全国大联考2020-2021届高三数学4月联考试题 理

合集下载

2023届河南省名校青桐鸣大联考高三4月联考理科综合试题及答案

2023届河南省名校青桐鸣大联考高三4月联考理科综合试题及答案

2023届普通高等学校招生全国统一考试青桐鸣大联考(高三)理科综合能力测试全卷满分300分,考试时间150分钟.泼3军事项l答卷前,考生务必将臼己的姓名、班级、考场号、座位号、考生号可i写在答题卡上.2.1!!1答应搭题时,选出每小题答案后p用铅笔J 巴答题卡上对应题目的答案标号涂黑.如i窃改动,用t 草皮擦干净后,再j在涂其他答案标号.回答非选择题目;J.将答案写在答题卡上.写在本试卷上无效.3考试结束后p将本试卷和l答题卡一并交l!!I .Ti-48Sc-45 Ca-40 。

一16C 一12nJ能用到的相对原子JiJ1:ffi::M 一l一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

l进行有性生殖的生物,其细胞增殖万式通i鼠’包括有丝分裂、无丝分裂和|减数分裂三种类型,下列说法正确的是A.人类成熟红细胞在有丝分裂前期会出现纺锤体日般的红细胞无丝分裂过程中存在DNA复制c.通常选用烛虫卵巢观察减数分裂过程的图像0.三种细胞增殖方式均具有细胞周期2如国表示某植物在不同光照强度下的C02吸收量和释放盘情况,其中B、C两点分别表示光补偿点和光饱和点,D ∞吸收蠢下列说法错误的是(A. A点对应的C02释放量可以表示植物在黑暗环境中细胞呼吸强度2∞释放量B.B点的含义是植物的光合作用与细胞呼吸强度相等时所对应的光照强度C点的含义是植物的光合作用强度不再随着光照强度的增加而增加的最小C .A光照强度0.若该植物生存环境中的C02浓度下降,Y!�B 点会右移,C点会在移,D点会右上移3.糖尿病是一种代谢性疾病,它的疲状之一是高血糖。

高血糖是由于膜岛索分;也缺陷或膜岛索生理作用受损,或两者兼有引起。

下列说法正确的是A.某人检测出高血糖,则其一定是糖尿病患者B .膜岛B细胞受损会导致膜岛A细胞增加c.腆岛索不能发挥其生理作用可能与某些细胞膜上缺少受你有关D.血糖升高后导致版岛B细胞分泌腆岛索,该过程仅存在体液调节4.己知脂肪组织分泌的瘦索和激活脂肪组织处的交感神经均可以促进脂肪组织的分解,为验证瘦素通过激活脂肪组织处的交感神经促进脂肪分解,科研人员用生长状况相似的小臼鼠进行了下列实验,实验中添加物质印表中字母处填写的添加物质错误的是继续添加物质乙后进行检测2,后进行检测1细别添加物质甲|检测l添加物质乙检)目1]2对目¥,组I生理盐水脂肪组织体积减少是生理盐水脂肪组织体积减少量对!!在1且2 A 脂肪组织体积减少量 B 脂肪组织体积减少量实验组 c 脂肪组织体积减少量。

2023届第五次(4月)基地学校大联考地理试卷含答案

2023届第五次(4月)基地学校大联考地理试卷含答案

2023届高三第五次基地学校大联考(4月)地理试卷注意事项:考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共6页,满分为100分,为试附间为75分钟。

考试结束后,请将答题卡交回。

2.答题前,请务必将自己的姓名、准为证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位凰。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答选择题,必须用2B铅笔将笞题卡上对应选项的方框涂满、涂黑:如需改动,请用橡皮擦干净后,再选涂其它答案。

作答非选择题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位凰作答,在其它位置作答一律无效。

5.如需作图,必须用2B铅笔绘、写消楚,线条、符号等须加黑、加粗。

一、选择题:共22题,每题2分,共44分。

每题只有一个选项最符合题意。

我国第五个南极科考站一罗斯海新站于2022年建成。

下图为“我国第39次南极科考队员在罗斯海新站(75°S,164°E)极昼期某日间隔2小时拍摄的太阳照片合成图”。

据此完成1~3题。

1.该图最可能拍摄于A.2月8日B.3月4日C.12月8日D.1月4日2.拍摄甲照片时,镜头朝向最可能是A.偏南B.偏东C.偏北D.偏西3.拍摄乙照片时的太阳高度约为A.10°B.20°C.30°D.40°右图为“某地地形地质示意图”。

读图完成4~5题。

4.图中山脉的成因是A.岩层软硬不一受差别侵蚀而成B.两断层间岩块上升形成地垒山C.背斜轴部的岩石上拱隆起成山D.向斜槽部岩石不易被侵蚀而成5.与甲一乙间地形地质剖面图相符的是A. B.C. D.喀什地处亚欧大陆中部,其降水受局部环流影响,降水量具有明显的昼夜变化。

下图为“喀什位置示意图”。

据此完成6~8题。

6.下列四幅降水量昼夜(北京时间)变化图中,与喀什相符的是A. B.C. D.7.引起喀什该时段降水量大的主要原因是A.上午谷风渐强,水汽易凝结B.下午谷风渐弱,水汽蒸发C.前半夜山风渐强,水汽蒸发D.后半夜山风强,水汽凝结8.喀什的这种降水有利于A.解决灌溉水源B.增加土壤水分C.植物养分积累D.缓解酷热气温2023年2月14日福特汽车公司宣布将与我国宁德时代浙能源科技公司合作,在美国“汽车之都”一底特律所在的密歌根州建设汽车电池工厂。

学科网2024届高三4月大联考(新课标卷)数学全解全析及评分标准

学科网2024届高三4月大联考(新课标卷)数学全解全析及评分标准

2024届高三4月大联考(新课标卷)数学·全解全析及评分标准阅卷注意事项:1.阅卷前请各学科教研组长,组织本学科改卷老师开会,强调改卷纪律,统一标准。

2.请老师改卷前务必先做一遍试题,了解自己所改试题的答案、评分细则、答题角度后,再开始改卷。

3.请老师认真批阅,不可出现漏改、错改现象,如果不小心漏改或错改了,可以返回上一题重评。

4.成绩发布后,如果有学校反馈错评乱评,平台定位阅卷老师,进行通报批评。

5.解答题要在学生的答案中找寻有用的文字说明、证明过程或演算步骤,合理即可给分。

6.解答题不要只看结果,结果正确,但中间的文字说明、证明过程或演算步骤无法建立有效衔接的,不能给满分;同样,结果错误,但正确写出相应的文字说明、证明过程或演算步骤应给分,因第(1)问中结果算错,使后面最终结果出错(过程列式正确),不宜重复扣分。

7.阅卷平台出现的相关问题,如果刷新页面重新登录未能解决,请将问题反馈给学校负责技术的老师(或考试负责人),由其统一在技术QQ 群里反馈问题并协助解决。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.B 【解析】由题意,知{0,1}A ,{1,0,1}B ,所以{0,1}A B .故选B .2.C 【解析】因为点(32,2)M p p 在抛物线C 上,所以2(32)2(2)p p p ,整理,得271640p p , 解得2p 或27p.故选C . 3.A 【解析】由||3||2 a b ,得2||||||23 a b a .由2()32 a a a b ,得222|||33| a a a b ,所以2|1|3a b a , 所以1cos ||||2a b a b .因为[0,π] ,所以 2π3.故选A . 4.C 【解析】因为数据1234,,,x x x x 的平均数为x ,方差为2s ,所以414i i x x ,4221()4i i x x s ,所以数据1234,,,,x x x x x 的平均数为45x xx ,方差为4221(()5ii xx x x245s .故选C. 5.A 【解析】因为781a a ,所以780a a ,所以695100a a a a . 因为10456789100S S a a a a a a ,所以104S S .故选A.6.D 【解析】易知函数()f x 的最大值为4.设()f x 的最小正周期为T ,依题意,得2224()254TMN ,解得12T ,所以2π12,解得π6,所以π()4cos()6f x x .又点9(,0)4N 在函数()f x 的图象上,所以9π9(4cos()0464f ,结合图象,知π9π642 ,解得π8 ,所以ππ()4cos()68f x x ,所以5π5ππ()4cos()4cos 246483f .故选D .7.A 【解析】由题意,知双曲线C 的渐近线方程为0bx ay . 设双曲线C 的半焦距为c ,则右焦点(,0)F c 到渐近线的距离||DF b.设点00(,)E x y ,则2200221x y a b,即22222200b x a y a b .又||||DE EG=222a b c,所以2222||||11||3DE EG a DF c e ,解得e .故选A. 8.B 【解析】由题意,知4为函数()y f x 的一个周期且函数()f x 的图象关于直线2x 对称. 当[0,2]x 时,由函数()y f x 的解析式,画出函数()f x 的大致图象如图所示. 当(0,1)x 时,函数()y f x 的图象与函数|lg |y x 的图象有且仅有一个交点;当[1,10]x 时,总有()1f x .而函数|lg |y x 在区间[1,10]上单调递增且|lg10|1 ,5(10)(2)12f f ,所以函数()y f x 的图象与函数|lg |y x 的图象在区间[1,10]上没有交点. 综上,函数()()|lg |F x f x x 在区间(0,10]上的零点个数为1.故选B .二、选择题:本题共3小题,每小题6分,共18分。

湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

湖南省长沙市2024届高三上学期月考(一)数学试题(解析版)

大联考2024届高三月考试卷(一)数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4M x x =<,{}|21N x x =≥,则M N ⋂=()A.{}08x x ≤< B.182xx ⎧⎫≤<⎨⎬⎩⎭C.{}216x x ≤< D.1162xx ⎧⎫≤<⎨⎬⎩⎭【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.【详解】{}{}2|log 4|016M x x x x =<=<<,1|2N x x ⎧⎫=≥⎨⎩⎭,则1162M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:D.2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为()A.3 B.2C.-2D.-3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d =⎧⎨+=⎩即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7,设等差数列的公差为d ,所以11+27516a d a d =⎧⎨+=⎩,解之得3d =.故选:A.3.已知1z ,2z 是关于x 的方程2220x x +=-的两个根.若11i z =+,则2z =()A.2B.1C.D.2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=-的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z +=,所以()21221i 1i z z =-=-+=-,所以21i z =-=法二:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z ⋅=,所以21221i z z ==+,所以2221i 1i z ====++.故选:C .4.函数sin exx x y =的图象大致为()A.B.C.D.【答案】D 【解析】【分析】分析函数sin exx x y =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项.【详解】令()sin exx x f x =,该函数的定义域为R ,()()()sin sin eexxx x x x f x f x ----===,所以,函数sin exx x y =为偶函数,排除AB 选项,当0πx <<时,sin 0x >,则sin 0exx x y =>,排除C 选项.故选:D.5.已知220x kx m +-<的解集为()(),11t t -<-,则k m +的值为()A.1B.2C.-1D.-2【答案】B 【解析】【分析】由题知=1x -为方程220x kx m +-=的一个根,由韦达定理即可得出答案.【详解】因为220x kx m +-<的解集为()(),11t t -<-,所以=1x -为方程220x kx m +-=的一个根,所以2k m +=.故选:B .6.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为()(cos10°≈0.985)A.45.25mB.50.76mC.56.74mD.58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R AB AC ==,100tan10RBC =-=- ,25250.760.985R R ==故选:B.7.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==-=-.【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .8.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE ,则CE BE ==,AE DE ===,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==1R =,即1OM OF ==,则413AO =-=,故1sin 3OM EAF AO ∠==设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题为真命题的是()A.若2sin 23α=,则21cos 46πα⎛⎫+= ⎪⎝⎭B.函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移6π个单位长度得到函数()2sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象C.函数()2sin cos cos 26f x x x x π⎛⎫=+- ⎪⎝⎭的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦D.()22tan 1tan xf x x =-的最小正周期为2π【答案】AC 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα⎛⎫+⎪⎝⎭,知A 正确;根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确;利用特殊值判断D 错误.【详解】对于A ,21cos 21sin 212cos 4226παπαα⎛⎫++ ⎪-⎛⎫⎝⎭+=== ⎪⎝⎭,A 正确;对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π⎛⎫-= ⎪⎝⎭,即()2sin 2g x x =,B 错误;对于C ,()13sin 2cos 2sin 222222226f x x x x x x x π⎛⎫=++=+=+ ⎪⎝⎭,则由222262k x k πππππ-+≤+≤+,Z k ∈得:36k x k ππππ-+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,C 正确;对于D ,()π002f f ⎛⎫= ⎪⎝⎭,无意义,∴2π不是函数的周期,D 错误.故选:AC.10.如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A -组成,12AB BC AC AA ====,则下列说法正确的是()A.若AD AC ⊥,则1AD A C⊥B.若平面11AC D 与平面ACD 的交线为l ,则AC //l C.三棱柱111ABC A B C -的外接球的表面积为143πD.当该几何体有外接球时,点D 到平面11ACC A 的最大距离为3-【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解.【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC ,但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11AC D ,平面11AC D ⋂平面ACD l =,所以//AC l ,所以B 正确;对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO 的中点为该三棱柱外接球的球心,所以外接球的半径3R ==,所以外接球的表面积为22843R ππ=,所以C 不正确;对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A 的距离为3,点D 到平面11ACC A 的最大距离为33R -=,所以D 正确.故选:BD11.同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是()A.a b =是函数()f x 为偶函数的充分不必要条件;B.0a b +=是函数()f x 为奇函数的充要条件;C.如果0ab <,那么()f x 为单调函数;D.如果0ab >,那么函数()f x 存在极值点.【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x --,故()()0e e x xa b b a --+-=,即()()2e =xa b a b --,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误;对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b -+-+++,因为e 0x >,e 0x ->,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb --',因为0ab <,若0,0a b ><,则()e e0=xxa xb f -->'恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f --<'恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==e x xxxa ba b f x ---',令()=0f x '得1=ln 2bx a,又0ab >,若0,0a b >>,当1,ln 2b x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值.若0,0a b <<,当1ln2b x a ⎛⎫∈-∞ ⎪⎝⎭,,()0f x ¢>,函数()f x 为单调递增.当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x '<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值.所以函数存在极值点,故D 正确.故答案为:BCD.12.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a -⋅-<,则下列选项正确的是()A.{}n a 为递减数列B.202220231S S +<C.2022T 是数列{}Tn 中的最大项D.40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为nT 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a -⋅-<可得:20221a -和20231a -异号,即202220231010a a ->⎧⎨-<⎩或202220231010a a -<⎧⎨->⎩.而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1.对于A :公比202320221a q a =<,因为11a >,所以11n n a a q -=为减函数,所以{}n a 为递减数列.故A 正确;对于B :因为20231a <,所以2023202320221a S S =-<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确;对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ⨯=()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.已知(2,),(3,1)a b λ=-=,若()a b b +⊥ ,则a = ______.【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=-= ,可得(1,1)a b λ+=+,又因为()a b b +⊥,可得()(1,1)(3,1)310b b a λλ=+⋅=++=⋅+ ,解得4λ=-,所以(2,4)a =--,所以a ==故答案为:14.已知函数51,2()24,2xx f x x x ⎧⎛⎫-≤⎪ ⎪=⎨⎝⎭⎪->⎩,则函数()()g x f x =-的零点个数为______.【答案】3【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =,可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点,故答案为:3.15.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【答案】4【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D -中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边长为2,所以其面积为26424S ⎛⎫=⨯= ⎪ ⎪⎝⎭.故答案为:4.16.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y '',则20n n n y y ='=∑______.(参考数据:取221.18.14=.)【答案】914【解析】【分析】根据题意可得1, 1.1n n n y n y '=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y '=+=,则()202011920011.111.12 1.120 1.1211.1n n n n n y y n =='=+=⨯+⨯++⨯+⨯∑∑L ,可得2012202101.111.12 1.120 1.1211.1nn n yy ='⨯=⨯+⨯++⨯+⨯∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =-'-⨯=+++-⨯=-⨯-∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1-+⨯⨯++====----,所以20914nn n yy ='=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.如图,在直三棱柱111ABC A B C -中,2CA CB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ;(2)求点A 到平面1B CM 的距离.【答案】(1)证明见解析(2)11【解析】【分析】(1)利用线面平行的判定定理证明;(2)利用等体积法求解.【小问1详解】连接1BC 交1B C 于点N ,连接MN ,则有N 为1BC 的中点,M 为AB 的中点,所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM ,所以1//AC 平面1B CM .【小问2详解】连接1AB ,因为2CA CB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ⋂=,所以CM ⊥平面11ABB A ,又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC是等腰直角三角形,112CM AB MB ====,所以1112222CMB S CM MB =⋅=△,1111222ACM ACB S S CA CB ==⨯⋅=△△,设点A 到平面1B CM 的距离为d ,因为11A B CM B ACM V V --=,所以111133B CM ACM S d S AA ⨯⨯=⨯⨯ ,所以1132211ACM B CM S AA d S ⨯== .18.记锐角ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin()sin()cos cos A B A C B C--=.(1)求证:B C =;(2)若sin 1a C =,求2211a b+的最大值.【答案】(1)见解析;(2)2516.【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12b a C R A b A R === ,然后等量代换出2211a b+,再运用降次公式化简,结合内角取值范围即可求解.【小问1详解】证明:由题知sin()sin()cos cos A B A C B C--=,所以sin()cos sin()cos A B C A C B -=-,所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B -=-,所以cos sin cos cos sin cos A B C A C B =因为A 为锐角,即cos 0A ≠,所以sin cos sin cos B C C B =,所以tan tan =B C ,所以B C =.【小问2详解】由(1)知:B C =,所以sin sin B C =,因为sin 1a C =,所以1sin C a=,因为由正弦定理得:2sin ,sin 2b a R A B R==,所以sin 2sin sin 12ba C R Ab A R===,所以1sin A b=,因为2A B C C ππ=--=-,所以1sin sin 2A C b==,所以222211sin sin 2a bC C +=+221cos 2(1cos 2)213cos 2cos 222CC C C -=+-=--+因为ABC 是锐角三角形,且B C =,所以42C ππ<<,所以22C ππ<<,所以1cos 20C -<<,当1cos 24C =-时,2211a b+取最大值为2516,所以2211a b+最大值为:2516.19.甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1-分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响.(1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望;(2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率.【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算.【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立,由题意得:()1111233P A ⎛⎫=⨯-= ⎪⎝⎭,()1111224P B ⎛⎫=⨯-= ⎪⎝⎭,甲的得分X 的可能取值为1,0,1-,()()()()11111346P X P AB P A P B ⎛⎫=-===-⨯= ⎪⎝⎭,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ⎛⎫⎛⎫==+=+=⨯+-⨯-=⎪ ⎪⎝⎭⎝⎭()()()()11111344P X P AB P A P B ⎛⎫====⨯-= ⎪⎝⎭,所以X 的分布列为:X 1-01p1671214()1711101612412E X =-⨯+⨯+⨯=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1-分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ⎛⎫== ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有2轮各得1分,1轮得1-分的概率为2233111C 4632P ⎛⎫=⨯= ⎪⎝⎭,甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P ⎛⎫=⨯⨯= ⎪⎝⎭,所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20.已知数列{}n a 中,10a =,()12n n a a n n N*+=+∈.(1)令11n n n b a a +=-+,求证:数列{}n b 是等比数列;(2)令3nn n a c =,当n c 取得最大值时,求n 的值.【答案】(1)证明见解析;(2)3n =.【解析】【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +-+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c --=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=,11n n n b a a +=-+ ,则12112b a a =-+=,则()()()111112211212n n n n n n n n b a a a n a n a a b ++--=-+=+-+-+=-+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b -=⨯=;(2)由(1)可知,2nn b =即121n n n a a +-=-,可得2123211212121n n n a a a a a a ---=-⎧⎪-=-⎪⎨⎪⎪-=-⎩,累加得()()()()1211212222112112n n n n a a n n n ----=+++--=--=--- ,21n n a n ∴=--.213n n n n c --∴=,()111112112233n n n n n n n c +++++-+---==,11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=,令()212nf n n =+-,则()11232n f n n ++=+-,所以,()()122nf n f n +-=-.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =-<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> .所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第n 1-项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第n 1-项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1b m k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n N *∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.21.已知双曲线2222:1(0,0)x y E a b a b-=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接PA ,PB 交双曲线E 于点C ,D (不同于A ,B ).(1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【答案】(1)221169x y -=(2)直线CD 过定点,定点坐标为(8,0).【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值.【小问1详解】法一.由222225,64271,a b ab ⎧+=⎪⎨-=⎪⎩解得2216,9a b ==,∴双曲线E 的标准方程为221169x y -=.法二.左右焦点为()()125,0,5,0F F -,125,28c a MF MF ∴==-=,22294,a b c a ∴===-,∴双曲线E 的标准方程为221169x y -=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+,联立221169x my t x y =+⎧⎪⎨-=⎪⎩消去x 得()()2222916189144=0,9160m y mty t m -++--≠,12218916mt y y m -∴+=-,21229144916t y y m -=-,122916y y m -=±-,AC 的方程为11(4)4y y x x =++,令2x =,得1164p y y x =+,BD 的方程为22(4)4y y x x =--,令2x =,得2224p y y x -=-,1221112212623124044y y x y y x y y x x -∴=⇔-++=+-()()21112231240my t y y my t y y ⇔+-+++=()()1212431240my y t y t y ⇔+-++=()()()()12121242480my y t y y t y y ⇔+-++--=()222249144(24)1824(8)9160916916916m t t mt t t m m m m ---⇔-±=---3(8)(0m t t ⇔-±-=(8)30t m ⎡⇔-=⎣,解得8t =3m =±,即8t =或4t =(舍去)或4t =-(舍去),∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+,联立22,1,169x my t x y =+⎧⎪⎨-=⎪⎩,消去x 得()2229161891440m y mty t -++-=,2121222189144,916916mt t y y y y m m --∴+==--,AC 的方程为(4)6n y x =+,BD 的方程为(4)2n y x =--,,C D 分别在AC 和BD 上,()()11224,462n n y x y x ∴=+=--,两式相除消去n 得()211211223462444x y y y x x x y ---=⇔+=+-,又22111169x y -=,()()211194416x x y ∴+-=.将()2112344x y x y --+=代入上式,得()()1212274416x x y y ---=⇔()()1212274416my t my t y y -+-+-=()()221212271627(4)27(4)0m y y t m y y t ⇔++-++-=⇔()22222914418271627(4)27(4)0916916t mt m t m t m m --++-+-=--.整理得212320t t +=-,解得8t =或4t =(舍去).∴CD 的方程为8x my =+,∴直线CD 过定点,定点坐标为(8,0).【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22.设函数()()2cos 102x f x x x =-+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i i i A g i n n ⎛⎫⎛⎫=∈ ⎪ ⎪⎝⎭⎝⎭N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =-,证明:1217 (6)n k k k n -+++>-.【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.(2)见解析【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥-≥,结合二倍角的正弦可证:2271162i i k +>-⨯,结合等比数列的求和公式可证题设中的不等式.【小问1详解】()sin f x x x '=-+,设()sin s x x x =-+,则()cos 10s x x '=-+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数,故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值.【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥-≥,证明:设()3sin ,06x u x x x x =-+≥,则()2cos 1()02x u x x f x '=-+=≥(不恒为零),故()u x 在[)0,∞+上为增函数,故()()00u x u ≥=即3sin (0)6x x x x ≥-≥恒成立.当*N i ∈时,11111111222sin sin 112222i i i i i i i i g g k ++++⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎝⎭⎝⎭==- ⎪⎝⎭-11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++⎛⎫⎛⎫=-=⨯- ⎪ ⎪⎝⎭⎝⎭由(1)可得()2cos 102x x x ≥->,故12311cos 1022i i ++≥->,故111112311112sin 2cos 12sin 2112222i i i i i i ++++++⎡⎤⎛⎫⎛⎫⨯-≥-- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦1112213322111112sin121222622i i i i i i i +++++++⎛⎫⎛⎫⎛⎫=⨯-≥-- ⎪ ⎪⎪⨯⎝⎭⎝⎭⎝⎭2222224422117111711111622626262i i i i i +++++⎛⎫⎛⎫=--=-⨯+⨯>-⨯ ⎪⎪⨯⎝⎭⎝⎭,故1214627111...16222n n k k k n -⎛⎫+++>--+++ ⎪⎝⎭ 41111771112411166123414n n n n -⎛⎫- ⎪⎛⎫⎝⎭=--⨯=--⨯ ⎪⎝⎭-771797172184726n n n n =--+⨯>->-.。

浙江省诸暨中学稽阳联谊学校高三下学期4月联考试题地理

浙江省诸暨中学稽阳联谊学校高三下学期4月联考试题地理

2022年4月稽阳联谊学校高三联考地理选考试题卷本试题卷分选择题和非选择题两部分,共8页,满分100分,考试时间90分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

选择题部分一、选择题Ⅰ(本大题共20小题,每小题2分,共40分。

每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)2021年8月26日,自然资源部公布的第三次全国国土调查主要数据显示:10年间林地、草地、湿地等地类合计增加了2.6亿亩。

完成1、2题。

1.监测国土利用情况和土地变化状况等,采用的地理信息技术主要是()A.GIS B.RS C.BDS D.GPS2.下列属于湿地的有()①红树林②内陆滩涂③麦田④森林沼泽A.①②③B.①②④C.②③④D.①③④服从国家奥运战略和北京城市的定位要求,首钢搬迁至曹妃甸,并对高炉等工业遗存进行改造,转型成为体育主题公园。

下图为2022年北京冬奥会滑雪大跳台和冷却塔照片。

完成3、4题。

3.首钢搬迁主要是因为北京需要()①增加用地面积②提高环境质量③优化产业结构④缓解能源不足A.①②B.①③C.②③D.②④4.冷却塔最适合改造成()A.跳水台B.攀岩馆C.冰壶馆D.冰球馆新中国成立之后出现过三次人口生育高峰:新中国成立之初到198年的“第一婴儿潮”、1963年到20世纪70年代初的“第二婴儿潮”。

以及80年代中后期的“第三婴儿潮”。

下图示意“50后”至“10后”人口数量变化图。

完成5、6题。

5.“80后”人口多于“70后”的主要原因是()A.人口出生率高B.育龄妇女数量增加C.人口政策调整D.医疗卫生条件改善6.针对我国出生人口变化趋势可采取的合理措施有()①加快产业升级②加快城市化进程③优化生育政策④鼓励晚婚晚育A.①③B.①④C.②③D.③④受太平洋和北冰洋海平面高度差影响,白令海峡入流水呈北向输送,但入流量存在明显的季节差异。

2021年全国高中数学联赛十八校第一次联考试题(含答案)

2021年全国高中数学联赛十八校第一次联考试题(含答案)

18校2021高中数学联赛模拟安徽师大附中,巴蜀中学,哈师大附中,海亮中学,邯郸一中,衡水一中,湖南师大附中,临沂一中,绵阳外国语学校,南京师大附中,南开中学,山东省实验中学,唐山一中,天津市实验中学,天一中学,天元公学·杭二中未来科技城学校,襄阳四中,郑州外国语学校(音序排名不分先后联合制作)一试一、填空题(本题共8小题,每题8分,共64分)1f(n)表示整数n的个位数,a n=f(n2)−f(n)+1,则数列{a n}的前2020项的和S2020=.2将棱长为1的正方体顶点红蓝二染色,使得同一条棱上两个顶点的颜色不同,那么红色四面体与蓝色四面体的公共部分体积为.3数列a0,a1,···,满足:a0=√3,a n+1=[a n]+1{a n},其中[a n]与{a n}分别表示a n的整数部分和小数部分,则a2020=.4直线m斜率存在且与椭圆x29+y25=1交于A,B两点,与双曲线y220−x216=1交于C,D两点,若A,B为C,D的三等分点,则m的方程为y=.5记(3+2√2)2020的小数部分是A,则(3+2√2)2020(1−A)=.6设u,v,w为复数,其中w=a+bi(a,b≥3,a2+b2=25),u−w=3v,若|v|=1,则当u的辐角主值最大时,uw=.7函数y=tan(2019x)−tan(2020x)+tan(2021x)在[0,π]中零点的个数为.8x,y,z是不同的正整数,若{x+y,y+z,z+x}={n2,(n+1)2,(n+2)2},则x2+y2+z2的最小值为(用数字作答).二、解答题(第9题16分,第10,11题各20分,共56分)9已知P,Q(非原点)是抛物线y=x2上不同的两点,点P处的切线与y轴交于R,若−−→P Q⊥−→P R,求△P QR面积的最小值.10方程x2n+(ax+b)2n=0(a,b∈R,ab=0)有2n个复根,r i,r i(i=1,2,···,n),证明:n ∑i=11r i r i=n(a2+1)b2.11设S是所有大于-1的实数集合,确定所有的函数f:S→S,使得满足下面两个条件:(1)对于S内所有的x和y,有f(x+f(y)+xf(y))=y+f(x)+yf(x);(2)在区间(−1,0)和(0,+∞)的每一个内,f(x)x是严格递增的.一试参考答案一、填空题1f (n )表示整数n 的个位数,a n =f (n 2)−f (n )+1,则数列{a n }的前2020项的和S 2020=.[参考答案]2020[解析]￿b n =a n −1,b n 的前n 项和为T n ,而T 10=0,故S 2020=T 2020+2020=T 10+2020=2020.2将棱长为1的正方体顶点红蓝二染色,使得同一条棱上两个顶点的颜色不同,那么红色四面体与蓝色四面体的公共部分体积为.[参考答案]16[解析]各个面心连线组成的八面体体积即为所求;3数列a 0,a 1,···,满足:a 0=√3,a n +1=[a n ]+1{a n },其中[a n ]与{a n }分别表示a n 的整数部分和小数部分,则a 2020=.[参考答案]3030+√3[解析]a 0=1+(√3−1),a 1=1+1√3−1=1+√3+12=2+√3−12,a 2=2+2√3−1=2+√3+1=4+(√3−1),以此类推a 3=5+√3−12,a 4=7+(√3−1),···归纳得a 2k =3k +√3,a 2k +1=3k +2+√3−12故a 2020=3030+√3.x4直线m 斜率存在且与椭圆x 29+y 25=1交于A ,B 两点,与双曲线y 220−x 216=1交于C ,D 两点,若A ,B 为C ,D 的三等分点,则m 的方程为y =.[参考答案]±√976x [分析]设m 方程为y =kx +b ,带入椭圆方程得(5+9k 2)x 2+18kbx +9b 2−45=0(∗)故|AB |=√1+k 2|x 1−x 2|,x 1+x 2=−18kb5+9k 2.带入双曲线得(4k 2−5)x 2+8kbx +4b 2−80=0(∗∗)故|CD |=√1+k 2|x 3−x 4|,x 3+x 4=−8kb4k 2−5.结合A ,B 为CD 的三等分点,故x 1+x 22=x 3+x 42,故8kb 4k 2−5=18kb5+9k 2得kb =0,若b =0,带入方程化简得|AB |=√1+k 2·2·…455+9k 2|CD |=√1+k 2·2·…804k 2−5,再利用|CD |=3·|AB |,得k =±√976.若k =0,容易根据b 2的范围得出矛盾,说明这样的m 不存在,故综上,m 的方程为y =±√976x5记(3+2√2)2020的小数部分是A ,则(3+2√2)2020(1−A )=.[参考答案]1[分析]设(3+2√2)2020=A +B ,B 为整数,结合(3+2√2)2020(3−2√2)2020=1,得(3−2√2)2020=1A +B再结合(3+2√2)2020+(3−2√2)2020二项展开为整数,得A +B +1A +B为整数,0≤A <1,0<1A +B <1,故A +1A +B=1,故(A +B )(1−A )=(A +B )1A +B=1.6设u ,v ,w 为复数,其中w =a +bi (a,b ≥3,a 2+b 2=25),u −w =3v ,若|v |=1,则当u 的辐角主值最大时,uw=.[参考答案]1625+1225i [解析]由条件得u =w +3v ,故U 在以W 为圆心,3为半径的圆上,结合W 的运动区间,在w =3+4i ,u =4i 时,满足u 的辐角主值最大,故u w =uw ww =4i ·(3−4i )25=1625+1225i .7函数y =tan (2019x )−tan (2020x )+tan (2021x )在[0,π]中零点的个数为.[参考答案]2021[解析]y =tan (2019x )−tan (2020x )+tan (2021x )=sin 2019x cos 2019x +sin 2021x cos 2021x −sin 2020x cos 2020x =sin 4040x cos 2019x cos 2021x −sin 2020x cos 2020x =sin 2020x (2cos 22020x −cos 2019x cos 2021x )cos 2019x cos 2020x cos 2021x注意到2cos 22020x −cos 2019x cos 2021x =cos 4040x +1−cos 2019x cos 2021x =−sin 2019x sin 2021x +1>0故sin 2020x 在[0,π]上的零点数即为原函数在[0,π]上的零点数.8x ,y ,z 是不同的正整数,若{x +y,y +z,z +x }={n 2,(n +1)2,(n +2)2},则x 2+y 2+z 2的最小值为(用数字作答).[参考答案]1297[解析]不妨设x >y >z ,由于∑(x +y )=2(x +y +z )为偶数,故n 为奇数;若n =3,则{n 2,(n +1)2,(n +2)2}={32,42,52},故x +y +z =25,而x +y =52=25,得z =0,矛盾;若n =5,则{n 2,(n +1)2,(n +2)2}={52,62,72},故x +y =49,x +z =36,y +z =25,故x =30,y =19,z =6,此时x 2+y 2+z 2=1297.二、解答题(第9题16分,第10,11题各20分,共56分)9已知P ,Q (非原点)是抛物线y =x 2上不同的两点,点P 处的切线与y 轴交于R,若−−→P Q ⊥−→P R ,求△P QR 面积的最小值.[解析]设P (x 1,x 21),Q (x 2,x 22)则P 处的切线为2x 1x =x 21+y ,令x =0,得R (0,−x 21),则−−→P Q ⊥−→P R 得(x 1−x 2,x 21−x 22)(x 1,2x 21)=0,x 1(x 1−x 2)+2x 21(x 21−x 22)=0,结合x 1=x 2得x 2=−x 1−12x 1.故|−−→P Q |=|x 1−x 2| 1+14x 21=1+4x 212|x 1|1+14x 21|−→P R |=√x 21+4x 41=|x 1|√1+4x 21所以S =12·(1+4x 21)24x 1=2x 31+x 1+18x 1,令f (x )=2x 3+x +18x (x >0),则f ′(x )=6x 2+1−18x2令f ′(x )=0,得48x 4+8x 2−1=0,得x 2=112.故在x =√36时,S m in =4√39.10方程x 2n +(ax +b )2n =0(a,b ∈R,ab =0)有2n 个复根,r i ,r i (i =1,2,···,n ),证明:n ∑i =11r i r i =n (a 2+1)b 2.[解析]由x 2n +(ax +B )2n =0得(xax +b)2n =−1.记y 2n =−1的2n 个根为ωi ,ωi (i =1,2,···,n ),则xax +b=ωi 或ωi (i =1,2,···,n ),因为均为一次方程,故每个方程只有一根,因此不妨设r i ar i +b =ωi ,得r i =bωi1−aωi ,r i =bωi 1−aωi于是1r i r i =1+a 2−a (ωi +ωi )b 2=a 2+1b 2⇒n ∑i =11r i r i =n (a 2+1)b 211设S 是所有大于-1的实数集合,确定所有的函数f :S →S ,使得满足下面两个条件:(1)对于S 内所有的x 和y ,有f (x +f (y )+xf (y ))=y +f (x )+yf (x );(2)在区间(−1,0)和(0,+∞)的每一个内,f (x )x是严格递增的.[解析]令x =y 得,f (x +f (x )+xf (x ))=x +f (x )+xf (x ),故x +f (x )+xf (x )为函数的一个不动点,令A =x +f (x )+xf (x ),则f (A )=A ,f (A +f (A )+Af (A ))=A +f (A )+Af (A ),故A 2+2A 也是f 的一个不动点,若A ∈(−1,0),则A 2+2A =(A +1)2−1∈(−1,0),且A 2+2A =A .从而,(−1,0)中有两个不动点,但是这与f (x )x在(−1,0)内严格递增矛盾,同样的,若A ∈(0,+∞),可得到同样的矛盾,故A =0,即x +f (x )+xf (x )=0,即f (x )=−x1+x.下面验证f (x )=−x1+x符合题意,显然,f (x )x =−11+x在S 中严格递增,对任意的x,y ∈S ,有f (x +f (y )+xf (y ))=f(x −y 1+y −xy 1+y)=f(x −y 1+y)=y −x1+x.y +f (x )+yf (x )=y −x 1+x −xy 1+x =y −x1+x .故条件(1)也成立,因此所求函数为f (x )=−x1+x.二试一、(40分)△ABC 内心为I ,˘ABC的弧中点为T ,∠AIT =90◦,求证:AB +AC =3BC .二、(40分)令a 1,a 2,...,a n 为非负实数且f :[0,∞)→(0,∞)满足f (a 1)f (a 2)...f (a n )≥λ>0,证明:f (a 1)−1f (a 1)+f (a 2)−1f (a 1)f (a 2)+...+f (a n )−1f (a 1)f (a 2)...f (a n )≥λ−1λ三、(50分)k 是给定的自然数且k ≥7,求一共有多少组不同的(x,y )使得0≤x,y <2k 且7373x≡99y(mod 2k )成立?四、(50分)一定数量的机器人被放置在一个有限的矩形方格表中,每一个方格都可以容纳任意数量的机器人,方格表中的每一条边要么是红边,要么是绿边,红边不允许机器人通过,而绿边可以.矩形方格表的边界上的边均为红边.你可以对所有机器人下达上,下,左,右四个命令.所有的机器人收到命令时一起向命令中的方向移动,如果该方向的边是绿边,则机器人按照指令到达下一个方格,如果机器人在该方向的边是红边,则留在原方格不动.所有机器人移动后你可以继续下达指令;假设对任意一个独立的机器人,对任意一个矩形方格来说,都存在一种指令使得该机器人到达那个方格,证明:你可以通过有限次指令,使得所有的机器人到达同一个方格.二试参考答案一、(40分)△ABC 内心为I ,˘ABC的弧中点为T ,∠AIT =90◦,求证:AB +AC =3BC .[解析]I 在AC 上的投影为Y ,延长T I 与外接圆交于X ,T 的对径点为D ,欲证原命题成立,只需证明半周长为2BC ,也就是证明AY =BCAY =AI cos A 2,BC =2R sin A =2DT sin A 2cosA2故只需证AI =2DT sin A2,即AI =2DX注意到IX ⊥AI ,DX ⊥IX ,DI =DA 故原命题成立!二、(40分)令a 1,a 2,...,a n 为非负实数且f :[0,∞)→(0,∞)满足f (a 1)f (a 2)...f (a n )≥λ>0,证明:f (a 1)−1f (a 1)+f (a 2)−1f (a 1)f (a 2)+...+f (a n )−1f (a 1)f (a 2)...f (a n )≥λ−1λ[解析]f (a 1)−1f (a 1)+f (a 2)−1f (a 1)f (a 2)+...+f (a n )−1f (a 1)f (a 2)...f (a n )=n∑k =1f (a k )−1f (a 1)f (a 2)...f (a k )=1−1f (a 1)+n∑k =2(1f (a 1)f (a 2)...f (a k −1)−1f (a 1)f (a 2)...f (a k ))=1−1f (a 1)+1f (a 1)−1f (a 1)f (a 2)...f (a n )=1−1f (a 1)f (a 2)...f (a n )≥1−1λ=λ−1λ三、(50分)k 是给定的自然数且k ≥7,求一共有多少组不同的(x,y )使得0≤x,y <2k 且7373x≡99y(mod 2k )成立?[解析]引理1.对任意非负整数a 有7373a≡73≡9≡99a(mod 26).引理1的证明.因为73=9+26且v 2(7373a −73)=v 2(73−1)+v 2(73a −1)=6+v 2(a )≥6.余数相同故证毕.□.引理2.每一对(x,y ),0≤x,y <2k ,有7373x≡7373y(mod 2k )成立当且仅当2k −6|x −y .引理2的证明.不妨设x =y 且7373x ≡7373y (mod 2k ).由升幂定理有,v 2(7373x −7373y )=v 2(73−1)+v 2(73x −y −1)=6+v 2(x −y ).□.回到原题,令S ={7373x:0≤x <2k }则|S |=2k .根据引理2,我们可以找到互不相交的子集组S 1,...,S 26使得26∪i =1S i =S 并且对任意的a,b ∈S i 有a ≡b (mod 2k )且a ≡b (mod 26).我们有|S i |=2k −6.再根据引理1,S i 中的每个元素模26与9为底的相同,事实上,模2k 的完全剩余系中,恰有2k −6个元素在模26下与9为底的相同.因此对每个i =1,...,26,S i 包含了所有在模26下与9为底余数相同的数.对每个y 满足0≤y <2k ,和任意的i =1,...,26都恰有一个x ,0≤x <2k ,使得7373x≡99y(mod 2k ).因此方程7373x≡99y(mod 2k )的解的个数为2k ×26=2k +6组.四、(50分)一定数量的机器人被放置在一个有限的矩形方格表中,每一个方格都可以容纳任意数量的机器人,方格表中的每一条边要么是红边,要么是绿边,红边不允许机器人通过,而绿边可以.矩形方格表的边界上的边均为红边.你可以对所有机器人下达上,下,左,右四个命令.所有的机器人收到命令时一起向命令中的方向移动,如果该方向的边是绿边,则机器人按照指令到达下一个方格,如果机器人在该方向的边是红边,则留在原方格不动.所有机器人移动后你可以继续下达指令;假设对任意一个独立的机器人,对任意一个矩形方格来说,都存在一种指令使得该机器人到达那个方格,证明:你可以通过有限次指令,使得所有的机器人到达同一个方格.[解析]我们先解决两个机器人的问题:设方格表上x,y两个点之间最短的路径距离为d(x,y),则表格上的路径满足三角形三边不等式,即d(a,c)≤d(a,b)+d(b,c).我们观察在方格表中位于s与s′位置的机器人A和B,我们下达指令让A移动到s′,会出现如下两种情况:(1)整个移动过程中B未经过红边,则重复该操作,因为表格有限,最终B遇到边界红边,划归成情况(2);(2)移动第k步时,B遇到了红边,留在了原地,记此时A与B的位置分别为t与t′,那么我们就得到了d(t,s′)=d(s,s′)−k,d(s′,t′)≤k−1,故d(t,t′)≤d(t,s′)+d(s′,t′)≤d(s,s′)−k+(k−1)<d(s,s′).经过一次这样的操作以后,A与B的最短距离是变小的,则持续进行下去,经过有限次这样的操作后,最终A与B的最短距离变为0,即A与B在同一格子中.对一般的情况就变得显而易见了,先选择两个机器人用上述的方法移动到同一个格子中,之后将两个机器人视作同一个即可,有限次操作以后,所有机器人将移动到同一个格子中.证毕!。

2021届全国天一大联考新高考模拟试卷(一)数学(理科)

2021届全国天一大联考新高考模拟试卷(一)数学(理科)

2021届全国天一大联考新高考模拟试卷(一)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|1,|31x A x x B x ==<,则()RAB =( )A. {|0}x x <B. {|01}x xC. {|10}x x -<D. {|1}x x -【答案】D 【解析】 【分析】先求出集合A ,B ,再求集合B 的补集,然后求()RAB【详解】{|11},{|0}A x x B x x =-=<,所以 (){|1}RA B x x =-.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.2.若复数z 与其共轭复数z 满足213z z i -=+,则||z =( )A.B.C. 2D.【答案】A 【解析】 【分析】设z a bi =+,则2313z z a bi i -=-+=+,得到答案.【详解】设z a bi =+,则222313z z a bi a bi a bi i -=+-+=-+=+,故1a =-,1b =,1z i =-+,z =.故选:A .【点睛】本题考查了复数的计算,意在考查学生的计算能力. 3.抛物线214y x =的准线方程是( ) A. 1x =- B. 2x =- C. 1y =- D. 2y =-【答案】C 【解析】试题分析:由题意得,抛物线可化为24x y =,则2p =,所以准线方程为1y =-,故选C .考点:抛物线的几何性质.4.若向量(1,2)a x =+与(1,1)b =-平行,则|2+|=a b ( )A.B.2C. D.【答案】C 【解析】 【分析】根据向量平行得到3x =-,故()|2+|=3,3a b -,计算得到答案.【详解】向量(1,2)a x =+与(1,1)b =-平行,则()12x -+=,故3x =-,()()()|2+|=4,41,13,3a b -+-=-=故选:C .【点睛】本题考查了根据向量平行求参数,向量的模,意在考查学生的计算能力.5.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,则下列命题中,错误的是( ) A. 若,m n m α⊥⊥,则//n α B. 若//,//,m n m n αα⊄,则//n α C. 若,,m n m n αβ⊥⊥⊥,则αβ⊥ D. 若//,//m ααβ,则//m β或m β⊂【答案】A 【解析】 【分析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于A :若,m n m α⊥⊥,则//n α或n ⊂α,故A 错误;BCD 正确. 故选:A .【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力. 6.已知函数()y f x =的部分图象如图,则()f x 的解析式可能是( )A. ()tan f x x x =+B. ()sin 2f x x x =+ C. 1()sin 22f x x x =- D. 1()cos 2f x x x =-【答案】C 【解析】 【分析】首先通过函数的定义域排除选项A ,再通过函数的奇偶性排除选项D,再通过函数的单调性排除选出B ,确定答案.【详解】由图象可知,函数的定义域为R ,而函数()tan f x x x =+的定义域不是R,所以选项A 不符合题意; 由图象可知函数是一个奇函数,选项D 中,存在实数x , 使得1()cos ()2f x x x f x -=--≠-,所以函数不是奇函数,所以选项D 不符合题意;由图象可知函数是增函数,选项B ,()12cos 2[1,3]f x x =∈-'+,所以函数是一个非单调函数,所以选项C 不符合题意;由图象可知函数是增函数,选项C ,()1cos 20f x x =-≥,所以函数是增函数,所以选项C 符合题意. 故选:C【点睛】本题主要考查函数的图象和性质,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平.7.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加、、A B C 三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共有( ) A. 24 B. 36 C. 48 D. 64【答案】B 【解析】 【分析】根据题意,有两种分配方案,一是3:1:1,二是2:2:1,然后各自全排列,再求和.【详解】当按照3:1:1进行分配时,则有133318C A =种不同的方案;当按照2:2:1进行分配,则有233318C A =种不同的方案. 故共有36种不同的派遣方案, 故选:B.【点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.8.已知函数41()2x xf x -=,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( ) A. c b a << B. b a c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】首先判断函数的奇偶性与单调性,再根据指数函数、对数函数的性质得到0.321>,0.300.21<<,0.3log 20<,即可得解;【详解】解:因为41()222x x xxf x --==-,定义域为R ,()()22x x f x f x --=-=-故函数是奇函数,又2x y =在定义域上单调递增,2x y -=在定义域上单调递减,所以()22x x f x -=-在定义域上单调递增,由0.321>,0.300.21<<,0.3log 20< 所以()()()0.30.30.320.2log 2f f f >>即a b c >> 故选:A【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.9.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(..M R Pogson )又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()1221 2.5lg lg m m E E -=-.其中星等为i m 的星的亮度为()1,2i E i =.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的r 倍,则与r 最接近的是(当x 较小时, 2101 2.3 2.7x x x ≈++) A. 1.24 B. 1.25C. 1.26D. 1.27【答案】C 【解析】 【分析】根据题意,代值计算,即可得r ,再结合参考公式,即可估算出结果. 【详解】根据题意可得:()211 1.25 2.5lgE lgE -=-可得12110E lgE =,解得1110210E r E ==, 根据参考公式可得111 2.3 2.7 1.25710100r ≈+⨯+⨯=, 故与r 最接近的是1.26. 故选:C.【点睛】本题考查对数运算,以及数据的估算,属基础题.10.已知数列{}n a 的通项公式是6n n a f π⎛⎫=⎪⎝⎭,其中()sin()0||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭, 的部分图像如图所示,n S 为数列{}n a 的前n 项和,则2020S 的值为( )A. 1-B. 0C.12D. 3 【答案】D 【解析】 【分析】根据图像得到()sin(2)3f x x π=+,sin 33n n a ππ⎛⎫=+ ⎪⎝⎭,6n n a a +=,计算每个周期和为0,故20201234S a a a a =+++,计算得到答案.【详解】741234T πππ=-=,故T π=,故2ω=,()sin(2)f x x ϕ=+,2sin()033f ππϕ⎛⎫=+= ⎪⎝⎭, 故2,3k k Z ϕππ+=∈,故2,3k k Z πϕπ=-∈,当1k =时满足条件,故3πϕ=, ()sin(2)3f x x π=+,sin 633n n n a f πππ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭,()66sin 33n n a n a ππ++⎛⎫= ⎪⎝⎭=+, 13a =,20a =,332a =-,432a =-,50a =,632a =,每个周期和为0, 故202012343S a a a a =+++=. 故选:D .【点睛】本题考查了数列和三角函数的综合应用,意在考查学生计算能力和综合应用能力.11.已知双曲线22221(0,0)x y a b a b -=>>的右焦点为F ,过F 作直线b y x a=-的垂线,垂足为M ,且交双曲线的左支于N 点,若2FN FM =,则双曲线的离心率为( ) A. 3B.5 C. 2 D.3【答案】B 【解析】 【分析】计算得到2,a ab M c c ⎛⎫- ⎪⎝⎭,根据2FN FM =得到222,a ab N c c c ⎛⎫-- ⎪⎝⎭,代入双曲线方程解得答案.【详解】易知直线NF :()a y x c b =-,联立方程()b y x aa y x cb ⎧=-⎪⎪⎨⎪=-⎪⎩,解得2,a ab M c c ⎛⎫-⎪⎝⎭. 2FN FM =,故222,a ab N c c c ⎛⎫-- ⎪⎝⎭,故2222222241a c c a b a c b⎛⎫- ⎪⎝⎭-=, 化简整理得到:22241e e e ⎛⎫--= ⎪⎝⎭,解得e =故选:B .【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和综合应用能力.12.已知函数2(1)1,2()1(2),22x x f x f x x ⎧--+<⎪=⎨-≥⎪⎩,若函数()()F x f x mx =-有4个零点,则实数m 的取值范围是( )A. 5126⎛⎫⎪⎝⎭B. 52⎛-⎝C. 1,320⎛-⎝ D. 11,206⎛⎫⎪⎝⎭ 【答案】B 【解析】 【分析】根据函数零点定义可知()f x mx =有四个不同交点,画出函数图像可先求得斜率的大致范围.根据函数在24x ≤<和46x ≤<的解析式,可求得y mx =与两段函数相切时的斜率,即可求得m 的取值范围. 【详解】函数2(1)1,2()1(2),22x x f x f x x ⎧--+<⎪=⎨-≥⎪⎩,函数()()F x f x mx =-有4个零点,即()f x mx =有四个不同交点. 画出函数()f x 图像如下图所示:由图可知,当24x ≤<时,设对应二次函数顶点为A ,则13,2A ⎛⎫⎪⎝⎭,11236OAk ==, 当46x ≤<时,设对应二次函数的顶点为B ,则15,4B ⎛⎫⎪⎝⎭,114520OBk ==. 所以11206m <<. 当直线y mx =与24x ≤<时的函数图像相切时与函数()f x 图像有三个交点,此时()211322y mxy x =⎧⎪⎨=--+⎪⎩,化简可得()22680x m x +-+=.()226480m ∆=--⨯=,解得322,m =- 322m =+; 当直线y mx =与46x ≤<时的函数图像相切时与函数()f x 图像有五个交点,此时()211544y mxy x =⎧⎪⎨=--+⎪⎩,化简可得()2410240x m x +-+=.()24104240m ∆=--⨯=,解得56,2m =562m =;故当()f x mx =有四个不同交点时56,3222m ⎛∈- ⎝. 故选:B.【点睛】本题考查了分段函数解析式的求法,函数零点与函数交点的关系,直线与二次函数相切时的切线斜率求法,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.13.我校高一、高二、高三共有学生1800名,为了了解同学们对“智慧课堂”的意见,计划采用分层抽样的方法,从这1800名学生中抽取一个容量为36的样本.若从高一、高二、高三抽取的人数恰好是从小到大排列的连续偶数,则我校高三年级的学生人数为_____. 【答案】700 【解析】 【分析】设从高三年级抽取的学生人数为2x 人,由题意利用分层抽样的定义和方法,求出x 的值,可得高三年级的学生人数.【详解】设从高三年级抽取的学生人数为2x 人,则从高二、高一年级抽取的人数分别为2x ﹣2,2x ﹣4. 由题意可得()()2222436x x x +-+-=,∴7x =. 设我校高三年级的学生人数为N ,再根据36271800N⨯=,求得N =700 故答案为:700.【点睛】本题主要考查分层抽样,属于基础题.14.已知实数,x y 满足24020x y y x y --≤⎧⎪≤⎨⎪+≥⎩,则3z x y =-的最大值为_______.【答案】22 【解析】 【分析】3y x z =-,作出可行域,利用直线的截距与b 的关系即可解决.【详解】作出不等式组表示的平面区域如下图中阴影部分所示,由3z x y =-可得3y x z =-,观察可知,当直线3y x z =-过点B 时,z 取得最大值,由2402x y y --=⎧⎨=⎩,解得82x y =⎧⎨=⎩,即(8,2)B ,所以max 38222z =⨯-=.故答案为:22.【点睛】本题考查线性规划中线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.15.等差数列{}n a 的前n 项和为n S ,34310a S ==,,则11nk kS==∑_____.【答案】21nn + 【解析】 【分析】 计算得到()12n n n S +=,再利用裂项相消法计算得到答案. 【详解】3123a a d =+=,414610S a d =+=,故11a d ==,故()12n n n S +=, ()1111211122211111nn nk k k k n S k k k k n n ===⎛⎫⎛⎫==-=-= ⎪ ⎪++++⎝⎭⎝⎭∑∑∑. 故答案为:21nn +. 【点睛】本题考查了等差数列的前n 项和,裂项相消法求和,意在考查学生对于数列公式方法的综合应用. 16.古希腊数学家阿波罗尼奥斯发现:平面上到两定点A ,B 距离之比为常数(0λλ>且1)λ≠的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P 满足3BP PE =.若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为________;若点P 在长方体1111ABCD A B C D -内部运动,F 为棱11C D 的中点,M 为CP 的中点,则三棱锥1M B CF -的体积的最小值为___________.【答案】 (1). 23 (2). 94【解析】 【分析】(1)以AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立如图所示的坐标系,设(,)P x y ,求出点P 的轨迹为22+12x y =,即得解;(2)先求出点P 的轨迹为222++12x y z =,P 到平面1B CF 的距离为3h =,再求出h 的最小值即得解.【详解】(1)以AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立如图所示的坐标系,则(6,0),(2,0),B E 设(,)P x y , 由3BP PE =得2222(6)3[(2)]x y x y -+=-+, 所以22+12x y =,所以若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为3(2)设点(,,)P x y z ,由3BP PE =得222222(6)3[(2)z ]x y z x y -++=-++,所以222++12x y z =,由题得1(3,3,3,),(6,0,3),(6,3,0),F B C所以11(3,3,0),(0,3,3),FB BC =-=-设平面1B CF 的法向量为000(,,)n x y z =, 所以100100·330,(1,1,1)·330n FB x y n n B C y z ⎧=-=⎪∴=⎨=-=⎪⎩,由题得(6,3,z)CP x y =--, 所以点P 到平面1B CF的距离为||||CP n h n ⋅== 因为2222222(++)(111)(),66x y z x y zx y z ++≥++∴-≤++≤, 所以minh ==M 到平面1BCF由题得1B CF ∆=, 所以三棱锥1MB CF -的体积的最小值为21934. 故答案为:(1). (2).94. 【点睛】本题主要考查空间几何中的轨迹问题,考查空间几何体体积的计算和点到平面距离的计算,考查最值的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:(共60分)17.在锐角△ABC 中,a =________, (1)求角A ;(2)求△ABC 的周长l 的范围. 注:在①(cos,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-,②cos (2)cos A b c a C -=,③11()cos cos(),()344f x x x f A π=--=这三个条件中任选一个,补充在上面问题中并对其进行求解.【答案】(1)若选①,3π(2)(6+ 【解析】 【分析】(1)若选①,12m n ⋅=-,得到1cos 2A =,解得答案.(2)根据正弦定理得到4sin sin sin a b c A B C ===,故6ABC l B π⎛⎫=++ ⎪⎝⎭△到答案.【详解】(1)若选①,∵(cos,sin ),(cos ,sin )2222A A A Am n =-=,且12m n ⋅=-221cos sin 222A A ∴-+=-,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)4sin sin sin a b c A B C===, 故24sin 4sin 4sin 4sin 3ABC l B C B B π⎛⎫=++=-++⎪⎝⎭△ 6ABClB π⎛⎫∴=++ ⎪⎝⎭,锐角△ABC ,故62B ππ⎛⎫∠∈ ⎪⎝⎭,.2,633B πππ⎛⎫∴+∈ ⎪⎝⎭,(6ABC l ∴∈+△. (1)若选②,()cos 2cos A b c a C =-,则2cos cos cosb A a Cc A =+,2sin cos sin B A B =,1cos 2A ∴=,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭,(2)问同上;(1)若选③11()cos (cos )24f x x x x =-=21cos 2x sin x x -14=12×1+cos 22x +2×sin 22x -14111=(cos 22)=sin(2)2226x x x π++, ()11sin 2462f A A π⎛⎫=∴+= ⎪⎝⎭,0,23A A ππ⎛⎫∈∴∠= ⎪⎝⎭.(2)问同上;【点睛】本题考查了向量的数量积,正弦定理,三角恒等变换,意在考查学生的计算能力和综合应用能力. 18.在创建“全国文明城市”过程中,银川市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次)通过随机抽样,得到参加问卷调查的100人的得分统计结果如表所示:(1)由频数分布表可以大致认为,此次问卷调查的得分Z ~N (μ,198),μ近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值....作代表), ①求μ的值;②利用该正态分布,求(88.5)P Z ≥;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案: ①得分不低于μ的可以获赠2次随机话费,得分低于μ的可以获赠1次随机话费; ②每次获赠的随机话费和对应的概率为:现有市民甲参加此次问卷调查,记X (单位:元)为该市民参加问卷调查获赠的话费,求X 的分布列与数学期望.14≈.若()2,XN μσ,则()0.6826P X μσμσ-<≤+=,()220.9544P X μσμσ-<≤+=,()330.9974P X μσμσ-<≤+=.【答案】(1)①60.5μ=②0.0228(2)见解析,1654【解析】 【分析】(1)直接根据公式计算得到60.5μ=,14σ=,计算得到答案.(2)获赠话费X 的可能取值为20,40,50,70,100,计算概率得到分布列,再计算数学期望得到答案. 【详解】(1)由题意得:3024013502160257024801190460.5100⨯+⨯+⨯+⨯+⨯+⨯+⨯=,∴60.5μ= ,∵14σ=≈,1(22)(88.5)(2)0.02282P u Z P Z P Z σμσμσ--<≤+>=>+==,(2)由题意知()()12P Z P Z μμ<=≥=,.获赠话费X 的可能取值为20,40,50,70,100,()13320248P X ==⨯=,()133********P X ==⨯⨯=,()11150248P X ==⨯=,()13111337024424416P X ==⨯⨯+⨯⨯=,()111110024432P X ==⨯⨯=,.∴X 的分布列为: X 20 40 50 70 100 P 3893218316132∴39131165()20405070100832816324E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查了正态分布求概率,分布列和数学期望,意在考查学生的计算能力和应用能力. 19.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CM CP的值;若不存在,说明理由.【答案】(1)见证明;(2)见解析 【解析】 【分析】(1)利用余弦定理计算BC ,根据勾股定理可得BC ⊥BD ,结合BC ⊥PD 得出BC ⊥平面PBD ,于是平面PBD ⊥平面PBC ;(2)建立空间坐标系,设CMCP=λ,计算平面ABM 和平面PBD 的法向量,令法向量的夹角的余弦值的绝对值等于12,解方程得出λ的值,即可得解. 【详解】(1)证明:因为四边形ABCD 为直角梯形,且//AB DC , 2AB AD ==,2ADC π∠=,所以22BD =, 又因为4,4CD BDC π=∠=.根据余弦定理得22,BC =所以222CD BD BC =+,故BC BD ⊥.又因为BC PD ⊥, PD BD D ⋂=,且BD ,PD ⊂平面PBD ,所以BC ⊥平面PBD , 又因为BC ⊂平面PBC ,所以PBC PBD ⊥平面平面 (2)由(1)得平面ABCD ⊥平面PBD , 设E 为BD 的中点,连结PE ,因为6PB PD ==,所以PE BD ⊥,2PE =,又平面ABCD ⊥平面PBD , 平面ABCD平面PBD BD =,PE ⊥平面ABCD .如图,以A 为原点分别以AD ,AB 和垂直平面ABCD 的方向为,,x y z 轴正方向,建立空间直角坐标系A xyz -,则(0,0,0)A ,(0,2,0)B ,(2,4,0)C ,(2,0,0)D ,(1,1,2)P , 假设存在(,,)M a b c 满足要求,设(01)CMCPλλ=≤≤,即CM CP λ=, 所以(2-,4-3,2)λλλM ,易得平面PBD 的一个法向量为(2,2,0)BC =.设(,,)n x y z =为平面ABM 的一个法向量,(0,2,0)AB =, =(2-,4-3,2)λλλAM由00n AB n AM ⎧⋅=⎨⋅=⎩得20(2)(43)20y x y z λλλ=⎧⎨-+-+=⎩,不妨取(2,0,2)n λλ=-.因为平面PBD 与平面ABM 所成的锐二面角为3π12=,解得2,23λλ==-,(不合题意舍去). 故存在M 点满足条件,且23CM CP =. 【点睛】本题主要考查空间直线与直线、直线与平面的位置关系及平面与平面所成的角等基础知识,面面角一般是定义法,做出二面角,或者三垂线法做出二面角,利用几何关系求出二面角,也可以建系来做. 20.已知函数21()(1)ln(1)()2f x x x ax x a R =++--∈ (1)设()'()h x f x =,试讨论()h x 的单调性;(2)若函数()f x 在(0,)+∞上有最大值,求实数a 的取值范围 【答案】(1)在11,1a ⎛⎫-- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;(2)01a << 【解析】 【分析】(1)计算()()()ln 1h x f x x ax '==+-,()11h x a x '=-+,讨论0a ≤,0a >两种情况,计算得到答案. (2)讨论0a ≤,1a ≥,01a <<三种情况,求导得到函数单调区间,110h a ⎛⎫->⎪⎝⎭,由零点存在性定理,存在011,x t a ⎛⎫∈- ⎪⎝⎭,使得()00h x =,计算最值得到答案.【详解】(1)()()ln 1f x x ax '=+-,令()()()ln 1h x f x x ax '==+-, ()11h x a x '=-+; 当0a ≤时,()0h x '>,()'fx ∴在()1,-+∞上递增,无减区间;当0a >时,令()0h x '>,则111x a -<<-,令()0h x '<,则11x a>-, 所以()'fx 在11,1a⎛⎫-- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减; (2)由(1)可知,当0a ≤时,()'f x ∴在()0,∞+上递增,()()''00f x f ∴>=,()f x ∴在()0,∞+上递增,无最大值,不合题意;当1a ≥时,()1101h x a a x '=-<-≤+,()'f x 在()0,∞+上递减, 故()()''00f x f <=,()f x ∴在()0,∞+上递减,无最大值,不合题意; 当01a <<时,110a ->,由(1)可知()'f x 在10,1a ⎛⎫- ⎪⎝⎭上单调递增,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递减; 设()1ln g x x x =--,则()1x g x x-'=; 令()0g x '<,则01x <<;令()0g x '>,则1x >,()g x ∴在()0,1上单调递减,在()1,+∞单调递增,()()10g x g ∴≥=,即ln 1x x ≤-,由此,当0x >时,1≤<ln x <所以,当0x >时,()()12h x ax a x <<+=-.取241t a =-,则11t a>-,且()20h t <-=, 又因为()1100h h a ⎛⎫->= ⎪⎝⎭, 所以由零点存在性定理,存在011,x t a ⎛⎫∈-⎪⎝⎭,使得()00h x =;. 当()00,x x ∈时,()0h x >,即()0f x '>; 当()0,x x ∈+∞时,()0h x <,即()0f x '<;所以()f x 在()00,x 上单调递增,在()0,x +∞上单调递减, 故函数在()0,∞+上有最大值()0f x . 综上,01a <<.【点睛】本题考查了函数的单调性,根据最值求参数,意在考查学生的计算能力和综合应用能力.21.已知O 为坐标原点,椭圆2222:1(0)x y C a b a b +=>>的左,右焦点分别为1F ,2F ,2F 点又恰为抛物线2:4D y x =的焦点,以12F F 为直径的圆与椭圆C 仅有两个公共点.(1)求椭圆C 的标准方程;(2)若直线l 与D 相交于A ,B 两点,记点A ,B 到直线1x =-的距离分别为1d ,2d ,12||AB d d =+.直线l 与C 相交于E ,F 两点,记OAB ,OEF 的面积分别为1S ,2S . (ⅰ)证明:1EFF △的周长为定值; (ⅱ)求21S S 的最大值. 【答案】(1)2212x y +=;(2)(i )详见解析;(ii【解析】 【分析】(1)由已知求得2(1,0)F ,可得1c =,又以12F F 为直径的圆与椭圆C 仅有两个公共点,知b c =,从而求得a 与b 的值,则答案可求;(2)()i 由题意,1x =-为抛物线D 的准线,由抛物线的定义知,1222||||||AB d d AF BF =+=+,结合22||||||AB AF BF +,可知等号当且仅当A ,B ,2F 三点共线时成立.可得直线l 过定点2F ,根据椭圆定义即可证明11||||||EF EF FF ++为定值;()ii 若直线l 的斜率不存在,则直线l 的方程为1x =,求出||AB 与||EF可得21||||4S EF S AB ==;若直线l 的斜率存在,可设直线方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,3(E x ,3)y ,4(F x ,4)y ,方便联立直线方程与抛物线方程,直线方程与椭圆方程,利用弦长公式求得||AB ,||EF,可得2212||1()1||2S EF S AB k ==∈+,由此可求21S S 的最大值. 【详解】解:(1)因为2F 为抛物线2:4D y x =的焦点,故2(1,0)F所以1c =又因为以12F F 为直径的圆与椭圆C 仅有两个公共点知:b c =所以a =1b =所以椭圆C 的标准方程为:2212x y +=(2)(ⅰ)由题知,因为1x =-为抛物线D 的准线 由抛物线的定义知:1222||AB d d AF BF =+=+又因为22||AB AF BF ≤+,等号当仅当A ,B ,2F 三点共线时成立 所以直线l 过定点2F 根据椭圆定义得:112112||4EF EF FF EF EF FF FF a ++=+++==(ⅱ)若直线l 的斜率不存在,则直线l 的方程为1x = 因为||4AB =,||EF =21||||4S EF S AB == 若直线l 的斜率存在,则可设直线:(1)(0)l y k x k =-≠,设()11,A x y ,()22,B x y由24(1)y x y k x ⎧=⎨=-⎩得,()2222240k x k x k -++= 所以212224k x x k ++=,212244||2k AB x x k+=++= 设()33,E x y ,()44,F x y ,由2212(1)x y y k x ⎧+=⎪⎨⎪=-⎩得,()2222124220k x k x k +-+-= 则2342412k x x k +=+,23422212k x x k-=+所以)23421||12k EF x k+=-==+则2212||11||242S EF S AB k ⎛⎫⎪⎛⎫===⨯∈ ⎪ ⎪ ⎪⎝⎭ ⎪+⎝⎭综上知:21SS 的最大值等于4【点睛】本题考查椭圆方程的求法,考查直线与椭圆、直线与抛物线位置关系的应用,考查计算能力,属于中档题.(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos 4πρθ⎛⎫+= ⎪⎝⎭C 的极坐标方程为6cos 0ρθ-=. (1)写出直线l 和曲线C 的直角坐标方程;(2)已知点(1,0)A ,若直线l 与曲线C 交于,P Q 两点,,P Q 中点为M ,求||||||AP AQ AM 的值. 【答案】(1)10x y --=.22(3)9x y -+=.(2)2【解析】【分析】 (1)直接利用极坐标和参数方程公式计算得到答案.(2)设直线l的参数方程为1,22x y t ⎧=+⎪⎪⎨⎪=⎪⎩,代入方程得到125t t =-,12t t +=. 【详解】(1)直线:cos 4l πρθ⎛⎫+= ⎪⎝⎭,故cos sin 10ρθρθ--=, 即直线l 的直角坐标方程为10x y --=.因为曲线:6cos 0C ρθ-=,则曲线C 的直角坐标方程为2260x y x +-=,即22(3)9x y -+=.(2)设直线l的参数方程为1,22x y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),将其代入曲线C的直角坐标系方程得250t --=.设P ,Q 对应的参数分别为1t ,2t ,则125t t =-,12t t +=所以M对应的参数1202t t t +==120|t ||t |||||=||||2AP AQ AM t ==. 【点睛】本题考查了参数方程和极坐标方程,意在考查学生的计算能力和转化能力.[选修4-5:不等式选讲]23.已知函数()|2|f x x =+.(1)求不等式()(2)4f x f x x +-<+的解集;(2)若x ∀∈R ,使得()()(2)f x a f x f a ++恒成立,求a 的取值范围.【答案】(1) {}22x x -<<.(2) 22,3⎡⎤--⎢⎥⎣⎦. 【解析】【分析】(1)先由题意得24x x x ++<+,再分别讨论2x -≤,20x -<≤,0x >三种情况,即可得出结果; (2)先由含绝对值不等式的性质,得到()()22f x a f x x a x a ++=++++≥,再由题意,可得22a a ≥+,求解,即可得出结果.【详解】(1)不等式()()24f x f x x +-<+ 可化为24x x x ++<+,当2x -≤时,224x x --<+ ,2x >-,所以无解;当20x -<≤时,24x <+ 所以20x -<≤;当0x >时,224x x +<+,2x < ,所以02x <<,综上,不等式()()24f x f x x +-<+的解集是{}|22x x -<<.(2)因为()()22f x a f x x a x a ++=++++≥又x R ∀∈,使得()()()2f x a f x f a ++≥ 恒成立,则22a a ≥+,()2222a a ≥+,解得223a -≤≤-. 所以a 的取值范围为22,3⎡⎤--⎢⎥⎣⎦. 【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的思想,以及绝对值不等式的性质即可,属于常考题型.。

(全国卷)高三数学第一次大联考试题理

(全国卷)高三数学第一次大联考试题理

(全国卷)2020届高三数学第一次大联考试题 理考生注意:1.本试卷共150分,考试时间120分钟。

2.请将试卷答案填在试卷后面的答题卷上。

3.本试卷主要考试内容:集合与常用逻辑用语、函数与导数。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

{}{}223,,1A x x x N B x x =-<<∈=> ,则集合A∩B=A.{2}B.{-1,0,1)C.{-2,2}D.{-1,0,1,2}2.命题“∀x>0,x(x +1)>(x -1)2”的否定为;A.20,(1)(1)x x x x ∀>+≤-B.20,(1)(1)x x x x ∀≤+≤-C.20,(1)(1)x x x x ∃>+≤-D.20,(1)(1)x x x x ∃≤+≤- 3.21232x dx x -+=+⎰ A.2+ln2 B.3-ln2 C.6-ln2 D.6-ln44.设集合A 、B 是全集U 的两个子集,则“A B ⊆”是“U AB φ= ”的2,0()0x x f x x -⎧≤⎪=> ,若f(x 0)<2,则x 0的取值范围是A.(-∞,-1)B.(-1,0]C.(-1,+∞)D.(-∞,0)01021:1,log ;:,2x p x x q x R e x ∃>>∀∈>,则下列说法中正确的是 A.p∨q 是假命题 B.p∧q 是真命题 C.p∨(⌝q)是真命题 D.p∧(⌝q)是假命题 {}{}12,15A x x B x x =-<≤=≤-≤, 定义集合{},,A B z z x y x A y B *==+∈∈,则()B A B **等于 A.{}61x x -<≤ B.{}112x x <≤ C.{}110x x -<≤ D.{}56x x -<≤8.已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x - a -x +2(a>0且a≠1),若g(2)=a ,则函数f(x 2+2x)的单调递增区间为A(-1.1) B.(-∞,1) C.(1,+∞) D.(-1,+∞)9.如图是二次函数f(x)=x 2-bx +a 的部分图象,则函数g(x)=alnx + f’(x)的零点所在的区间是 A.(14,12) B.(12,1) C.(1,2) D.(2,3) ∈R ,函数f(x)满足f(2-x)=-f(x),且当x≧1时,函数f(x)=1x -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学联考试题 理
注意事项:
1.考试前,请务必将考生的个人信息准确的输入在正确的位置。

2.考试时间120分钟,满分150分。

3.本次考试为在线联考,为了自己及他人,请独立完成此试卷,切勿翻阅或查找资料。

4.考试结束后,本次考试原卷及参考答案将在网上公布。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有 一项是符合题目要求的。

1. 不等式>-
x
1
10成立的充分不必要条件是 A. x>1 B. x>−1 C.x<−1或0<x< 1 D. −1<x<1 2. 复数z=1+2i 的共轭复数是z ,则z ·z =
A. 3
B. 3
C. 5
D. 5 3. 已知随机变量X~N(2, 2σ) ,若P (1<X<3)=0.36,则P (X ≥3)= A .0.64 B .0.32 C .0.36 D .0.72
4. 设m,n 是两条不同的直线,α,β是两个不同的平面,由下列四个命题,其中正确的是 A. 若m ⊥α,m ⊥n ,则n ∥α B. 若m ∥α,n ∥α,则m ∥n C. 若α∥β,m ⊂ α,则m ∥β D. 若m ∥β,m ⊂ α,则α∥β
5. 已知sin 2323-=⎪⎭
⎫ ⎝⎛-απ ,则 cos =⎪⎭⎫ ⎝⎛+απ3
A.
23 B. - 2
3
C. 21
D. -21
6. 如图是某高校用于计算500名学生某学科(满分为100分) 期末考试及格率q 的程序框图,图中空白框内应填入
A. M N q =
B. N M q =
C. N M N q +=
D. N
M M q += 7. 右图是某几何体的三视图,该几何体的体积为
A.
121 B. 61 C. 31 D. 2
1 8. 设不等式组⎪⎩

⎨⎧≥≥+-≤-10220
x y x y x 表示的平面区域为m ,则
A. m 的面积为
2
9
B. m 内的点到x 轴的距离有最大值
C. 点A(x,y)在m 内时,2
+x x
<2 D. 若点p(x 0,y 0)∈m ,则x 0+y 0≠2
9. 已知,log ,41,3133
132
π=⎪⎭
⎫ ⎝⎛=⎪⎭
⎫ ⎝⎛=c b a 则a,b,c 的大小关系为
A. a>b>c
B. a>c>b
C. c>a>b
D. c>b>a
10. 函数y=f(x)的定义域为R ,且φ(x)-f(x)-f(x+a),对任意a <0,φ(x)在R 上是增函数,则函数y=f(x)的图象可以是
11. 双曲线E: 22
22b
y a x -=1(a>0,b>0)的左,右焦点分别为F 1,F 2,过F 1作一条直线与两条
渐近线分别相交于A ,B 两点,若A F B F 112=,||2||21OB F F =,则该双曲线的离心率为 A .2 B .3 C .2 D .3
12. 已知函数f(x)=alnx+(a-1)x 2+1(a <0),在函数f(x)图象上任取两点A ,B ,若直线AB 的斜率的绝对值都不小于5,则实数a 的取值范围是 A.(-∞,0) B.(-∞,4632-) C.(-∞,-4632-) D.(4
6
32-,
0)
二、填空题:本大题共4小题,每小题5分,共20分. 13. 已知(3x-1)5
=a 0+a 1x+a 2x 2
+……+a 5x 5
,则a 1+a 3+a 5=
14. 已知P 是抛物线y 2=4x 上的动点,A (2, 15),若点P 到y 轴的距离为d 1,点P 到点A 的距离为d 2,则d 1+d 2的最小值是_________.
15. 已知定义在实数集R 上的函数f(x)满足f(1)=0,且f(x)的导函数f ’(x)满足f ’(x)+1<0,则不等式f(lnx)+lnx >1的解集为_______.(结果用区间表示)
16. 如图,点P 是正方形ABCD-A 1B 1C 1D 1外的一点,过点P 作直线l,记直线l 与直线AC1,BC 的夹角分别为θ1,θ2, 若sin(θ1 −50º)=cos(140º−θ2)=2
1
,则满足条件的直 线l 有 条。

三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考
题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:(共60分)
17.(12分)在△ABC 中,角A,B,C 的对边分别为a,b,c,且csinA=3acosC. (1)求角C 的值;
(2)若S △ABC =23,a+b=6,求c 的值.
18.(12分)现有甲、乙两种不同规格的产品,其质量按测试指标分数进行划分,其中分数不小于82分的为合格品,否则为次品.现随机抽取两种产品各100件进行检测,其结果如下: 测试指标分数 [70,76) [76,82) [82,88) [88,94) [94,100) 甲产品 8 12 40 32 8 乙产品
7
18
40
29
6
(1)根据以上数据,完成右边的2×2列联表,并合计判断是否有95%的有把握认为两种产品的质量有明显差异?
(2)已知生产1件甲产品,若为合格品,则可盈利40元,若为次品,则亏损5元;生产1件乙产品,若为合格品,则可盈利50元,若为次品,则亏损10元.记X 为生产1件甲产品和1件乙产品所得的总利润,求随机变量X 的分布列和数学期望(将产品的合格率作为抽检一件这种产品为合格品的概率)
参考公式:
19.(12分)如图所示的多面体中,底面ABCD 为正方形,△GAD 为等边三角形,BF ⊥平面ABCD ,∠GDC =90°,点E 是线段GC 上除两端点外的一点. (1)若点P 为线段GD 的中点,证明:AP ⊥平面GCD ; (2)若二面角B -DE -C 的余弦值为
7
7
,试通过计算说明点E 的位置.
20.(12分)设F 1,F 2分别是椭圆E: 22
24b
y x +=1的左、右焦点,若P 是该椭圆上的一个动
点, 21PF PF ⋅的最大值为1. (1)求椭圆E 的方程;
(2)设直线l:x=ky −1与椭圆交于不同的两点AB,且∠ AOB 为锐角(其中O 为坐标原点),求k 的取值范围.
21.(12分)已知函数f x =x 2−8x+alnx (a ∈R)
(1)当x=1时, f(x)取得极值,求a 的值并判断x=1?是极大值点还是极小值点 (2)当函数f(x)有两个极值点x 1,x 2(x 1<x 2) ,且x 1≠1时,总有1
1
1ln x x a ->t (4+3x 1 –x 12
) 成立,求t 的取值范围.
(二)选考题:共10分.请考生在第22、23题中任选一题做答。

如果多做,则按所做的第一题记分。

22.【选修4-4:坐标系与参数方程】(12分)
在平面直角坐标系xOy 中,直线l 的参数方程为⎪⎪⎩

⎪⎨⎧-==t y t x 23121 (t 为参数).以坐标原点为极
点, x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2sin θ (1)判断直线l 与圆C 的交点个数
(2)若圆C 与直线l 交于AB 两点,求线段AB 的长度 , 23.【选修4-5:不等式选讲】(12分) 已知函数f(x)=| x −5|− |x+3|. (1)解不等式f(x) ≥x+1;
(2)记函数f(x)的最大值为m,若a>0,b>0,e a ▪e 4b =e 4ab −m ,求ab 的最小值.。

相关文档
最新文档