分解:4x2y2﹣(x2+y2)2.82.因式分解:x(x﹣12)+4(3x﹣1).83.因式分解:(x2﹣3)2+2(3﹣x2)+1.84.因式分解:(x+2)(x﹣6)+16.85.因式分解:2m(2m﹣3)+6m﹣1.86.因式分解:x4﹣16y4.87.因式分解:(a2+1)2﹣4a2.88.因式分解:(2x+y)2﹣(x+2y)2.89.因式分解:(x2﹣6)2﹣6(x2﹣6)+990.因式分解:(x2+x)2﹣(x+1)2.91.因式分解:8(x2﹣2y2)﹣x(7x+y)+xy.92.因式分解:x4﹣10x2y2+9y4.93.因式分解:(x2+x﹣5)(x2+x﹣3)﹣394.因式分解:(m2+2m)2﹣7(m2+2m)﹣895.因式分解:(x2+2x)2﹣2(x2+2x)﹣396.因式分解:2x2+6x﹣3.5.97.因式分解:3x2﹣12x+998.因式分解:(x﹣4)(x+7)+18.99.因式分解:5a2b2+23ab﹣10.100.因式分解:(x+y)2﹣(4x+4y)﹣32.因式分解100题参考答案部分可能有误仅供参考一、解答题(共100小题)1.【解答】解:4a2b﹣b=b(4a2﹣1)=b(2a+1)(2a﹣1).2.【解答】解:a2(a﹣b)+25(b﹣a)=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣52)=(a﹣b)(a+5)(a﹣5).3.【解答】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).4.【解答】解:9(x+y)2﹣(x﹣y)2=[3(x+y)﹣(x﹣y)][3(x+y)+(x﹣y)]=(2x+4y)(4x+2y)=4(x+2y)(2x+y).5.【解答】解:原式=2b(a2﹣6a+9)=2b(a﹣3)2.6.【解答】解:原式=﹣xy(x2﹣4xy+4y2)=﹣xy(x﹣2y)2.7.【解答】解:原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b).故答案为:(x﹣y)(a+2b)(a﹣2b).8.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.9.【解答】解:原式=(a+b+2a)(a+b﹣2a)=(3a+b)(b﹣a).10.【解答】解:原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.11.【解答】解:6x4﹣5x3﹣4x2=x2(6x2﹣5x﹣4)=x2(2x+1)(3x﹣4).12.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).13.【解答】解:2m(a﹣b)﹣3n(b﹣a)=(a﹣b)(2m+3n).14.【解答】解:原式=(m+2m+3)(m﹣2m﹣3)=(3m+3)(﹣m﹣3)=﹣3(m+1)(m+3).15.【解答】解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.16.【解答】解:x2﹣4xy+4y2﹣1=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.【解答】解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)=(2y﹣x)(9x+y+3x+2y)=3(2y﹣x)(4x+y).18.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).19.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).20.【解答】解:原式=4x(x2﹣2x+1)=4x(x﹣1)2.21.【解答】解:x3﹣2x2﹣3x=x(x2﹣2x﹣3)=x(x﹣3)(x+1).22.【解答】解:原式=2x(x﹣2y)+3(x﹣2y)=(x﹣2y)(2x+3).23.【解答】解:(x﹣2y)(x+3y)﹣(x﹣2y)2=(x﹣2y)(x+3y﹣x+2y)=5y(x﹣2y).24.【解答】解:原式=(3x﹣1)2.25.【解答】解:4ma2﹣mb2,=m(4a2﹣b2),=m(2a+b)(2a﹣b).26.【解答】解:x2﹣2xy﹣8y2=(x﹣4y)(x+2y).27.【解答】解:原式=[a+2(b+c)]2=(a+2b+2c)2.28.【解答】解:x2﹣4y2+4﹣4x=(x2﹣4x+4)﹣4y2=(x﹣2)2﹣4y2=(x+2y﹣2)(x﹣2y﹣2).29.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.30.【解答】解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).31.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.32.【解答】解:x2﹣4xy﹣3y2=x2﹣4xy+4y2﹣7y2=(x﹣2y)2﹣7y2=(x﹣2y+y)(x﹣2y﹣y).33.【解答】解:9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).34.【解答】解:原式=(x2﹣1)(x2﹣9)=(x+1)(x﹣1)(x+3)(x﹣3).35.【解答】解:原式=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y236.【解答】解:原式=(2x﹣y)(x+3y)+(x+y)(2x﹣y)=(2x﹣y)(x+3y+x+y)=(2x﹣y)(2x+4y)=2(2x﹣y)(x+2y).37.【解答】解:6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y)38.【解答】解:2m4n﹣12m3n2+18m2n3=2m2n(m2﹣6mn+9n2)=2m2n(m﹣3n)2.39.【解答】原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).40.【解答】解:令﹣2a2b2+ab+2=0,则ab=,所以﹣2a2b2+ab+2=﹣2(ab﹣)(ab﹣).41.【解答】解:x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).42.【解答】解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.43.【解答】解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).44.【解答】解:原式=y(6xy+9x2+y2)=y(3x+y)2.45.【解答】解:x3﹣3x2+2x=x(x2﹣3x+2)=x(x﹣1)(x﹣2)46.【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).47.【解答】解:原式=(3ax﹣9ay)+(6bx﹣18by)=3a(x﹣y)+6b(x﹣y)=3(x﹣y)(a+2b).48.【解答】解:(2a﹣b)(3a﹣2)+b(2﹣3a)=(2a﹣b)(3a﹣2)﹣b(3a﹣2)=(3a﹣2)(2a﹣b﹣b)=2(3a﹣2)(a﹣b).49.【解答】解:原式=(3﹣a)2+(3﹣a)=(3﹣a)(3﹣a+1)=(3﹣a)(4﹣a).50.【解答】解:原式=(a+b)(1﹣2a+a2)=(a+b)(1﹣a)251.【解答】解:12x4﹣6x3﹣168x2=6x2(2x2﹣x﹣28)52.【解答】解:原式=(2m ﹣n )(2m +3n ﹣n )=(2m ﹣n )(2m +2n )=2(2m ﹣n )(m +n ).53.【解答】解:3x 2(x ﹣2y )﹣18x (x ﹣2y )﹣27(2y ﹣x )=3x 2(x ﹣2y )﹣18x (x ﹣2y )+27(x ﹣2y )=3(x ﹣2y )(x 2﹣6x +9)=3(x ﹣2y )(x ﹣3)2.54.【解答】解:原式=(x ﹣2)(x 2﹣1﹣x 2﹣2x ﹣4)=(x ﹣2)(﹣2x ﹣5)=﹣2x 2﹣x +10.55.【解答】解:原式=2(4x 2y 2﹣5xy ﹣6)=2(4xy +3)(xy ﹣2).56.【解答】解:6(x +y )2﹣2(x +y )(x ﹣y )=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).57.【解答】解:原式=3(a ﹣b )[3(a +b )﹣(a ﹣b )]=6(a ﹣b )(a +2b ).58.【解答】解:原式=2xy (x +y )•2(x +y )﹣2xy (x +y )•3x =2xy (x +y )•[2(x +y )﹣3x ]=2xy (x +y )(2y ﹣x ).59.【解答】解:原式=﹣8x (3m 2+2n 2).60.【解答】解:4a (x ﹣y )﹣2b (y ﹣x )=4a (x ﹣y )+2b (x ﹣y )=2(x ﹣y )(2a +b ).61.【解答】解:ax 4﹣14ax 2﹣32a =a (x 4﹣14x 2﹣32)=a (x 2+2)(x 2﹣16)=a (x 2+2)(x +4)(x ﹣4).62.【解答】解:原式=x (x 2+5xy ﹣24y 2)=x (x +8y )(x ﹣3y ).63.【解答】解:(1﹣3a )2﹣3(1﹣3a )=(1﹣3a )(1﹣3a ﹣3)=(1﹣3a )(﹣3a ﹣2)=﹣(1﹣3a )(3a +2)=﹣3a ﹣2+9a 2+6a =9a 2+3a ﹣2.64.【解答】解:x (x ﹣y )3+2x 2(y ﹣x )2﹣2xy (x ﹣y )2=x (x ﹣y )2[(x ﹣y )+2x ﹣2y ]=3x (x ﹣y )3.65.【解答】解:原式=x (x 4﹣2x 2﹣8)=x (x 2﹣4)(x 2+2)=x (x +2)(x ﹣2)(x 2+2).66.【解答】解:原式=x 2+2x +1-y 2+y +43=(x +1)2-(y ﹣)2⎫⎛⎫⎛31y x y x ()()322122167.【解答】解:2(x+y)2﹣20(x+y)+50.=2[(x+y)2﹣10(x+y)+25].=2(x+y﹣5)2.68.【解答】解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)[1+a+a(1+a)+a(1+a)2]=(1+a)2[1+a+a(1+a)]=(1+a)4.69.【解答】解:x2y﹣x2z+xy﹣xz.=(x2y﹣x2z)+(xy﹣xz).=x2(y﹣z)+x(y﹣z).=x(x+1)(y﹣z).70.【解答】解:原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3)71.【解答】解:原式=(x2)2﹣(3x﹣2)2=(x2+3x﹣2)(x2﹣3x+2)=(x2+3x﹣2)(x﹣1)(x﹣2).72.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).73.【解答】解:原式=[(2x+5)+(2x﹣5)][(2x+5)﹣(2x﹣5)]=4x•10=40x.74.【解答】解:原式=[(﹣2x﹣1)(2x﹣1)+4x2﹣2x﹣1][(﹣2x﹣1)(2x﹣1)﹣4x2+2x+1]=﹣4x(﹣4x2+x+1).75.【解答】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).76.【解答】解:原式=9[(a﹣b)2+4b(a﹣b)+4b2]=9(a﹣b+2b)2=9(a+b)2.77.【解答】解:原式=(a2+4)2﹣(4a)2,=(a2+4+4a)(a2+4﹣4a),=(a+2)2(a﹣2)2.78.【解答】解:原式=[3(m+n)]2﹣(m﹣n)2=(3m+3n+m﹣n)(3m+3n﹣m+n)=4(2m+n)(m+2n).79.【解答】解:原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.80.【解答】解:原式=[5x﹣3(x﹣2y)][5x+3(x﹣2y)]=(2x﹣6y)(8x﹣6y)=4(x+3y)(4x﹣3y).81.【解答】解:4x2y2﹣(x2+y2)2=﹣[(x2+y2)2﹣(2xy)2]=﹣(x2+y2+2xy)(x2+y2﹣2xy)=﹣(x+y)2(x﹣y)2.82.【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).83.【解答】解:(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.84.【解答】解:原式=x2﹣4x+4=(x﹣2)2.85.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).86.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).87.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.88.【解答】解:(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).89.【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.90.【解答】解:原式=(x2+x+x+1)(x2+x﹣x﹣1)=(x2+2x+1)(x2﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).91.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).92.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).93.【解答】解:原式=(x2+x)2﹣8(x2+x)+12=(x2+x﹣2)(x2+x﹣6)=(x﹣1)(x+2)(x﹣2)(x+3).94.【解答】解:(m2+2m)2﹣7(m2+2m)﹣8,=(m2+2m﹣8)(m2+2m+1),=(m+4)(m﹣2)(m+1)2.95.【解答】解:原式=(x2+2x﹣3)(x2+2x+1),=(x+3)(x﹣1)(x+1)2;96.【解答】解:原式=(2x﹣1)(x+).97.【解答】解:3x2﹣12x+9=3(x2﹣4x+3)=3(x﹣3)(x﹣1).98.【解答】解:(x﹣4)(x+7)+18=x2+3x﹣10=(x﹣2)(x+5).99.【解答】解:原式=(5ab﹣2)(ab+5).100.【解答】解:(x+y)2﹣(4x+4y)﹣32=(x+y)2﹣4(x+y)﹣32=(x+y+4)(x+y﹣8).。
七年级因式分解练习试题100道
1.) 3a³b²c-12a²b²c2+9ab²c³2.) 16x²-813.) xy+6-2x-3y4.) x² (x-y)+y² (y-x)5.) 2x²-(a-2b)x-ab6.) a4-9a²b²7.) x³+3x²-4 8.) ab(x²-y²)+xy(a²-b²)9.) (x+y)(a-b-c)+(x-y)(b+c-a) 10.) a²-a-b²-b11.) (3a-b)²-4(3a-b)(a+3b)+4(a+3b)² 12.) (a+3) ²-6(a+3)13.) (x+1) ²(x+2)-(x+1)(x+2) ² 14.)16x²-8115.) 9x²-30x+25 16.) x²-7x-30 17.) x(x+2)-x 18.) x²-4x-ax+4a 19.) 25x²-49 20.) 36x²-60x+25 21.) 4x²+12x+9 22.) x²-9x+18 23.) 2x²-5x-3 24.) 12x²-50x+8 25.) 3x²-6x 26.) 49x²-25 27.) 6x²-13x+5 28.) x²+2-3x29.) 12x²-23x-24 30.) (x+6)(x-6)-(x-6) 31.) 3(x+2)(x-5)-(x+2)(x-3) 32.) 9x²+42x+49 33.) x4-2x³-35x 34.) 3x6-3x²35.) x²-25 36.) x²-20x+10037.) x²+4x+3 38.) 4x²-12x+539.) 3ax²-6ax 40.) (x+2)(x-3)+(x+2)(x+4) 41.) 2ax²-3x+2ax-3 42.) 9x²-66x+12143.) 8-2x² 44.) x²-x+1445.) 9x²-30x+25 46.)-20x²+9x+2047.) 12x²-29x+15 48.) 36x²+39x+949.) 21x²-31x-22 50.) 9x4-35x²-451.) (2x+1)(x+1)+(2x+1)(x-3) 52.) 2ax²-3x+2ax-3 53.) x(y+2)-x-y-1 54.) (x²-3x)+(x-3) ²55.) 9x²-66x+121 56.) 8-2x²57.) x4-1 58.) x²+4x-xy-2y+459.) 4x²-12x+5 60.) 21x²-31x-2261.) 4x²+4xy+y²-4x-2y-3 62.) 9x5-35x3-4x63.)若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( )64.) 若9x²−12xy+m是两数和的平方式,那么m的值是( )65) 把多项式a4− 2a²b²+b4因式分解的结果为( )66.) 把(a+b) ²−4(a²−b²)+4(a−b) ²分解因式为( )67.)200020012121⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛-68) 已知x,y为任意有理数,记M = x²+y²,N = 2xy,则M与N的大小关系为( )69) 对于任何整数m,多项式( 4m+5) ²−9都能( )A.被8整除 B.被m整除C .被(m −1)整除D .被(2m −1)整除70.) 将−3x ²n −6x n 分解因式,结果是( )71.) 多项式(x+y −z)(x −y+z)−(y+z −x)(z −x −y)的公因式是( )72.) 若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
七年级因式分解练习题100道
七年级因式分解练习题100道1.3a³b²c - 12a²b²c² + 9ab²c³2.16x² - 83.xy + 6 - 2x - 3y4.x²(x - y) + y²(y - x)5.2x² - (a - 2b)x - ab6.(a² - 3ab + 3b²)(a² + 3ab + 3b²)7.x³ + 3x² - 4x - 128.ab(x + y)(x - y) + xy(a - b)(a + b)9.(x - y - z)(a - b - c) + (x - y + z)(b + c - a)10.(a - b)(a + b) - (a + b)²11.2a² - 10ab + 8b²12.8a + 913.x(x + 3)(x + 2) - (x + 1)(x + 2)²14.16(x - 1)(x + 1)15.9(x - 1)(x - 3)16.(x - 10)(x + 3)17.x(x + 1) - x18.(x - 4)(x - a)19.(5x + 7)(5x - 7)20.9(2x - 5)²21.(2x + 3)²22.(x - 3)(x - 6)23.(2x - 3)(x - 1)24.2(3x - 1)(2x - 5)25.3x(x - 2)26.(7x + 5)(7x - 5)27.(2x - 1)(3x - 5)28.(x - 1)² - 2x + 129.(x + 6)(x - 5)(x + 6)30.2(x - 5)(2x + 3)31.2(x - 2)(x - 5)(x + 3)32.(3x + 7)²33.(x - 5)(x + 5)(x² + 7)34.3x²(x - 5)(x + 5)35.(x + 5)(x - 5)36.(x - 10)²37.(x + 2)² + 338.4(x - 1)(x - 5)39.3ax(x - 2)40.2(x + 2)(x - 3)(x + 4)41.2ax(x + 1) - 3(x + 1)42.(3x - 11)²43.(2x - 1)(2x - 11)44.(x - 1)² + 1345.3(3x - 5)²46.-5(2x - 3)(2x - 4)47.(3x - 5)(4x - 3)48.(6x + 3)(6x + 1)49.(3x + 15)(7x - 15)50.(3x² - 1)(3x² + 4)51.4x² - 4x - 252.2ax(x + 1) - 3(x + 1)53.xy + x - y - 154.x² - 2x + 955.(x - 3)²56.8 - 2x²57.x⁴ - 1658.(x - 1)² - xy - 2y + 559.(4x - 5)(x + 2)61.将4x²+4xy+y²-4x-2y-36改写为4x²+4xy+y²-4x-2y-36=0,并删除明显有问题的段落。
初一因式分解50道题
初一因式分解50道题一、因式分解练习题(30道无解析)1. x^2 - 92. 4x^2 - 163. x^2+6x + 94. 9x^2 - 25y^25. x^3 - 276. 8x^3+17. x^2 - 4x+48. 16x^2 - 8x + 19. x^2y - 4y10. 3x^2 - 1211. x^4 - 112. x^2+5x+613. x^2 - 5x+614. x^2+7x+1015. x^2 - 7x + 1016. 2x^2 - 817. 3x^2 - 27x18. x^3+2x^2+x19. x^3 - 3x^2+2x20. x^2 - xy - 2y^221. x^2+xy - 6y^222. 9x^2 - 12x+423. 1 - 4x^224. x^3 - x^2 - x+125. x^3+x^2 - x - 126. 4x^2 - 4x+127. x^2 - 8x+1628. x^2+10x + 2529. x^3 - 830. 27x^3+8二、因式分解练习题(20道带解析)1. x^2 - 16- 解析:这是一个平方差的形式,a^2 - b^2=(a + b)(a - b),在这里a=x,b = 4,所以x^2-16=(x + 4)(x - 4)。
2. 9x^2 - 49- 解析:同样是平方差形式,a = 3x,b=7,根据平方差公式可得9x^2 -49=(3x+7)(3x - 7)。
3. x^2+8x + 16- 解析:这是一个完全平方的形式(a + b)^2=a^2+2ab + b^2,这里a=x,b = 4,因为x^2+8x + 16=(x + 4)^2。
4. 25x^2 - 1- 解析:是平方差形式,a = 5x,b = 1,所以25x^2-1=(5x + 1)(5x - 1)。
5. x^3+27- 解析:这是立方和的形式a^3 + b^3=(a + b)(a^2 - ab + b^2),这里a=x,b = 3,则x^3+27=(x + 3)(x^2 - 3x+9)。
因式分解初一数学习题及答案
因式分解初一数学习题及答案一、分解因式1.2x4y2-4x3y2+10xy4 。
2.5xn+1-15xn+60xn-1 。
4. (a+b)2x2-2(a2-b2)xy+(a-b)2y25. x4-16. -a2-b2+2ab+4 分解因式。
10.a2+b2+c2+2ab+2bc+2ac11.x2-2x-812.3x2+5x-213. (x+1)(x+2)(x+3)(x+4)+114. (x2+3x+2)(x2+7x+12)-120.15. 把多项式3x2+11x+10 分解因式。
16. 把多项式5x2―6xy―8y2 分解因式。
二证明题17. 求证:32000-431999+1031998能被7整除。
18. 设为正整数,且64n-7n 能被57整除,证明:是57的倍数.19. 求证:无论x、y 为何值,的值恒为正。
20. 已知x2+y2-4x+6y+13=0, 求x,y 的值。
三求值。
21. 已知a,b,c 满足a-b=8,ab+c2+16=0, 求a+b+c 的值.22. 已知x2+3x+6 是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n 的值,并求出它的其它因式。
因式分解精选练习答案一分解因式1. 解:原式=2xy2x3-2xy22x2+2xy25y2=2xy2(x3-2x2+5y2) 。
提示:先确定公因式,找各项系数的最大公约数2; 各项相同字母的最低次幂xy2,即公因式2xy2,再把各项的公因式提到括号外面,把多项式写成因式的积。
2. 提示:在公因式中相同字母x 的最低次幂是xn-1 ,提公因式时xn+1 提取xn-1 后为x2,xn 提取xn--1 后为x 。
解:原式=5xn--1x2-5xn--13x+5xn--112=5xn--1(x2-3x+12)3. 解:原式=3a(b-1)(1-8a3)=3a(b-1)(1-2a)(1+2a+4a2)提示:立方差公式:a3-b3=(a-b)(a2+ab+b2)立方和公式:a3+b3=(a+b)(a2-ab+b2)所以,1-8a3=(1-2a)(1+2a+4a2)4. 解:原式=[(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)2[提示:将(a+b)x 和(a-b)y 视为一个整体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学上因式分解练习题精选
一、填空:(30分)
1、若16)3(22+-+x m x 是完全平方式,则m 的值等于_____。
2、22)(n x m x x -=++则m =____n =____
3、232y x 与y x 612的公因式是_
4、若n m y x -=))()((4222y x y x y x +-+,则m=_______,n=_________。
5、在多项式2353515y y y •=中,可以用平方差公式分解因式的
有________________________ ,其结果是 _____________________。
6、若16)3(22+-+x m x 是完全平方式,则m=_______。
7、_____))(2(2(_____)2++=++x x x x
8、已知,01200520042=+++++x x x x 则.________2006=x
9、若25)(162++-M b a 是完全平方式M=________。
10、()22)3(__6+=++x x x , ()22)3(9___-=++x x
11、若229y k x ++是完全平方式,则k=_______。
12、若442-+x x 的值为0,则51232-+x x 的值是________。
13、若)15)(1(152-+=--x x ax x 则a =_____。
14、若6,422=+=+y x y x 则=xy ___。
15、方程042=+x x ,的解是________。
二、选择题:(10分)
1、多项式))(())((x b x a ab b x x a a --+---的公因式是( )
A 、-a 、
B 、))((b x x a a ---
C 、)(x a a -
D 、)(a x a --
2、若22)32(9-=++x kx mx ,则m ,k 的值分别是( )
A 、m=—2,k=6,
B 、m=2,k=12,
C 、m=—4,k=—12、
D m=4,k=12、
3、下列名式:4422222222,)()(,,,y x y x y x y x y x --+---+--中能用平方差公 式分解因式的有( )
A 、1个,
B 、2个,
C 、3个,
D 、4个
4、计算)1011)(911()311)(211(2232----
的值是( ) A 、21 B 、20
11.,101.,201D C 三、分解因式:(30分)
1 、234352x x x --
2 、 2633x x -
3 、 22)2(4)2(25x y y x ---
4、22414y xy x +--
5、x x -5
6、13-x
7、2ax a b ax bx bx -++--2
8、811824+-x x
9 、24369y x -
10、24)4)(3)(2)(1(-++++x x x x
四、代数式求值(15分)
1、已知3
12=-y x ,2=xy ,求 43342y x y x -的值。
2、若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值
3、已知2=+b a ,求)(8)(22222b a b a +--的值
五、计算: (15)
(1) 0.7566.24
366.3⨯-⨯
(2) 200020012121⎪⎭⎫ ⎝⎛+⎪⎭
⎫ ⎝⎛-
(3)2244222568562⨯+⨯⨯+⨯
六、试说明:(8分)
1、对于任意自然数n ,22)5()7(--+n n 都能被动24整除。
2、两个连续奇数的积加上其中较大的数,所得的数就是夹在这两个连续奇数之间的偶数与较大奇数的积。
七、利用分解因式计算(8分)
1、一种光盘的外D=11.9厘米,内径的d=3.7厘米,求光盘的面积。
(结果保留两位有效数字)
2、正方形1的周长比正方形2的周长长96厘米,其面积相差960平方厘米求这两个正方形的边长。
八、老师给了一个多项式,甲、乙、丙、丁四个同学分别对这个多项式进行了描述:
甲:这是一个三次四项式
乙:三次项系数为1,常数项为1。
丙:这个多项式前三项有公因式
丁:这个多项式分解因式时要用到公式法
若这四个同学描述都正确请你构造一个同时满足这个描述的多项式,并将它分解因式。
(4分)。