人教版七年级数学下册计算题练习

合集下载

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案

人教版七年级数学下册《二元一次方程组》专项练习题-附含答案知识点1-1 二元一次方程(组)1)二元一次方程:含有两个未知数 且 所含未知数的次数项的次数都是1的方程。

注:所有未知数项的次数必须是1 例: 不是 2x -3xy =2 不是 2)将几个相同未知数的一次方程联合起来 就组成了二元一次方程组。

注:①在方程组中 相同未知数必须代表同一未知量。

②二元一次方程组不一定都是二元一次方程组合而成 方程个数也不一定是两个。

例: 是 3)判断二元一次方程组的方法:①方程组中是否一共有两个未知数;②含未知数的项的次数是否都是1;③是否含有多个方程组成.例1.(2021·湖南·衡阳市华新实验中学七年级月考)下列方程中 ①;②;③;④ 是二元一次方程的有( ) A .1个 B .2个C .3个D .4个【答案】A【分析】根据二元一次方程的定义:含有两个未知数 并且含有未知数的项的次数都是1的整式方程叫做二元一次方程 即可判断出答案.【详解】解:①根据二元一次方程定义可知是二元一次方程 此项正确; ②化简后为 不符合定义 此项错误; ③含有三个未知数不符合定义 此项错误;④不符合定义 此项错误;所以只有①是二元一次方程 故选:A .【点睛】本题考二元一次方程 解题的关键是熟练运用二元一次方程的定义 本题属于基础题型.变式1.(2022·山东济南·八年级期末)下列方程中 为二元一次方程的是( ) A .2x +3=0 B .3x -y =2zC .x 2=3D .2x -y =5【答案】D【分析】根据二元一次方程的定义 从二元一次方程的未知数的个数和次数方面辨别. 【详解】解:A .是一元一次方程 故本选项不合题意; B .含有三个未知数 不是二元一次方程 故本选项不合题意;C .只含有一个未知数 且未知数的最高次数是2 不是二元一次方程 故本选项不合题意;D .符合二元一次方程的定义 故本选项符合题意.故选:D .20x y-=3235x y x y -=⎧⎨+=⎩6x y +=()16x y +=31x y z +=+7mn m +=6x y +=()16x y +=6xy x +=31x y z +=+7mn m +=【点睛】此题考查了二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数都是1 像这样的整式方程叫做二元一次方程.例2.(2021·湖南·衡阳市华新实验中学七年级月考)已知是关于 的二元一次方程 则______. 【答案】4【分析】根据二元一次方程的定义 可得方程组 解得m 、n 的值 代入代数式即可.【详解】解:由题意得 解得: ∴ 4 故填:4. 【点睛】本题考查二元一次方程的定义 属于基础题型. 变式2.(2021·天津一中七年级期中)若是关于 的二元一次方程 则( )A .B .C .D .【答案】D【分析】二元一次方程满足的条件:含有2个未知数 未知数的项的次数是1的整式方程. 【详解】解:是关于的二元一次方程解得: .故选:D . 【点睛】此题主要考查了二元一次方程的定义 关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例3.(2021·河南淇县·七年级期中)下列方程组中 是二元一次方程组的是( )A .B .C .D .【答案】C【分析】根据二元一次方程的定义 含有两个未知数 并且含有未知数的项的次数为1的整式方程对个选项进行一一排查即可.【详解】解:A. 第二个方程中的是二次的 故本选项错误;B.方程组中含有3个未知数 故本选项错误;C. 符合二元一次方程组的定义 故本选项正确;D. 第二个方程中的xy 是二次的 故本选项错误.故选C .3211203n m x y -+-=x y n m +=31211n m -=⎧⎨+=⎩31211n m -=⎧⎨+=⎩40n m =⎧⎨=⎩n m +=20193(2020)(4)2021m n m x n y---++=x y 2020m =±4n =±2020m =-4n =-2020m =4n =2020m =-4n =()()20193202042021m n m x n y ---++=x y ∴2019120200m m ⎧-=⎨-≠⎩3140n n ⎧-=⎨+≠⎩2020m =-4n =2214x y x +=⎧⎨=⎩1236x y y z ⎧-=⎪⎨⎪-=⎩225x y x y +=-⎧⎨-=⎩213xy y y +=⎧⎨=-⎩2x【点睛】:根据组成二元一次方程组的两个方程应共含有两个未知数 且未知数的项最高次数都应是一次的整式方程 判断各选项即可.变式3.(2021·上海市建平中学西校期末)下列方程组 是二元一次方程组的是( ).A .B .C .D . 【答案】B【详解】A 选项:在中最高次数为2 故为二元二次方程组 不合题意;B 选项:为二元一次方程组 符合题意;C 选项:在中 共有3个未知数 为三元一次方程组 不合题意;D 选项:在中最高次数为2 故为二元二次方程组 不合题意.故选B . 【点睛】本题考查了二元一次方程的概念 掌握二元一次方程的概念(含有两个未知数 并且含有未知数的项的次数都是1的方程叫做二元一次方程)是解题关键.例4.(2021·日照市新营中学七年级期中)若方程组是二元一次方程组 则a 的值为________. 【答案】-3【分析】根据二元一次方程组的定义得到|a |-2=1且a -3≠0 然后解方程与不等式即可得到满足条件的a 的值.【详解】解:∵方程组是二元一次方程组 ∴|a |-2=1且a -3≠0 ∴a =-3 故答案为:-3. 【点睛】本题考查了二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起 就组成了一个二元一次方程组.变式4.(2021·全国·七年级课时练习)若是关于 的二元一次方程组 则__ __ __. 【答案】 3或2【分析】二元一次方程组的定义:(1)含有两个未知数;(2)含有未知数的项的次数都是1 据此列式即可求解. 【详解】解:是关于 的二元一次方程组 或0 解得:或2 答案:3或2223xy x y =⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x-+=⎧⎨=⎩223xy x y=⎧⎨=⎩231x y y -=⎧⎨=⎩2425x y x z -=-⎧⎨+=⎩227x y y x -+=⎧⎨=⎩()20390a x ya x -⎧+=⎪⎨-+=⎪⎩23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y =a b =c =2-3-23(3)34a b x c xy x y -+-+=⎧⎨+=⎩x y 30c ∴+=21a -=31b +=3a =2b =-3c =-2-【点睛】本题主要考查了二元一次方程组的定义 利用它的定义即可求出代数式的解.知识点1-2 二元一次方程(组)的解1)二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值(有序数对) 例:x+y=10 (1 9) (2 8) (3 7)等。

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。

人教版最全七年级数学下册全册同步练习及单元测验卷及答案

人教版最全七年级数学下册全册同步练习及单元测验卷及答案

第五章相交线与平行线5.1.1 相交线复习检测(5分钟):1、如图所示,/1和/2是对顶角的图形有()A.1个B.2 个C.3 个D.4 个2、如图,若/ 1=60° ,那么/ 2=3、如图是一把剪刀,其中 1 40,则24、如图三条直线AB,CD,EF相交于一点O, /AOD勺对顶角是,/AOC勺邻补角是,若/ A0C=50 ,贝U/ BOD= ./ COB= J AOE+ DOB + COF=5、如图,直线AB,CD相交于0,0评分/ AOC若/ AOD/DOB=50 ,?求/EOB勺度数.6、如图,直线a,b,c两两相交,/1=2/ 3, / 2=68° ,求/4的度数5.1.2 垂线复习检测(5分钟):1、两条直线互相垂直,则所有的邻补角都相等.()2、一条直线不可能与两条相交直线都垂直.()3、两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直.()4、两条直线相交有一组对顶角互补,那么这两条直线互相垂直.().5、如图1,OAL OB,OCL OC,O为垂足,若/AOC=3 5,则/BOD=.6、如图2,A0± BO,O为垂足,直线CDi点O,且/ BOD=2AOC则/ BOD=.7、如图3,直线AB CD相交于点0,若/E0D=40 , /B0C=130,那么射线0E与直线AB的位置关系是C8、已知:如图,直线AB,射线0位于点的位置关系.9、如图,AC± BC,C为垂足,CD± AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6 ,那么点C 到AB 的距离是,点A 到BC 的距离是,点B 到CD 的距离是 ,A 、B 两点间的距离是.10、如图,在线段AB AG AD AE AF 中AD 最短.小明说垂线段最短,因此线段AD 的 长是点A 到BF 的距离,对小明的说法,你认为对吗?11、用三角尺画一个是30的/AOB 在边OA±任取一点P,过P 作POL OB,垂足为Q, 量一量OP 的长,你发现点P 到OB 的距离与OP 长的关系吗?5.1.3同位角、内错角、同旁内角3、如图(6),直线DE 截AB, AC,构成八个角: ①、指出图中所有的同位角、内错角、同旁内角复习检测(5分钟):1、如图(4),卜列说法不正确的是( )人./1与/2是同位角 B. / 2与/ 3是同位角C. / 1与/ 3是同位角D. / 1与/ 4不是同位角2、如图(5),直线AB CDM 直线EF 所g, / A 和一 错角,/A 班是同旁内角.^ /\ \ /--- ---------- 4 届 -------------------- R图⑷ 图⑸—是同位角,/ A 和 ________ 是内A40(3) c'②、/人与/5, /A 与/6, /A 与/8,分别是哪一条直线截哪两条直线而成的什么 角?4、如图(7),在直角 ABCt\ / C= 90 , DU AC 于 E,交 A.一 L①、指出当BG DE 被AB 所截时,/ 3的同位角、内错角和礴内他(门②、若/ 3+/ 4=180试说明/ 1 = /2=/3的理由.5.2.1平行线复习检测(5分钟):1、在同一平面内,两条直线的位置关系有2、两条直线L 1与L 2相交点A,如果L 1//L ,那么12与L ()3、在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必.D ./3=/4 D. /BACW ACD4、两条直线相交,交点的个数是 ,两条直线平行,交点的个数是 _____________ 个.判断题5、6、7、85、不相交的两条直线叫做平行线.()6、如果一条直线与两条平行线中的一条直线平行,那么它与另一条直线也互相平行.()7、过一点有且只有一条直线平行于已知直线.()8、读下列语句,并画出图形后判断.(1)直线a 、b 互相垂直,点P 是直线a 、b 外一点,过P 点的直线c 垂直于直线b. (2)判断直线a 、c 的位置关系,并借助于三角尺、直尺验证.9、试说明三条直线的交点情况,进而判定在同一平面内三条直线的位置情况5.2.2平行线的判定复习检测(10分钟):1、如图1所示,下列条件中,能判断AB// CD 的是()DAFCA./BADh BCDB. /1 = /2;C.AD C B如图5,直线a,b 被直线c 所截,现给出下列四个条件: ?①/ 1 = /5;②/ 1=/7;③/ 2+/ 3=180 ;@Z4=Z 7.其中能说明 a // b 的条件序号为() A.①② B.①③ C.①④ D. ③④如果/ 9=,那么AD// BC;如果/ 9=,那么AB// CD.7、在同一平面内,若直线a,b,c 满足a±b,a ±c,则b 与c 的位置户系是8、如图所示,BE 是AB 的延长线,量得/ CBEh A=/ C. //.... AB E(1) 由/ CBEh A 可以判断//,根据是.⑵ 由/ CBEh C 可以判断//,根据是2、 如图2所示,如果/ D=/ EFC 那么()A.AD // BCB.EF // BC 3、 F 列说法错误的是()A.同位角不一定相等B. 内错角都相等C. 同旁内角可能相等D.同旁内角互补,两直线平行4、 5、如图5,如果/ 3=/7,那么,理由是 如果/ 5=/ 3,那么 ,理由是 如果/ 2+ /5=那么a // b,理由是6、如图4,若/ 2=/6,则,如果/3+/4+/ 5+/ 6=180 ,那么(4)C.AB // DCD.AD9、已知直线a、b被直线c所截,且/1+/ 2= 试判断直线a、b的位置关系,并说明理由.10、如图,已知AEM DG , 1 2 ,试问EF是否平行GH并说明理由.11、如图所示,已知/ 1=/ 2,AC平分/ DAB试说明DCI AB.12、如图所示,已知直线EF和AB,CM别相交于K,H,且EGL AB,/CHF=60 / E=30°试说明AB// CD.13、提高训练:如图所示,已知直线a,b,c,d,e,且/ 1=/ 2, / 3+/4=180° ,则a与c平行吗?劝什么?5.3.1平行线的性质复习检测(10分钟):1、如图1所示,AB//CD则与/ 1相等的角(/1除外)共有()A.5 个B.4 个C.3 个D.2 个 B AA B —(4) (5) (6)5、如图5,在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是南偏西(3)2、如图 2 所示,CD// AB,O 评分/ AOD,OFOE,/D=50,则/BOF 为(A.35B.30C.253、如图 3 所示,AB II CD,Z D=80CAD=, /ACD=?.4、如图 4,若 AD// BC,则/=/ D.20/ABC 廿=180 ;若 DC/ZAB,则/=/A,/ CAD:/ BAC=3:2则/56° ,甲、乙两地同时开工,若干天后公路准确接通,则乙地所修公路的走向是,因为.6、河南)如图6所示,已知AB// CD直线EF分别交AB,CD于E,F,EG?平分/ B-EF,若/ 1=72 ,贝U/2=.7、如图,AB/ZCQ / 1 = 102° ,求/ 2、/3、/4、/ 5的度数,并说明根据?8、如图,ERiz\ABC勺一个顶点A,且EF// BC 如果/ B= 40° , / 2= 75° ,那么/1、/3、/G / BAO /B+ 是多少度,并说明依据?9、如图,已知:DE/ZCB,/1 = /2,求证:CD平分/ ECB.10、如图所示,把一张长方形纸片ABCD& EF折叠,若/ EFG=50 ,求/ DEG勺度数.1111、如图所示,已知:AE平分/BAC CE平分/ACD且AB//CD求证:/1+/ 2=90° . 证明:・•. AB//CD (已知)・♦/BAC/ACD180 , ()又.. AE平分/ BAC C评分/ ACD (). 1 1•• 1 - BAC , 2 万ACD,( ___________________ ) __________1 1 0 0. .1 2 -( BAC ACD) —1800 90°.2 2即Z1+Z 2=90 .结论:若两条平行线被第三条直线所截,则一组同旁内角的平分线互相.推广:若两条平行线被第三条直线所截,则一组同位角的平分线互相^5.3.2命题、定理、证明复习检测(5分钟):1、判断下列语句是不是命题(1)延长线段AB( ) (3)画线段AB的中点( (2)两条直线相交,只有一交点((4)若|x|=2 ,则x=2 ( )134、命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1 个B.2个C.3个D.4个5、分别指出下列各命题的题设和结论(1)如果a// b, b // c,那么all c ⑵ 同旁内角互补,两直线平行 6、分别把下列命题写成“如果……,那么……”的形式 (1)两点确定一条直线; (2)等角的补角相等;(3)内错角相等.7、如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据(1) '.'all b,「•/ 1=/ 3( ); (2) ・// 1=/ 3, ..・all b( ); (3) '.'all b,「•/ 1=/ 2( );(4) 「a// b,「./ 1+/ 4=180o ( (5) ・// 1=/ 2, ..・all b( ); (6) •// 1+/ 4=180o,「.a// b( ). 8、已知:如图 ABL BG BCLCD 且/ 1=/ 2, 证明:.「AB!BG BCLCD (已知)= =90(5)角平分线是一条射线( 2、下列语句不是命题的是( A.两点之间,线段最短 C.x 与y 的和等于0吗? 3、下列命题中真命题是( )A.两个锐角之和为钝角)B.不平行的两条直线有一个交点 D.对顶角不相等.B.两个锐角之和为锐角D.锐角小于它的余角・ ・•/ 1 = /2 (已知)(等式性质)/ ACB=90 ()・ ••/ BCD^/ ACD 勺余角・ ・•/BCD^/B 的余角(已知) ・•・ / ACDN B ()5.4平移复习检测(5分钟):1、下列哪个图形是由左图平移得到的( )B.沿射线EC 的方向移动C 冰C.沿射线BD 的方向移动BD 长;D.沿射线BD 的方向移动DC 长3、下列四组图形中,?有一组中的两个图形经过平移其中一个能得到 -另一个,这组图形9、已知: 求证: 证明: BE// CF (/ ACDM B・•. ACL BC (已知)2、如图所示,4FDE 经过怎样的平移可得到4A.沿射线EC 的方向移动DB 长; 如图,ACL BCC 垂足为CABC.()4、如图所示,△ DEF经过平移可以得到△ ABC那的对应角和ED的对应边分-别是()A. / F,ACB. / BOD,BA;C. / F,BAD.5、在平移过程中,对应线段()A.互相平行且相等;B.互相垂直且相等C.互相平行(或在同一条直线上)且相等6、在平移过程中,平移后的图形与原来的图形________ 都相同,?因-此对应线段和对应角7、如图所示,平移△ ABC可得到△ DEF,如果// C=60 ,那么/ E=?-度,/ EDF=/F= ______ 度,/DOB= .........8、将正方形ABCDg对角线AC方向平移,且平移后的图形的一个顶点恰好在AC的中点。

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (44)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案) (44)

人教版七年级数学下册第九章第三节一元一次不等式组复习练习题(含答案)(1)计算题:0011 -330(2017)()3π-+-+ (2)计算题: 124(2)22x x x x ---÷++ (3)解不等式组:3(2)41123x x x x --≤⎧⎪-+⎨<⎪⎩ 【答案】(1)4(2)答案见解析(3)答案见解析【解析】试题分析:(1)根据绝对值、特殊角的三角函数值、零指数幂、负整数指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题;(3)根据解一元一次不等式组的方法可以解答本题.试题解析:解:(1)原式﹣2﹣1+3 =3+1﹣2﹣1+3=4;(2)原式=2212224x x x x x-+-+⋅+-()() =44224x x x x x ()()+-+⋅+- =﹣(x +4)=﹣x ﹣4;(3)324{1123x x x x --≤-+()①<②,解不等式①,得:x ≥1,解不等式②,得:x <5,∴原不等式组的解集是1≤x <5.32.(1)化简:(31a +﹣a+1)÷2441a a a -++. (2)解不等式组:1422123x x x x ->+⎧⎪+⎨>⎪⎩ 【答案】(1)22a a +-- ,(2)x <﹣1 【解析】【分析】(1)括号内先进行通分,然后进行分式的加减法运算,最后再进行分式的乘除法运算即可;(2)分别求出每一个不等式的解集,然后再确定出解集的公式部分即可得不等式组的解集.【详解】(1)原式=()()()23111·12a a a a a --+++- =()()()2221·12a a a a a +-++- =22a a+-; (2)1422123x x x x ->+⎧⎪⎨+>⎪⎩①②, 由①得:x <﹣1,由②得:x <14, 所以原不等式组的解集为:x <﹣1.33.“中华紫薇园”景区今年“五一”期间开始营业,为方便游客在园区内游玩休息,决定向一家园艺公司采购一批户外休闲椅,经了解,公司出售两种型号休闲椅,如下表:景区采购这批休闲椅共用去56000元,购得的椅子正好可让1300名游客同时使用.(1)求景区采购了多少条长条椅,多少条弧形椅?(2)景区现计划租用A、B两种型号的卡车共20辆将这批椅子运回景区,已知A型卡车每辆可同时装运4条长条椅和11条弧形椅,B型卡车每辆可同时装运12条长条椅和7条弧形椅.如何安排A、B两种卡车可一次性将这批休闲椅运回来?(3)又知A型卡车每辆的运费为1200元,B型卡车每辆的运费为1050元,在(2)的条件下,若要使此次运费最少,应采取哪种方案?并求出最少的运费为多少元.【答案】(1)采购了100条长条椅,200条弧型椅;(2)有三种方案,见解析;(3)最省钱的租车方案是租用A型卡车15辆、B型卡车5辆,最低运费为23250元.【解析】试题分析:(1)设景区采购长条椅x条,弧型椅y条,然后根据游客人数和花费钱数两个等量关系列出方程组求解即可;(2)设租用A型卡车m辆,则租用B种卡车(20﹣m)辆,根据两种型号卡车装运的休闲椅的数量不小于两种休闲椅的数量列出不等式组,求解即可,再根据车辆数是正整数写出设计方案;(3)设租车总费用为W元,列出W的表达式,再根据一次函数的增减性求出最少费用.试题解析:解:(1)设景区采购长条椅x 条,弧型椅y 条,由题意得: 35130016020056000x y x y +=⎧⎨+=⎩,解得:100200x y =⎧⎨=⎩. 答:采购了100条长条椅,200条弧型椅;(2)设租用A 型卡车m 辆,则租用B 种卡车(20﹣m )辆,由题意得:4122010011720200m m m m +-≥⎧⎨+-≥⎩()(),解得:15≤m ≤17.5,由题意可知,m 为正整数,所以,m 只能取15、16、17,故有三种租车方案可一次性将这批休闲椅运回来,可这样安排:方案一:A 型卡车15辆,B 型卡车5辆,方案二:A 型卡车16辆,B 型卡车4辆,方案三:A 型卡车17辆,B 型卡车3辆;(3)设租车总费用为W 元,则W =1200m +1050(20﹣m )=150m +21000.∵150>0,∴W 随m 的增大而增大.又∵15≤m ≤17.5,∴当m =15时,W 有最小值,W 最小=150×15+21000=23250,∴最省钱的租车方案是租用A 型卡车15辆、B 型卡车5辆,最低运费为23250元.点睛:本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式组的应用,读懂题目信息,理解数量关系并确定出等量关系和不等量关系是解题的关键,(3)利用一次函数的增减性和自变量的取值范围求最值是常用的方法.34.解不等式组:2132x x x +≥⎧⎨+>⎩,并在所给的数轴上表示解集.【答案】-1≤x<3【解析】分析:根据不等式的解法,先分别求解两个不等式的解集,再根据不等式组的解集的确定方法求出不等式的解集,并表示在数轴上即可.详解:解不等式①,得:1x ≥-解不等式②,得:3x <在数轴上表示解集为:点睛:此题主要考查了不等式组的解法,关键是明确不等式组的解集的确定方法:都大取大,都小取小,大小小大取中间,大大小小无解.35.(1)计算:(﹣12)﹣1﹣°+(π﹣4)0 (2)解不等式组3(2)64113x x x x --≥⎧⎪-⎨+>⎪⎩.并写出它的整数解. 【答案】(1)0;(2)整数解为2 , 3【解析】分析:(1)先分别计算有理数的负指数幂、绝对值、特殊角的三角函数值以及零次幂,最后再计算加减即可求得答案;(2)分别求出每个不等式的解集,然后再取它们的公共部分,进而求出整数解即可本题解析:(1)(﹣)﹣1﹣|1﹣|+2sin60°+(π﹣4)0=-2﹣+1+2×+1=-2﹣+1++1=0.(2)解:由①得2x ≥由②得4x <∴此不等式组的解集为24x ≤<整数解为2, 336.求不等式组231320x x -≤⎧⎨+>⎩的解集. 【答案】223x -<≤. 【解析】分析:分别解不等式,找出解集的公共部分即可.详解:231,320x x -≤⎧⎨+>⎩①②解不等式①,得 2x ≤;解不等式②,得2 3x >-; 原不等式组的解集为223x -<≤. 点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.37.解不等式组2(1)31132x x x x +≤-⎧⎪+⎨<⎪⎩【答案】x ≥3.【解析】分析:首先分别求出每一个不等式的解,从而得出不等式组的解集. 详解:解不等式①:2x+2≤3x-1 即x ≥3; 解不等式②:2x<3(x+1) 即x>-3;∴该不等式组的解集为x ≥3.点睛:本题主要考查的是不等式组的解法,属于基础题型.理解不等式的性质是解题的关键.38.(1)解不等式组:22(1)43x x x x --⎧⎪⎨≤-⎪⎩< (2)解方程:3323x x x x --=- 【答案】(1)0<x ≤3(2)x=32或x=-32 【解析】试题分析:()1分别解不等式找出解集的公共部分即可.()2设3x y x -=,方程变形为:32y y ,-=解方程求出y 的值,再代入3x y x -=,求出x ,注意检验.试题解析:(1)()2214,3x x x x <①②⎧--⎪⎨≤-⎪⎩由①得:0x >,由②得:3x ≤,则不等式组的解集为03x <≤;(2)设3x y x-=,方程变形为:32y y ,-= 去分母得:2230y y --=,解得:1y =-或3y ,= 可得31x x -=-或33x x-=, 解得:32x =或32x =-, 经检验32x =与32x =-都是分式方程的解. 39.解不等式组12655x x x ->⎧⎨≤+⎩①② 请结合题意填空,完成本题的解答. (Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)解不等式Ⅰ,得 ;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为 .【答案】(Ⅰ)x >3;(Ⅰ)x ≤5;(Ⅰ)见解析;(Ⅰ)3<x ≤5.【解析】【分析】【详解】解:(Ⅰ)解不等式Ⅰ,得:x >3;(Ⅰ)解不等式Ⅰ,得:x ≤5;(Ⅰ)把不等式Ⅰ和Ⅰ的解集在数轴上表示出来.(Ⅰ)原不等式组的解集为3<x ≤5.40.解不等式(组),并把它的解集在数轴上表示出来: (1)0.10.81120.63x x x ++-<-; (2)13(1)8321232x x x x --<-⎧⎪--⎨≤-⎪⎩ 【答案】(1) x <3 ;(2) -2<x ≤2【解析】分析:(1)根据一元一次不等式的解法思路有移项、化简(同乘除)可求得;(2)根据求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)可求得.详解:(1)x 0.1x 0.8x 1120.63++-<-, 化简得:2x −x 86+<1−x 13+, 去分母得:3x −(x+8)<6−2(x+1),去括号得:3x −x −8<6−2x −2,移项合并得:4x<12,化系数为1得:x<3.在数轴上表示得:(2)()1318x 3x 21232x x ⎧--<-⎪⎨--≤-⎪⎩①②,由①得:x>−2,由②得:x⩽2,∴原不等式组的解集为:−2<x⩽2;在数轴上表示为:点睛:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.。

2024年人教版七年级下册数学第二单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第二单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第二单元课后练习题(含答案和概念)试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 下列各数中,最小的数是()A. |3|B. 3C. |3|D. 33. 下列各数中,有理数是()A. √1B. √3C. √3D. √34. 如果|a|=5,那么a的值可能是()A. 5B. 5C. 3D. 35. 有理数的乘法中,下列说法错误的是()A. 两个负数相乘得正数B. 两个正数相乘得正数C. 两个负数相乘得负数D. 一个正数和一个负数相乘得负数6. 在数轴上,点A表示的数是2,那么点A关于原点对称的点是()A. 2B. 2C. 0D. 17. 下列各式中,正确的是()A. (2)³ = 6B. (2)² = 4C. (2)³ = 8D. (2)² = 48. 如果a、b互为相反数,那么a+b的值是()A. aB. bC. 0D. 无法确定9. 下列各式中,等式成立的是()A. |3| = 3B. |3| = 3C. |3| = 3D. |3| = 310. 下列各数中,无理数是()A. 2πB. √9C. 1.5D. 0.333…二、判断题:1. 两个负数相加,和一定是负数。

()2. 两个正数相乘,积一定是正数。

()3. 0的相反数是0。

()4. 任何数的平方都是正数。

()5. 互为相反数的两个数的和为0。

()6. 有理数和无理数统称为实数。

()7. 负数的绝对值是它本身。

()8. 两个负数相乘,积一定是正数。

()9. 数轴上的点到原点的距离叫做这个点的绝对值。

()10. 互为倒数的两个数,它们的乘积为1。

()三、计算题:1. 计算:3 + 72. 计算:5 (2)3. 计算:4 × 64. 计算:8 ÷ (2)5. 计算:|5|6. 计算:|7|7. 计算:(3/4) × (16)8. 计算:9 ÷ (1/3)9. 计算:(2/5) ÷ (10)10. 计算:|5 + 3 × 2|11. 计算:4²12. 计算:(3)³13. 计算:√(49)14. 计算:√(64)15. 计算:|3 5| + 216. 计算:(4 7) × (3)17. 计算:(6) ÷ (3) + 218. 计算:(8 ÷ 2)² 519. 计算:3 × (2)²20. 计算:(5 3) × (2 + 4)四、应用题:1. 小华的零花钱比小丽多5元,小丽的零花钱是20元,那么小华有多少零花钱?2. 一个数加上3后等于8,求这个数。

人教版七年级数学《有理数》计算题专项练习(含答案)

人教版七年级数学《有理数》计算题专项练习(含答案)

人教版七年级数学《有理数》计算题专项练习学校:班级:姓名:得分:1、计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).2、计算:12﹣(﹣18)+(﹣7)﹣15;3、计算:(﹣)×(﹣8)+(﹣6)÷(﹣)2.4、计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)5、计算:(﹣﹣)×366、计算:(﹣1)4﹣36÷(﹣6)+3×(﹣)7、计算:(﹣+)×(﹣24)8、计算:﹣32+2×(﹣3)2﹣(﹣6)÷(﹣).9、计算:﹣14÷(﹣5)2×(﹣)10、计算:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1).11、计算:23×(1﹣)×0.5.12、计算:﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.13、计算:4+(﹣2)2×2﹣(﹣36)÷4.14、计算:﹣33+(﹣1)2016÷+(﹣5)2.15、计算:﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)16、计算:﹣22÷(﹣1)2﹣×[4﹣(﹣5)2].17、计算:(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.18、计算:2×(﹣3)2﹣5÷(﹣)×(﹣2)19、计算:(﹣2)3÷+3×|1﹣(﹣2)2|.20、计算:(﹣)2÷()3﹣12×(﹣)21、计算:.22、计算:﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].23、计算:(﹣28)÷(﹣6+4)+(﹣1)×5.人教版七年级数学《有理数》计算题专项练习参考答案与试题解析1.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).【解答】解:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24)=﹣40+28+19﹣24=﹣(40+24)+(28+19)=﹣64+47=﹣172.计算:12﹣(﹣18)+(﹣7)﹣15;【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8;3.计算:(﹣)×(﹣8)+(﹣6)÷(﹣)2.【解答】解:原式=4﹣54=﹣50.4.计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)【解答】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.5、计算:(﹣﹣)×36【解答】解:(﹣﹣)×36=8﹣9﹣2=﹣3;6.计算:(﹣1)4﹣36÷(﹣6)+3×(﹣)【解答】解:(﹣1)4﹣36÷(﹣6)+3×(﹣)=1+6+(﹣1)=6.7.计算:(﹣+)×(﹣24)【解答】解:原式=﹣8+18﹣20=﹣10;8.计算:﹣32+2×(﹣3)2﹣(﹣6)÷(﹣).【解答】解:原式=﹣9+2×9﹣(﹣6)×(﹣)=﹣9+18﹣9=0.9.计算:﹣14÷(﹣5)2×(﹣)【解答】解:(1)﹣14÷(﹣5)2×(﹣)=﹣1÷25×(﹣)=﹣1××(﹣)=;10.计算:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1).【解答】解:(﹣5)3×(﹣)+32÷(﹣22)×(﹣1)=﹣125×(﹣)+32×(﹣)×(﹣)=75+10=85.11.计算:23×(1﹣)×0.5.【解答】解:原式=8××=3.12.计算:﹣72+2×(﹣3)2+(﹣6)÷(﹣)2.【解答】解:原式=﹣49+2×9+(﹣6)÷=﹣49+18﹣6×9=﹣49+18﹣5413.计算:4+(﹣2)2×2﹣(﹣36)÷4.【解答】解:原式=4+4×2﹣(﹣9)=4+8+9=21.14.计算:﹣33+(﹣1)2016÷+(﹣5)2.【解答】解:﹣33+(﹣1)2016÷+(﹣5)2=﹣27+1×6+25=﹣27+6+25=4.15.计算:﹣10+8÷(﹣2)2﹣(﹣2)3×(﹣3)【解答】解:原式=﹣10+2﹣24=﹣34+2=﹣32.16.计算:﹣22÷(﹣1)2﹣×[4﹣(﹣5)2].【解答】解:原式=﹣4÷1﹣×(﹣21)=﹣4+7=3.17.计算:(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.【解答】解:原式=16÷+×(﹣)﹣=﹣﹣=.18.计算:2×(﹣3)2﹣5÷(﹣)×(﹣2)【解答】解:原式=2×9﹣5×(﹣2)×(﹣2)=18﹣20=﹣2.19.计算:(﹣2)3÷+3×|1﹣(﹣2)2|.【解答】解:原式=﹣8×+3×|1﹣4|,=﹣10+3×3,=﹣10+9,20.计算:(﹣)2÷()3﹣12×(﹣)【解答】解:原式=×27﹣9+2=3﹣9+2=﹣4.21.计算:.【解答】解:原式=﹣×﹣×=×(﹣﹣)=﹣.22.计算:﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].【解答】解:原式=﹣1﹣×(2﹣9)=﹣1+=.23.计算:(﹣28)÷(﹣6+4)+(﹣1)×5.【解答】解:原式=﹣28÷(﹣2)﹣5=14﹣5=9.。

第八章二元一次方程章末练习2022-2023学年人教版七年级数学下册

第八章二元一次方程章末练习2022-2023学年人教版七年级数学下册

七年级下册第八章二元一次方程章末练习一、选择题(本大题共10道小题)1. 下列方程组是二元一次方程组的是 ( ) A. B. C. D.2. 已知甲、乙两数的和是7,甲数是乙数的2倍,设甲数为x ,乙数为y ,根据题意,列方程组正确的是( )A. ⎩⎨⎧x +y =7x =2yB. ⎩⎨⎧x +y =7y =2xC. ⎩⎨⎧x +2y =7x =2yD. ⎩⎨⎧2x +y =7y =2x3. 若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3 4. 二元一次方程组 3.24x y x +=⎧⎨=⎩的解是( ) A. 3,0x y =⎧⎨=⎩ B.1,2x y =⎧⎨=⎩ C. 5,2x y =⎧⎨=-⎩ D.2,1x y =⎧⎨=⎩5. 为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A. 50,6()320x y x y +=⎧⎨+=⎩ B.50,610320x y x y +=⎧⎨+=⎩ C.50,6320x y x y +=⎧⎨+=⎩ D.50,106320x y x y +=⎧⎨+=⎩6. 已知关于x ,y 的方程x 2m -n -2+4y m +n +1=6是二元一次方程,则m ,n 的值为( )A. m =1,n =-1B. m =-1,n =1C. m =13,n =-43D. m =-13,n =437. 滴滴快车是一种便捷的出行工具,计价规则如下表:计算项目里程费 时长费 远途费 单价 1.8 元/公里 0.3元/分钟 0.8元/公里注:车费由里程费、时长费、远途费三部分构成.其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里,如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A .10分钟B .13分钟C .15分钟D .19分钟8. 如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .4317609. 甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱( )A .128元B .130元C .150 元D .160元10. 已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( ) A .12x y =⎧⎨=⎩ B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩ 二、填空题(本大题共4道小题)11. 已知(3x+4y-16)2与|5x-6y-33|互为相反数,则x= ,y= .12. 已知关于x ,y 的方程组的解满足x+y=5,则k 的值为 .13. 某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1 020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需____________元.14. 小敏不小心将墨水溅在同桌小娟的作业本上,结果二元一次方程组中第一个方程y 的系数和第二个方程x 的系数看不到了.若该方程组的正确的解是则原来的方程组为 . 三、计算题(本大题共1道小题)15. 解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ 四、解答题(本大题共5道小题)16. 世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.17. 已知关于x,y的二元一次方程组与方程组有相同的解.(1)求这个相同的解;(2)求m-n的值.19. 在某比赛中,一名34岁的男子带着他的两个孩子一同参加了比赛.下面是两个孩子与记者的部分对话:妹妹:我和哥哥的年龄和是16岁.哥哥:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.根据对话内容,请你用方程的知识帮记者求出现在哥哥和妹妹的年龄各是多少岁?20. 小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸说:“报纸上说了萝卜的单价上涨50%,排骨的单价上涨20%”;小明说:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).20. 根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?。

人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)

人教版七年级下册数学期末复习:计算题 专项练习题(Word版,含答案)

人教版七年级下册数学期末复习:计算题专项练习题1.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x 的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.2.已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.(Ⅰ)如果点P到点M,点N的距离相等,那么x的值是.(Ⅱ)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x 的值;若不存在,请说明理由.(Ⅲ)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?3.例如:数轴上,3和5两数在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|(﹣5)﹣2|=7或|5﹣(﹣2)|=7.试探索:(1)求7与﹣7两数在数轴上所对的两点之间的距离=(2)在数轴上找一个整数点A,使点A到﹣1、﹣5的距离之和等于4,请直接写出所有点A对应的数.(3)找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4这样的整数是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x+2|是否有最小值?如果有,写出最小值,并写出所有符合条件的整数x.如果没有,说明理由.4.同学们,你会求数轴上两点间的距离吗?例如:数轴上,3和5在数轴上所对的两点之间的距离可理解为|3﹣5|=2或理解为5﹣3=2,5与﹣2两数在数轴上所对的两点之间的距离可理解为|5﹣(﹣2)|=7或2﹣(﹣5)=7.解决问题:如图,在单位长度为1的数轴上有A,B,C三个点,点A,C表示的有理数互为相反数(1)请在数轴上标出原点O,并在A,B,C上方标出他们所表示的有理数;(2)B,C两点间的距离是(3)若点P为数轴上一动点,其对应的数为x①P、B两点之间的距离表示为,若P、B两点之间的距离为5,则x=②若点P到点B、点C的距离相等,则点P对应的数是③若点P到点B、点C的距离之和为7,则点P对应的数是(4)对于任何有理数a①|a﹣1|+|a+5|的最小值为,此时能使|a﹣1|+|a+5|取最小值的所有整数a的和是;②若a>1,则|a﹣1|﹣|a+5|=.③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是.5.平移和翻折是初中数学两种重要的图形变化.(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是A.(+3)+(+2)=+5;B.(+3)+(﹣2)=+1;C.(﹣3)﹣(+2)=﹣5;D.(﹣3)+(+2)=﹣1②一机器人从原点O开始,第1次向左跳1个单位,紧接着第2次向右跳2个单位,第3次向左跳3个单位,第4次向右跳4个单位,……,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2019的点与表示的点重合;②若数轴上A、B两点之间的距离为2019(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)6.平移和翻折是初中数学两种重要的图形变化(1)平移运动①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?用算式表示以上过程及结果是.A.(+3)+(+2)=+5 B.(+3)+(﹣2)=+1C.(﹣3)﹣(+2)=﹣5 D.(﹣3)+(+2)=﹣1②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是.(2)翻折变换①若折叠纸条,表示﹣1的点与表示3的点重合,则表示2017的点与表示的点重合;②若数轴上A、B两点之间的距离为2018(A在B的左侧,且折痕与①折痕相同),且A、B两点经折叠后重合,则A点表示,B点表示.③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为.(用含有a,b的式子表示)7.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.8.有一列数:2,4,8,16,32,…,从第二个数开始,每一个数与前一个数之比是一个常数q,这个常数q是2;根据这个规律,如果a1表示第1个数,即a1=2,a2表示第2个数,…,a n(n为正整数)表示这列数的第n个数.(1)a2019=,a n=.(2)阅读以下材料:如果想求1+3+32+33+...+320的值,可令S=1+3+32+33+ (320)将①式两边同乘以3,得:3S=3+32+33+…+320+321②由②减去①式,可以求得S=.对照阅读材料的解法求a1+a2+a3+…+a100的值;(3)记m=a101+a102+a103+…+a2019,求m的个位数.9.阅读材料1:如果a≠0,m,n都是正整数,那么a m表示的含义是“m个a相乘”,a n表示的含义是“n个a相乘”,a m+n表示的含义是“(m+n)个a相乘”,由此我们可以得到公式:a m•a n=a m+n,例如:32×35=32+5=37,5m×5=5m+1.阅读材料2:如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比数列,,,,,…,则它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a20=,a n=.(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230……①等式两边同时乘以2,得2S=2+4+8+16+32+…+231……②由②式减去①式,得S=231﹣1,∴1+2+4+8+16+…+230=231﹣1请按照此解答过程,完成下列各题:①求1+5+52+53+54+…+520的值;②求3+2++++…+的值,其中m为正整数.(结果请用含m的代数式表示)10.已知数轴上有A、B、C三点,分别表示有理数﹣26,﹣10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,PA=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.11.100个偶数按每行8个数排成如图所示的阵列:(1)图中方框内的9个数的和与中间的数有什么关系?(2)小童画了一个方框,他所画的方框内9个数的和为360,求这9个数;(3)小郑也画了一个方框,方框内9个数的和为1656,你能写出这9个数吗?如果不能,请说明理由;(4)从左到右,第1至第8列各列数之和分别记为a1、a2、a3、a4、a5、a6、a7、a8,则这8个数中,最大数与最小数之差等于.12.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(a⊕3)⊕1=128,求a的值.13.用“⊕”定义一种新运算:对于任意有理数a和b,规定a⊕b=ab2+2ab+a.如:1⊕3=1×32+2×1×3+1=16.(1)求(﹣2)⊕3的值;(2)若(⊕3)⊕(﹣)=8,求a的值.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.15.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案1.解:(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M 和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.2.解:(I)根据题意得:|x﹣4|=|x﹣(﹣2)|,解得:x=1.故答案为:1.(II)根据题意得:|x﹣4|+|x﹣(﹣2)|=7,解得:x1=﹣2.5,x2=4.5.∴数轴上存在点P,使点P到点M,点N的距离之和是7,x的值为﹣2.5或4.5.(III)设运动时间为t分钟,则点P表示的数为﹣3t,点M表示的数为﹣t﹣2,点N表示的数为﹣4t+4,根据题意得:|﹣3t﹣(﹣t﹣2)|=|﹣3t﹣(﹣4t+4)|,∴﹣3t﹣(﹣t﹣2)=﹣3t﹣(﹣4t+4)或﹣3t﹣(﹣t﹣2)=3t+(﹣4t+4),解得:t1=2,t2=﹣2(舍去).答:2分钟时点P到点M,点N的距离相等.3.解:(1)7与﹣7两数在数轴上所对的两点之间的距离=7﹣(﹣7)=14.(2)所有点A对应的数为﹣1,﹣2,﹣3,﹣4,﹣5;(3)使得|x+3|+|x﹣1|=4这样的整数是﹣3,﹣2,﹣1,0,1;(4)答:有,最小值为5,符合条件的整数有:﹣2,﹣1,0,1,2,3.故答案为:(1)14;(2)﹣1,﹣2,﹣3,﹣4,﹣5;(3)﹣3,﹣2,﹣1,0,1.4.解:(1)如图所示,(2)B,C两点间的距离是|3﹣(﹣1)|=4,故答案为:4;(3)①P、B两点之间的距离表示为|x+1|,若P、B两点之间的距离为5,则x=4或﹣6,故答案为:|x+1|,4或﹣6;②∵点P到点B、点C的距离相等,∴x+1=3﹣x,解得:x=1,∴点P对应的数是1;故答案为:1;③若点P到点B、点C的距离之和为7,则有|x+1|+|3﹣x|=7,解得:x=4.5或﹣2.5;故答案为:4.5或﹣2.5;(4)①当a≥1时,|a﹣1|+|a+5|=a﹣1+a+5=2a+4,∴|a﹣1|+|a+5|的最小值为6,当a≤﹣5时,|a﹣1|+|a+5|=1﹣a﹣a﹣5=﹣2a﹣4,∴|a﹣1|+|a+5|的最小值为6;当﹣5<a<1时,|a﹣1|+|a+5|=1﹣a+a+5=6,综上所述,|a﹣1|+|a+5|的最小值为6;∴|a﹣1|+|a+5|取最小值的所有整数a的和是﹣5﹣4﹣3﹣2﹣1+0+1=﹣14;故答案为:6,﹣14;②当a>1,则|a﹣1|﹣|a+5|=a﹣1﹣a﹣5=﹣6,故答案为:﹣6;③|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是③分类讨论:当a≤﹣5;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4﹣a﹣5=﹣4a﹣2,∴当a=﹣5时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为18;当﹣5<a≤﹣2;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1﹣a﹣2﹣a+4+a+5=﹣2a+8 当a=﹣2时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当﹣2<a≤1;|a﹣1|+|a+2|+|a﹣4|+|a+5|=﹣a+1+a+2﹣a+4+a+5=12;当1<a≤4;|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2﹣a+4+a+5=2a+10,当a=1时,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值为12;当a>4时,|a﹣1|+|a+2|+|a﹣4|+|a+5|=a﹣1+a+2+a﹣4+a+5=4a+2,综上所述,|a﹣1|+|a+2|+|a﹣4|+|a+5|的最小值是12,故答案为:12.5.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2)=﹣1.故选:D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2019次时,落在数轴上的点表示的数是﹣1010.故答案为:﹣1010.(2)①∵对称中心是1,∴表示2019的点与表示﹣2017的点重合;②∵对称中心是1,AB=2019,∴则A点表示﹣1008.5,B点表示1010.5;③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b).故答案为:D;﹣1010;﹣2017;﹣1008.5,1010.5;(a+b).6.解:(1)①把笔尖放在数轴的原点处,先向负方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示的数为(﹣3)+(+2),故选D.②一机器人从数轴原点处O开始,第1次向负方向跳一个单位,紧接着第2次向正方向跳2个单位,第3次向负方向跳3个单位,第4次向正方向跳4个单位,…,依次规律跳,当它跳2017次时,落在数轴上的点表示的数是﹣1019,故答案为﹣1009.(2)①∵对称中心是1,∴表示2017的点与表示﹣2015的点重合,②∵对称中心是1,AB=2018,∴则A点表示﹣1008,B点表示1010,③若数轴上折叠重合的两点的数分别为a,b,折叠中间点表示的数为(a+b);故答案为﹣2015,﹣1008,1010,(a+b).7.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.8.解:(1)∵从第二个数开始,每一个数与前一个数之比是一个常数2∴a2019=22019,a n=2n故答案为:22019,2n.(2)设S100=a1+a2+a3+…+a100①则2S100=a2+a3+…+a100+a101 ②∴②﹣①得:S100=a101﹣a1=2101﹣2∴a1+a2+a3+…+a100的值为:2101﹣2.(2)∵2n的个位数字分别为2,4,8,6,循环a101=2101,a2019=22019101÷4=25...1,(2019﹣100)÷4=479 (3)故m=a101+a102+a103+…+a2019,中的第一个数a101的末位数字为2每相邻4个一组数字求和的个位数字为0,末三项的个位数字为:2,4,8,其和为14 故m=a101+a102+a103+…+a2019的个位数字为:4.∴m的个位数字为4.9.解:(1)q=÷=;a20=或,a n=或;(2)①令S=1+5+52+53+54+…+520……①,等式两边同时乘以5,得5S=5+52+53+54+55+…+521……②,由②式减去①式,得4S=521﹣1,,∴;②令……①等式两边同时乘以,得……②,由②式减去①式,得,∴.故答案为:;或,或.10.解:(1)PA=t;PC=36﹣t;故答案为:t,36﹣t;(2)①有依题意有t+3(t﹣16)﹣16=20,解得:t=21,t﹣16=21﹣16=5.故当t=21,点P、Q相遇,此时点Q运动了5秒.故答案为:21,5;②当16≤t≤21时PQ=36﹣t﹣3(t﹣16)=84﹣4t;当21<t≤28时PQ=3(t﹣16)+t﹣36=4t﹣84.11.解:(1)∵2+4+6+18+20+22+34+36+38=180=9×20,∴图中方框内的9个数的和是中间的数的9倍.(2)设中间数为x,则另外8个数分别为:x﹣18,x﹣16,x﹣14,x﹣2,x+2,x+14,x+16,根据题意得:9x=360,解得:x=40,∴这9个数分别为:22,24,26,38,40,42,54,56,58.(3)假设能成立,设中间数为y,则另外8个数分别为:y﹣18,y﹣16,y﹣14,y﹣2,y+2,y+14,y+16,根据题意得:9y=1656,解得:y=184,∵184÷2÷8=11……4,∴184为第12行第4个数,∴这9个数为:166,168,170,182、184、186、198、200、202.又∵仅有100个数,∴202不存在,∴假设不成立,即方框内9个数的和不能为1656.(4)∵200÷2÷8=12……4,∴尾数200为第13行第4个数,∴a1=2+18+34+...+194==1274,a2=1274+2×13=1300,a3=1300+2×13=1326,a4=1326+2×13=1352,a5=10+26+42+ (186)=1176,a6=1176+2×12=1200,a7=1200+2×12=1224,a8=1224+2×12=1248,∴这8个数中,最大数为1352,最小数为1176,∴1352﹣1176=176.故答案为:176.12.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:a⊕3=a×32+2×a×3+a=16a,16a⊕1=16a×12+2×16a×1+16a=64a,已知等式整理得:64a=128,解得:a=2.13.解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)根据题中新定义得:⊕3=×32+2××3+=8(a+1),8(a+1)⊕(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=2(a+1),已知等式整理得:2(a+1)=8,解得:a=3.14.解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;(2)解:☆3=×32+2××3+=8(a+1)8(a+1)☆(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=8解得:a=3;(3)由题意m=2x2+2×2x+2=2x2+4x+2,n=x×32+2×x×3+=4x,所以m﹣n=2x2+2>0.所以m>n.15.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。

人教版七年级下册数学计算题300道

人教版七年级下册数学计算题300道

七年级数学下册复习试卷——计算题姓名__________ 班别___________ 座号___________1、)2()9()3(32422ab b a b a -⋅-÷2、 ()()733222x x x ÷⋅-3、)2()(b a b a -++-4、22(1)3(2)x x x ---+5、,4)12(332312++--x x x6、)346(21)21(3223223ab b a a ab b a a ++-+-7、9、x(x11、3(x13、(x15、3(x17、22)()(y x y x -+ 18、x y y x ÷-+])3[(2219、0.125100×8100 20、()xy xy xy y x 18361085422÷--21、3022)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛ 22、(1211200622332141)()()()-⨯+----23、99925、298272829、化简求值)(]42)2)(2[(22xy y x xy xy ÷+--+,其中41,4-==y x 。

30、若x+y=1,()的值求求222,3y x y x -=+。

31、已知0106222=++-+b a b a ,求20061a b-的值。

32、 12﹣(﹣8)+(﹣7)﹣15; 33、 ﹣12+2×(﹣5)﹣(﹣3)3÷;34、 (2x ﹣3y )+(5x+4y ); 35、 (5a 2+2a ﹣1)﹣4(3﹣8a+2a 2).36、计算:4+(﹣2)2×2﹣(﹣36)÷4; 37化简:3(3a ﹣2b )﹣2(a ﹣3b ). 计算:38(1)7x+4(x 2﹣2)﹣2(2x 2﹣x+3); 39(2)4ab ﹣3b 2﹣[(a 2+b 2)﹣(a 2﹣b 2)];40(3)(3mn﹣5m2)﹣(3m2﹣5mn);41(4)2a+2(a+1)﹣3(a﹣1).4.化简42(1)2(2a2+9b)+3(﹣5a2﹣4b)43(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)44(2009•柳州)先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.45.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.46.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.47.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.48.已知A=5a2﹣2ab,B=﹣4a2+4ab,求:(1)A+B;(2)2A﹣B;(3)先化简,再求值:3(A+B)﹣2(2A﹣B),其中A=﹣2,B=1.49.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.(1)求a﹣(b﹣c)的值;(2)当x=时,求a﹣(b﹣c)的值.50.化简求值:已知a、b满足:|a﹣2|+(b+1)2=0,求代数式2(2a﹣3b)﹣(a﹣4b)+2(﹣3a+2b)的值.51.已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.52①12﹣(﹣8)+(﹣7)﹣15;53②﹣12+2×(﹣5)﹣(﹣3)3÷;54③(2x﹣3y)+(5x+4y);55④(5a2+2a﹣1)﹣4(3﹣8a+2a2)..化简56(1)2(2a2+9b)+3(﹣5a2﹣4b)57(2)3(x3+2x2﹣1)﹣(3x3+4x2﹣2)58(1)计算:4+(﹣2)2×2﹣(﹣36)÷4;59(2)化简:3(3a﹣2b)﹣2(a﹣3b).计算:60(1)7x+4(x2﹣2)﹣2(2x2﹣x+3);61(2)4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)];62(3)(3mn﹣5m2)﹣(3m2﹣5mn);63(4)2a+2(a+1)﹣3(a﹣1).64(2009•柳州)先化简,再求值:3(x﹣1)﹣(x﹣5),其中x=2.65.已知x=5,y=3,求代数式3(x+y)+4(x+y)﹣6(x+y)的值.66.已知A=x2﹣3y2,B=x2﹣y2,求解2A﹣B.67.若已知M=x2+3x﹣5,N=3x2+5,并且6M=2N﹣4,求x.68.设a=14x﹣6,b=﹣7x+3,c=21x﹣1.(1)求a﹣(b﹣c)的值;69(2)当x=时,求a ﹣(b ﹣c )的值.70.化简求值:已知a 、b 满足:|a ﹣2|+(b+1)2=0,求代数式2(2a ﹣3b )﹣(a ﹣4b )+2(﹣3a+2b )的值.71.已知(x+1)2+|y ﹣1|=0,求2(xy ﹣5xy 2)﹣(3xy 2﹣xy )的值.72. )2()(b a b a -++- 73. (x+2)(y+3)-(x+1)(y-2)74 22)2)(2(y y x y x ++- 75. x(x -2)-(x+5)(x -5)76. ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--y x y x 224 77. )94)(32)(23(22x y x y y x +---78. ()()3`122122++-+a a 79. ()()()2112+--+x x x80. (x -3y)(x+3y)-(x -3y)2 81. 23(1)(1)(21)x x x +---82. 22)23()23(y x y x --+ 83. 22)()(y x y x -+84. 0.125100×810085. 3022)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛86. (1211200622332141)()()()-⨯+----16—1990.91.92. 5(x-1)(x+3)-2(x-5)(x-2) 93. (a-b)(a2+ab+b2)94. (3y+2)(y-4)-3(y-2)(y-3) 95. a(b-c)+b(c-a)+c(a-b)1y2)2 96. (-2mn2)2-4mn3(mn+1) 97. 3xy(-2x)3·(-4 98. (-82100. (x102104105107、化简再求值:()()x x y x x 2122++-+,其中251=x ,25-=y 。

人教版七年级下册数学全册课时练习

人教版七年级下册数学全册课时练习

1 3 1 1 1 3 1 1 + − − = + − − 3 4 6 4 4 4 3 6 1 − 2 + 3 − 4 = 2 −1 + 4 − 3 D、 4.5 −1.7 − 2.5 + 1.8 = 4.5 − 2.5 + 1.8 −1.7

C. B.
9. 下列计算结果中等于 3 的是(
A.
−7 + +4
1.2 有理数 同步练习
一、判断 1、自然数是整数。 ﹝ ﹞ 2、有理数包括正数和负数。 ﹝ ﹞ 3、有理数只有正数和负数。 ﹝ ﹞ 4、零是自然数。 ﹝ ﹞ 5、正整数包括零和自然数。 ﹝ ﹞ 6、正整数是自然数, ﹝ ﹞ 7、任何分数都是有理数。 ﹝ ﹞ 8、没有最大的有理数。 ﹝ ﹞ 9、有最小的有理数。 ﹝ ﹞ 二、填空 1、某日,泰山的气温中午 12 点为 5℃,到晚上 8 点下降了 6℃.那么这天晚上 8 点的气温 为 。 0 2、如果零上 28 度记作 28 C,那么零下 5 度记作 3、若上升 10m 记作 10m,那么-3m 表示 4、比海平面 低 20m 的地方,它的高度记作海拔 三、选择题 5、在-3,-1
周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌 情况如下表: 单位:元 日期 开盘 收盘 当日收盘价 试在表中填写周二到周五该股票的收盘价. 周二 +0.16 -0.23 周三 +0.25 -1.32 周四 +0.78 -0.67 周五 +2.12 -0.65
3、 春季某河流的河水因春雨先上涨了 15cm,随后又下降了 15cm.请你用合适的方法 来表示这条河流河水的变化情况. 六、探究创新 1、一种零件的直径尺寸在图纸上是 30

2024年人教版七年级下册数学第二单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第二单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第二单元课后练习题(含答案和概念)试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 下列各数中,最小的数是()A. |3|B. 3C. |3|D. 33. 下列各数中,有理数是()A. √1B. √3C. √3D. √34. 如果|a|=5,那么a的值可能是()A. 5B. 5C. 3D. 35. 有理数的乘法中,2×()的结果是()A. 2B. 2C. 0D. 46. 计算:(2)×(3)的结果是()A. 6B. 6C. 5D. 57. 在数轴上,点A表示的数是3,那么点A关于原点对称的点是()A. 3B. 3C. 0D. (3)8. 若a、b为有理数,且a<0,b<0,则a+b()A. >0B. <0C. =0D. 无法确定9. 下列各数中,无理数是()A. 0.333…B. 1.414C. √2D. 3.1415910. 若|a|=b,且a<0,则a与b的大小关系是()A. a>bB. a<bC. a=bD. 无法确定二、判断题:1. 相反数的定义是:只有符号不同的两个数互为相反数。

()2. 数轴上的点与实数是一一对应的。

()3. 两个负数相乘,结果一定是正数。

()4. 两个正数相乘,结果一定是正数。

()5. 任何有理数的平方都是正数。

()6. 0的相反数是0。

()7. |a|=|a|对于任何有理数a都成立。

()8. 若a<b,则a>b。

()9. 两个无理数相乘,结果一定是无理数。

()10. 数轴上,原点左边的点表示的数都是负数。

()三、计算题:1. 计算:4 + 72. 计算:5 (3)3. 计算:3 × 64. 计算:4 ÷ 25. 计算:(2)^36. 计算:| 5 |7. 计算:| 4 |8. 计算:|3| + |5|9. 计算:|3| |5|10. 计算:(3 5) × (2)11. 计算:(4 + 6) ÷ (2)12. 计算:2 × (3) + 4 ÷ 213. 计算:3^2 + 2^314. 计算:|2^3| |(3)^2|15. 计算:(2 4) × (3 + 5)16. 计算:(6 ÷ 2) (3)^217. 计算:3 × (2) + 4 × (1)18. 计算:5 × (2 4) ÷ (2)19. 计算:2 × (3 + 5) 4 ÷ 220. 计算:|4^2| + |3^3|四、应用题:1. 小明在数轴上从原点出发,先向右移动3个单位,再向左移动5个单位,此时小明所在的位置是哪个数?2. 一个数加上它的相反数,结果是多少?3. 一个数的2倍减去它的3倍,结果是多少?4. 一个数的4倍加上它的2倍,结果是多少?5. 一个数的绝对值是5,这个数可能是哪些数?6. 一个数的平方是9,这个数可能是哪些数?7. 小华在数轴上从2出发,向右移动了几个单位后,到达了3的位置?8. 如果一个数的相反数是正数,那么这个数是什么数?9. 如果一个数的绝对值是负数,那么这个数可能是什么数?10. 一个数的3倍减去它的2倍,结果是这个数本身,这个数是多少?试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 下列各数中,最小的数是()A. |3|B. |3|C. 3D. 33. 下列说法正确的是()A. 互为相反数的两个数绝对值相等B. 互为相反数的两个数绝对值不等C. 互为相反数的两个数相等D. 互为相反数的两个数和为04. 有理数a、b在数轴上的对应点如图所示,下列结论正确的是()A. |a| > |b|B. a < bC. a + b < 0D. a b > 05. 若|a| = 5,那么a的值是()A. 5或5B. 5C. 5D. 06. 若a、b互为相反数,且|a| = 3,则a² + b²的值为()A. 9B. 18C. 0D. 67. 下列各数中,无理数是()A. √9B. √16C. √3D. √18. 下列各数中,有理数是()A. πB. √2C. √3D. √49. 下列各数中,最小的数是()A. √2B. √2C. √3D. √310. 若a、b互为倒数,且a < 0,那么b的符号是()A. 正B. 负C. 0D. 无法确定二、判断题:1. 互为相反数的两个数和为0。

2024年人教版七年级下册数学第四单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第四单元课后练习题(含答案和概念)

2024年人教版七年级下册数学第四单元课后练习题(含答案和概念)试题部分一、选择题:1. 在下列各数中,3的相反数是()A. 3B. 3C. 0D. (3)2. 如果a<0,那么a()A. 大于0B. 小于0C. 等于0D. 无法确定3. 下列各数中,有理数是()A. √2B. √1C. 3.14D. π4. 下列各数中,2的倍数是()A. 3.5B. 4.8C. 5.6D. 6.95. 下列各数中,既是有理数又是无理数的是()A. 0B. 1C. 2D. 36. 下列各数中,不是2的倍数的是()A. 14B. 16C. 18D. 207. 下列各数中,2的绝对值是()A. 2B. 2C. 0D. (2)8. 如果a>0,那么a()A. 大于0B. 小于0C. 等于0D. 无法确定9. 下列各数中,既不是正数也不是负数的是()A. 0B. 1C. 1D. 210. 下列各数中,最小的数是()A. 5B. 3C. 1D. 0二、判断题:1. 相反数的和为0。

()2. 绝对值等于0的数是0。

()3. 有理数和无理数统称为实数。

()4. 任何数乘以0都等于0。

()5. 两个负数相乘得到正数。

()6. 两个正数相加得到负数。

()7. 0除以任何非0的数都等于0。

()8. 任何数的平方都是正数。

()9. 任何数的平方根都是正数。

()10. 负数的绝对值等于它的相反数。

()三、计算题:1. 计算:(3) + 7 = ?2. 计算:5 (2) = ?3. 计算:4 × 6 = ?4. 计算:24 ÷ (3) = ?5. 计算:| 5 | = ?6. 计算:3^2 = ?7. 计算:√(49) = ?8. 计算:2^3 × 3^2 = ?9. 计算:(4 3)^2 = ?10. 计算:(2 + 3) × (5 2) = ?11. 计算:4.8 ÷ 1.2 = ?12. 计算:3.14 × 2.5 = ?13. 计算:10 3.5 = ?14. 计算:| 7.2 | = ?15. 计算:5 × (6 2) = ?16. 计算:(8 ÷ 2) + 4 = ?17. 计算:9 + (3) 2 = ?18. 计算:7 × (4) ÷ 2 = ?19. 计算:12 ÷ (2 + 3) = ?20. 计算:2^4 ÷ 4 = ?四、应用题:1. 小华有5个苹果,他吃掉了其中的3个,请问他还剩下几个苹果?2. 一个长方形的长是8厘米,宽是4厘米,请计算它的面积。

人教版 七年级数学下册 第8章 二元一次方程组 综合练习(包含答案)

人教版 七年级数学下册 第8章 二元一次方程组 综合练习(包含答案)

人教版 七年级数学下册 第8章 二元一次方程组综合练习(含答案)一、单选题(共有8道小题) 1.若方程6mx ny += 的两个解是12,11x x y y ==⎧⎧⎨⎨==-⎩⎩,则m,n 的值为( )A.4,2B.2,4C.-4,-2D.-2,-42.方程529x y +=-与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的解是( )A.21x y +=B.328x y +=-C.543x y +=-D.348x y -=-3.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( )A.3412x y x y +=⎧⎨+=⎩B.3421x y x y +=⎧⎨=+⎩C.3421x y x y +=⎧⎨=+⎩D.23421x y x y +=⎧⎨=+⎩4.若方程mx +ny =6的两个解是11x y =⎧⎨=⎩,⎩⎨⎧-==12y x ,则m ,n 的值为( )A .4,2B .2,4C .-4,-2D .-2,-45.已知()230x y -+=,则x y +的值为()A .0B .-1C .1D .5 6.若0125=+-+++b a b a ,则()2015b a -= ( )A .1-B .1C .20155D .20155-7.如果将满足方程的一对x ,y 值叫做方程的一组解,那么34x y +=的解的组数是( ).A .1组B .2组C .无数组D .没有解8.为推进课改,王老师把班级里40名学生分成若干小组,没小组只能是5人或6人,则有( )种分组方案A.4B.3C.2D.19.已知x ,y 满足方程组2523x y x y -=⎧⎨+=-⎩,则224x y -的值为 .10.方程组02x y x y +=⎧⎨-=⎩的解为_____.11.二元一次方程组7413563x y x y -=⎧⎨-=⎩的解________x y =⎧⎨=⎩.12.今年“五一”节,A 、B 两人到商场购物,A 购3件甲商品和2件乙商品共支付16元,B 购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x 元/件,乙商品售价y 元/件,则可列出方程组 . 13.已知21x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则3m n +的立方根为 。

新人教版七年级下册数学第八章二元一次方程练习题

新人教版七年级下册数学第八章二元一次方程练习题

第八章 二元一次方程1.1.练习题1一 选择题1.下列方程中,是二元一次方程的是( ) A .3x -2y =4z B .6xy +9=0 C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( ) A.⎩⎨⎧x +y =42x +3y =7 B.⎩⎨⎧2a -3b =115b -4c =6C.⎩⎨⎧x 2=9y =2x D.⎩⎨⎧x +y =8x 2-y =43.在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程,则k 值为( )A .-2B .2或-2C .2D .以上答案都不对4.二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程的解的是( )A.⎩⎨⎧x =0y =-12 B.⎩⎨⎧x =1y =1C.⎩⎨⎧x =1y =0D.⎩⎨⎧x =-1y =-1 5.二元一次方程组⎩⎨⎧x +y =5,2x -y =4的解为( )A.⎩⎨⎧x =1y =4B.⎩⎨⎧x =2y =3C.⎩⎨⎧x =3y =2D.⎩⎨⎧x =4y =16.已知是二元一次方程组的解,则2m n -的算术平方根为( )A .2±B.C .2D .421x y =⎧⎨=⎩81mx ny nx my +=⎧⎨-=⎩7.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为( ) A .21x y =⎧⎨=⎩ B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩8.已知关于x ,y 的方程组,给出下列结论:①是方程组的一个解;②当2a =时,x ,y 的值互为相反数;③当时,方程组的解也是方程的解;④x ,y 间的数量关系是.其中正确的是( )A .②③B .①②③C .①③D .①③④9.二元一次方程组的解是( )A .B .C .D .10.解方程组,由①②得正确的方程是( )A .B .C .D . 二 填空题11.写出一个未知数为a ,b 的二元一次方程组: . 12.已知方程x m -3+y 2-n =6是二元一次方程,则m -n = . 13.已知,则xy = .14.根据下图给出的信息,则每件T 恤价格和每瓶矿泉水的价格分别为 .15.小亮解方程组2212x y x y +=⎧⎨-=⎩•的解为5x y =⎧⎨=⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数•和▲,请你帮他找回▲这个数,▲=.343x y a x y a +=-⎧⎨-=⎩51x y =⎧⎨=-⎩1a =23x y -=4x y a +=-320x y x y -=-⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =⎧⎨=-⎩12x y =-⎧⎨=-⎩21x y =-⎧⎨=⎩5210x y x y +=⎧⎨+=⎩①②-310x =5x -=-35x =-5x =-2(4)|2|0x y x y +-+--=三 解答题16.解下列二元一次方程组(1)33814x y x y -=⎧⎨-=⎩(2)254x y x y +=⎧⎨-=⎩(3) (4)73100202x y y x +=⎧⎨=-⎩17..已知关于,x y 的方程组122x m y y x -⎧+=⎨=⎩①② .(1)若用代入法求解,可由①得x = ③,把③代入②,解得y = ,将其代入③,解得x = ,∴原方程组的解为 ;(2)若此方程组的解,x y 互为相反数,求这个方程组的解及m 的值.18.方程()()()224268k x k x k y k -+++-=+是关于x ,y 的方程,试问当k 为何值时.(1)方程为一元一次方程;(2)方程为二元一次方程.4518549x y x y +=⎧⎨+=⎩19.若,求x+y+z的值.20.根据题意设未知数,列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼中放5只,则恰有一笼无鸡可放,问有多少只鸡,多少个笼?第八章 二元一次方程练习题1 参考答案与解析一、选择题1.D2.A3.C4.B5.C6.D7.D8.C9.A 10.B二、填空题11.3,2a b a b +=⎧⎨-=⎩(答案不唯一) 12.3 13.3 14.20元 2元 15.-2三、解答题16.解:(1)2,1.x y =⎧⎨=-⎩(2)3,1.x y =⎧⎨=-⎩(3)3,6.x y =-⎧⎨=⎩(4)40,60.x y =⎧⎨=-⎩17.解:(1)1-2y 144m - 122m + 1,22144m x m y ⎧=+⎪⎪⎨⎪=-⎪⎩(2)∵此方程组的解,x y 互为相反数,∴ 122m ++144m-=0,解得m=-3,则方程组的解为1,1.x y =-⎧⎨=⎩18.解:若方程为一次方程,则k ²-4=0,∴k=±2.当k=2时,原方程可化为4x-4y=10,是关于x ,y 的二元一次方程,不符合题意,舍去;当k=-2时,原方程可化为-8y=6,是关于y 的一元一次方程. (1)当k=-2时,原方程是一元一次方程. (2)当k=2时,原方程是二元一次方程.19.解∵,∴x+3y-2z-3=0,x-3y+7z-3=0,将z 当作已知,可解得x=-2.5z+3,y=1.5z ,∴x+y+z=3.20.解:(1)设0.8元与2元的邮票各x 枚,y 枚.由题意,列方程组13,0.8220.x y x y +=⎧⎨+=⎩(2)设有x 只鸡,y 个笼.由题意,列方程组41,5(1).x y x y =+⎧⎨=-⎩1.2.练习题2一选择题1.以为解的二元一次方程组是( )A.B. C. D.2.下列各组数值是二元一次方程x﹣3y=4的解的是( )A. B. C. D .3.已知,用含x的代数式表示y正确的是()A. B. C.D.4.方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B.3x+2y=﹣8 C.5x+4y=﹣3 D.3x﹣4y=﹣85.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣96.有一个两位数,十位上的数字与个位上的数字之和为7,且个位上的数不为0,这样的两位数有( )A.8个B.7个C.6个D.5个7.若43m a b 与223n m n a b ++-的和为0,则3n m +的值是( )A.9B.8C.6D.4 8.方程的正整数解有( )A.1组B.2组C.3组D.无 9.已知a ,b 满足方程组,则a+b 的值为( )A.﹣4B.4C.﹣2D.210.二元一次方程2x+5y=32的正整数解有( )A .3组B .4组C .5组D .6组11.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x 双,乙鞋y 双,则依题意可列出下列哪一个方程式?( )A.200(30﹣x)+50(30﹣y)=1800B.200(30﹣x)+50(30﹣x ﹣y)=1800C.200(30﹣x)+50(60﹣x ﹣y)=1800D.200(30﹣x)+50=1800 12.若|3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是( ) A.14 B.2 C.-2 D.-4二 填空题13.2元的人民币x 张,5元的人民币y 张,共120元,这个关系用方程可以表示为 .14.若x 3m-3-2y n-1=5是二元一次方程,则m= ,n= . 15.若是关于x ,y 的二元一次方程组,则.16.如果2x 2a-b-1-3y 3a+2b-16=10是一个二元一次方程,那么数a= ,b= .17.已知关于x ,y 的方程(k 2-1)x 2+(k+1)x+2ky=k+3,当k= 时,它为一元一次方程;当k= 时,它为二元一次方程. 18.已知,则用x 的代数式表示y 为 .19.已知是二元一次方程组的解,则m +3n 的值为 .20.若2,1x y =⎧⎨=⎩是方程()212,1x m y nx y +-=⎧⎪⎨+=⎪⎩的解,则(m +n )2018的值是__________.三 计算题21.某市2007年秋季开始,减免学生在义务教育阶段的学杂费,并按照每学期小学每生250元,初中每生450元的标准,由财政拨付学校作为办公经费,该市一学校小学生和初中生共有840人,2007年秋季收到当学期该项拨款290000元,该学校小学生和初中生各有多少人?22.某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?23.课本中介绍我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只?如果假设鸡有x只,兔有y只,请你列出关于x,y的二元一次方程组,并写出你求解这个方程组的方法.24.手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款 4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?第八章二元一次方程练习题2 参考答案与解析一、选择题1.D2.A3.C4.D5.D6.C7.B8.A9.B 10.A 11.D 12.D二、填空题13.2x+5y=120 14.432 15.5216.3 4 17.-1 118.x+3y=14 19.3 20.1三、解答题21.解:该学校小学生有x人,初中生有y人.由题意得840,250450290000,x yx y+=⎧⎨+=⎩解得440,400.xy=⎧⎨=⎩答:该学校小学生有440人,初中生有400人.22.解:设一盒“福娃”玩具的价格是x元,一枚徽章的价格是y元.由题意得2145,23280,x yx y+=⎧⎨+=⎩解得125,10.xy=⎧⎨=⎩答:一盒“福娃”玩具的价格是125元,一枚徽章的价格是10元.23.解:由题意得35,2494,x yx y+=⎧⎨+=⎩①②由①得y=35-x③,将③代入②,得2x+4(35-x)=94,解得x=23④,将④代入③,得y=12,则原方程组的解为23,12. xy=⎧⎨=⎩答:鸡有23只,兔有12只.24.解:设该校老师捐款x元,学生捐款y元.由题意得45000,29000,x yx y+=⎧⎨=-⎩解得27000,18000.xy=⎧⎨=⎩答:该校老师捐款27000元,学生捐款18000元.1.3.练习题3一选择题1.由加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去xB.①×4+②×3,消去xC.②×2+①,消去yD.②×2﹣①,消去y2.用加减消元法解方程组时,有下列四种变形,其中正确的是()A. B. C. D.3.已知与-9x7-m y1+n的和是单项式,则m,n的值分别是().A.m=-1,n=-7B.m=3,n=1C.m=,n=D.m=,n=-24.若|x﹣2y﹣1|+|2x﹣y﹣5|=0,则x+y的值为()A.4B.5C.6 D .75.关于x,y的方程组,其中y值被盖住了,不过仍能求出p,则p值是( )A.-B.C.-D.6.一个两位数,个位数字与十位数字的和是9,如果个位数字与十位数字对调后所得的两位数比原来的两位数大9,那么原来这个两位数是()A.54B.27C.72D.457.若关于x.y的方程组的解都是正整数,那么整数a的值有()A.1个B.2个C.3个 D.4个8.若方程组的解是,则方程组的解为()A. B. C. D.二填空题9.已知(2x+3y﹣4)2+|x+3y﹣7|=0,则x=______,y=______.10.在解方程组时,小明把c看错了得而他看后面的正确答案是则a=__ ,b= ,c= .11.若,则.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.13.已知方程组与有相同的解,则m2﹣2mn+n2= .14.定义运算“⊙”:规定x⊙y=ax+by(其中a,b为常数),若1⊙1=3,1⊙(-1)=1,则1⊙2=.15.已知方程组的解是,老师让同学们解方程组,小聪先觉得这道题好象条件不够,后将方程组中的两个方程两边同除以5,整理得,运用换元思想,得,所以方程组的解为.现给出方程组的解是,请你写出方程组的解.三计算题16.解方程组:(1);(2);(3);(4);(5);(6).17.解方程组:,试求7y(x﹣3y)2﹣2(3y﹣x)3的值.18.已知关于x,y的方程组的解相同,求a,b 的值.19.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为.乙看错了方程组中的b,而得解为.(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.第八章 二元一次方程练习题3 参考答案与解析一、选择题1.D2.B3.B4.A5.A6.D7.B8.C 二、填空题9.-3103 10.45 -2 11.2013 12.-1 13.144 14.4 15.10,9x y =⎧⎨=⎩三、解答题16.解:(1)0.5,5x y =⎧⎨=⎩ (2)2,3x y =⎧⎨=⎩ (3)3,2x y =-⎧⎨=-⎩(4)4,0x y =⎧⎨=⎩ (5)2,1x y =⎧⎨=⎩ (6)28,30x y =⎧⎨=⎩17.解:解方程组得2,1,x y =-⎧⎨=-⎩ ∴原式=-7×(-2+3)²-2(-3+2)³=-5.18.解:由题意得1,3,x y x y +=⎧⎨-=⎩解得2,1.x y =⎧⎨=-⎩将2,1.x y =⎧⎨=-⎩分别代入24,(1)3,ax by bx a y +=⎧⎨+-=⎩得224,213,a b b a -=⎧⎨-+=⎩解得6,4.a b =⎧⎨=⎩∴a=6,b=4.19.解:(1)由题意得3'515,204'2,a b --=⎧⎨-=-⎩解得20',311',2a b ⎧=-⎪⎪⎨⎪=⎪⎩即甲把a 看成了203-,乙把b 看成了112. (2)由题意得122,52015,b a -+=-⎧⎨+=⎩解得1,10,a b =-⎧⎨=⎩∴原方程组为515,4102,x y x y -+=⎧⎨-=-⎩解得14,5.8.x y =⎧⎨=⎩1.4.练习题4一 选择题1.7年前,母亲的年龄是儿子的5倍;5年后,母亲的年龄是儿子的2倍.求母子现在的年龄.设母亲现年x 岁,儿子现年y 岁,列出的二元一次方程组是( )A. {x +5=2(y +5)x −7=5(y −7)B. {x +5=6(x +5)x −7=2(y −7)C. {y +5=2(x +5)y −7=5(x −7)D. {y −7=2(x −7)y +5=5(x +5)2.某服装店用6000元购进A 、B 两种新款服装,按标价售出后获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示:则这两种服装共购进( )A. 60件B. 70件C. 80件D. 100件3.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A. ()77{91x y x y +=-= B. ()77{9+1x y x y +==C. ()77{ 91x y x y-=-= D. ()77{ 9+1x y x y-==4.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x ,乙数为y ,由题意得方程组( ) A. 42{43x y x y +== B. 42{ 34x y x y+==C. 42{ 1134x yx y-== D. 42{43y xx y +== 5.某班学生参加运土劳动,一部分学生抬土(两人抬一箩筐),另一部分学生挑土(一人挑两箩筐).已知全班共用箩筐59个,扁担36根,求抬土、挑土的学生各多少人?如果设抬土的学生x 人,挑土的学生y 人,则可得方程组( )A.2592{362yxxy⎛⎫+=⎪⎝⎭+=B.2592{362xyxy+=+=C.259{2236xyx y+=+=D.259{236x yx y+=+=6.为清理积压的库存,商场决定打折销售.已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是( )A. 200元,240元B. 240元,200元C. 280元,160元D. 160元,280元7.已知∠A和∠B互余,∠A比∠B大10°,设∠A、∠B的度数分别为x°、y°,下列方程组符合题意的是( )A.90{10x yx y+==+B.90{10x yx y+==-C.180{10x yx y+==-D.180{10x yx y+==+8.观察方程组323,2411,751x y zx y zx y z-+=+-=+-=⎧⎪⎨⎪⎩的系数特点,若要使求解简便,消元的方法应选取( )A.先消去xB.先消去yC.先消去zD.以上说法都不对9.三元一次方程组1,0,1x yx zy z+=-+=+=⎧⎪⎨⎪⎩的解是( )A.11xyz⎧=-==⎪⎨⎪⎩B.11xyz===-⎧⎪⎨⎪⎩C.11xyz===-⎧⎪⎨⎪⎩D.11xyz⎧=-==⎪⎨⎪⎩10.将三元一次方程组540,3411,2x y z x y z x y z ++=+-=++=-⎧⎪⎨⎪⎩①②③经过步骤①-③和③×4+②消去未知数z 后,得到的二元一次方程组是( )A.432753x y x y +=+=⎧⎨⎩B.432231711x y x y +=+=⎧⎨⎩C.342753x y x y +=+=⎧⎨⎩D.342231711x y x y +=+=⎧⎨⎩ 二 填空题11.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,每袋货物都是一样重,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那么我所负担的就是你的两倍;如果我给你一袋,那么我们才恰好驮的一样多!”驴子原来所驮货物为________袋.12.一个两位数,个位数字与十位数字之和为8,个位数字与十位数字互换后所成的新两位数比原两位数小18,则原两位数是_________13.如图,8个相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是 .14.已知A 、B 两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,那么这艘船在静水中的速度和水流速度分别为_______千米/时、_______千米/时.15.一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上的数字的和是14,则这个三位数是__________. 三 解答题 16.解方程组:(1)20,320,767100.x y z x y z x y z -+=+-=++=⎧⎪⎨⎪⎩①②③ (2)30,222,3.x z x y z x y z +-=-+=--=⎧⎪⎪⎩-⎨①②③17.若|x+2y-5|+(2y+3z-13)2+(3z+x-10)2=0,试求x ,y ,z 的值.18.已知方程组35223x y ax y a+=++=⎧⎨⎩,的解适合x+y=8,求a的值.19.水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?20.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题;(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.①设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示);②请问至少需要补充多少名新工人才能在规定期内完成总任务?-21.为了迎接河北省中小学生健康体质测试,某学校开展“健康校园,阳光跳绳”活动,为此学校准备购置A,B,C三种跳绳.已知某厂家的跳绳的规格与价格如下表:A绳子 B绳子 C绳子长度(米)86 4单价(元/条)128 6(1)已知购买A,B两种绳子共20条花了180元,问A,B两种绳子各购买了多少条?(2)若该厂家有一根长200米的绳子,现将其裁成A,C两种绳子销售总价为240元,则剩余的绳子长度最多可加工几条B种绳子?第八章二元一次方程练习题4 参考答案与解析一、选择题1.A2.C3.A4.B5.B6.B7.A8.B9.D 10.A二、填空题11.5 12.53 13.300cm² 14.17 3 15.275三、解答题16.解:(1)3,5,7.xyz=⎧⎪=⎨⎪=⎩(2)2,4,1.xyz=⎧⎪=⎨⎪=⎩17.解:∵|x+2y-5|+(2y+3z-13)2+(3z+x-10)2=0,,∴250,23130,3100,x yy zz x+-=⎧⎪+-=⎨⎪+-=⎩解得1,2,3.xyz=⎧⎪=⎨⎪=⎩∴x=1,y=2,z=3.18.解:由题意得35223x+y=8x y ax y a+=++=⎧⎪⎨⎪⎩①,②,③,①-②得x+2y=2④,④-③得y=-6⑤,将⑤代入③得x=14⑥,将⑤和⑥代入②得a=10.19.解:(1)设需甲种车型x辆,需乙种车型y辆.由题意得581204005008200x yx y+=+=⎧⎨⎩,,解得8,10.xy=⎧⎨=⎩答:需甲种车型8辆,需乙种车型10辆.(2)设需甲种车型m辆,需乙种车型n辆,需丙种车型(16-m-n)辆.由题意得5m+8n+10(16-m-n)=120,则m=4025n-.∵m,n都是正整数,∴当n=5时,m=6;当n=10时,m=4;当n=15时,m=2.∵(16-m-n)是正整数,∴有2种情况:需甲种车型6辆,需乙种车型5辆,需丙种车型5辆,总运费7900元,节约300元;需甲种车型4辆,需乙种车型10辆,需丙种车型2辆,总运费7800元,节约400元.20.解:(1)设每天安排a名工人生产G型装置,b名工人生产H型装置.由题意得806:34:3a ba b+==⎧⎨⎩,,解得3248ab==⎧⎨⎩,,则33b=b=48(套).答:工厂每天能配套组成48套GH型电子产品.(2)①设原来每天安排x名工人生产G型装置,(80-x)名工人生产H型装置,后来补充m名新工人生产G型装置.由题意(6x+4m):3(80-x)=4:3,解得x=32-25m.②由题意得()3803x-=80-x=80-(32-25m)=120020,解得m=30.即至少需要补充30名新工人才能在规定期内完成总任务.21.解:(1)设购买A种绳子x条,购买B种绳子y条.由题意得20128180x yx y+=+=⎧⎨⎩,,解得515.xy=⎩=⎧⎨,答:购买A种绳子5条,购买B种绳子15条.(2)由题意,设加工A种绳子m条,加工C种绳子n条.由题意12m+6n=240,则n=40-2m.则(200-8m-4n)÷6=263,即剩余的绳子长度最多可加工6条B种绳子.1.5.练习题5一 选择题 1.有一些苹果箱,若每只装苹果25 kg ,则剩余40 kg 无处装;若每只装30 kg ,则还有20个空箱,这些苹果箱有( )A .12只B .6只C .112只D .128只2.幸福中学七年级学生到礼堂开会,若每条长椅坐5人,则少10条长椅,若每条长椅坐6人,则又多余2条长椅.设学生有x 人,长椅有y 条,依题意得方程组 ( )A .5105662x y x y =+⨯⎧⎨=-⨯⎩B .51062x y x y =-⎧⎨=+⎩C .5105662x y x y =-⨯⎧⎨=+⨯⎩D .51062x y x y =+⎧⎨=-⎩3.十一旅游黄金周期间,某景点举办优惠活动,成人票和儿童票均有较大折扣,王明家去了3个大人和4个小孩,共花了400元,李娜家去了4个大人和2个小孩,共花了400元,王斌家计划去3个大人和2个小孩,请你帮助他算一下,需要准备多少门票钱?( )A .300元B .310元C .320元D .330元4.王力在一天内以每件80元的价格卖了两件上衣,其中一件赢利20%,一件赔了20%,则在这次买卖中他( )A .赔了10元B .赚了10元C .赔了约7元D .赚了约7元 5. 两个水池共储水40吨,如果甲池注进水4吨,乙池注进水8吨,甲池水的吨数就与乙池水的吨数相等.甲、乙水池原来各储水的吨数是 ( ) A .甲池21吨,乙池19吨 B .甲池22吨,乙池18吨 C. 甲池23吨,乙池17吨 D .甲池24吨,乙池16吨6.某校七年级(2)班40名同学为四川地震灾区捐款,共捐了100元,捐款情况如下表:表格中捐款2元和2元的有x 名同学,捐款3元的有y 名同学,根据题意,可列方程组( )A.272366x y x y +=⎧⎨+=⎩ B .2723100x y x y +=⎧⎨+=⎩ C.273266x y x y +=⎧⎨+=⎩ D.2732100x y x y +=⎧⎨+=⎩二 填空题7.端午节时,王老师用72元钱买了荷包和五彩绳共20个(条),其中荷包每个4元,五彩绳每条3元,设王老师购买荷包x 个,五彩绳y 条,根据题意,列出的方程组是________.8.根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是元和元.9.一张试卷有25道题,做对一道得4分,做错一道扣1分,小明做了全部试题共得70分,则他做对了______道题.10.已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,求甲、乙两数,若设甲、乙两数分别为x、y,可得方程组________,这两数分别为________.11.如图,3个纸杯整齐地叠放在一起,总高度约为9cm,8个纸杯整齐地叠放在一起,总高度约为14cm,则15个这样的纸杯整齐叠放在一起时,它的高度约是________ cm.12.“六一”儿童节,某动物园的成人门票每张8元,儿童门票半价(即每张4元),全天共售出门票3000张,共收入15600元,则这一天售出了成人票________张,儿童票___ _ 张.三解答题13.某厂第二车间人数比第一车间人数的45少30人,如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间人数的34,这两个车间各有多少人?14.已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?15. 2010年春季我国西南大旱,导致大量农田减产,如图所示是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的花生产量分别是多少千克?16.古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩乙:128x y x y⎧+=⎪⎨+=⎪⎩根据甲、乙两名同学所列的方程组,请你分别指出未知数x 、y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组:甲:x 表示_____ ___,y 表示_____ ___; 乙:x 表示_____ ___,y 表示_____ ___; (2)求A 、B 两工程队分别整治河道多少米.(写出完整的解答过程)第八章 二元一次方程练习题5 参考答案与解析一、选择题1. D2.A3.C4.C5.B6.A二、填空题7.204372x y x y +=+=⎧⎨⎩, 8.20 2 9.19 10.2304320x y x y -=-=⎧⎨⎩, 35和4011.21 12.900 2100三、解答题13.解:设第一车间有x 人,第二车间有y 人.由题意得()4305310104y x y x ⎧=-+=⎪⎪-⎪⎨⎪⎩,,解得250170.x y ==⎧⎨⎩,答:第一车间有250人,第二车间有170人.14.解:设A 服装的成本是x 元,B 服装的成本是y 元.由题意得50030%20%130x y x y +=+=⎧⎨⎩,,解得300200.x y ==⎧⎨⎩,答:A 服装的成本是300元,B 服装的成本是200元.15.解:设该农户去年两块农田的花生产量分别是x 千克,y 千克.由题意得47020%10%57x y x y +=+=⎧⎨⎩,,解得100370.x y ==⎧⎨⎩,则100×20%=20(千克),370×10%=37(千克).答:该农户今年两块农田的花生产量分别是20千克,37千克.16.解:(1)A 工程队整治河道的时间 B 工程队整治河道的时间 A 工程队整治河道的长度 B 工程队整治河道的长度 方框中分别填入:20 180 180 20(2)设A 、B 两工程队分别整治河道x 米、y 米.由题意得18020128x y x y +=+=⎧⎪⎨⎪⎩,,解得60120.x y ⎩==⎧⎨,答:A 、B 两工程队分别整治河道60米、120米.1.6.练习题6一 选择题1.在方程523x y z -+=中,若12x y =-=-,,则z 的值为( ) A .4B .3C .2D .12.解方程组 323,2411,751,x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=⎩若要使计算简便,消元的方法应选取( )A .先消去xB .先消去yC .先消去zD .以上说法都不对3.下列四组数值中,为方程组202132x y z x y z x y z ++=⎧⎪--=⎨⎪--=⎩的解是( )A .012x y z =⎧⎪=⎨⎪=-⎩B .101x y z =⎧⎪=⎨⎪=⎩C .010x y z =⎧⎪=-⎨⎪=⎩D .123x y z =⎧⎪=-⎨⎪=⎩4.若方程组4312(1)3x y kx k y +=⎧⎨+-=⎩的解x 和y 的值互为相反数,则k 的值等于( )A .0B .1C .2D .35.由方程组,可以得到x +y +z 的值等于( )A .8B .9C .10D .116.学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,则篮球的个数为( ) A .21个B .12个C .8个D .35个7.解方程组1151x y z y z x z x y +-=⎧⎪+-=⎨⎪+-=⎩,若要使运算简便,消元的方法应选取( )A .先消去xB .先消去yC .先消去zD .以上说法都对8.以311x y z =⎧⎪=⎨⎪=-⎩为解建立三元一次方程组,不正确的是( )A .3423x y z -+=B .113x y z -+=- C .2x y z +-=-D .251236x y z --=9.方程组64210x y x z x y z -=⎧⎪+=⎨⎪-+=⎩的解的个数为( )A .无数多个B .1C .2D .010.已知方程组25589x y z x y z -+=⎧⎨+-=⎩,则x y +的值为( )A .14B .2C .-14D .-211.三元一次方程组354x y y z z x +=⎧⎪+=⎨⎪+=⎩的解为( )A .023x y z =⎧⎪=⎨⎪=⎩B .123x y z =⎧⎪=⎨⎪=⎩C .103x y z =⎧⎪=⎨⎪=⎩D .311x y z =⎧⎪=⎨⎪=⎩12.已知方程组2334823x y z x y z x y z ⎧-+=⎪+-=⎨⎪+-=-⎩①②③,若消去z ,得二元一次方程组不正确的为( )A .531153x y x y +=⎧⎨-=⎩B .53115719x y x y +=⎧⎨+=⎩C .535719x y x y -=⎧⎨+=⎩D .535719x y x y +=⎧⎨+=⎩13.方程组 101x y x z y z +=-⎧⎪+=⎨⎪+=⎩的解是( )A .110x y z =-⎧⎪=⎨⎪=⎩B .101x y z =⎧⎪=⎨⎪=-⎩C .011x y z =⎧⎪=⎨⎪=-⎩D .101x y z =-⎧⎪=⎨⎪=⎩14.若2310x y z ++=,43215x y z ++=,则x y z ++的值为( ) A .5 B .4 C .3 D .215.若方程组431(1)3x y ax a y +=⎧⎨+-=⎩ 的解x 与y 相等,则a 的值等于( )A .4B .10C .11D .12 二 填空题16.如果三角形ABC 的三边长a 、b 、c 满足关系式()226018300a b b c +-+-+-=,则三角形ABC 的周长是 . 17.已知和互为相反数,则x+4y 的平方根是 .18.已知式子2ax bx c ++,当1x =-时,其值为4;当1x =时,其值为8;当2x =时,其值为25,则当3x =时,其值为__________.19.确保信息安全,信息需加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为___________. 三 解答题20.解下列方程组:(1)6,33,2312;x y z x y x y z ++=⎧⎪-=⎨⎪+-=⎩(2)25,24,2310.x y z x y z x y z +-=⎧⎪-+=⎨⎪+-=⎩21.已知2x y y z x-+-+-=,求x+y+z的值.82(41)383022.为迎接“第一届全国青年运动会”,学校组织了飞镖比赛游戏:每位选手朝特制的靶子上各投三次飞镖,在同一圆环内得分相同.如图所示,小明、小君、小红的成绩分别是29分、43分和33分,则小华的成绩是多少分?23.现有一种饮料,它有大、中、小3种包装,其中1个中瓶比2个小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,三种包装的饮料每瓶各多少元?第八章二元一次方程练习题6 参考答案与解析一、选择题1.A2.B3.D4.C5.A6.A7.D8.C9.A 10.B 11.B 12.D 13.D 14.A 15.C二、填空题16.72 17.±3 18.52 19.6,4,1,7三、解答题20.解:(1)2,3,1.xyz=⎧⎪=⎨⎪=⎩(2)2,3,3.xyz=⎧⎪=-⎨⎪=-⎩21.解:∵282(41)3830x y y z x-+-+-=,∴80,410,830,x yyz x-=⎧⎪-=⎨⎪-=⎩解得2,0.25,0.75.xyz=⎧⎪=⎨⎪=⎩则x+y+z=2+0.25+0.75=3.22.解:设小、中、大圆环的得分分别为x分、y分、z分.由题意得229,243,333,y zx zy+=⎧⎪+=⎨⎪=⎩解得18,11,7.xyz=⎧⎪=⎨⎪=⎩则x+y+z=18+11+7=36(分).答:小华的成绩是36分.23.解:设大、中、小3种包装的饮料每瓶各x元、y元、z元.由题意得20.2,0.4,9.6,y zx y zx y z-=-⎧⎪--=⎨⎪++=⎩解得5,3,1.6.xyz=⎧⎪=⎨⎪=⎩答:大、中、小3种包装的饮料每瓶各5元、3元、1.6元.。

七年级下数学计算题

七年级下数学计算题

七年级下数学计算题一、整式的运算类1. 计算:(2x + 3y)(3x - 2y)- 解析:- 根据多项式乘法法则,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加。

- 原式=2x×3x - 2x×2y+3y×3x - 3y×2y- = 6x^2-4xy + 9xy-6y^2- =6x^2+5xy - 6y^2。

2. 计算:(3a - 2b)^2- 解析:- 根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 3a,b = 2b。

- 原式=(3a)^2-2×3a×2b+(2b)^2- = 9a^2-12ab + 4b^2。

3. 化简:3x(2x^2-x + 1)-2x^2(3x - 2)- 解析:- 先分别进行单项式乘多项式运算。

- 原式=3x×2x^2-3x× x+3x×1-(2x^2×3x - 2x^2×2)- = 6x^3-3x^2+3x-(6x^3-4x^2)- 去括号得6x^3-3x^2+3x - 6x^3+4x^2- 合并同类项得x^2+3x。

4. 计算:(x + 2y)(x - 2y)(x^2+4y^2)- 解析:- 先利用平方差公式(a + b)(a - b)=a^2-b^2计算前两个括号。

- 原式=(x^2-4y^2)(x^2+4y^2)- 再利用平方差公式得x^4-16y^4。

5. 化简:(2m + n - 1)(2m - n - 1)- 解析:- 把式子变形为[(2m - 1)+n][(2m - 1)-n]- 利用平方差公式得(2m - 1)^2-n^2- 再根据完全平方公式展开(2m - 1)^2=4m^2-4m + 1- 所以原式=4m^2-4m + 1 - n^2。

二、一元一次方程类6. 解方程:3x+5 = 2x - 1- 解析:- 移项,将含x的项移到等号左边,常数项移到等号右边,得3x - 2x=-1 - 5。

人教版七年级下册数学各单元练习题含答案

人教版七年级下册数学各单元练习题含答案

123(第三题)ABCD 1234(第2题)12345678(第4题)ab c人教版七年级下册数学各单元练习题第一章《相交线与平行线》一、选择题(每小题3分,共 30 分)1、如图所示,∠1和∠2是对顶角的是( )ABC D121212122、如图AB ∥CD 可以得到( )A 、∠1=∠2B 、∠2=∠3C 、∠1=∠4D 、∠3=∠4 3、直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )A 、90°B 、120°C 、180°D 、140° 4、如图所示,直线a 、b 被直线c 所截,现给出下列四种条件: ①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判断 是a ∥b 的条件的序号是( ) A 、①② B 、①③ C 、①④ D 、③④5、某人在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来相 同,这两次拐弯的角度可能是( ) A 、第一次左拐30°,第二次右拐30° B 、第一次右拐50°,第二次左拐130° C 、第一次右拐50°,第二次右拐130° D 、第一次向左拐50°,第二次向左拐130°6、下列哪个图形是由左图平移得到的( )A B CDE (第10题)ABCD E F G H第13题ABCD(第7题)BD7、如图,在一个有4×4个小正方形组成的正方形网格中,阴影 部分面积与正方形ABCD 面积的比是( ) A 、3:4 B 、5:8 C 、9:16 D 、1:2 8、下列现象属于平移的是( )① 打气筒活塞的轮复运动,② 电梯的上下运动,③ 钟摆的摆动,④ 转动的门,⑤ 汽车在一条笔直的马路上行走A 、③B 、②③C 、①②④D 、①②⑤ 9、下列说法正确的是( ) A 、有且只有一条直线与已知直线平行 B 、垂直于同一条直线的两条直线互相垂直C 、从直线外一点到这条直线的垂线段,叫做这点到这 条直线的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档