勾股定理与旋转问题
勾股定理与旋转问题专题
勾股定理与旋 转问题专题
单击此处添加文本具体内容,简明扼要地阐述 你的观点
C
一.在△ABC中,∠ACB=90°,
P
AC=BC,P是△ABC内一点,
A
B
PB=1,PC=2,PA=3.
求∠BPC
P' C
P
A
B
A P
B
D
二.P是正方形ABCD内一点, PA=1,PB=2,PC=3,以B为旋转 中心,将△ABP按顺时针方向旋 转,使得点A与C重合,点P旋 转到点G.
E
A
D FC
C NP
BM
练习7、如图,在△ABC中,∠B=90°, M为AB上一点,AM=BC,N为BC上一 点,CN=BM,连接AN、CM交于点P。 求∠APM的大小。
A
求证:MN2=AM2+BN2 B
练习5、在等腰
C
Rt△ABC中,
∠CAB=90°,P是三角形
内一点,且
PA=1,PB=3,PC2=7
求:∠CPA的大小?
P
A
B
B
练习6.如图所示, △ABC是等腰直角三角 形,AB=AC,D是斜边 BC的中点,E、F分别 是AB、AC边上的点, 且DE⊥DF,若BE=12, CF=5.求线段EF的长。
求∠APB
C
A
练习2.P是正三角
P
形ABC内一点,且
PA=3a,PB=4a,PC
=5a.
B
C
求∠APB
A
练习3.在四边形
ABCD中,
B ∠ABC=30°,
∠ADC=60°,
AD=CD.
求证: BD2=AB2+BC 2
与勾股定理相关的旋转问题
例3 如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC 边上的中点,过点D作DE⊥DF,交AB于点E,交BC于点F。求 证:AE2+CF2=DE2+DF2.
即学即练 已知凸四边形ABCD中,∠ABC =∠ADC = 45°,AC=AD,
求证:BD2=2AB2+BC2.
小结
1.这节课你学到了哪些解题的思想和方法? 2.本节课你还有什么困惑?
与勾股定理相关的旋转问题
学习目标
1.掌握与勾股定理相关的旋转问题模型; 2.会用旋转法做辅助线,构造直角三角形 使用勾股定理; 3.掌握与勾股定理相关的旋转问题的解题 方法和技巧。
方法指导:对于条件较分散而题中又含 公共顶点相等的边(一般是相邻的边) 时,常采用旋转法,将分散条件集中到 一个三角形中去。
例1 如图,在△ABC中,∠BAC=90°,AB=AC,点D,E在BC 上,且∠DAE=45°,求证:CD2+BE2=DE2.
即学即练 如图,等腰直角三角形ABC中,点D在斜边BC上,求证:
BD2+CD2=2AD2.
例2 如图所示,在△ABC中,∠ACB=90°,AC=BC,P是 △ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数。
即学即练 如图,P是等边三角形ABC内一点。
(1)若PA=4,PC=3,PB=5,求∠APC; (2)若∠APB:∠BPC:∠CPA=5:6:7,则以PA、PB、PC 为边的三角形的三个角分别是多少?
即学即练 如图,P是正方形ABCD内一点,且 PA 1, PB 2, PC 3 ,
求∠APB的度数。
完整版)勾股定理知识点与常见题型总结
完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。
勾股定理的证明常用拼图的方法。
通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。
2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。
3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。
勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。
勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。
在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。
同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。
勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。
a^2+b^2=c^2$是勾股定理的基本公式。
如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。
勾股定理的实际应用有很多。
例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。
现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。
同时梯子的顶端B下降至B′。
那么BB′的长度是小于1m的(选项A)。
又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。
设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。
新人教版八年级数学下册勾股定理知识点和典型例习题1
新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222+=a b c 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面c b a H G F E D C B A b a c b a c c a b c a b积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a a b b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角a b c c b a E D C B A形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b+与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222,b,c为a b c+<,时,以a三边的三角形是钝角三角形;若,b,c为三边的三角形222a b c+>,时,以a是锐角三角形;②定理中a,b,c及222+=只是一种表a b c现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222a c b+=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222+=a b c 中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:221,2,1n n n-+(2,n≥n为正整数);2221,22,221n n n n n++++(n 为正整数)2222,2,m n mn m n-+(,m n>m,n为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用 勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:A B C 30°D C B A A D B C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
勾股定理典型题型
新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴2210AB AC BC =+= ⑵228BC AB AC =-=题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米解析:这是一道大家熟知的典型的“知二求一”的题。
把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!根据勾股定理AC 2+BC 2=AB 2, 即AC 2+92=152,所以AC 2=144,所以AC=12.例题2 如图(8),水池中离岸边D 点米的C 处,直立长着一根芦苇,出水部分BC 的长是米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度A C.解析:同例题1一样,先将实物模型转化为数学模型,如图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=,这是典型的利用勾股定理“知二求一”的类型。
标准解题步骤如下(仅供参考):解:如图2,根据勾股定理,AC 2+CD 2=AD 2设水深AC= x 米,那么AD=AB=AC+CB=x +x 2+=( x +)2 解之得x =2. 故水深为2米.题型三:勾股定理和逆定理并用——例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41=那么△DEF 是直角三角形吗为什么 CB D A解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。
仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由AB FB 41 可以设AB=4a ,那么BE=CE=2 a ,AF=3 a ,BF= a ,那么在Rt △AFD 、Rt △BEF 和 Rt △CDE 中,分别利用勾股定理求出DF,EF 和DE 的长,反过来再利用勾股定理逆定理去判断△DEF 是否是直角三角形。
八年级数学下册第18章勾股定理知识点与常见题型总结复习人教新课标版
八年级数学下册第18章勾股定理知识点与常见题型总结复习人教新课标版八年级数学下册第18章勾股定理知识点与常见题型总结复习人教新课标版第18章勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2b2c2勾股定理的由来:勾股定理也叫商高定理,在西方称作毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就所提了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法各种各样,常见的是拼图方法用拼图的方法验证三角学的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的占地约不同的表示方法方法,列出等式,推导出与勾股定理常见方法如下:方法一:4SS正方形EFGHS正方形ABCD,412ab(ba)2c2,化简可证.DCHEFGbaAcB方法二:baaccbbccaab四个直角三角形的面积与正方形小面积的和等于大的正方形的面积.四个直角三角形的面积与小正方形面积的和为S412abc22abc2大正方形面积为S(ab)2a22abb2所以a2b2c2方法三:S1梯形2(ab)(ab),S梯形2SADESABE21122ab2c,化简得证用心爱心专心AaDbccBbEaC3.勾股定理的适用范围勾股定理阐释了直角三角形三条边之间所存在的数量关系,它只适用于正五边形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须清了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C90,则ca2b2,bc2a2,ac2b2②知道直角三角形一旁,可得另外两边之间的数量关系③可运用勾股定理解决一些实际结构性问题5.勾股定理的逆定理如果三角形三边长a,b,c满足a2b2c2,正方形那么这个三角形是直角三角形,其中c为斜边①是否是的逆定理是判定一个三角形勾股定理直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能出现形状,在运用这很强理时,可用两小边的平方和a2b2与较长边的平方c2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若a2b2c2,时,以a,b,c为三边的三角形是钝角三角形;若a2b2c2,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及a2b2c2只是这种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2c2b2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边③勾股定理的逆定理在用问题描述时,不能说成:当圆周的平方等于两条直角相等边的平方和时,这个正方形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为股数,即a2b2c2中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以不断提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用不含字母的代数式表示n组勾股数:n21,2n,n21(n2,n为正整数);2n1,2n22n,2n22n1(n为正整数)mn,2mn,mn2222(mn,m,n为正整数)7.勾股定理的应用勾股定理能够我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理之时,必须把握直角三角形的先决条件,了解圆周中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理成功进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形假如直角三角形,在具体用心爱心专心推算过程中,应用平方和两短边的平方和与最长边的平方进行很,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其九章算术逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理断定判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:CCC30°ABADBBDACBDA题型一:直接考查勾股定理硝普钠1.在ABC中,C90.⑴已知AC6,BC8.求AB的长⑵已知AB17,AC15,求BC的长分析:随意应用勾股定理a2b2c2题型二:应用软件勾股定理建立方程例2.⑴在ABC中,ACB90,AB5cm,BC3cm,CDAB于D,CD=⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个矩形的面积为⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个矩形的面积为分析:在解直角三角形此时,要想到勾股定理,及直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解例3.如图ABC中,C90,12,CD1.5,BD2.5,求AC的长CD12EAB分析:此题将勾股定理与全等三角形的知识结合起来用心爱心专心例4.如图RtABC,C90AC3,BC4,分别以各边为直径作半圆,求阴影部分面积CAB题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm,另一棵高2cm,两树相距8cm,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了mAEBDC分析:根据题意建立数学模型,题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a,b,c,判定ABC是否为Rt①a1.5,b2,c2.5②a54,b1,c23例7.三边长为a,b,c满足ab10,ab18,c8的三角形是什么形状?题型五:勾股定理与勾股定理的对顶角逆定理综合应用例8.已知ABC中,AB13cm,BC10cm,BC边上的中线AD12cm,求证:ABAC用心爱心专心新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边两的平方和等于切线的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么a2b2c22.勾股定理的证明勾股定理的证明方法很多,常见的拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:DHEFbAcGaC1方法一:4SS正方形EFGHS正方形ABCD,4ab(ba)2c2,化简可证.2方法二:四个直角三角形的面积与正方形小面积的和等于大的正方形的面积.四个直角1面积正方形的面积与小正方形面积的和为S4abc22abc2大正方形面积为2BbacabS(ab)a2abb所以abcbc222222c111方法三:S梯形(ab)(ab),S梯形2SADESABE2abc2,化简得证2223.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的供应量关系,它只适用于于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
用旋转解与勾股定理有关的几何证明题
用旋转解与勾股定理有关的几何证明题:
证明:两角平分线在异面直线上,它们的平分点连线与两条异面直线的夹角为90°
步骤一:画出图形:
在ABC中,∠BAC的两个平分线分别是AE和CD,那么平分点E和D 分别在AE和CD上。
步骤二:旋转AE到CD位置:
用旋转画出AE以E为轴旋转到CD位置,得到EF。
步骤三:应用勾股定理:
因为EF是AE经过旋转得到的,所以EF和AE两条线段相等,
由勾股定理可得:
EF·CD=AE·ED,
即EF和CD两条线段都等于ED和AE两条线段的平方和,EF和CD是相等的,故它们的夹角也是相等的,
即ED·CD两条线段的夹角EGD是90°。
综上所述,证明得证。
初中数学巧用旋转进行计算之三大题型及答案
解题技巧专题:巧用旋转进行计算之三大题型【考点导航】目录【典型例题】【题型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度】【题型二利用旋转结合特殊三角形的判定、性质或勾股定理求长度】【题型三利用旋转计算面积】【典型例题】【题型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度】1(2023春·内蒙古巴彦淖尔·九年级校考期中)如图,在△ABC中,BC<BA,将△BCA以点B为中心逆时针旋转得到△BED,点E在边CA上,ED交BA于点F,若∠FEA=40°,则∠DBF=()A.40°B.50°C.60°D.70°【变式训练】1(2023春·辽宁沈阳·八年级沈阳市第四十三中学校考期中)如图,在△ABC中,∠B=42°,将△ABC 绕点A逆时针旋转,得到△ADE,点D恰好落在BC的延长线上,则旋转角的度数()A.86°B.96°C.106°D.116°2(2023春·河南新乡·七年级统考期末)如图,在△ABC中,∠BAC=104°,将△ABC绕点A逆时针旋转94°得到△ADE,点B的对应点为点D,若点B,C,D恰好在同一条直线上,则∠E的度数为()A.25°B.30°C.33°D.40°3(2023·浙江温州·校联考三模)如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转得△ADE,使点D恰好落在AC边上,连结CE,则∠ACE的度数为()A.45°B.55°C.65°D.75°4(2023春·甘肃兰州·八年级兰州市第五十六中学校考期中)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB C 的位置,使得CC ∥AB,划∠BAB 的度数是()A.35°B.40°C.50°D.70°5(2023春·江苏连云港·八年级校考阶段练习)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.70°C.75°D.85°6(2023春·江苏盐城·八年级校考阶段练习)如图,∠AOB=90°,∠B=20°,△A OB 可以看作是△AOB绕点O顺时针旋转α角度得到的.若点A 在AB上,则旋转角α的度数是.7(2023春·上海嘉定·七年级校考期末)已知△ABC中,AB=AC,将△ABC绕点C旋转得△CDE,使点B恰好落在边AB上点D处,边DE交边AC于点F(如图),如果△CDF为等腰三角形,则∠A的度数为.【题型二利用旋转结合特殊三角形的判定、性质或勾股定理求长度】1(2023秋·福建莆田·九年级校考开学考试)如图,将△ABC绕点C逆时针旋转一定的角度得到△A B C ,此点A在边B C上,若BC=5,AC=3,则AB 的长为()A.5B.4C.3D.2【变式训练】1(2023春·四川达州·八年级校考期中)如图,把△ABC绕点C逆时针旋转90°得到△DCE,若∠ACB =90°,∠A=30°,AB=10,AC=8,则AD的长为()A.2B.3C.4D.52(2023春·陕西汉中·八年级统考期中)如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=22,DE=1,则线段BD的长为.3(2023春·四川成都·八年级成都嘉祥外国语学校校考期中)如图.Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点B逆时针旋转得△A BC ,若点C 在AB上,则AA 的长为.4(2023·山西运城·校联考模拟预测)如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC的中点,点E是AB边上的一点,连接DE,将线段DE绕点D顺时针旋转90°,得到DF,连接AF,EF,若BE= 22,则AF的长为.5(2023·河南周口·统考一模)如图1,在△ABC中,∠A=90°,AB=AC=2,D,E分别为边AB和AC的中点,现将△ADE绕点A自由旋转,如图2,设直线BD与CE相交于点P,当AE⊥EC时,线段PC 的长为.6(2023春·陕西渭南·八年级统考阶段练习)如图,在△ABC中,∠B=60°,AB=3,将△ABC绕点A 按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在边BC上,求BD的长.【题型三利用旋转计算面积】1(2023秋·湖南永州·九年级校考开学考试)如图,正方形ABCD和正方形EFGO的边长都是1,正方形EFGO绕点O旋转时,两个正方形重叠部分的面积是()A.14B.12C.13D.不能确定【变式训练】1(2023春·山东青岛·八年级统考期中)将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB C ,则图中阴影部分的面积是( )cm2.A.12.5B.2536C.2533D.不能确定2(2023秋·四川德阳·九年级统考期末)如图,边长为定值的正方形ABCD的中心与正方形EFGH的顶点E重合,且与边AB、BC相交于M、N,图中阴影部分的面积记为S,两条线段MB、BN的长度之和记为l,将正方形EFGH绕点E逆时针旋转适当角度,则有()A.S变化,l不变B.S不变,l变化C.S变化,l变化D.S与l均不变3(2023春·广东清远·八年级校考期中)如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A逆时针方向旋转60°到△ABC 的位置,则图中阴影部分的面积是.4(2023春·江苏宿迁·八年级校考阶段练习)马老师在带领学生学习《正方形的性质与判定》这一课时,给出如下问题:如图①,正方形ABCD的对角线AC、BD相交于点O,正方形A B C O与正方形ABCD的边长相等.在正方形A B C O绕点O旋转的过程中,OA 与AB相交于点M,OC 与BC相交于点N,探究两个正方形重叠部分的面积与正方形ABCD的面积有什么关系.(1)小亮第一个举手回答“两个正方形重叠部分的面积是正方形ABCD面积的”;请说明理由.(2)马老师鼓励同学们编道拓展题,小颖编了这样一道题:如图②,在四边形ABCD中,AB=AD,∠BAD =∠BCD=90°,连接AC.若AC=6,求四边形ABCD的面积.请你帮小颖解答这道题.5(2023春·广东深圳·八年级统考期末)【问题背景】如图1,在▱ABCD中,AB⊥DB.将△ABD绕点B逆时针旋转至△FBE,记旋转角∠ABF=α0°<α≤180°,当线段FB与DB不共线时,记△ABE的面积为S1,△FBD的面积为S2.【特例分析】如图2,当EF恰好过点A,且点F,B,C在同一条直线上时.(1)α=°;(2)若AD=43,则S1=,S2=;【推广探究】某数学兴趣小组经过交流讨论,猜想:在旋转过程中,S1与S2之间存在一定的等量关系.再经过独立思考,获得了如下一些解决思路:思路1:如图1,过点A,E分别作直线平行于BE,AB,两直线交于点M,连接BM,可证一组三角形全等,再根据平行四边形的相关性质解决问题;思路2:如图2,过点E作EH⊥AB于点H,过点D作DG⊥FB,交FB的延长线于点G,可证一组三角形全等,再根据旋转的相关性质解决问题;⋯⋯(3)如图3,请你根据以上思路,并结合你的想法,探究S1与S2之间的等量关系为,并说明理由.【拓展应用】在旋转过程中,当S1+S2为▱ABCD面积的12时,α的值为解题技巧专题:巧用旋转进行计算之三大题型【考点导航】目录【典型例题】【题型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度】【题型二利用旋转结合特殊三角形的判定、性质或勾股定理求长度】【题型三利用旋转计算面积】【典型例题】【题型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度】1(2023春·内蒙古巴彦淖尔·九年级校考期中)如图,在△ABC中,BC<BA,将△BCA以点B为中心逆时针旋转得到△BED,点E在边CA上,ED交BA于点F,若∠FEA=40°,则∠DBF=()A.40°B.50°C.60°D.70°【答案】A【分析】根据旋转的性质可得∠A=∠D,由对顶角相等可得∠BFD=∠EFA,根据三角形的外角性质可得∠DBF=∠AEF,即可求解.【详解】解:∵将△BCA以点B为中心逆时针旋转得到△BED,∴∠A=∠D,∵∠BFD=∠EFA,∴∠BFE=∠A+∠AEF=∠D+∠DBF∵∠FEA=40°,∴∠DBF=∠AEF=40°,故选:A.【点睛】本题考查了旋转的性质,三角形的外角的性质,熟练掌握旋转的性质是解题的关键.【变式训练】1(2023春·辽宁沈阳·八年级沈阳市第四十三中学校考期中)如图,在△ABC中,∠B=42°,将△ABC 绕点A逆时针旋转,得到△ADE,点D恰好落在BC的延长线上,则旋转角的度数()A.86°B.96°C.106°D.116°【答案】B【分析】由旋转的性质可知AB=AD,可算出∠ADB=42°,就可以算出旋转角.【详解】由旋转的性质可知:AB=AD,∠BAD是旋转角,∵AB=AD,∴∠ADB=∠B=42°,∴∠BAD=180°-∠ADB-∠B=96°,故选:B.【点睛】本题考查旋转的性质、等边对等角、三角形内角和定理,找到旋转的对应边、对应角是解决问题的关键.2(2023春·河南新乡·七年级统考期末)如图,在△ABC中,∠BAC=104°,将△ABC绕点A逆时针旋转94°得到△ADE,点B的对应点为点D,若点B,C,D恰好在同一条直线上,则∠E的度数为()A.25°B.30°C.33°D.40°【答案】C【分析】由旋转的性质可得∠BAD=94°,AB=AD,由等腰三角形的性质可得∠B=∠ADB=43°,即可求解.【详解】解:∵将△ABC绕点A逆时针旋转94°得到△ADE,∴∠BAD=94°,AB=AD,∴∠B=∠ADB=43°,∵∠BAC=104°,∴∠C=180°-104°-43°=33°,故选:C.【点睛】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.3(2023·浙江温州·校联考三模)如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转得△ADE,使点D恰好落在AC边上,连结CE,则∠ACE的度数为()A.45°B.55°C.65°D.75°【答案】C【分析】由旋转的性质可知,旋转前后对应边相等,对应角相等,得出等腰三角形,再根据等腰三角形的性质求解.【详解】解:由旋转的性质可知,∠CAE=∠BAC=50°,AC=AE,∴∠ACE=∠AEC,在△ACE中,∠CAE+∠ACE+∠AEC=180°,∴50°+2∠ACE=180°,解得:∠ACE=65°,故选:C.【点睛】本题主要考查了旋转的性质,找出旋转角和旋转前后的对应边得出等腰三角形是解答此题的关键.4(2023春·甘肃兰州·八年级兰州市第五十六中学校考期中)如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB C 的位置,使得CC ∥AB,划∠BAB 的度数是()A.35°B.40°C.50°D.70°【答案】B【分析】根据平行线的性质,结合旋转性质,由等腰三角形性质及三角形内角和定理求解即可得到答案.【详解】解:∵CC ∥AB,∠CAB=70°,∴∠C CA=∠CAB=70°,∵将△ABC绕点A逆时针旋转到△AB C 的位置,∴∠C AB =∠CAB=70°,AC =AC,∴∠AC C=∠C CA=70°,∴∠C AC=180°-70°-70°=40°,∵∠BAB =∠CAB-CAB ,∠CAC =∠C AB -CAB ,∴∠BAB =∠C AC=40°,即旋转角的度数是40°,故选:B.【点睛】本题考查旋转性质求角度,涉及平行线的性质、旋转性质、等腰三角形的判定与性质及三角形内角和定理,熟练掌握旋转性质,数形结合,是解决问题的关键.5(2023春·江苏连云港·八年级校考阶段练习)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.70°C.75°D.85°【答案】D【分析】根据旋转的性质得出∠C=∠E=70°,∠BAC=∠DAE,根据三角形内角和定理可得∠CAF=20°,进而即可求解.【详解】解:如图所示,设AD,BC交于点F,∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=70°,∠BAC=∠DAE,∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°-∠C=90°-70°=20°,∴∠DAE=∠CAF+∠EAC=20°+65°=85°,∴∠BAC=∠DAE=85°.故选:D.【点睛】本题考查了旋转的性质,三角形的内角和定理,熟练掌握旋转的性质是解题的关键.6(2023春·江苏盐城·八年级校考阶段练习)如图,∠AOB=90°,∠B=20°,△A OB 可以看作是△AOB绕点O顺时针旋转α角度得到的.若点A 在AB上,则旋转角α的度数是.【答案】40°/40度【分析】根据旋转的性质得到AO=A O,根据等边对等角得到∠A=70°=∠OA A,再利用三角形内角和定理计算即可.【详解】解:△A OB 可以看作是△AOB绕点O顺时针旋转α角度得到的,点A 在AB上,∴AO=A O,∵∠B=20°,∠AOB=90°,∴∠A=70°=∠OA A,∴∠AOA =180°-2×70°=40°,即旋转角α的度数是40°,故答案为:40°.【点睛】本题考查了旋转的性质,等边对等角,三角形内角和定理,关键是得出∠A=70°=∠OA A,题目比较典型,难度不大.7(2023春·上海嘉定·七年级校考期末)已知△ABC中,AB=AC,将△ABC绕点C旋转得△CDE,使点B恰好落在边AB上点D处,边DE交边AC于点F(如图),如果△CDF为等腰三角形,则∠A的度数为.【答案】36°或180°7【分析】如图,设∠B=x,利用等腰三角形的性质和三角形内角和定理得到∠A=180°-2x,再利用旋转的性质得CB=CD,∠2=∠B=x,则∠1=∠B=x,利用平角定理得∠5=180°-2x,利用三角形外角性质∠3=360°-4x得,讨论:当CD=CF时,∠2=∠3=x,则x=360°-4x;当CD=DF时,∠4=∠3,利用∠2+∠3+∠4=180°得到x+2360°-4x=180°;当CF=DF时,∠2=∠4=x,利用∠2+∠3+∠4= 180°得到x+x+360°-2x=180°,然后分别解关于x的方程,然后计算180°-2x即可得到∠A的度数.【详解】解:如图,设∠B=x,∵AB=AC,∴∠ACB=∠B=x∴∠A=180°-2x,∵△ABC绕点C旋转得△CDE,使点B恰好落在边AB上点D处,∴CB=CD,∠2=∠B=x,∴∠1=∠B=x,∴∠5=180°-2x,∠3=∠A+∠5=360°-4x,当CD=CF时,△CDF为等腰三角形,即∠2=∠3=x,则x=360°-4x,解得x=72°,此时∠A=180°-2x =36°;当CD=DF时,△CDF为等腰三角形,即∠4=∠3,而∠2+∠3+∠4=180°,则x+2360°-4x=180°,解得x=540°7,此时∠A=180°-2x=180°7,当CF=DF时,△CDF为等腰三角形,即∠2=∠4=x,而∠2+∠3+∠4=180°,则x+x+360°-2x=180°,无解,故舍去,综上所述,△CDF为等腰三角形时∠A的度数为36°或180°7,故答案为36°或180°7.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了三角形内角和、等腰三角形的性质和分类讨论思想.【题型二利用旋转结合特殊三角形的判定、性质或勾股定理求长度】1(2023秋·福建莆田·九年级校考开学考试)如图,将△ABC绕点C逆时针旋转一定的角度得到△A B C ,此点A在边B C上,若BC=5,AC=3,则AB 的长为()A.5B.4C.3D.2【答案】D【分析】根据图形旋转的性质可得CB =CB=5,即可求解.【详解】解:∵将△ABC绕点C逆时针旋转一定的角度得到△A B C ,此点A在边B C上,∴CB =CB=5,∴AB =CB -CA=5-3=2.故选:D.【点睛】本题主要考查了图形的旋转,熟练掌握图形旋转的性质是解题的关键.【变式训练】1(2023春·四川达州·八年级校考期中)如图,把△ABC绕点C逆时针旋转90°得到△DCE,若∠ACB =90°,∠A=30°,AB=10,AC=8,则AD的长为()A.2B.3C.4D.5【答案】A【分析】利用勾股定理求得BC=6,再根据旋转的性质可得CD=CB=6,即可求解.【详解】解;∵∠ACB=90°,AB=10,AC=8,∴BC=102-82=6,∵把△ABC绕点C逆时针旋转90°得到△DCE,∴CD=CB=6,∴AD=AC-CD=8-6=2,故选:A.【点睛】本题考查勾股定理和旋转的性质,熟练掌握旋转的性质是解题的关键.2(2023春·陕西汉中·八年级统考期中)如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=22,DE=1,则线段BD的长为.【答案】32【分析】先由旋转的性质得到AD=AB,DE=BC=1,AE=AC=22,∠DAB=90°,然后由∠ACB= 90°计算出AB的长度,最后由勾股定理算出线段BD的长.【详解】解:由旋转得,AD=AB,DE=BC=1,AE=AC=22,∠DAB=90°,∵∠ACB=90°,∴AB=AC2+BC2=222+12=3,∴AD=AB=3,∵∠DAB=90°,∴BD=AB2+AD2=32+32=32,故答案为:32.【点睛】本题考查了旋转的性质和勾股定理,熟练应用“旋转过程中对应线段相等”是解题的关键.3(2023春·四川成都·八年级成都嘉祥外国语学校校考期中)如图.Rt△ABC中,∠C=90°,BC=3,AC=4,将△ABC绕点B逆时针旋转得△A BC ,若点C 在AB上,则AA 的长为.【答案】25【分析】先根据勾股定理求出AB的长,再利用旋转的性质可得AC=A C =4,BC=BC =3,∠C=∠BC A =90°,从而求出的长,然后在Rt△A C A中,利用勾股定理进行计算即可解答.【详解】解:∵∠C=90°,BC=3,AC=4,∴AB=AC2+BC2=42+32=5,由旋转得:AC=A C =4,BC=BC =3,∠C=∠BC A =90°,∴AC =AB-BC =5-3=2,∠AC A =180°-∠BC A =90°,∴AA =C A2+A C 2=22+42=25,故答案为:25.【点睛】本题考查了旋转的性质,勾股定理的应用,化为最简二次根式,熟练掌握旋转的性质是解题的关键.4(2023·山西运城·校联考模拟预测)如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC的中点,点E是AB边上的一点,连接DE,将线段DE绕点D顺时针旋转90°,得到DF,连接AF,EF,若BE= 22,则AF的长为.【答案】2【分析】由等腰直角三角形的性质可求AD=DH,由旋转的性质可得DE=DF,∠EDF=90°=∠ADH,由“SAS”可证△ADF≌△HDE,可得AF=HE=2.【详解】解:如图,取AB的中点H,连接CH,DH,∵∠C=90°,AC=BC=6,H是AB的中点,∴AB=62,AH=BH=32=CH,CH⊥AB,又∵点D是AC的中点,∴AD =CD =DH ,AD ⊥DH ,∵BE =22,∴EH =2,∵将线段DE 绕点D 顺时针旋转90°,∴DE =DF ,∠EDF =90°=∠ADH ,∴∠ADF =∠EDH ,∴△ADF ≌△HDE SAS ,∴AF =HE =2,故答案为:2.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.5(2023·河南周口·统考一模)如图1,在△ABC 中,∠A =90°,AB =AC =2,D ,E 分别为边AB 和AC 的中点,现将△ADE 绕点A 自由旋转,如图2,设直线BD 与CE 相交于点P ,当AE ⊥EC 时,线段PC 的长为.【答案】3-1或3+1【分析】由△ADE 绕点A 自由旋转可知有以下两种情况:①当点E 在AC 的右侧时,AE ⊥CE ,先证△ABD 和△ACE 全等,进而可证四边形AEPD 为正方形,然后求出PE =1,CE =3,进而可得PC 的长;②当点E 在AC 的右侧时,AE ⊥CE ,同理①证△ABD 和△ACE 全等,四边形AEPD 为正方形,进而得PE =1,CE =3,据此可求出PC 的长,综上所述即可得出答案.【详解】解:∵△ADE 绕点A 自由旋转,∴有以下两种情况:①当点E 在AC 的右侧时,AE ⊥CE ,如图:由旋转的性质得:∠DAE =∠BAC =90°,∴∠BAD +∠DAC =∠DAC +∠CAE =90°,∴∠BAD =∠CAE ,∵AB =AC =2,D ,E 分别为边AB 和AC 的中点,∴AD =AE =1,在△ABD 和△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE (SAS ),∴∠ADB =∠AEC =90°,∴∠ADP =∠DAE =∠AEC =90°,∴四边形AEPD 为矩形,又AD =AE =1,∴矩形AEPD 为正方形,∴PE =AE =1,在Rt△AEC中,AE=1,AC=2,∠AEC=90°,由勾股定理得:CE=AC2-AE2=3,∴PC=CE-PE=3-1;②当点E在AC的右侧时,AE⊥CE,如图:同理可证:△ABD≌△ACE(SAS),四边形AEPD为正方形,∴BD=CE,PE=AE=1,在Rt△ABD中,AD=1,AB=2,∠ADB=90°,由勾股定理的:BD=AB2-AD2=3,∴CE=BD=3,∴PC=CE+PE=3+1.综上所述:当AE⊥EC时,线段PC的长为3-1或3+1.答案为:3-1或3+1.【点睛】此题主要考查了图形的旋转变换及其性质,等腰直角三角形的性质,正方形的判定及性质,全等三角形的判定及性质,勾股定理等,解答此题的关键是熟练掌握图形的旋转变换,全等三角形的判定、正方形的判定方法,灵活运用勾股定理进行计算,难点是根据题意进行分类讨论并画出示意图,漏解是易错点之一.6(2023春·陕西渭南·八年级统考阶段练习)如图,在△ABC中,∠B=60°,AB=3,将△ABC绕点A 按逆时针方向旋转得到△ADE,若点B的对应点D恰好落在边BC上,求BD的长.【答案】3【分析】根据旋转的性质得出△ABD是等边三角形,根据等边三角形的性质即可求解.【详解】∵∠B=60°,AB=3,将△ABC绕点A按逆时针方向旋转得到△ADE,∴AB=AD,∠B=60°,AB=3,∴△ABD是等边三角形,∴BD=AB=3,【点睛】本题考查了旋转的性质,等边三角形的判定和性质,熟练掌握旋转的性质和等边三角形的判定是解题的关键.【题型三利用旋转计算面积】1(2023秋·湖南永州·九年级校考开学考试)如图,正方形ABCD和正方形EFGO的边长都是1,正方形EFGO绕点O旋转时,两个正方形重叠部分的面积是()A.14B.12C.13D.不能确定【答案】A【分析】根据正方形的性质得出OB=OC,∠OBA=∠OCB=45°,∠BOC=∠EOG=90°,推出∠BON=∠MOC,证出△OBN≌△OCM,即可求出两个正方形重叠部分的面积.【详解】解:∵四边形ABCD和四边形OEFG都是正方形,∴OB=OC,∠OBC=∠OCB=45°,∠BOC=∠EOG=90°,∴∠BON+∠BOM=∠MOC+∠BOM=90°∴∠BON=∠MOC.在△OBN与△OCM中,∠OBN=∠OCM OB=OC∠BON=∠COM,∴△OBN≌△OCM ASA,∴S△OBN=S△OCM,∴S四边形OMBN =S△OBC=14S正方形ABCD=14×1×1=14.故选:A.【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的性质和判定等知识,能推出四边形OMBN 的面积等于三角形BOC的面积是解此题的关键.【变式训练】1(2023春·山东青岛·八年级统考期中)将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB C ,则图中阴影部分的面积是( )cm2.A.12.5B.2536C.2533D.不能确定【答案】B【分析】设AB 与B C 交于D 点,根据旋转角∠CAC =15°,等腰直角△ABC 的一锐角∠CAB =45°,可求∠C AD ,旋转前后对应边相等,对应角相等,AC =AC =5cm ,∠C =∠C =90°,解直角△AC D ,可求阴影部分面积.【详解】解:设AB 与B C 交于D 点,根据旋转性质得∠CAC =15°,而∠CAB =45°,∴∠C AD =∠CAB -∠CAC =30°,又∵AC =AC =5cm ,∠C =∠C =90°,∴设C D =x ,则AD =2x ,∴AD 2=AC 2+C D 2,即2x 2=52+x 2,∴解得x =533,∴C D =533cm ,∴阴影部分面积为:12×5×533=2536cm 2 .故选:B .【点睛】本题考查了旋转的性质,等腰三角形的性质,勾股定理.关键是通过旋转的性质判断阴影部分三角形的特点,计算三角形的面积.2(2023秋·四川德阳·九年级统考期末)如图,边长为定值的正方形ABCD 的中心与正方形EFGH 的顶点E 重合,且与边AB 、BC 相交于M 、N ,图中阴影部分的面积记为S ,两条线段MB 、BN 的长度之和记为l ,将正方形EFGH 绕点E 逆时针旋转适当角度,则有()A.S 变化,l 不变B.S 不变,l 变化C.S 变化,l 变化D.S 与l 均不变【答案】D 【分析】如图,连接EB ,EC .证明△EBM ≌△ECN ASA ,可得结论.【详解】解:如图,连接EB ,EC .∵四边形ABCD 和四边形EFGH 均为正方形,∴EB =EC ,∠EBM =∠ECN =45°,∠MEN =∠BEC =90°,∴∠BEN +∠BEM =∠BEN +∠CEN =90°,∴∠BEM =∠CEN ,在△EBM 和△ECN 中,∠EBM =∠ECNEB =EC ∠BEM =∠CEN,∴△EBM ≌△ECN ASA ,∴BM =CN ,∴S 阴=S 四边形EMBN =S △EBC =14S 正方形ABCD=定值,l =MB +BN =CN +BN =BC =定值,故选:D .【点睛】本题考查正方形的性质,旋转的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.3(2023春·广东清远·八年级校考期中)如图,在△ABC 中,∠C =90°,AC =BC =2,将△ABC 绕点A 逆时针方向旋转60°到△ABC 的位置,则图中阴影部分的面积是.【答案】3【分析】过点B 作B D ⊥AB 于点D ,根据旋转的性质可得到△ABB 是等边三角形,S △ABC =S △AB C ,进而得到阴影部分的面积等于S △ABB ,再由勾股定理求出AB ,继而得到S △ABB,即可求解.【详解】解:如图,过点B 作B D ⊥AB 于点D ,∵将△ABC 绕点A 逆时针方向旋转60°到△ABC 的位置,∴AB =AB ,∠BAB =60°,△ABC ≌△AB C ,∴△ABB 是等边三角形,S △ABC =S △AB C,∴AB =BB ,阴影部分的面积等于S △ABB,∵AC =BC =2,∠C =90°,∴AB =AC 2+BC 2=2,∴BB =2,BD =1,∴B D =BB 2-BD 2=3,∴S △ABB=12AB ×B D =12×2×3=3,即阴影部分的面积是3.故答案为:3【点睛】本题主要考查了旋转的性质,等腰直角三角形的性质,等边三角形的判定和性质,熟练运用旋转的性质是本题的关键.4(2023春·江苏宿迁·八年级校考阶段练习)马老师在带领学生学习《正方形的性质与判定》这一课时,给出如下问题:如图①,正方形ABCD 的对角线AC 、BD 相交于点O ,正方形A B C O 与正方形ABCD 的边长相等.在正方形A B C O 绕点O 旋转的过程中,OA 与AB 相交于点M ,OC 与BC 相交于点N ,探究两个正方形重叠部分的面积与正方形ABCD 的面积有什么关系.(1)小亮第一个举手回答“两个正方形重叠部分的面积是正方形ABCD 面积的”;请说明理由.(2)马老师鼓励同学们编道拓展题,小颖编了这样一道题:如图②,在四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC .若AC =6,求四边形ABCD 的面积.请你帮小颖解答这道题.【答案】(1)14,见解析(2)18,见解析【分析】(1)只需要证明△MOB ≌△NOC 得到S △MOB =S △NOC ,即可求解.(2)过A 作AE ⊥AC ,交CD 的延长线于E ,证明△EAD ≌△CAB 得到S △ABC =S △ADE ,AE =AC =6,则S △AEC =12×6×6=18S 四边形ABCD =S △ACD +S △ABC =S △ACD +S △ADE =S △EAC =12AE ⋅AC =18.【详解】(1)解:∵四边形ABCD 是正方形,四边形OA B C 是正方形,∴AC ⊥BD ,OB =OC ,∠OBM =∠OCN =45°,∠A OC =90°,∴∠BOC =∠A OC =90°,∴∠BOM =∠CON ,∴△BOM ≌△CON ASA ,∴S △BOM =S △CON ,∴S 四边形OMBN =S △OBC =14S 正方形ABCD .答案为:14;(2)过A 作AE ⊥AC ,交CD 的延长线于E ,∵AE ⊥AC ,∴∠EAC =90°,∵∠DAB =90°,∴∠DAE =∠BAC ,∵∠BAD =∠BCD =90°,∴∠ADC +∠B =180°,∵∠EDA+∠ADC =180°,∴∠EDA =∠B ,∵AD =AB ,在△ABC 与△ADE 中,∠EAD =∠CABAD =AB ∠EDA =∠B,∴△ABC ≌△ADE ASA ,∴AC =AE ,∵AC =6,∴AE =6,∴S △AEC =12×6×6=18,∴S 四边形ABCD =18.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,四边形内角和,熟知全等三角形的性质与判定是解题的关键.5(2023春·广东深圳·八年级统考期末)【问题背景】如图1,在▱ABCD 中,AB ⊥DB .将△ABD 绕点B 逆时针旋转至△FBE ,记旋转角∠ABF =α0°<α≤180° ,当线段FB 与DB 不共线时,记△ABE 的面积为S 1,△FBD 的面积为S 2.【特例分析】如图2,当EF 恰好过点A ,且点F ,B ,C 在同一条直线上时.(1)α=°;(2)若AD =43,则S 1=,S 2=;【推广探究】某数学兴趣小组经过交流讨论,猜想:在旋转过程中,S 1与S 2之间存在一定的等量关系.再经过独立思考,获得了如下一些解决思路:思路1:如图1,过点A ,E 分别作直线平行于BE ,AB ,两直线交于点M ,连接BM ,可证一组三角形全等,再根据平行四边形的相关性质解决问题;思路2:如图2,过点E 作EH ⊥AB 于点H ,过点D 作DG ⊥FB ,交FB 的延长线于点G ,可证一组三角形全等,再根据旋转的相关性质解决问题;⋯⋯(3)如图3,请你根据以上思路,并结合你的想法,探究S 1与S 2之间的等量关系为,并说明理由.【拓展应用】在旋转过程中,当S 1+S 2为▱ABCD 面积的12时,α的值为【答案】(1)60;(2)33;33;(3)S 1=S 2,理由见解析;拓展应用:60°或120°【分析】(1)由旋转的性质和平行四边形的性质,等角对等边,可得△ABF 是等边三角形,即可求解;(2)过点F 作FM ⊥BD 交DB 延长线于点M ,设AD ,BE 交于点N ,通过证明△ABN ≌△FBM AAS ,进而得出s 1=s 2,再证明AE =AF ,可得S △ABE =12S △EFB ,仅为求解即可;(3)分别根据思路1和2进行推理证明即可;拓展应用:先根据面积之间的关系得出BD=2DG,继而得出∠DBG=30°=∠ABE,分别在图3和图2中进行求解即可.【详解】(1)由旋转可得,∠F=∠BAD,BA=BF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠ABF=∠BAD,∴∠ABF=∠F,∴BA=AF,∴BA=AF=BF,∴△ABF是等边三角形,∴∠ABF=α=60°,故答案为:60;(2)如图,过点F作FM⊥BD交DB延长线于点M,设AD,BE交于点N,∵AD∥BC,∴∠ANE=∠ANB=∠EBF=90°=∠ABM,∠EAN=∠AFB,∴∠MBF=∠ABN,∵BF=BA,∴△ABN≌△FBM AAS,∴AN=FM,∵BD=BE,∴S1=S2,∵△ABF是等边三角形,∴∠AFB=60°=∠EAN,AB=AF,∴∠E=30°=∠ABE,∴AE=AB,∴AE=AF,S△EFB,∴S△ABE=12∵AD=43,∴AB=23=BF,BD=6=BE,×6×23=63,∴S△EFB=12∴S△ABE=33,∴s1=s2=33,故答案为:33,33;(3)解:S1=S2,理由如下:思路1:如图,过点A,E分别作直线平行于BE,AB,两直线交于点M,连接BM,∵AM∥BE,ME∥AB,∴四边形ABEM为平行四边形,∴AM=BE,∠MAB+∠ABE=180°,∵旋转,∴AB=BF,BD=BE,∠ABD=∠EBF=90°,∴BD =AM ,∵∠ABD +∠ABE +∠EBF +∠FBD =360°,∴∠ABE +∠DBF =180°,∴∠MAB =∠DBF ,在△MAB 和△DBF 中,AM =BD∠MAB =∠DBF AB =BF,∴△MAB ≌△DBF ,∴S △MAB =S 2,∵ME ∥AB ,∴S △MAB =S 1,∴S 1=S 2.思路2:如图,过点E 作EH ⊥AB 交AB 延长线于点H ,过点D 作DG ⊥BF 交BF 延长线于点G ,∵EH ⊥AB ,DG ⊥BF ,∴∠H =∠G =90°,∵旋转,∴BD =BE ,AB =BF ,∠DBA =∠EBF =90°,∴∠EBG =90°,∴∠EBG =∠ABD ,∴∠EBG -∠ABG =∠ABD -∠ABG ,即∠EBH =∠GBD ,在△EBH 和△DBG 中,∠H =∠G∠EBH =∠GBD BD =BE,∴△EBH ≌△DBG ,∴EH =DG ,∴S 1=12AB ⋅EH =12BF ⋅DG =S 2;拓展应用:∵S 1=S 2,∴当S 1+S 2为▱ABCD 面积的12时,S 1=S 2=14S 平行四边形ABCD ,由(3)思路2得,S 1=12⋅AB ⋅EH ,S 平行四边形ABCD =AB ⋅BD ,EH =DG ,∴12⋅AB ⋅EH =14AB ⋅BD ,∴BD =2EH ,即BD =2DG ,∴∠DBG =30°=∠ABE ,如图3,∠ABF =120°;如图2,∠DBE =∠ABF=90°-30°=60°,综上,α的值为60°或120°,故答案为:60°或120°.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,等腰三角形的判定和性质,全等三角形的判定和性质,平行四边形的性质,直角三角形的性质,熟练掌握知识点是解题的关键.。
新人教版八年级数学下册勾股定理知识点和典型例习题1
新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点:1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2。
勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5。
勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,c b a H G FE DC B A b ac b a c c a b c a b a b c c b aE D C B A时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6。
初中数学旋转的六大模型,初中几何旋转经典例题
初中数学旋转的六大模型,初中几何旋转经典例题标题:初中数学旋转的六创作者,初中几何旋转经典例题在初中的数学学习中,旋转是一个重要的概念,它不仅在几何学中占据着核心地位,还在代数学、统计学等其他领域有着广泛的应用。
本文将详细介绍初中数学旋转的六创作者,并通过经典例题来深化理解。
旋转是指一个图形绕着某一点转动一定的角度。
在这个过程中,图形上任意一点所经过的路径形成一个圆,这个圆叫做旋转圆,点叫做旋转中心。
旋转的角度一般用角度或者弧度来表示。
中心对称旋转:图形以旋转中心为对称中心,旋转角度为偶数倍的180度。
绕固定点旋转:图形围绕一个固定点旋转,这个固定点称为旋转中心。
旋转对称图形:图形可以通过旋转得到,这种图形称为旋转对称图形。
旋转角相等:如果两个图形可以通过旋转互相得到,那么它们的旋转角必然相等。
旋转角互补:如果两个图形的一条边和另一条边的延长线组成一个平角,那么这两个图形的旋转角互补。
旋转改变形状:旋转可以改变图形的形状,但不会改变图形的面积。
例1:在正方形ABCD中,E是BC的中点,F是AC上一点,且CF=2AF。
求证:EF平分∠AEB。
证明:我们可以通过旋转证明。
把△ABE绕B点按逆时针方向旋转60°,得到△CBG,则BG//AE,所以∠FGB=∠FEA。
因为CF=2AF,所以FG=2FE。
所以可以得出∠FEB=∠FGB+∠GBF=∠FEA+∠AEB+∠ABE=∠FEA+∠AEB+∠EAB=180°即∠FEA+∠AEB=180°-∠EAB=∠BEF所以∠BEF = ∠FEA即 EF平分∠AEB。
例2:在Rt△ABC中,∠C=90°,D是AB的中点,E、F分别在AC和BC上,且DE⊥DF。
求证:EF^2=AE^2+BF^2。
证明:把Rt△ABC绕D点按顺时针方向旋转90°得到Rt△AB’C’,则可知:△ABC≌△AB’C’,所以可知DE=DF,因为DE⊥DF,所以可知四边形DECF’是正方形。
(完整版)勾股定理及其逆定理的应用常见题型
勾股定理及其逆定理的应用常见题型利用勾股定理求线段长1.如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边的中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF的长.(注:直角三角形斜边上的中线等于斜边的一半)利用勾股定理求面积2.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD′于点E,AB=6 cm,BC=8 cm,求阴影部分的面积.利用勾股定理逆定理判断三角形的形状3.在△ABC中,D为BC的中点,AB=5,AD=6,AC=13,判断△ABD的形状.利用勾股定理解决几何体表面的最短路径问题4.(中考·青岛)如图,圆柱形玻璃杯的高为12 cm,底面周长为18 cm.在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________.利用勾股定理解决实际问题65如图,某港口位于东西方向的海岸线上,A,B两军舰同时离开港口O,各自沿一固定方向航行,A舰每小时航行32 n mile,B舰每小时航行24 n mile,它们离开港口一个小时后,相距40 n mile,已知A舰沿东北方向航行,则B舰沿哪个方向航行?(第6题)几种常见的热门考点勾股定理及其应用1.直角三角形两直角边长分别为6和8,则连接这两条直角边中点的线段长为( )A.3 B.4 C.5 D.10(第2题)2.如图,长方形ABCD沿着直线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB =4,则DE的长为________.3.如图,已知∠C=90°,BC=3 cm,BD=12 cm,AD=13 cm.△ABC的面积是6 cm2.求:(1)AB的长度;(2)△ABD的面积.(第3题)勾股定理的验证4.如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.(第4题)直角三角形的判别5.在△ABC中,AB=12 cm,AC=9 cm,BC=15 cm,下列关系式成立的是( )A.∠B+∠C>∠A B.∠B+∠C=∠AC.∠B+∠C<∠A D.以上都不对6.已知|x-12|+|z-13|和(y-5)2互为相反数,则以x,y,z为边长的三角形为________三角形.7.在4×4的正方形网格中,每个小正方形的边长都是1,线段AB,EA分别是图中1×3的两个长方形的对角线,请你说明:AB⊥EA.利用勾股定理求最短距离8.如图,圆柱形无盖玻璃容器高18 cm,底面周长为60 cm,在外侧距下底1 cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的外侧距上口1 cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度.利用勾股定理解决实际问题9.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捕鱼”的问题.小溪边长着两棵棕榈,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看到棕榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离比较高的棕榈树的树根有多远?思想方法a.方程思想10.如图,四边形ABCD是长方形,把△ACD沿AC折叠得到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.b.分类讨论思想11.在△ABC中,若AB=20,AC=15,AD是BC边上的高,AD=12,试求△ABC的面积.c.转化思想。
新人教版八年级数学下册勾股定理知识点和典型例习题1 (2)
新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为22()2S a b a a b b =+=++ 所以22a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长cbaHG F ED CBAbacbac ca bcab a bc cbaED CB A边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:AB C30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
勾股定理与旋转
1 如图正方形ABCD 的边长为3,E 为CD 边上的一点,DE=1,以点A 为中心,顺时针旋转90º得∆ABE ´,连接EE ´,则EE ´的长为_____2如图,P 为等边三角形内一点,PC=5,PB=12, ∠BPC=150º (1)求PA 的长(2)将⊿BAP 绕点B 顺时针旋转60º,请画出旋转后的图形,并标出相应点的字母,连接CA ',则∆BA ´P 为__三角形,∆PA ´C 为__三角形,PA ´=___(3) PC , PA ´ ,A ´C 之间有何等量关系?3 ∆ABC 中,∠BAC=90º AB=AC ∠EAD=45º (1)当点在线段上时,求证BE ²+CF ²=EF ²(2)将∆ABE 绕__点__时针旋转__度,得∆ACE ´,连接DE ´,则∠E ´CD=__∠1+∠2=___ ∠E ´AD=∠2+∠3=___ ∆ AED ≌∆__(3)当点E 在线段BC 上时,D 在BC 延长线上时,上述结论是否还成立,若成立,请证明,若不成立,请说明理由4, ∆ABC 中, ∠ACB=90º,AC=BC ,点P 是∆ABC 内一点,且PA=6,PB=2,PC=4,求∠BPC 的度数B CD EE A B CPA B CD E BC AP5、 P 是正方形ABCD 内一点,连接PA ,PB ,PC (1)将∆PAB 绕点B 顺时针旋转90º到∆P ´CB 的位置,若PA=2,PB=4,∠APB=135º ,求PP ´及PC 的长6 如图,Rt ∆ABC 中,AC=BC , ∠ACB=90º ,AP ²+QB ²=PQ ²,将∆ACP 绕点C 逆时针旋转90º得∆CBP ´,连QP ´(1)求证PQ=P ´Q (2)求证∆CPQ ≌CP ´Q (3)求∠PCQ7 正∆ABC 中,P 为内部一点(1)若PA=3,PB=4,PC=5,求∠APB (2)若PA ²+PB ²=PC ²,求∠APB8、如图1,P 是正三角形ABC 内的一点,且PA=6,PB=8,PC=10,求∠APB 的度数。
勾股定理题型总结
勾股定理1:勾股定理2、勾股逆定理 3:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是 ①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGHS S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证4:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17;9,40,41等cbaHG F EDCBAa bcc baED CBAbacbac cabcabCABDDABC③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)勾股定理典型例题及专项训练 专题一:直接考查勾股定理1.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
2、已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD 的面积。
3:在∆ABC 中,AB=13,AC=15,高AD=12,则BC 的长为多少?4:已知如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长。
2023年勾股定理知识点与常见题型总结
勾股定理复习一.知识归纳1.勾股定理:直角三角形两直角边旳平方和等于斜边旳平方;表达措施:假如直角三角形旳两直角边分别为,,斜边为,那么a b c 222a b c +=2.勾股定理旳证明,常见旳是拼图旳措施 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会变化②根据同一种图形旳面积不一样旳表达措施,列出等式,推导出勾股定理常见措施如下:措施一:,4EFGH S S S ∆+=正方形正方形A B C D 2214()2ab b a c ⨯+-=,化简可证.措施二:四个直角三角形旳面积与小正方形面积旳和等于大正方形旳面积.四个直角三角形旳面积与小正方形面积旳和为 221422S ab c ab c =⨯+=+大正方形面积为因此222()2S a b a ab b =+=++222a b c +=措施三:,,化简得证1()()2S a b a b =+⋅+梯形2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形3.勾股定理旳合用范围:勾股定理揭示了直角三角形三条边之间所存在旳数量关系,它只合用于直角三角形,因而在应用勾股定理时,必须明了所考察旳对象是直角三角形4.勾股定理旳应用:勾股定理可以协助我们处理直角三角形中旳边长旳计算或直角三角形中线段之间旳关系旳证明问题.在使用勾股定理时,必须把握直角三角形旳前提条件,理解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(一般作垂线),构造直角三角形,以便对旳使用勾股定理进行求解.①已知直角三角形旳任意两边长,求第三边。
在中,,则,ABC ∆90C ∠=︒c =b =,a =②懂得直角三角形一边,可得此外两边之间旳数量关系cba HG FEDCBAbacbac cabcab a bccb aE D CBA③可运用勾股定理处理某些实际问题5.勾股定理旳逆定理 假如三角形三边长,,满足,那么这个三角形是直角三角形,其中为斜边。
勾股定理题型很全面
典型例题:一、利用勾股定理解决实际问题例题:水中芦苇梯子滑动1、有一个传感器控制的灯,安装在门上方,离地高米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高米的学生,要走到离门多远的地方灯刚好打开2、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少3、如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时50分,我反走私A艇发现正东方向有一走私艇C以每小时海里的速度偷偷向我领海开来,便立即通知正在MN在线巡逻的我国反走私艇B密切注意,反走私A艇通知反走私艇B时,A和C两艇的距离是20海里,A、B两艇的距离是12海里,反走私艇B测得距离C是16海里,若走私艇C的速度不变,最早会在什么时间进入我国领海二、与勾股定理有关的图形问题1.已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.2.如图,直线l经过正方形ABCD的顶点B,点A、C到直线l的距离分别是1、2,则正方形的边长是____ _____.3.在直线上依次摆着七个正方形如图,已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S1,S2,S3,S4,则S1+S2+S3+S4=______ ___.4.如图,△ABC中,∠C=90°,1以直角三角形的三边为边向形外作等边三角形如图①,探究S1+S2与S3的关系;2以直角三角形的三边为斜边向形外作等腰直角三角形如图②,探究S1+S2与S3的关系;3以直角三角形的三边为直径向形外作半圆如图③,探究S1+S2与S3的关系.图①图②图③5.如图,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以第二个正方形的对角线AE为边作第三个正方形AEGH,如此下去…,记正方形ABCD的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an,根据上述规律,则第n个正方形的边长an=___ _____记正方形AB-CD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,……,S n n为正整数,那么S n=____ ____.6、如图,Rt△ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为.三、关于翻折问题1、如图,折叠矩形纸片ABCD,先折出折痕对角线BD,再折叠,使AD落在对角线BD上,得折痕DG,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD沿对角线AC折叠,点B落在点E处,EC与AD相交于点F.1求证:△FAC是等腰三角形;2若AB=4,BC=6,求△FAC的周长和面积.3、如图,将矩形ABCD沿直线AE折叠,顶点D恰好点处,已知cmCE6=,cmAB16=,求BF的长.4、如图,一张矩形纸片ABCD的长AD=9㎝,宽AB=3㎝;;求折叠后BE的长和折痕EF的长;5、矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点着色如图,求着色部分的面积;6、如图,矩形纸片ABCD的边AB=10cm,BC=6cm,E为BC上一点,CD边上的点G处,求BE的长.7如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD翻折,点’的长.五、四、关于最短性问题1:如图1,长方体的长为12cm,宽为6cm,高为5cm,一只蚂蚁沿侧面从A点向B点爬行,问:爬到B点时,蚂蚁爬过的最短路程是多少2、如图壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.请问壁虎至少要爬行多少路程才能捕到害虫3:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟4.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少的圆柱形水塔,现制造一个螺旋形登梯,为减小坡度,要求登梯绕塔环,你一定会发现其中的奥妙6、有一圆柱形食品盒,它的高等于16cm,底面直径为20cm, 蚂蚁爬行的速度为2cm/s. ⑴如果在盒内下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间 盒的厚度和蚂蚁的大小忽略不计,结果可含πA 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间 盒的,结果可含π 的半圆,一只蚂蚁沿圆锥侧面从A 点向B 点爬行,问:12当爬行路程最短时,求爬行过程中离圆锥顶点C 的最近距离.2,母线PB 的长为6,D 为PB 的中点.一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为五、关于勾股定理判定三角形形状1、已知,△ABC 中,AB=17cm,BC=16cm,BC 边上的中线AD=15cm,试说明△ABC 是等腰三角形; 2:已知△ABC 的三边a 、b 、c,且a+b=17,ab=60,c=13, △ABC 是否是直角三角形你能说明理由吗 3、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D,设AC=b,BC=a,AB=c,CD=h . 试说明:1;2a+b <c+h ;3判断以a+b 、h 、c+h 为边的三角形的形状,并说明理由.4、在等腰直角三角形ABC 的斜边AB 上取两点M,N,使∠MCN=45°,记AM=m,MN=x,BN=n;试判断以x,m,n 为边长的三角形的形状;六、关于旋转中的勾股定理的运用: 1、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△AC P ′重合,若AP=3,求PP ′的长;变式1:如图,P 是等边三角形ABC 内一点,PA=2,PB=求△ABC 的边长. 分析: 利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形. 七、关于勾股定理的相关证明1、如图,在△ABC 中,AB=AC,P 为BC 上任意一点,求证:22AB AP PB PC -=⋅ 分析:考虑构造直角三角形,能利用勾股定理.2,如图,在△ABC 中,∠BAC=90°,AB=AC,D 是BC 上的点.求证: BD 2+CD 2= 2AD 2..八、综合题1、已知Rt △ABC 中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA 的扇形CEF 绕点C旋转,且直线CE,CF 分别与直线AB 交于点M,N .Ⅰ当扇形CEF 绕点C 在∠ACB 的内部旋转时,如图1,求证:MN2=AM2+BN2; 思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.请你完成证明过程.Ⅱ当扇形CEF 绕点C 旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立若成立,请证明;若不成立,请说明理由.2、如图,已知反比例函数的图象与一次函数y=k2x+b 的图象交于A,B 两点,A1,n, B-,-2. 1求反比例函数和一次函数的解析式; 2在x 轴上是否存在点P,使△AOP 为等腰三角形若存在,请你直接写出P 点的坐标;若不存在,请说明理由.。
《勾股定理主要题型
《勾股定理》主要题型题型一:直接考查勾股定理,已知两边求第三边例::如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?解:∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3 ∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4例、一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?类型二:勾股定理的构造应用例、如图,已知:,,于P.求证:.解:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.题型三:在数轴上表示无理数例、在数轴上作出表示10的点.解:根据在数轴上表示无理数的方法,需先把10视为直角三角形斜边的长,再确定出两直角边的长度后即可在数轴上作出.解:以10为斜边的直角三角形的两直角边可以是3和1,所以需在数轴上找出两段分别长为3和1的线段,如图所示,然后即可确定斜边长,再用圆规在数轴上作出长为10的线段即可.题型四:利用勾股定理测量长度例、如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.解:如图2,根据勾股定理,AC2+CD2=AD2,设水深AC= x米,那么AD=AB=AC+CB=x+0.5x2+1.52=( x+0.5)2解之得x=2.故水深为2米.题型五:利用勾股定理求线段的长1、如图4,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.解:根据题意得Rt△ADE≌Rt△AEF ∴∠AFE=90°, AF=10cm, EF=DE设CE=xcm,则DE=EF=CD-CE=8-x在Rt△ABF中由勾股定理得: AB2+BF2=AF2,即82+BF2=102,∴BF=6cm∴CF=BC-BF=10-6=4(cm)在Rt△ECF中由勾股定理可得: EF2=CE2+CF2,即(8-x) 2=x2+42∴64-16x+x2=2+16 ∴x=3(cm),即CE=3 cm例、如图,已知AB=13,BC=14,AC=15,AD⊥BC于D,求AD.解:∵BC=14,且BC=BD+DC,设BD=x,则DC=14﹣x,则在直角△ABD中,AB2=AD2+BD2,即132=AD2+x2,在直角△ACD中,AC2=AD2+CD2,即152=AD2+(14﹣x)2,整理计算得x=5,∴AD==12,类型六:数学思想方法(一)转化的思想方法例、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。
勾股定理
一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.题型三:勾股定理和逆定理并用——例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41=那么△DEF 是直角三角形吗?为什么?注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。
题型四:利用勾股定理求线段长度——例题4 如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.题型五:利用勾股定理逆定理判断垂直——例题5 有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?题型六:旋转问题:例题6 如图,P 是等边三角形ABC 内一点,PA=2,PB=求△ABC 的边长.变式 如图,△ABC 为等腰直角三角形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45°, 试探究222BE CF EF 、、间的关系,并说明理由.题型七:关于翻折问题例题7 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式 如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C’的位置,BC=4,求BC ’的长.题型八:关于勾股定理在实际中的应用:例1、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?题型九:关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?2.种盛饮料的圆柱形杯(如图),测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做 ㎝。